1
|
Church RJ, Anchang B, Bennett BD, Bushel PR, Watkins PB. Blood toxicogenomics reveals potential biomarkers for management of idiosyncratic drug-induced liver injury. Front Genet 2025; 16:1524433. [PMID: 40201567 PMCID: PMC11975945 DOI: 10.3389/fgene.2025.1524433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/04/2025] [Indexed: 04/10/2025] Open
Abstract
Introduction: Accurate diagnosis, assessment, and prognosis of idiosyncratic drug-induced liver injury (IDILI) is problematic, in part due to the shortcomings of traditional blood biomarkers. Studies in rodents and healthy volunteers have supported that RNA transcript changes in whole blood may address some of these shortcomings. Methods: In this study, we conducted RNA-Seq analysis on peripheral blood samples collected from 55 patients with acute IDILI and 17 patients with liver injuries not attributed to IDILI. Results and discussion: Three differentially expressed genes (DEGs; CFD, SQLE, and INKA1) were identified as significantly associated with IDILI vs. other liver injuries. No DEGs were identified comparing IDILI patients to the 5 patients with autoimmune hepatitis, suggesting possible common underlying mechanisms. Two genes (VMO1 and EFNA1) were significantly associated with hepatocellular injury compared to mixed/cholestatic injury. When patients with severe vs. milder IDILI were compared, we identified over 500 DEGs. The top pathways identified from these DEGs had in common down regulation of multiple T-cell specific genes. Further analyses confirmed that these changes could largely be accounted for by a fall in the concentration of circulating T-cells during severe DILI, perhaps due to exhaustion or sequestration of these cells in the liver. Exploration of DEGs specific for the individual causal agents was largely unsuccessful, but isoniazid-induced IDILI demonstrated 25 DEGs compared to other non-isoniazid IDILI cases. Finally, among the 14 IDILI patients that had hepatocellular jaundice (i.e., Hy's Law cases), we identified 39 DEGs between the 4 patients with fatal or liver transplantation outcomes compared to those that recovered. These findings suggest the potential for blood-based transcriptomic biomarkers to aid in the diagnosis and prognostic stratification of IDILI.
Collapse
Affiliation(s)
- Rachel J. Church
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC, United States
| | - Benedict Anchang
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Brian D. Bennett
- Integrative Bioinformatics Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Pierre R. Bushel
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Paul B. Watkins
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC, United States
| |
Collapse
|
2
|
Monte AA, Vest A, Reisz JA, Berninzoni D, Hart C, Dylla L, D'Alessandro A, Heard KJ, Wood C, Pattee J. A Multi-Omic Mosaic Model of Acetaminophen Induced Alanine Aminotransferase Elevation. J Med Toxicol 2023; 19:255-261. [PMID: 37231244 PMCID: PMC10212224 DOI: 10.1007/s13181-023-00951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Acetaminophen (APAP) is the most common cause liver injury following alcohol in US patients. Predicting liver injury and subsequent hepatic regeneration in patients taking therapeutic doses of APAP may be possible using new 'omic methods such as metabolomics and genomics. Multi'omic techniques increase our ability to find new mechanisms of injury and regeneration. METHODS We used metabolomic and genomic data from a randomized controlled trial of patients administered 4 g of APAP per day for 14 days or longer with blood samples obtained at 0 (baseline), 4, 7, 10, 13 and 16 days. We used the highest ALT as the clinical outcome to be predicted in our integrated analysis. We used penalized regression to model the relationship between genetic variants and day 0 metabolite level, and then performed a metabolite-wide colocalization scan to associate the genetically regulated component of metabolite expression with ALT elevation. Genome-wide association study (GWAS) analyses were conducted for ALT elevation and metabolite level using linear regression, with age, sex, and the first five principal components included as covariates. Colocalization was tested via a weighted sum test. RESULTS Out of the 164 metabolites modeled, 120 met the criteria for predictive accuracy and were retained for genetic analyses. After genomic examination, eight metabolites were found to be under genetic control and predictive of ALT elevation due to therapeutic acetaminophen. The metabolites were: 3-oxalomalate, allantoate, diphosphate, L-carnitine, L-proline, maltose, and ornithine. These genes are important in the tricarboxylic acid cycle (TCA), urea breakdown pathway, glutathione production, mitochondrial energy production, and maltose metabolism. CONCLUSIONS This multi'omic approach can be used to integrate metabolomic and genomic data allowing identification of genes that control downstream metabolites. These findings confirm prior work that have identified mitochondrial energy production as critical to APAP induced liver injury and have confirmed our prior work that demonstrate the importance of the urea cycle in therapeutic APAP liver injury.
Collapse
Affiliation(s)
- Andrew A Monte
- Department of Emergency Medicine, University of Colorado School of Medicine, Leprino Building, 7th Floor Campus Box B-215, 12401 E. 17th Avenue, Aurora, CO, 80045, USA.
- Center for Bioinformatics & Personalized Medicine, University of Colorado School of Medicine, Aurora, CO, USA.
- Skaggs School of Pharmacy, University of Colorado, Aurora, CO, USA.
- Denver Health and Hospital Authority, Rocky Mountain Poison & Drug Center, Denver, CO, USA.
| | - Alexis Vest
- Department of Emergency Medicine, University of Colorado School of Medicine, Leprino Building, 7th Floor Campus Box B-215, 12401 E. 17th Avenue, Aurora, CO, 80045, USA
| | - Julie A Reisz
- Metabolomics Core, Department of Biochemistry and Molecular Genetics, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Danielle Berninzoni
- Department of Emergency Medicine, University of Colorado School of Medicine, Leprino Building, 7th Floor Campus Box B-215, 12401 E. 17th Avenue, Aurora, CO, 80045, USA
| | - Claire Hart
- Department of Emergency Medicine, University of Colorado School of Medicine, Leprino Building, 7th Floor Campus Box B-215, 12401 E. 17th Avenue, Aurora, CO, 80045, USA
| | - Layne Dylla
- Department of Emergency Medicine, University of Colorado School of Medicine, Leprino Building, 7th Floor Campus Box B-215, 12401 E. 17th Avenue, Aurora, CO, 80045, USA
- Center for Bioinformatics & Personalized Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Angelo D'Alessandro
- Metabolomics Core, Department of Biochemistry and Molecular Genetics, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Kennon J Heard
- Department of Emergency Medicine, University of Colorado School of Medicine, Leprino Building, 7th Floor Campus Box B-215, 12401 E. 17th Avenue, Aurora, CO, 80045, USA
- Denver Health and Hospital Authority, Rocky Mountain Poison & Drug Center, Denver, CO, USA
| | - Cheyret Wood
- Department of Biostatistics & Informatics, Colorado School of Public Health, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Jack Pattee
- Department of Biostatistics & Informatics, Colorado School of Public Health, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
3
|
Shortt K, Heruth DP. Identification of Genes Regulating Hepatocyte Injury by a Genome-Wide CRISPR-Cas9 Screen. Methods Mol Biol 2022; 2544:227-251. [PMID: 36125723 DOI: 10.1007/978-1-0716-2557-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gene editing introduces stable mutations into the genome and has powerful applications extending from research to clinical gene therapy. CRISPR-Cas9 gene editing can be employed to study directly the functional impact of stable gene knockout, activation, and knockdown. Here, we describe the end-to-end methodology by which we employ genome-wide CRISPR-Cas9 knockout to study drug toxicity using acetaminophen (APAP) in a hepatocellular carcinoma liver model as an example. This methodology can be extended to other proliferative cell types and chemical metabolic and toxicity models. By employing a massively parallelized genome-wide knockout model, the genes responsible for cellular toxicity and proliferation may be assayed concurrently. Resultant data are interrogated in the context of existing gene expression data, pathway analysis, drug-gene interactions, and orthogonal confirmatory assays to better understand the metabolic mechanisms.
Collapse
Affiliation(s)
| | - Daniel P Heruth
- Children's Mercy Research Institute, Kansas City, MO, USA.
- Department of Pediatrics, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA.
| |
Collapse
|
4
|
Song J, Jung KJ, Cho JW, Park T, Han SC, Park D. Transcriptomic Analysis of Polyhexamethyleneguanidine-Induced Lung Injury in Mice after a Long-Term Recovery. TOXICS 2021; 9:toxics9100253. [PMID: 34678949 PMCID: PMC8540838 DOI: 10.3390/toxics9100253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 02/06/2023]
Abstract
Polyhexamethyleneguanidine phosphate (PHMG-P) is one of the causative agents of humidifier disinfectant-induced lung injury. Direct exposure of the lungs to PHMG-P causes interstitial pneumonia with fibrosis. Epidemiological studies showed that patients with humidifier disinfectant-associated lung injuries have suffered from restrictive lung function five years after the onset of the lung injuries. We investigated whether lung damage was sustained after repeated exposure to PHMG-P followed by a long-term recovery and evaluated the adverse effects of PHMG-P on mice lungs. Mice were intranasally instilled with 0.3 mg/kg PHMG-P six times at two weeks intervals, followed by a recovery period of 292 days. Histopathological examination of the lungs showed the infiltration of inflammatory cells, the accumulation of extracellular matrix in the lung parenchyma, proteinaceous substances in the alveoli and bronchiolar–alveolar hyperplasia. From RNA-seq, the gene expression levels associated with the inflammatory response, leukocyte chemotaxis and fibrosis were significantly upregulated, whereas genes associated with epithelial/endothelial cells development, angiogenesis and smooth muscle contraction were markedly decreased. These results imply that persistent inflammation and fibrotic changes caused by repeated exposure to PHMG-P led to the downregulation of muscle and vascular development and lung dysfunction. Most importantly, this pathological structural remodeling induced by PHMG-P was not reversed even after long-term recovery.
Collapse
Affiliation(s)
- Jeongah Song
- Animal Model Research Group, Korea Institute of Toxicology, Jeongeup 56212, Korea
- Correspondence: (J.S.); (D.P.); Tel.: +82-63-850-8553 (J.S.); +82-42-610-8844 (D.P.)
| | - Kyung-Jin Jung
- Bioanalytical and Immunoanalytical Research Group, Korea Institute of Toxicology, Daejeon 34114, Korea;
| | - Jae-Woo Cho
- Toxicologic Pathology Research Group, Korea Institute of Toxicology, Daejeon 34114, Korea;
| | - Tamina Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea;
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Korea
| | - Su-Cheol Han
- Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup 56212, Korea;
| | - Daeui Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea;
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: (J.S.); (D.P.); Tel.: +82-63-850-8553 (J.S.); +82-42-610-8844 (D.P.)
| |
Collapse
|
5
|
The Genomics of Elevated ALT and Adducts in Therapeutic Acetaminophen Treatment: a Pilot Study. J Med Toxicol 2020; 17:160-167. [PMID: 33051802 DOI: 10.1007/s13181-020-00815-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Therapeutic acetaminophen (APAP) ingestion causes asymptomatic drug-induced liver injury in some patients. In most cases, elevations in alanine aminotransferase (ALT) are transient and return to the normal range, even with continued APAP ingestion, though ALT elevation persists in some patients unpredictably. The etiology of this liver injury or adaption is unclear. Our objective was to identify new pharmacogenomic variants associated with elevated ALT or elevated protein adduct concentrations in patients receiving therapeutic acetaminophen. METHODS We performed genome-wide sequencing analysis on eight patients using leftover blood samples from an observational study that administered four grams of acetaminophen for up to 16 days to all patients. Two patients with ALT elevations > two times the upper limit of normal, two patients with no adduct formation, and four control patients were sequenced. The genomes were aligned with the GRCh38 reference sequence, and variants with predicted low, moderate, or high impact on the subsequent proteins were first manually curated for biologic plausibility, then organized and examined in the REACTOME pathway analysis program. RESULTS We found 394 variants in 107 genes associated with elevated ALT. Variants associated with ALT elevation predominantly involved genes in the immune system (MHC class II complex genes), endoplasmic reticulum stress response (SEC23B and XBP1), oxidative phosphorylation (NDUFB9), and WNT/beta-catenin signaling (FZD5). Variants associated with elevated adducts were primarily in signal transduction (MUC20) and DNA repair mechanisms (P53). CONCLUSIONS While underpowered, genetic variants in immune system genes may be associated with drug-induced liver injury at therapeutic doses of acetaminophen.
Collapse
|
6
|
Martin F, Talikka M, Ivanov NV, Haziza C, Hoeng J, Peitsch MC. A Meta-Analysis of the Performance of a Blood-Based Exposure Response Gene Signature Across Clinical Studies on the Tobacco Heating System 2.2 (THS 2.2). Front Pharmacol 2019; 10:198. [PMID: 30971916 PMCID: PMC6444181 DOI: 10.3389/fphar.2019.00198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/18/2019] [Indexed: 11/28/2022] Open
Abstract
As part of emerging tobacco harm reduction strategies, modified risk tobacco products (MRTP) are being developed to offer alternatives that have the potential to reduce the individual risk and population harm compared with smoking cigarettes for adult smokers who want to continue using tobacco and nicotine products. MRTPs are defined as any tobacco products that are distributed for use to reduce harm or the risk of tobacco-related disease associated with commercially marketed tobacco products. One such candidate MRTP is the Tobacco Heating System (THS) 2.2, which does not burn tobacco but instead heats it, thus producing significantly reduced levels of harmful and potentially harmful constituents compared with cigarettes. The clinical assessment of candidate MRTPs requires the development of exposure-response markers to distinguish current smokers from either nonsmokers or former smokers with high specificity and sensitivity. Toward this end, a whole blood-derived gene signature was previously developed and reported. Four randomized, controlled, open-label, three-arm parallel group reduced exposure clinical studies have been conducted with subjects randomized to three arms: switching from cigarettes to THS 2.2, continuous use of cigarettes, or smoking abstinence. These clinical studies had an investigational period of 5 days in confinement, which was followed by an 85-day ambulatory period in two studies. Here we tested the previously developed blood-derived signature on the samples derived from those clinical studies. We showed that in all four studies, the signature scores were reduced consistently in subjects who either stopped smoking or switched to THS 2.2 compared with subjects who continued smoking cigarettes.
Collapse
Affiliation(s)
- Florian Martin
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Marja Talikka
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Christelle Haziza
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| |
Collapse
|
7
|
Afshar E, Hashemi-Arabi M, Salami S, Peirouvi T, Pouriran R. Screening of acetaminophen-induced alterations in epithelial-to-mesenchymal transition-related expression of microRNAs in a model of stem-like triple-negative breast cancer cells: The possible functional impacts. Gene 2019; 702:46-55. [PMID: 30898700 DOI: 10.1016/j.gene.2019.02.106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/04/2019] [Accepted: 02/22/2019] [Indexed: 12/21/2022]
Abstract
Current protocols for therapy inefficiently targets triple negative breast cancer and barely eradicate cancer stem cells. Elucidation of the pleiotropic effect of clinically proven therapeutics on cancer cells shed light on novel application of old friends. The pleiotropic effect of acetaminophen (APAP) on breast cancer was previously reported. In a cell model of triple negative breast cancer with stem-like CD44high/CD24low phenotype, we screened the impacts of APAP (1 mM, 72 h) on the Epithelial to mesenchymal transition (EMT)-related expression of miRs. APAP significantly overexpressed hsa-miR-130a-3p, 192-5p, 214-3p, 101-3p, 30d-5p, 10a-5p, 99a-5p, 200c-3p, 143-3p, 30b-5p and let-7f-5p showed significant overexpression, but suppressed the expression of hsa-miR-7-5p, 149-3p, 215, 150-5p, 205-5p, 206, 10b-5p, 20b-5p, 145-5p, 26b-5p, 223-3p, 17-5p, 186-5p, 146a-5p and let-7c. It also altered on the expression of selected EMT-related genes, significantly upregulated the expression of KRT19, AKT2, CD24, and TIMP1; but downregulated the expression of MMP2, ALDH1, MMP9, TWIST, NOTCH1, and AKT1. Such shifts in expression profiles increased the population of the cells with CD44high/CD24high, and CD44low/CD24high phenotypes, significantly reduced the Twist protein and shifted the balance of E-cadherin and Vimentin proteins in favor of differentiation. Treated cells showed a significant reduction of in vitro migration and were significantly chemosensitized to Camptothecin. In conclusion, APAP, at a safe clinical dose, induced a set of targeted alterations in the EMT-related miRs which implicate, even in part, significant mitigation in chemoresistance and in vitro migration. Further studies should also be piloted to elucidate the most crucial miRs and to evaluate its clinical effectiveness.
Collapse
Affiliation(s)
- Elham Afshar
- Cell Death and Differentiation Signaling Research Lab, Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Center for Biotechnology, Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, Telangana, India
| | - Masoud Hashemi-Arabi
- Cell Death and Differentiation Signaling Research Lab, Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; International Branch, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siamak Salami
- Cell Death and Differentiation Signaling Research Lab, Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Tahmineh Peirouvi
- Department of Histology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ramin Pouriran
- International Branch, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Shortt K, Heruth DP, Zhang N, Wu W, Singh S, Li DY, Zhang LQ, Wyckoff GJ, Qi LS, Friesen CA, Ye SQ. Identification of Novel Regulatory Genes in APAP Induced Hepatocyte Toxicity by a Genome-Wide CRISPR-Cas9 Screen. Sci Rep 2019; 9:1396. [PMID: 30718897 PMCID: PMC6362041 DOI: 10.1038/s41598-018-37940-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/07/2018] [Indexed: 12/11/2022] Open
Abstract
Acetaminophen (APAP) is a commonly used analgesic responsible for more than half of acute liver failure cases. Identification of previously unknown genetic risk factors would provide mechanistic insights and novel therapeutic targets for APAP-induced liver injury. This study used a genome-wide CRISPR-Cas9 screen to evaluate genes that are protective against, or cause susceptibility to, APAP-induced liver injury. HuH7 human hepatocellular carcinoma cells containing CRISPR-Cas9 gene knockouts were treated with 15 mM APAP for 30 minutes to 4 days. A gene expression profile was developed based on the 1) top screening hits, 2) overlap of expression data from APAP overdose studies, and 3) predicted affected biological pathways. We further demonstrated the implementation of intermediate time points for the identification of early and late response genes. This study illustrated the power of a genome-wide CRISPR-Cas9 screen to systematically identify novel genes involved in APAP-induced hepatotoxicity and to provide potential targets to develop novel therapeutic modalities.
Collapse
Affiliation(s)
- Katherine Shortt
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, USA
- Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
- Division of Cell Biology and Biophysics, University of Missouri Kansas City School of Biological Sciences, Kansas City, MO, USA
- Precision Genomics, Intermountain Healthcare, St. George, UT, 84790, USA
| | - Daniel P Heruth
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, USA.
| | - NiNi Zhang
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, USA
- Division of Gastroenterology, Hepatology, Nutrition, Children's Mercy Kansas City, Kansas City, MO, USA
- Department of Pediatrics, Tangdu Hospital, The Fourth Military Medical University, Xian, China
| | - Weibin Wu
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, USA
- Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - Shipra Singh
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, USA
- Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - Ding-You Li
- Division of Gastroenterology, Hepatology, Nutrition, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Li Qin Zhang
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, USA.
- Department of Biomedical Sciences, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA.
| | - Gerald J Wyckoff
- Division of Molecular Biology & Biochemistry, University of Missouri Kansas City School of Biological Sciences, Kansas City, MO, USA
| | - Lei S Qi
- Department of Bioengineering, Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - Craig A Friesen
- Division of Gastroenterology, Hepatology, Nutrition, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Shui Qing Ye
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, USA
- Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
- Division of Cell Biology and Biophysics, University of Missouri Kansas City School of Biological Sciences, Kansas City, MO, USA
| |
Collapse
|
9
|
Joseph P. Transcriptomics in toxicology. Food Chem Toxicol 2017; 109:650-662. [PMID: 28720289 PMCID: PMC6419952 DOI: 10.1016/j.fct.2017.07.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/12/2017] [Accepted: 07/14/2017] [Indexed: 12/11/2022]
Abstract
Xenobiotics, of which many are toxic, may enter the human body through multiple routes. Excessive human exposure to xenobiotics may exceed the body's capacity to defend against the xenobiotic-induced toxicity and result in potentially fatal adverse health effects. Prevention of the adverse health effects, potentially associated with human exposure to the xenobiotics, may be achieved by detecting the toxic effects at an early, reversible and, therefore, preventable stage. Additionally, an understanding of the molecular mechanisms underlying the toxicity may be helpful in preventing and/or managing the ensuing adverse health effects. Human exposures to a large number of xenobiotics are associated with hepatotoxicity or pulmonary toxicity. Global gene expression changes taking place in biological systems, in response to exposure to xenobiotics, may represent the early and mechanistically relevant cellular events contributing to the onset and progression of xenobiotic-induced adverse health outcomes. Hepatotoxicity and pulmonary toxicity resulting from exposure to xenobiotics are discussed as specific examples to demonstrate the potential application of transcriptomics or global gene expression analysis in the prevention of adverse health effects associated with exposure to xenobiotics.
Collapse
Affiliation(s)
- Pius Joseph
- Molecular Carcinogenesis Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA.
| |
Collapse
|
10
|
The sbv IMPROVER Systems Toxicology Computational Challenge: Identification of Human and Species-Independent Blood Response Markers as Predictors of Smoking Exposure and Cessation Status. ACTA ACUST UNITED AC 2017; 5:38-51. [PMID: 30221212 DOI: 10.1016/j.comtox.2017.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cigarette smoking entails chronic exposure to a mixture of harmful chemicals that trigger molecular changes over time, and is known to increase the risk of developing diseases. Risk assessment in the context of 21st century toxicology relies on the elucidation of mechanisms of toxicity and the identification of exposure response markers, usually from high-throughput data, using advanced computational methodologies. The sbv IMPROVER Systems Toxicology computational challenge (Fall 2015-Spring 2016) aimed to evaluate whether robust and sparse (≤40 genes) human (sub-challenge 1, SC1) and species-independent (sub-challenge 2, SC2) exposure response markers (so called gene signatures) could be extracted from human and mouse blood transcriptomics data of current (S), former (FS) and never (NS) smoke-exposed subjects as predictors of smoking and cessation status. Best-performing computational methods were identified by scoring anonymized participants' predictions. Worldwide participation resulted in 12 (SC1) and six (SC2) final submissions qualified for scoring. The results showed that blood gene expression data were informative to predict smoking exposure (i.e. discriminating smoker versus never or former smokers) status in human and across species with a high level of accuracy. By contrast, the prediction of cessation status (i.e. distinguishing FS from NS) remained challenging, as reflected by lower classification performances. Participants successfully developed inductive predictive models and extracted human and species-independent gene signatures, including genes with high consensus across teams. Post-challenge analyses highlighted "feature selection" as a key step in the process of building a classifier and confirmed the importance of testing a gene signature in independent cohorts to ensure the generalized applicability of a predictive model at a population-based level. In conclusion, the Systems Toxicology challenge demonstrated the feasibility of extracting a consistent blood-based smoke exposure response gene signature and further stressed the importance of independent and unbiased data and method evaluations to provide confidence in systems toxicology-based scientific conclusions.
Collapse
|
11
|
Loft ND, Skov L, Iversen L, Gniadecki R, Dam TN, Brandslund I, Hoffmann HJ, Andersen MR, Dessau RB, Bergmann AC, Andersen NM, Andersen PS, Bank S, Vogel U, Andersen V. Associations between functional polymorphisms and response to biological treatment in Danish patients with psoriasis. THE PHARMACOGENOMICS JOURNAL 2017; 18:494-500. [DOI: 10.1038/tpj.2017.31] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 05/17/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022]
|