1
|
Girardi C, Benato F, Massironi M, Vindigni V, Stuhlmann D, Massironi M. Evaluation of human skin response to solar-simulated radiation in an ex vivo model: Effects and photoprotection of L-Carnosine. Photochem Photobiol 2024; 100:733-745. [PMID: 37675862 DOI: 10.1111/php.13850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/28/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
Sunlight, and more specifically the UV component, induces several skin damages, including sunburns, erythema and photoaging. The purpose of this work is to set up an ex vivo human skin model to assess the capacity of active principles in protecting skin from the deleterious effects of solar radiation. Ex vivo human skin biopsies were cultured in an air-liquid interface and exposed to solar-simulated radiation (SSR, 300-750 nm). L-Carnosine (0.2% and 2%) was applied topically to be tested as photoprotective compound. The effect on oxidative stress induction, photoaging and skin transcriptional profile was assessed by evaluating reactive oxygen species, advanced glycosylation end products formation and gene expression changes. In our model, SSR increases ROS production and AGE accumulation and affects the expression of genes related to oxidative stress, pigmentation, immunity, inflammation and photoaging. Among these pathways, 11 genes were selected as biomarkers to evaluate the skin solar radiation response. Results showed that L-Carnosine provides effective prevention against solar radiation damages reducing ROS, AGEs and mitigating the modulation of the selected biomarker genes. In conclusion, we report that our ex vivo skin model is a valuable system to assess the consequences of solar light exposure and the capacity of topically applied L-Carnosine to counteract them.
Collapse
Affiliation(s)
| | | | | | - Vincenzo Vindigni
- Clinic of Plastic and Reconstructive Surgery, University of Padova, Padova, Italy
| | | | | |
Collapse
|
2
|
González S, Aguilera J, Berman B, Calzavara-Pinton P, Gilaberte Y, Goh CL, Lim HW, Schalka S, Stengel F, Wolf P, Xiang F. Expert Recommendations on the Evaluation of Sunscreen Efficacy and the Beneficial Role of Non-filtering Ingredients. Front Med (Lausanne) 2022; 9:790207. [PMID: 35433750 PMCID: PMC9008233 DOI: 10.3389/fmed.2022.790207] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/04/2022] [Indexed: 11/23/2022] Open
Abstract
A variety of non-filtering agents have been introduced to enhance sunscreen photoprotection. Most of those agents have only weak erythema protective properties but may be valuable and beneficial in supporting protection against other effects of UV radiation, such as photoimmunosuppression, skin aging, and carcinogenesis, as well as photodermatoses. The question arises how to measure and evaluate this efficacy since standard SPF testing is not appropriate. In this perspective, we aim to provide a position statement regarding the actual value of SPF and UVA-PF to measure photoprotection. We argue whether new or additional parameters and scales can be used to better indicate the protection conferred by these products against the detrimental effects of natural/artificial, UV/visible light beyond sunburn, including DNA damage, photoimmunosuppression and pigmentation, and the potential benefits of the addition of other ingredients beyond traditional inorganic and organic filters to existing sunscreens. Also, we debate the overall usefulness of adding novel parameters that measure photoprotection to reach two tiers of users, that is, the general public and the medical community; and how this can be communicated to convey the presence of additional beneficial effects deriving from non-filtering agents, e.g., biological extracts. Finally, we provide a perspective on new challenges stemming from environmental factors, focusing on the role of the skin microbiome and the role of air pollutants and resulting needs for photoprotection.
Collapse
Affiliation(s)
- Salvador González
- Medicine and Medical Specialties Department, University of Alcalá de Henares, Madrid, Spain
- *Correspondence: Salvador González,
| | - José Aguilera
- Dermatological Photobiology Laboratory, Medical Research Center, School of Medicine, University of Málaga, Málaga, Spain
| | - Brian Berman
- Department of Dermatology and Cutaneous Surgery, University of Miami-Florida, Miami, FL, United States
| | | | - Yolanda Gilaberte
- Department of Dermatology, Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza, Spain
| | | | - Henry W. Lim
- Department of Dermatology, Henry Ford Health System, Detroit, MI, United States
| | - Sergio Schalka
- Photoprotection Laboratory, Medicine Skin Research Center, São Paulo, Brazil
| | | | - Peter Wolf
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Flora Xiang
- Department of Dermatology, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Artyukhov VG, Basharina OV. Modern Ideas about the Mechanisms of Action of Ultraviolet Radiation on Cells and Subcellular Systems. BIOL BULL+ 2022. [DOI: 10.1134/s1062359021120025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Cicek D, Demir B, Orhan C, Tuzcu M, Ozercan IH, Sahin N, Komorowski J, Ojalvo SP, Sylla S, Sahin K. The Protective Effects of a Combination of an Arginine Silicate Complex and Magnesium Biotinate Against UV-Induced Skin Damage in Rats. Front Pharmacol 2021; 12:657207. [PMID: 34220502 PMCID: PMC8250765 DOI: 10.3389/fphar.2021.657207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/02/2021] [Indexed: 12/16/2022] Open
Abstract
The purpose of this study was to observe the effects of a novel combination of inositol-stabilized arginine silicate complex (ASI) and magnesium biotinate (MgB) on the prevention of skin damage after UVB exposure in rats. Forty-nine Sprague-Dawley rats were randomized into one of the following groups: (1) NC, normal control, (2) SC, shaved control, (3) UVB (exposed to UVB radiation), (4) ASI+MgB-L (Low Dose), (5) ASI+MgB-H (High Dose), (6) ASI+MgB-L+MgB cream, (7) ASI+MgB-H+MgB cream. The results showed that ASI+MgB treatment alleviated the macroscopic and histopathological damages in the skin of rats caused by UVB exposure. Skin elasticity evaluation showed a similar trend. ASI+MgB increased serum Mg, Fe, Zn, Cu, Si, biotin, and arginine concentrations and skin hydroxyproline and biotinidase levels while decreasing skin elastase activity (p < 0.05) and malondialdehyde (MDA) concentration (p < 0.001). Moreover, ASI+MgB treatment increased skin levels of biotin-dependent carboxylases (ACC1, ACC2, PC, PCC, MCC) and decreased mammalian target of rapamycin (mTOR) pathways and matrix metalloproteinase protein levels by the regulation of the activator protein 1 (AP-1), and mitogen activated protein kinases (MAPKs) signaling pathways. In addition, ASI+MgB caused lower levels of inflammatory factors, including TNF-α, NFκB, IL-6, IL-8, and COX-2 in the skin samples (p < 0.05). The levels of Bax and caspase-3 were increased, while anti-apoptotic protein Bcl-2 was decreased by UVB exposure, which was reversed by ASI+MgB treatment. These results show that treatment with ASI and MgB protects against skin damage by improving skin appearance, elasticity, inflammation, apoptosis, and overall health.
Collapse
Affiliation(s)
- Demet Cicek
- Department of Dermatology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Betul Demir
- Department of Dermatology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Cemal Orhan
- Department of Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Mehmet Tuzcu
- Department of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | | | - Nurhan Sahin
- Department of Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - James Komorowski
- Research and Development, JDS Therapeutics, LLC, Harrison, NY, United States
| | - Sara Perez Ojalvo
- Research and Development, JDS Therapeutics, LLC, Harrison, NY, United States
| | - Sarah Sylla
- Research and Development, JDS Therapeutics, LLC, Harrison, NY, United States
| | - Kazim Sahin
- Department of Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
5
|
Vale DL, Martinez RM, Medeiros DC, da Rocha C, Sfeir N, Lopez RFV, Vicentini FTMC, Verri WA, Georgetti SR, Baracat MM, Casagrande R. A topical formulation containing quercetin-loaded microcapsules protects against oxidative and inflammatory skin alterations triggered by UVB irradiation: enhancement of activity by microencapsulation. J Drug Target 2021; 29:983-997. [PMID: 33685319 DOI: 10.1080/1061186x.2021.1898621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ultraviolet B (UVB) irradiation causes free radical production, increase inflammation and oxidative stress, thus, supporting the use of antioxidants by topical administration as therapeutic approaches. Quercetin (QC) is a flavonoid with antioxidant activity, however, high liposolubility makes it difficult to remain in the viable skin layer. Thus, this study evaluated whether microencapsulation of QC would enhance its activity in comparison with the same dose of free QC (non-active dose) and unloaded-microcapsules added in formulation for topical administration in a mouse model of UVB irradiation targeting the skin. Topical formulation containing Quercetin-loaded microcapsules (TFcQCMC) presents physico-chemical (colour, consistence, phase separation and pH) and functional antioxidant stability at 4 °C, room temperature and 40 °C for 6 months. TFcQCMC inhibited the UVB-triggered depletion of antioxidants observed by GSH (reduced glutathione), ability to reduce iron, ability to scavenge 2,2'-azinobis radical and catalase activity. TFcQCMC also inhibited markers of oxidation (lipid hydroperoxides and superoxide anion production). Concerning inflammation, TFcQCMC reduced the production of inflammatory cytokines, matrix metalloproteinase-9 activity, skin edoema, collagen fibre damage, myeloperoxidase activity/neutrophil recruitment, mast cell and sunburn cell counts. The pharmacological activity of TFcQCMC was not shared by the same pharmaceutical form containing the same dose of free QC or unloaded control microcapsules.
Collapse
Affiliation(s)
- David L Vale
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, Londrina, Brazil
| | - Renata M Martinez
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, Londrina, Brazil
| | - Daniela C Medeiros
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina-UEL, Londrina, Brazil
| | - Camila da Rocha
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, Londrina, Brazil
| | - Natália Sfeir
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, Londrina, Brazil
| | - Renata F V Lopez
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, Ribeirão Preto, Brazil
| | - Fabiana T M C Vicentini
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, Ribeirão Preto, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina-UEL, Londrina, Brazil
| | - Sandra R Georgetti
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, Londrina, Brazil
| | - Marcela M Baracat
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, Londrina, Brazil
| | - Rúbia Casagrande
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, Londrina, Brazil
| |
Collapse
|
6
|
Marionnet C, Bernerd F. In Vitro Skin Models for the Evaluation of Sunscreen-Based Skin Photoprotection: Molecular Methodologies and Opportunities. Curr Med Chem 2019; 26:1874-1890. [DOI: 10.2174/0929867324666170303124247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/13/2017] [Accepted: 03/02/2017] [Indexed: 12/18/2022]
Abstract
Identifying and understanding the biological events that occur following ultraviolet
(UV) exposure are mandatory to elucidate the biological and clinical consequences of sun exposure,
and to provide efficient and adequate photoprotection strategies. The main UVinduced
biological features (markers related to sunburn, cancer, photoaging immunosuppression,
pigmentation), characterized in human skin in vivo, could be reproduced in adapted
models of reconstructed skin in vitro, attesting their high relevance in the field of photobiology.
In turn, 3D skin models were useful to discover precise biological pathways involved in
UV response and were predictive of in vivo situation. Although they did not follow a strict
validation process for the determination of protection factors, they enabled to evidence important
concepts in photoprotection. Indeed, the use of reconstructed skin model highlighted the
importance of broad spectrum sunscreen use to protect essential cellular functions, and biologically
proved that SPF value was not predictive of the level of protection in the UVA
wavelength domain. New biological approaches, such as transcriptomic or proteomic studies
as well as quantitative and qualitative determination of DNA damage, will indisputably increase
the added value of such systems for sunscreen efficiency evaluation.
Collapse
|
7
|
Treatment with maresin 1, a docosahexaenoic acid-derived pro-resolution lipid, protects skin from inflammation and oxidative stress caused by UVB irradiation. Sci Rep 2019; 9:3062. [PMID: 30816324 PMCID: PMC6395735 DOI: 10.1038/s41598-019-39584-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/22/2019] [Indexed: 12/19/2022] Open
Abstract
Acute exposure to UVB irradiation causes skin inflammation and oxidative stress, and long-term exposure to UVB irradiation may lead to carcinogenesis. Our organism has endogenous mechanisms to actively limit inflammation. Maresin 1 (MaR1; 7R,14S-dihydroxy-docosa-4Z,8E,10E,12Z,16Z,19Z-hexaenoic acid) is a pro-resolution lipid mediator derived from the docosahexaenoic acid, which presents anti-inflammatory and pro-resolution effects. However, it remains to be determined if treatment with MaR1 can inhibit inflammatory and oxidative alterations in the skin triggered by UVB. The treatment with MaR1 (0.1-10 ng/mice at -10 min relative to the UVB irradiation protocol) reduced UVB-induced skin edema, neutrophil recruitment (MPO; myeloperoxidase activity, and migration of LysM-eGFP+ cells), cytokine production, matrix metalloproteinase-9 activity, keratinocyte apoptosis, epidermal thickening, mast cells counts and degradation of skin collagen in hairless mice. UVB irradiation caused a decrease of GSH (reduced glutathione) levels, activity of the enzyme catalase, ferric reducing ability (FRAP), and ABTS radical scavenging capacity as well as induced lipid hydroperoxide, superoxide anion production, and gp91phox mRNA expression. These parameters that indicate oxidative stress were inhibited by MaR1 treatment. Therefore, these data suggest MaR1 as a promising pharmacological tool in controlling the deleterious effects related to UVB irradiation.
Collapse
|
8
|
Oesch F, Fabian E, Landsiedel R. Xenobiotica-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models. Arch Toxicol 2018; 92:2411-2456. [PMID: 29916051 PMCID: PMC6063329 DOI: 10.1007/s00204-018-2232-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 12/26/2022]
Abstract
Studies on the metabolic fate of medical drugs, skin care products, cosmetics and other chemicals intentionally or accidently applied to the human skin have become increasingly important in order to ascertain pharmacological effectiveness and to avoid toxicities. The use of freshly excised human skin for experimental investigations meets with ethical and practical limitations. Hence information on xenobiotic-metabolizing enzymes (XME) in the experimental systems available for pertinent studies compared with native human skin has become crucial. This review collects available information of which—taken with great caution because of the still very limited data—the most salient points are: in the skin of all animal species and skin-derived in vitro systems considered in this review cytochrome P450 (CYP)-dependent monooxygenase activities (largely responsible for initiating xenobiotica metabolism in the organ which provides most of the xenobiotica metabolism of the mammalian organism, the liver) are very low to undetectable. Quite likely other oxidative enzymes [e.g. flavin monooxygenase, COX (cooxidation by prostaglandin synthase)] will turn out to be much more important for the oxidative xenobiotic metabolism in the skin. Moreover, conjugating enzyme activities such as glutathione transferases and glucuronosyltransferases are much higher than the oxidative CYP activities. Since these conjugating enzymes are predominantly detoxifying, the skin appears to be predominantly protected against CYP-generated reactive metabolites. The following recommendations for the use of experimental animal species or human skin in vitro models may tentatively be derived from the information available to date: for dermal absorption and for skin irritation esterase activity is of special importance which in pig skin, some human cell lines and reconstructed skin models appears reasonably close to native human skin. With respect to genotoxicity and sensitization reactive-metabolite-reducing XME in primary human keratinocytes and several reconstructed human skin models appear reasonably close to human skin. For a more detailed delineation and discussion of the severe limitations see the Conclusions section in the end of this review.
Collapse
Affiliation(s)
- F Oesch
- Institute of Toxicology, Johannes Gutenberg-University, Obere Zahlbacherstr. 67, 55131, Mainz, Germany
| | - E Fabian
- Experimental Toxicology and Ecology, GV/TB, Z470, BASF SE, Carl-Bosch-Str. 38, 67056, Ludwigshafen, Germany
| | - Robert Landsiedel
- Experimental Toxicology and Ecology, GV/TB, Z470, BASF SE, Carl-Bosch-Str. 38, 67056, Ludwigshafen, Germany.
| |
Collapse
|
9
|
Gruber F, Ornelas CM, Karner S, Narzt MS, Nagelreiter IM, Gschwandtner M, Bochkov V, Tschachler E. Nrf2 deficiency causes lipid oxidation, inflammation, and matrix-protease expression in DHA-supplemented and UVA-irradiated skin fibroblasts. Free Radic Biol Med 2015; 88:439-451. [PMID: 25981373 DOI: 10.1016/j.freeradbiomed.2015.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 12/19/2022]
Abstract
Fish oil rich in docosahexaenoic acid (DHA) has beneficial effects on human health. Omega-3 polyunsaturated fatty acids are precursors of eicosanoids and docosanoids, signaling molecules that control inflammation and immunity, and their dietary uptake improves a range of disorders including cardiovascular diseases, ulcerative colitis, rheumatoid arthritis, and psoriasis. The unsaturated nature of these fatty acids, however, makes them prone to oxidation, especially when they are incorporated into (membrane) phospholipids. The skin is an organ strongly exposed to oxidative stress, mainly due to solar ultraviolet radiation. Thus, increased levels of PUFA in combination with oxidative stress could cause increased local generation of oxidized lipids, whose action spectrum reaches from signaling molecules to reactive carbonyl compounds that can crosslink biomolecules. Here, we investigated whether PUFA supplements to fibroblasts are incorporated into membrane phospholipids and whether an increase of PUFA within phospholipids affects the responses of the cells to UV exposure. The redox-sensitive transcription factor Nrf2 is the major regulator of the fibroblast stress response to ultraviolet radiation or exposure to oxidized lipids. Here we addressed how Nrf2 signaling would be affected in PUFA-supplemented human dermal fibroblasts and mouse dermal fibroblasts from Nrf2-deficient and wild type mice. We found, using HPLC-tandem MS, that DHA supplements to culture media of human and murine fibroblasts were readily incorporated into phospholipids and that subsequent irradiation of the supplemented cells with UVA resulted in an increase in 1-palmitoyl-2-(epoxyisoprostane-E2)-sn-glycero-3-phosphorylcholine and Oxo-DHA esterified to phospholipid, both of which are Nrf2 agonists. Also, induction of Nrf2 target genes was enhanced in the DHA-supplemented fibroblasts after UVA irradiation. In Nrf2-deficient murine fibroblasts, the expression of the target genes was, as expected, decreased, but surprisingly, expression of TNFα and MMP13 was strongly induced in DHA-supplemented, UVA-irradiated cells. Also, Nrf2-deficient cells had increased levels of oxidized phospholipids relative to the unoxidized precursors after UVA irradiation. Our data suggest that under ultraviolet stress a functioning Nrf2 system is required to prevent DHA-induced inflammation and matrix degradation in dermal fibroblasts.
Collapse
Affiliation(s)
- Florian Gruber
- Department of Dermatology, Medical University of Vienna, Anna Spiegel Gebäude E6 Lab5, 1090 Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria.
| | - Cayo Mecking Ornelas
- Department of Dermatology, Medical University of Vienna, Anna Spiegel Gebäude E6 Lab5, 1090 Vienna, Austria
| | - Susanne Karner
- Department of Dermatology, Medical University of Vienna, Anna Spiegel Gebäude E6 Lab5, 1090 Vienna, Austria
| | - Marie-Sophie Narzt
- Department of Dermatology, Medical University of Vienna, Anna Spiegel Gebäude E6 Lab5, 1090 Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| | - Ionela Mariana Nagelreiter
- Department of Dermatology, Medical University of Vienna, Anna Spiegel Gebäude E6 Lab5, 1090 Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| | - Maria Gschwandtner
- Department of Dermatology, Medical University of Vienna, Anna Spiegel Gebäude E6 Lab5, 1090 Vienna, Austria
| | - Valery Bochkov
- Department of Vascular Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Anna Spiegel Gebäude E6 Lab5, 1090 Vienna, Austria
| |
Collapse
|
10
|
Kim SB, Kim JE, Kang OH, Mun SH, Seo YS, Kang DH, Yang DW, Ryu SY, Lee YM, Kwon DY. Protective effect of ixerisoside A against UVB-induced pro-inflammatory cytokine production in human keratinocytes. Int J Mol Med 2015; 35:1411-8. [PMID: 25738262 DOI: 10.3892/ijmm.2015.2120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 02/19/2015] [Indexed: 11/06/2022] Open
Abstract
Human skin is the first line of defense for the protection of the internal organs of the body from different stimuli. Ultraviolet B (UVB), one of the harmful radiations for skin, is widely known to induce abnormally increased cytokine release from keratinocytes leading to inflammatory skin disorders. IL-6 and IL-8 induce an acute-phase response and stimulate leukocyte infiltration in the skin. Previous studies have shown that chronic exposure to UVB radiation increases cyclooxygenase-2 (COX‑2) expression through various cell signaling pathways, resulting in skin cancer. Recent studies have shown that the activation of extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38 MAPK is strongly correlated with acute inflammation and development of skin cancer caused by an increased expression of COX-2. Ixerisoside A (IXA) is an active constituent of Ixeris dentata of the Compositae (Asteraceae) family. The effect of IXA on skin inflammation has yet to be elucidated. To determine the anti-inflammatory effects of IXA, we examined its effect on UVB-induced pro-inflammatory cytokine production in human keratinocytes (HaCaT cells) by observing these cells in the presence or absence of IXA. In this study, pro-inflammatory cytokine production was determined by enzyme-linked immunosorbent assay (ELISA), reverse transcription-polymerase chain reaction (rt-pcr), and western blot analysis to evaluate the activation of mitogen-activated protein kinases (MAPKs). IXA inhibited UVB-induced production of the pro-inflammatory cytokines IL-6 and IL-8 in a dose-dependent manner. Moreover, IXA inhibited the expression of COX-2, ERK, JNK, and p38 MAPKs, indicating that the secretion of the pro-inflammatory cytokines IL-6 and IL-8, and COX-2 expression was inhibited by blocking MAPK phosphorylation. These results indicated that IXA potentially protects against UVB-induced skin inflammation.
Collapse
Affiliation(s)
- Sung-Bae Kim
- BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 570‑749, Republic of Korea
| | - Ji-Eun Kim
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang‑Oriental Medicines Research Institute, Institute of Biotechnology, Wonkwang University, Iksan, Jeonbuk 570‑749, Republic of Korea
| | - Ok-Hwa Kang
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang‑Oriental Medicines Research Institute, Institute of Biotechnology, Wonkwang University, Iksan, Jeonbuk 570‑749, Republic of Korea
| | - Su-Hyun Mun
- BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 570‑749, Republic of Korea
| | - Yun-Soo Seo
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang‑Oriental Medicines Research Institute, Institute of Biotechnology, Wonkwang University, Iksan, Jeonbuk 570‑749, Republic of Korea
| | - Da-Hye Kang
- BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 570‑749, Republic of Korea
| | - Da-Wun Yang
- BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 570‑749, Republic of Korea
| | - Shi-Yong Ryu
- Korea Research Institute of Chemical Technology, Daejeon 305‑600, Republic of Korea
| | - Young-Mi Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang‑Oriental Medicines Research Institute, Institute of Biotechnology, Wonkwang University, Iksan, Jeonbuk 570‑749, Republic of Korea
| | - Dong-Yeul Kwon
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang‑Oriental Medicines Research Institute, Institute of Biotechnology, Wonkwang University, Iksan, Jeonbuk 570‑749, Republic of Korea
| |
Collapse
|
11
|
Nisar MF, Parsons KSG, Bian CX, Zhong JL. UVA irradiation induced heme oxygenase-1: a novel phototherapy for morphea. Photochem Photobiol 2014; 91:210-20. [PMID: 25207998 DOI: 10.1111/php.12342] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 08/21/2014] [Indexed: 12/21/2022]
Abstract
Long wave UVA radiation (340-400 nm) causes detrimental as well as beneficial effects on human skin. Studies of human skin fibroblasts irradiated with UVA demonstrate increased expression of both antifibrotic heme oxygenase-1 (HO-1) and matrix metalloproteinase 1 (MMP-1). The use of UVA-induced MMP-1 is well-studied in treating skin fibrotic conditions such as localized scleroderma, now called morphea. However, the role that UVA-induced HO-1 plays in phototherapy of morphea has not been characterized. In the present manuscript, we have illustrated and reviewed the biological function of HO-1 and the use of UVA1 wavebands (340-400 nm) for phototherapy; the potential use of HO-1 induction in UVA therapy of morphea is also discussed.
Collapse
Affiliation(s)
- Muhammad Farrukh Nisar
- The Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | | | | | | |
Collapse
|
12
|
Oesch F, Fabian E, Guth K, Landsiedel R. Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models. Arch Toxicol 2014; 88:2135-90. [PMID: 25370008 PMCID: PMC4247477 DOI: 10.1007/s00204-014-1382-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/02/2014] [Indexed: 02/01/2023]
Abstract
The exposure of the skin to medical drugs, skin care products, cosmetics, and other chemicals renders information on xenobiotic-metabolizing enzymes (XME) in the skin highly interesting. Since the use of freshly excised human skin for experimental investigations meets with ethical and practical limitations, information on XME in models comes in the focus including non-human mammalian species and in vitro skin models. This review attempts to summarize the information available in the open scientific literature on XME in the skin of human, rat, mouse, guinea pig, and pig as well as human primary skin cells, human cell lines, and reconstructed human skin models. The most salient outcome is that much more research on cutaneous XME is needed for solid metabolism-dependent efficacy and safety predictions, and the cutaneous metabolism comparisons have to be viewed with caution. Keeping this fully in mind at least with respect to some cutaneous XME, some models may tentatively be considered to approximate reasonable closeness to human skin. For dermal absorption and for skin irritation among many contributing XME, esterase activity is of special importance, which in pig skin, some human cell lines, and reconstructed skin models appears reasonably close to human skin. With respect to genotoxicity and sensitization, activating XME are not yet judgeable, but reactive metabolite-reducing XME in primary human keratinocytes and several reconstructed human skin models appear reasonably close to human skin. For a more detailed delineation and discussion of the severe limitations see the “Overview and Conclusions” section in the end of this review.
Collapse
Affiliation(s)
- F Oesch
- Oesch-Tox Toxicological Consulting and Expert Opinions GmbH&Co.KG, Rheinblick 21, 55263, Wackernheim, Germany
| | | | | | | |
Collapse
|
13
|
Vostalova J, Rajnochova Svobodova A, Galandakova A, Sianska J, Dolezal D, Ulrichova J. Differential modulation of inflammatory markers in plasma and skin after single exposures to UVA or UVB radiation in vivo. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2013; 157:137-45. [PMID: 23733148 DOI: 10.5507/bp.2013.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/30/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Solar light generates inflammatory responses in exposed skin. These effects are generally attributed to UVB light. However, skin is expose d to a huge quantum of UVA photons as UVA is a predominant part of sunlight and the radiation used in tanning beds. We examined the effects of a single exposure to UVA and UVB wavebands on cytokine levels in skin and plasma, myeloperoxidase (MPO) activity, expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) in skin. METHODS Hairless mice were irradiated with either UVA (10 or 20 J/cm²) or UVB (200 or 800 mJ/cm²). The effects were assessed after 4/24 h. Plasma cytokine levels were evaluated using a Bio-Plex cytokine assay. Cytokine, iNOS and COX-2 levels in skin were determined by Western blot. Skin MPO activity was monitored spectrophotometrically. RESULTS UVB induced up-regulation of interleukin-1β (IL-1β) and interleukin-6 (IL-6) and decrease in interleukin-10 (IL-10) mainly after 4 h. In contrast, UVA caused increase in levels of tumor necrosis factor-alpha (TNF-α) and IL-6 after 4 h and up-regulated IL-10 and interleukin-12 (IL-12) after 24 h. The increase in MPO activity from infiltrated leucocytes was observed only in UVB irradiated animals. iNOS was up-regulated 4 h after UVA and UVB treatment. No significant effect on COX-2 expression was detected. CONCLUSIONS UVA and UVB light affected several inflammatory markers. For individual waveband, changes in plasma parameters did not correlate with those in skin. Thus evaluation of plasma samples cannot simply be replaced by determination in skin specimens and vice versa.
Collapse
Affiliation(s)
- Jitka Vostalova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | | | | | | | | | | |
Collapse
|
14
|
Potapovich AI, Kostyuk VA, Kostyuk TV, de Luca C, Korkina LG. Effects of pre- and post-treatment with plant polyphenols on human keratinocyte responses to solar UV. Inflamm Res 2013; 62:773-80. [PMID: 23689555 DOI: 10.1007/s00011-013-0634-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/07/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The understanding of the anti-inflammatory mechanisms of action of plant polyphenols (PPs) and clarification of the relationship between their anti-inflammatory and antioxidant properties may result in a new therapeutic approach to skin cancers. OBJECTIVE To elucidate the underlying mechanism, we analyzed the ability of PPs to attenuate inflammatory, metabolic and oxidative cellular responses to UV irradiation. METHODS Normal human epidermal keratinocytes (NHEK) were exposed to physiologically relevant dose of solar-simulated UV irradiation. Effects of pre- and post-treatment with PPs on the overproduction of peroxides and inflammatory mediators (mRNA and protein) were analyzed using real-time RT-PCR, enzyme-linked immunosorbent and fluorometric techniques. RESULTS Differences between the effectiveness of pre- and post-treatment with polyphenols was found. In particular, PPs post-treatment, but not pretreatment, completely abolished overexpression of Cyp1a1 and Cyp1b1 genes and elevation of intracellular peroxides in NHEK irradiated by UV. Post-treatment with PPs also more efficiently than pretreatment prevented UV-induced overexpression of IL-1 beta, IL-6 and COX2 mRNAs. CONCLUSION Our data strongly suggest that PPs predominantly affect delayed molecular and cellular events initiated in NHEK by solar UV rather than primary photochemical reactions. PPs may be important component in cosmetic formulations for post-sun skin care.
Collapse
Affiliation(s)
- Alla I Potapovich
- Department of Biology, Byelorussian State University, Minsk 220050, Belarus
| | | | | | | | | |
Collapse
|
15
|
KIM SUNGBAE, KANG OKHWA, JOUNG DAEKI, MUN SUHYUN, SEO YUNSOO, CHA MIRAN, RYU SHIYONG, SHIN DONGWON, KWON DONGYEUL. Anti-inflammatory effects of tectroside on UVB-induced HaCaT cells. Int J Mol Med 2013; 31:1471-6. [DOI: 10.3892/ijmm.2013.1343] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 03/21/2013] [Indexed: 11/06/2022] Open
|
16
|
He YD, Liu YT, Lin QX, Zhu J, Zhang Y, Wang LY, Ren XL, Ye XY. Polydatin suppresses ultraviolet B-induced cyclooxygenase-2 expressionin vitroandin vivovia reduced production of reactive oxygen species. Br J Dermatol 2012; 167:941-4. [DOI: 10.1111/j.1365-2133.2012.10951.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Einspahr JG, Calvert V, Alberts DS, Curiel-Lewandrowski C, Warneke J, Krouse R, Stratton SP, Liotta L, Longo C, Pellacani G, Pellicani G, Prasad A, Sagerman P, Bermudez Y, Deng J, Bowden GT, Petricoin EF. Functional protein pathway activation mapping of the progression of normal skin to squamous cell carcinoma. Cancer Prev Res (Phila) 2012; 5:403-13. [PMID: 22389437 PMCID: PMC3297971 DOI: 10.1158/1940-6207.capr-11-0427] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reverse phase protein microarray analysis was used to identify cell signaling derangements in squamous cell carcinoma (SCC) compared with actinic keratosis (AK) and upper inner arm (UIA). We analyzed two independent tissue sets with isolation and enrichment of epithelial cells by laser capture microdissection. Set 1 served as a pilot and a means to identify protein pathway activation alterations that could be further validated in a second independent set. Set 1 was comprised of 4 AK, 13 SCC, and 20 UIA. Set 2 included 15 AK, 9 SCCs, and 20 UIAs. Activation of 51 signaling proteins, known to be involved in tumorigenesis, were assessed for set 1 and showed that the MEK-ERK [mitogen-activated protein (MAP)/extracellular signal-regulated (ERK; MEK)] pathway was activated in SCC compared with AK and UIA, and that epidermal growth factor receptor (EGFR) and mTOR pathways were aberrantly activated in SCC. Unsupervised two-way hierarchical clustering revealed that AK and UIA shared a common signaling network activation architecture while SCC was dramatically different. Statistical analysis found that prosurvival signaling through phosphorylation of ASK and 4EBP1 as well as increased Bax and Bak expression was higher in AK compared with UIA. We expanded pathway network activation mapping in set 2 to 101 key signaling proteins, which corroborated activation of MEK-ERK, EGFR, and mTOR pathways through discovery of a number of upstream and downstream signaling molecules within these pathways to conclude that SCC is indeed a pathway activation-driven disease. Pathway activation mapping of SCC compared with AK revealed several interconnected networks that could be targeted with drug therapy for potential chemoprevention and therapeutic applications.
Collapse
Affiliation(s)
- Janine G Einspahr
- University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, AZ 85724, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhang J, Bowden GT. Activation of p38 MAP kinase and JNK pathways by UVA irradiation. Photochem Photobiol Sci 2011; 11:54-61. [PMID: 21858326 DOI: 10.1039/c1pp05133d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There are more than two million new cases of non-melanoma skin cancers (NMSCs) diagnosed each year in the United States of America. The clear etiological factor is chronic exposure to solar radiation from the sun. The wavelengths of solar light that reach the earth's surface include UVB (280-320 nm), which accounts for 1-10%, and UVA (320-400 nm), which accounts for 90-99% of the radiation. While most published research has focused on the effects of UVB, little is known concerning UVA-mediated signal transduction pathways, and their role in skin tumor promotion and progression, giving rise to squamous cell carcinomas (SCCs). Here, we focus on UVA-mediated activation of p38 MAP kinase and c-Jun N-terminal kinase (JNK), and their roles in activator protein-1 (AP-1) mediated transcription, cyclooxygenase-2 (COX-2) and Bcl-XL expression. Since p38 MAP kinase and JNK play major roles in the expression of UVA-induced AP-1, COX-2 and Bcl-XL, pharmacological inhibitors of these kinases may be useful in the chemoprevention of SCC skin cancer.
Collapse
Affiliation(s)
- Jack Zhang
- Department of Medical Pharmacology, University of Arizona, Tucson, Arizona, USA
| | | |
Collapse
|
19
|
Wu NL, Fang JY, Chen M, Wu CJ, Huang CC, Hung CF. Chrysin protects epidermal keratinocytes from UVA- and UVB-induced damage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:8391-8400. [PMID: 21699266 DOI: 10.1021/jf200931t] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Chrysin (5,7-dihydroxyflavone), a natural flavonoid occurring in various plants and foods such as propolis and honey, reportedly opposes inflammation and carcinogenesis, but has rarely been applied in skin care. This study, therefore, aimed to explore the roles of chrysin in protection against UV-induced damage in HaCaT keratinocytes. Results showed that chrysin can attenuate apoptosis, reactive oxygen species (ROS) production, and cyclooxygenase 2 (COX-2) expression induced by UVB and UVA. Chrysin predominantly reversed the down-regulation of aquaporin 3 (AQP-3) by UVB. It predominantly reversed JNK activation and also mildly inhibited p38 activation triggered by UVA and UVB. Animal studies revealed that chrysin's topical application demonstrated efficient percutaneous absorption and no skin irritation. Overall, results demonstrated significant benefits of chrysin on the protection of keratinocytes against UVA- and UVB-induced injuries and suggested its potential use in skin photoprotection.
Collapse
Affiliation(s)
- Nan-Lin Wu
- Department of Dermatology, Mackay Memorial Hospital, Hsinchu, Taiwan
| | | | | | | | | | | |
Collapse
|
20
|
Miyamura Y, Coelho SG, Schlenz K, Batzer J, Smuda C, Choi W, Brenner M, Passeron T, Zhang G, Kolbe L, Wolber R, Hearing VJ. The deceptive nature of UVA tanning versus the modest protective effects of UVB tanning on human skin. Pigment Cell Melanoma Res 2010; 24:136-47. [PMID: 20979596 DOI: 10.1111/j.1755-148x.2010.00764.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The relationship between human skin pigmentation and protection from ultraviolet (UV) radiation is an important element underlying differences in skin carcinogenesis rates. The association between UV damage and the risk of skin cancer is clear, yet a strategic balance in exposure to UV needs to be met. Dark skin is protected from UV-induced DNA damage significantly more than light skin owing to the constitutively higher pigmentation, but an as yet unresolved and important question is what photoprotective benefit, if any, is afforded by facultative pigmentation (i.e. a tan induced by UV exposure). To address that and to compare the effects of various wavelengths of UV, we repetitively exposed human skin to suberythemal doses of UVA and/or UVB over 2 weeks after which a challenge dose of UVA and UVB was given. Although visual skin pigmentation (tanning) elicited by different UV exposure protocols was similar, the melanin content and UV-protective effects against DNA damage in UVB-tanned skin (but not in UVA-tanned skin) were significantly higher. UVA-induced tans seem to result from the photooxidation of existing melanin and its precursors with some redistribution of pigment granules, while UVB stimulates melanocytes to up-regulate melanin synthesis and increases pigmentation coverage, effects that are synergistically stimulated in UVA and UVB-exposed skin. Thus, UVA tanning contributes essentially no photoprotection, although all types of UV-induced tanning result in DNA and cellular damage, which can eventually lead to photocarcinogenesis.
Collapse
Affiliation(s)
- Yoshinori Miyamura
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hackbarth S, Schlothauer J, Preuß A, Röder B. New insights to primary photodynamic effects – Singlet oxygen kinetics in living cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2010; 98:173-9. [DOI: 10.1016/j.jphotobiol.2009.11.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 08/12/2009] [Accepted: 11/28/2009] [Indexed: 11/17/2022]
|
22
|
Fernau NS, Fugmann D, Leyendecker M, Reimann K, Grether-Beck S, Galban S, Ale-Agha N, Krutmann J, Klotz LO. Role of HuR and p38MAPK in ultraviolet B-induced post-transcriptional regulation of COX-2 expression in the human keratinocyte cell line HaCaT. J Biol Chem 2009; 285:3896-3904. [PMID: 19917608 DOI: 10.1074/jbc.m109.081430] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
COX-2 (cyclooxygenase-2) is a pivotal player in inflammatory processes, and ultraviolet radiation is a known stimulus for COX-2 expression in skin cells. Here, an induction of COX-2 expression in HaCaT human keratinocytes was observed only upon exposure of cells to UVB (280-320 nm) but not to UVA radiation (320-400 nm), as demonstrated by reverse transcription-PCR and Western blotting. Prostaglandin E(2) levels were elevated in cell culture supernatants of HaCaT cells exposed to UVB. COX-2 mRNA stability was dramatically increased by UVB irradiation. Both the stabilization of COX-2 mRNA and the enhancement of COX-2 steady-state mRNA and protein levels caused by UVB were prevented both by inhibition and small interfering RNA-induced depletion of p38(MAPK), a kinase strongly activated upon exposure to UVB, suggesting p38(MAPK)-dependent mRNA stabilization as a mechanism of UVB-induced COX-2 expression. A dramatic decrease in COX-2 expression induced by UVB was elicited by small interfering RNA-based depletion of a stress-responsive mRNA stabilizing protein regulated by p38(MAPK), i.e. HuR; UVB-induced elevation of COX-2 mRNA and protein levels coincided with an accumulation of HuR in the cytoplasm and was attenuated in cells depleted of HuR. Moreover, UVB-induced generation of prostaglandin E(2) by HaCaT cells was blunted by HuR depletion, suggesting that stress kinases (such as p38(MAPK)) as well as HuR are excellent targets for approaches aiming at interfering with induction of COX-2 expression by UVB.
Collapse
Affiliation(s)
- Niklas S Fernau
- From the Leibniz-Institut für Umweltmedizinische Forschung, D-40225 Düsseldorf, Germany
| | - Dominik Fugmann
- From the Leibniz-Institut für Umweltmedizinische Forschung, D-40225 Düsseldorf, Germany
| | - Martin Leyendecker
- From the Leibniz-Institut für Umweltmedizinische Forschung, D-40225 Düsseldorf, Germany
| | - Kerstin Reimann
- From the Leibniz-Institut für Umweltmedizinische Forschung, D-40225 Düsseldorf, Germany
| | - Susanne Grether-Beck
- From the Leibniz-Institut für Umweltmedizinische Forschung, D-40225 Düsseldorf, Germany
| | - Stefanie Galban
- From the Leibniz-Institut für Umweltmedizinische Forschung, D-40225 Düsseldorf, Germany
| | - Niloofar Ale-Agha
- From the Leibniz-Institut für Umweltmedizinische Forschung, D-40225 Düsseldorf, Germany
| | - Jean Krutmann
- From the Leibniz-Institut für Umweltmedizinische Forschung, D-40225 Düsseldorf, Germany
| | - Lars-Oliver Klotz
- From the Leibniz-Institut für Umweltmedizinische Forschung, D-40225 Düsseldorf, Germany.
| |
Collapse
|
23
|
Chiu TM, Huang CC, Lin TJ, Fang JY, Wu NL, Hung CF. In vitro and in vivo anti-photoaging effects of an isoflavone extract from soybean cake. JOURNAL OF ETHNOPHARMACOLOGY 2009; 126:108-13. [PMID: 19679176 DOI: 10.1016/j.jep.2009.07.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 06/22/2009] [Accepted: 07/31/2009] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Soy has been used in traditional Chinese medicine for thousands of years for its health and nutritional benefits, as well as to treat and care for the skin. Advanced skin care research has shown that soy isoflavone and genistein are effective in reducing damage to the skin from the sun. AIM OF THE STUDY To study the protective effects of isoflavone extract from soybean cake against the UVB-induced skin damage. MATERIALS AND METHODS The in vitro effects and possible mechanisms of soybean extract on UVB protection were determined in HaCaT cells. In the in vivo study, ICR-Foxn/(nu) mice were irradiated with UVB. The epidermal thickness, catalase and the expressions of cyclooxygenase-2 (COX-2) and proliferating cell nuclear antigen (PCNA) were detected to evaluate the antioxidant and anti-inflammatory activities of the isoflavone extract. RESULTS Our in vitro studies showed that UVB-induced HaCaT cell death and the phosphorylation of p38, JNK, and ERK1/2 decreased in the presence of isoflavone extract. In the in vivo studies, we found that the topical application of isoflavone extract before UVB irritation decreased the epidermal thickness and the expressions of COX-2 and PCNA and increased catalase concentration. These results showed anti-photoaging effect of isoflavone extract from soybean cake involved the inhibition of UVB-induced apoptosis and inflammation. CONCLUSIONS It is shown that isoflavone extract from soybean cake may be functional cosmeceutical candidate for skin photoaging.
Collapse
Affiliation(s)
- Tsu-Man Chiu
- Department of Dermatology, Changhua Christian Hospital, Changhua Hsien, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
24
|
Flockhart RJ, Diffey BL, Farr PM, Lloyd J, Reynolds NJ. NFAT regulates induction of COX-2 and apoptosis of keratinocytes in response to ultraviolet radiation exposure. FASEB J 2008; 22:4218-27. [PMID: 18708588 PMCID: PMC2671982 DOI: 10.1096/fj.08-113076] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The nuclear factor of activated T cells (NFAT) transcription factors are regulated by calcium/calcineurin signals and play important roles in T cells, muscle, bone, and neural tissue. NFAT is expressed in the epidermis, and although recent data suggest that NFAT is involved in the skin’s responses to ultraviolet radiation (UVR), the wavelengths of radiation that activate NFAT and the biological function of UV-activated NFAT remain undefined. We demonstrate that NFAT transcriptional activity is preferentially induced by UVB wavelengths in keratinocytes. The derived action spectrum for NFAT activation indicates that NFAT transcriptional activity is inversely associated with wavelength. UVR also evoked NFAT2 nuclear translocation in a parallel wavelength-dependent fashion and both transcriptional activation and nuclear translocation were inhibited by the calcineurin inhibitor cyclosporin A. UVR also evoked NFAT2 nuclear translocation in three-dimensional skin equivalents. Evidence suggests that COX-2 contributes to UV-induced carcinogenesis. Inhibiting UV-induced NFAT activation in keratinocytes, reduced COX-2 protein induction, and increased UV-induced apoptosis. COX-2 luciferase reporters lacking functional NFAT binding sites were less responsive to UVR, highlighting that NFAT is required for UV-induced COX-2 induction. Taken together, these data suggest that the proinflammatory, antiapoptotic, and procarcinogenic functions of UV-activated COX-2 may be mediated, in part, by upstream NFAT signaling. Flockhart, R. J., Diffey, B. L., Farr, P. M., Lloyd, J., Reynolds, N. J. NFAT regulates induction of COX-2 and apoptosis of keratinocytes in response to ultraviolet radiation exposure.
Collapse
Affiliation(s)
- R J Flockhart
- Institute of Cellular Medicine, Newcastle University, Framlington Pl., Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | |
Collapse
|
25
|
Rundhaug JE, Fischer SM. Cyclo-oxygenase-2 Plays a Critical Role in UV-induced Skin Carcinogenesis. Photochem Photobiol 2008; 84:322-9. [DOI: 10.1111/j.1751-1097.2007.00261.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
26
|
Einspahr JG, Timothy Bowden G, Alberts DS, McKenzie N, Saboda K, Warneke J, Salasche S, Ranger-Moore J, Curiel-Lewandrowski C, Nagle RB, Nickoloff BJ, Brooks C, Dong Z, Stratton SP. Cross-validation of Murine UV Signal Transduction Pathways in Human Skin. Photochem Photobiol 2008; 84:463-76. [DOI: 10.1111/j.1751-1097.2007.00287.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Svobodova A, Walterova D, Vostalova J. Ultraviolet light induced alteration to the skin. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2007; 150:25-38. [PMID: 16936899 DOI: 10.5507/bp.2006.003] [Citation(s) in RCA: 227] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Solar light is the primary source of UV radiation for all living systems. UV photons can mediate damage through two different mechanisms, either by direct absorption of UV via cellular chromophores, resulting in excited states formation and subsequent chemical reaction, or by phosensitization mechanisms, where the UV light is absorbed by endogenous (or exogenous) sensitizers that are excited and their further reactions lead to formation of reactive oxygen species (ROS). These highly reactive species can interact with cellular macromolecules such as DNA, proteins, fatty acids and saccharides causing oxidative damage. Direct and indirect injuries result in a number of harmful effects such as disrupted cell metabolism, morphological and ultrastructural changes, attack on the regulation pathways and, alterations in the differentiation, proliferation and apoptosis of skin cells. Processes like these can lead to erythema, sunburn, inflammation, immunosuppression, photoaging, gene mutation, and development of cutaneous malignancies. The endogenous and exogenous mechanisms of skin photoprotection are discussed.
Collapse
Affiliation(s)
- Alena Svobodova
- Institute of Medical Chemistry and Biochemistry, Faculty of Medicine, Palacký University, Hnevotínská 3, Olomouc, Czech Republic.
| | | | | |
Collapse
|
28
|
Valencia A, Kochevar IE. Nox1-based NADPH oxidase is the major source of UVA-induced reactive oxygen species in human keratinocytes. J Invest Dermatol 2007; 128:214-22. [PMID: 17611574 DOI: 10.1038/sj.jid.5700960] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
UVA radiation is a major environmental stress on skin, causing acute and chronic photodamage. These responses are mediated by reactive oxygen species (ROS), although the cellular source of these ROS is unknown. We tested the hypotheses that UVA-induced activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is required for ROS generation in human keratinocytes (HK) and that these ROS initiate rapid prostaglandin E2 (PGE2) synthesis. Treatment of HK with a non-toxic dose of UVA rapidly increased NADPH oxidase activity and intracellular ROS, which were partially blocked by an inhibitor of NADPH oxidase and by a mitochondria-selective antioxidant. Depleting the Nox1 isoform of the catalytic subunit of NADPH oxidase using small interfering RNA (siRNA) blocked the UVA-induced ROS increase, indicating that ROS produced by mitochondria or other sources are downstream from Nox1. Nox1 siRNA also blocked UVA-initiated PGE2 synthesis. The mechanism for activation of Nox1 is mediated by an increase in intracellular calcium. Ceramide, which has been proposed to mediate responses to UVA in HK, also activated NADPH oxidase. These results indicate that UVA activates Nox1-based NADPH oxidase to produce ROS that stimulate PGE2 synthesis, and that Nox1 may be an appropriate target for agents designed to block UVA-induced skin injury.
Collapse
Affiliation(s)
- Antonio Valencia
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
29
|
Narbutt J, Lesiak A, Sysa-Jedrzejowska A, Wozniacka A, Cierniewska-Cieslak A, Boncela J, Jochymski C, Kozlowski W, Zalewska A, Skibinska M, Norval M. Repeated low-dose ultraviolet (UV) B exposures of humans induce limited photoprotection against the immune effects of erythemal UVB radiation. Br J Dermatol 2007; 156:539-47. [PMID: 17300245 DOI: 10.1111/j.1365-2133.2006.07670.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Exposure of human subjects to ultraviolet (UV) B radiation causes immunosuppression. Most experiments to date have not tested the effects of low daily doses of UVB radiation. OBJECTIVES To ascertain whether photoprotection against several UV-induced immune effects might develop following repeated exposure. METHODS Groups of approximately 30 healthy individuals were given whole-body UVB irradiation on each of 10 consecutive days with 0.7 minimal erythema dose, or whole-body irradiation as before followed by a single erythemal UVB dose on a small body area, or irradiated only with a single erythemal UVB dose on a small body area, or were not irradiated. They were sensitized with diphenylcyclopropenone (DPCP) 24 h after the final dose, and skin biopsies collected to assess cytokine mRNA expression and the number of cells with thymine dimers and expression cyclooxygenase (COX)-1 and COX-2. RESULTS The contact hypersensitivity (CHS) response to DPCP was significantly lower in the three irradiated groups compared with the unirradiated controls, while cutaneous interleukin (IL)-1beta, IL-6, IL-10 and tumour necrosis factor-alpha mRNAs, COX-1 and COX-2 and thymine dimers were all significantly higher. When the single erythemal UVB dose was given following the repeated low exposures, a slight downregulation in cytokine expression and thymine dimer formation was indicated. CONCLUSIONS The repeated low doses of UVB protected to a limited extent against the effects of an erythemal UVB dose on cytokine expression and thymine dimer formation, but not on CHS or COX enzymes.
Collapse
Affiliation(s)
- J Narbutt
- Department of Dermatology, Medical University of Lodz, Krzemieniecka 5, 94-017 Lodz, Poland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Baier J, Maisch T, Maier M, Landthaler M, Bäumler W. Direct Detection of Singlet Oxygen Generated by UVA Irradiation in Human Cells and Skin. J Invest Dermatol 2007; 127:1498-506. [PMID: 17363921 DOI: 10.1038/sj.jid.5700741] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
UVA light produces deleterious biological effects in which singlet oxygen plays a major role. These effects comprise a significant risk of carcinogenesis in the skin and cataract formation of the eye lens. Singlet oxygen is generated by UVA light absorption in endogenous molecules present in the cells. To elucidate the primary processes and sources of singlet oxygen in tissue, it is a major goal to uncover the hidden process of singlet oxygen generation, in particular in living tissue. When exposing keratinocytes or human skin in vivo to UVA laser light (355 nm) at 6 J/cm2, we measured the luminescence of singlet oxygen at 1,270 nm. This is a positive and direct proof of singlet oxygen generation in cells and skin by UVA light. Moreover, a clear signal of singlet oxygen luminescence was detected in phosphatidylcholine suspensions (water or ethanol) irradiated by UVA. Oxidized products of phosphatidylcholine are the likely chromophores because phosphatidylcholine itself does not absorb at 355 nm. The signal intensity was reduced by mannitol or super oxide dismutase. Additionally, the monochromatic UVA irradiation at 355 nm leads to upregulation of the key cytokine IL-12. This affects the balance of UV radiation on the immune system, which is comparable to effects of broadband UVA irradiation.
Collapse
Affiliation(s)
- Jürgen Baier
- Department of Dermatology, Regensburg University Medical Center, Regensburg, Germany
| | | | | | | | | |
Collapse
|
31
|
Comte C, Picot E, Peyron JL, Dereure O, Guillot B. Les UVA-1 : propriétés et indications thérapeutiques. Ann Dermatol Venereol 2007; 134:407-15. [PMID: 17483769 DOI: 10.1016/s0151-9638(07)89204-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- C Comte
- Université Montpellier II, Service de Dermatologie, CHU Saint Eloi, Montpellier.
| | | | | | | | | |
Collapse
|
32
|
Valencia A, Kochevar IE. Ultraviolet A induces apoptosis via reactive oxygen species in a model for Smith-Lemli-Opitz syndrome. Free Radic Biol Med 2006; 40:641-50. [PMID: 16458195 DOI: 10.1016/j.freeradbiomed.2005.09.036] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 09/09/2005] [Accepted: 09/15/2005] [Indexed: 01/07/2023]
Abstract
Solar ultraviolet A (UVA) radiation induces many responses in skin including oxidative stress, DNA damage, inflammation, and skin cancer. Smith-Lemli-Opitz syndrome (SLO-S) patients show dramatically enhanced immediate (5 min) and extended (24-48 h) skin inflammation in response to low UVA doses compared to normal skin. Mutations in Delta7-dehydrocholesterol reductase, which converts 7-dehydrocholesterol to cholesterol, produces high levels of 7-dehydrocholesterol in SLO-S patient's serum. Since 7-dehydrocholesterol is more rapidly oxidized than cholesterol, we hypothesized that 7-dehydrocholesterol enhances UVA-induced oxidative stress leading to keratinocyte death and inflammation. When keratinocytes containing high 7-dehydrocholesterol and low cholesterol were exposed to UVA (10 J/cm2), eightfold greater reactive oxygen species (ROS) were produced than in normal keratinocytes after 15 min. UVA induced 7-dehydrocholesterol concentration-dependent cell death at 24 h. These responses were inhibited by antioxidants, reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor (diphenyleneiodonium) and a mitochondria-specific radical quencher. Cell death was characterized by activation of caspases-3, -8, and -9 and by phosphatidylserine translocation. Studies using antioxidants and specific caspase inhibitors indicated that activation of caspase-8, but not caspase-9, mediates ROS-dependent caspase-3 activation and suggested that ROS from NADPH oxidase activate caspase-8. These results support a ROS-mediated apoptotic mechanism for the enhanced UVA-induced inflammation in SLO-S patients.
Collapse
Affiliation(s)
- Antonio Valencia
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|