1
|
Dabiri D, Dehghan Banadaki M, Bazargan V, Schaap A. Numerical investigation of moving gel wall formation in a Y-shaped microchannel. SN APPLIED SCIENCES 2023. [DOI: 10.1007/s42452-023-05331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
AbstractMolecular diffusive membranes play crucial roles in the field of microfluidics for biological applications e.g., 3D cell culture and biosensors. Hydrogels provide a range of benefits such as free diffusion of small molecules, cost-effectiveness, and the ability to be produced in bulk. Among various hydrogels, Pluronic F127 can be used for cell culture purposes due to its biocompatibility and flexible characteristics regarding its environment. Aqueous solutions of Pluronic F127 shows a reversible thermo-thickening property, which can be manipulated by introduction of ions. As a result, controlled diffusion of ions into the solution of Pluronic F127 can result in a controlled gel formation. In this study, the flow of immiscible solutions of Pluronic and sodium phosphate inside a Y-shaped microchannel is simulated using the level set method, and the effects of volume flow rates and temperature on the gel formation are investigated. It is indicated that the gel wall thickness can decrease by either increasing the Pluronic volume flow rate or increasing both volume flow rates while increasing the saline volume flow rate enhances the gel wall thickness. Below a critical temperature value, no gel wall is formed, and above that, a gel wall is constructed, with a thickness that increases with temperature. This setup can be used for drug screening, where gel wall provides an environment for drug-cell interactions.Article Highlights
Parallel flow of Pluronic F127 and saline solutions inside a Y-shaped microchannel results in formation of a gel wall at their interface.
The numerical analysis reveals the impact of each inlet flow rate and temperature on gel wall thickness and movement.
The findings indicate that the gel wall has a low but steady velocity toward the saline solution.
Graphical abstract
Collapse
|
2
|
Mary Isabella Sonali J, Kavitha R, Kumar PS, Rajagopal R, Gayathri KV, Ghfar AA, Govindaraju S. Application of a novel nanocomposite containing micro-nutrient solubilizing bacterial strains and CeO 2 nanocomposite as bio-fertilizer. CHEMOSPHERE 2022; 286:131800. [PMID: 34399258 DOI: 10.1016/j.chemosphere.2021.131800] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Chemical fertilizers are used in modern agricultural practice to increase plant output. They possess anthropogenic compounds which are hazardous, result in poor soil quality, poor crop nutrition and pollutes the water table. Currently, food crops that lack in micro-nutrients (Zn, silicates and Se) can be enriched with micronutrients by use of fertilizers. Eco-friendly bio-fertilizers have been proved to provide a known population of microorganisms that create a mutual benefit to the plants & the rhizosphere soil. Nanomaterials are often used in plant fertilizer formulation, allowing for controlled release and targeted delivery of beneficial nanoscale components, as well as to boost plant production and reduce environmental pollutants. In the present study we identified a multipotent micronutrient solubilizing bacterium (MSB) - Pseudomonas gessardi and Pseudomonas azotoformans as a bio-fertiliser. Comparative study of the formulated MSB, with nanocomposite prepared with the soya chunks as natural carrier material and chemically synthesized cerium oxide was performed on the growth of fenugreek for its effectiveness. The SEM images of nanocomposite showed the non-uniform distribution of CeO2 in bio-inoculant with an average size of 25.24 nm. The current study deals with increase in the shoot and root length of the fenugreek plant with only 75 ppm of CeO2 in nanocomposite, thereby preventing bioaccumulation of Ce in soil. This work gives a potential use of CeO2 nanocomposite with MSB bio-inoculants which could be applied to soil deficient with the micronutrients that can enhance the crop yield.
Collapse
Affiliation(s)
| | - R Kavitha
- Department of Chemistry, Stella Maris College (Autonomous), Chennai, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, India.
| | - Revathy Rajagopal
- Department of Chemistry, Stella Maris College (Autonomous), Chennai, India
| | - K Veena Gayathri
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai, India.
| | - Ayman A Ghfar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|
3
|
Ly KL, Hu P, Pham LHP, Luo X. Flow-assembled chitosan membranes in microfluidics: recent advances and applications. J Mater Chem B 2021; 9:3258-3283. [PMID: 33725061 PMCID: PMC8369861 DOI: 10.1039/d1tb00045d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The integration of membranes in microfluidic devices has been extensively exploited for various chemical engineering and bioengineering applications over the past few decades. To augment the applicability of membrane-integrated microfluidic platforms for biomedical and tissue engineering studies, a biologically friendly fabrication process with naturally occurring materials is highly desired. The in situ preparation of membranes involving interfacial reactions between parallel laminar flows in microfluidic networks, known as the flow-assembly technique, is one of the most biocompatible approaches. Membranes of many types with flexible geometries have been successfully assembled inside complex microchannels using this facile and versatile flow-assembly approach. Chitosan is a naturally abundant polysaccharide known for its pronounced biocompatibility, biodegradability, good mechanical stability, ease of modification and processing, and film-forming ability under near-physiological conditions. Chitosan membranes assembled by flows in microfluidics are freestanding, robust, semipermeable, and well-aligned in microstructure, and show high affinity to bioactive reagents and biological components (e.g. biomolecules, nanoparticles, or cells) that provide facile biological functionalization of microdevices. Here, we discuss the recent developments and optimizations in the flow-assembly of chitosan membranes and chitosan-based membranes in microfluidics. Furthermore, we recapitulate the applications of the chitosan membrane-integrated microfluidic platforms dedicated to biology, biochemistry, and drug release fields, and envision the future developments of this important platform with versatile functions.
Collapse
Affiliation(s)
- Khanh L Ly
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC 20064, USA
| | | | | | | |
Collapse
|
4
|
Castro PGM, Maeda RN, Rocha VAL, Fernandes RP, Pereira N. Improving propionic acid production from a hemicellulosic hydrolysate of sorghum bagasse by means of cell immobilization and sequential batch operation. Biotechnol Appl Biochem 2020; 68:1120-1127. [PMID: 32942342 DOI: 10.1002/bab.2031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Propionic acid (PA) is an important organic compound with extensive application in different industrial sectors and is currently produced by petrochemical processes. The production of PA by large-scale fermentation processes presents a bottleneck, particularly due to low volumetric productivity. In this context, the present work aimed to produce PA by a biochemical route from a hemicellulosic hydrolysate of sorghum bagasse using the strain Propionibacterium acidipropionici CIP 53164. Conditions were optimized to increase volumetric productivity and process efficiency. Initially, in simple batch fermentation, a final concentration of PA of 17.5 g⋅L-1 was obtained. Next, fed batch operation with free cells was adopted to minimize substrate inhibition. Although a higher concentration of PA was achieved (38.0 g⋅L-1 ), the response variables (YP/S = 0.409 g⋅g-1 and QP = 0.198 g⋅L-1 ⋅H-1 ) were close to those of the simple batch experiment. Finally, the fermentability of the hemicellulosic hydrolysate was investigated in a sequential batch with immobilized cells. The PA concentration achieved a maximum of 35.3 g⋅L-1 in the third cycle; moreover, the volumetric productivity was almost sixfold higher (1.17 g⋅L-1 ⋅H-1 ) in sequential batch than in simple batch fermentation. The results are highly promising, providing preliminary data for studies on scaling up the production of this organic acid.
Collapse
Affiliation(s)
- Patrycia G M Castro
- Center of Biofuels, Oil and Derivatives, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, CEP, Brazil
| | - Roberto N Maeda
- Novozymes Latin America, Barigui, Rua Professor Francisco Ribeiro, Araucaria, Parana, CEP, Brazil
| | - Vanessa A L Rocha
- Center of Biofuels, Oil and Derivatives, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, CEP, Brazil
| | - Rodrigo P Fernandes
- Center of Biofuels, Oil and Derivatives, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, CEP, Brazil
| | - Nei Pereira
- Center of Biofuels, Oil and Derivatives, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, CEP, Brazil
| |
Collapse
|
5
|
Giese EC, Silva DDV, Costa AFM, Almeida SGC, Dussán KJ. Immobilized microbial nanoparticles for biosorption. Crit Rev Biotechnol 2020; 40:653-666. [DOI: 10.1080/07388551.2020.1751583] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ellen C. Giese
- Service of Extractive Metallurgy and Bioprocesses, Centre for Mineral Technology, CETEM, Rio de Janeiro, Brazil
| | - Debora D. V. Silva
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University-UNESP, Araraquara, São Paulo, Brazil
| | | | - Sâmilla G. C. Almeida
- Department of Engineering, Physics and Mathematics, Institute of Chemistry, São Paulo State University-UNESP, Araraquara, São Paulo, Brazil
| | - Kelly J. Dussán
- Department of Engineering, Physics and Mathematics, Institute of Chemistry, São Paulo State University-UNESP, Araraquara, São Paulo, Brazil
- Bioenergy Research Institute (IPBEN), São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| |
Collapse
|
6
|
Srivastava SK, Ajalloueian F, Boisen A. Thread-Like Radical-Polymerization via Autonomously Propelled (TRAP) Bots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901573. [PMID: 31165526 DOI: 10.1002/adma.201901573] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/09/2019] [Indexed: 05/12/2023]
Abstract
Micromotor-mediated synthesis of thread-like hydrogel microstructures in an aqueous environment is presented. The study utilizes a catalytic micromotor assembly (owing to the presence of a Pt layer), with an on-board chemical reservoir (i.e., polymerization mixture), toward thread-like radical-polymerization via autonomously propelled bots (i.e., TRAP bots). Synergistic coupling of catalytically active Pt layer, together with radical initiators (H2 O2 and FeCl3 (III)), and PEGDA monomers preloaded into the TRAP bot, results in the polymerization of monomeric units into elongated thread-like hydrogel polymers coupled with self-propulsion. Interestingly, polymer generation via TRAP bots can also be triggered in the absence of hydrogen peroxide for cellular/biomedical application. The resulting polymeric hydrogel microstructures are able to entrap living cells (NIH 3T3 fibroblast cells), and are easily separable via a centrifugation or magnetic separation (owing to the presence of a Ni layer). The cellular biocompatibility of TRAP bots is established via a LIVE/DEAD assay and MTS cell proliferation assay (7 days observation). This is the first study demonstrating real-time in situ hydrogel polymerization via an artificial microswimmer, capable of enmeshing biotic/abiotic microobjects in its reaction environment, and lays a strong foundation for advanced applications in cell/tissue engineering, drug delivery, and cleaner technologies.
Collapse
Affiliation(s)
- Sarvesh Kumar Srivastava
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Healthcare Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Fatemeh Ajalloueian
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Healthcare Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Anja Boisen
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Healthcare Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| |
Collapse
|
7
|
Oliveira AF, Bastos RG, de la Torre LG. Bacillus subtilis immobilization in alginate microfluidic-based microparticles aiming to improve lipase productivity. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Carreras MP, Wang S. A multifunctional microfluidic platform for generation, trapping and release of droplets in a double laminar flow. J Biotechnol 2017; 251:106-111. [PMID: 28450257 DOI: 10.1016/j.jbiotec.2017.04.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/17/2017] [Accepted: 04/24/2017] [Indexed: 10/19/2022]
Abstract
Droplet microfluidics, involving micrometer-sized emulsion of droplets is a growing subfield of microfluidics which attracts broad interest due to its application on biological assays. Droplet-based systems have been used as microreactors as well as to encapsulate many biological entities for biomedical and biotechnological applications. Here, a novel microfluidic device is presented for the generation, trapping and release of aqueous including hydrogel droplets in a double laminar oil flow. This platform enables the storage and release of picoliter-sized droplets in two different carrier oils by using hydrodynamic forces without the need of electrical forces or optical actuators. Furthermore, this design allows droplets to be selectively and simultaneously exposed to two different conditions and collected on demand. Successful encapsulation of hepatoma H35 cells was performed on-chip. Viability of cell-laden droplets was performed off-chip to assess the potential applications in 3D encapsulation cell culture and drug discovery assays.
Collapse
Affiliation(s)
- Maria Pilar Carreras
- Department of Biomedical Engineering, City University of New York - City College, New York, NY 10031, USA
| | - Sihong Wang
- Department of Biomedical Engineering, City University of New York - City College, New York, NY 10031, USA.
| |
Collapse
|
9
|
Sun H. A multi-layer microchip for high-throughput single-cell gene expression profiling. Anal Biochem 2016; 508:1-8. [DOI: 10.1016/j.ab.2016.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/21/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
|
10
|
Ding Y, Qiu F, Casadevall I Solvas X, Chiu FWY, Nelson BJ, deMello A. Microfluidic-Based Droplet and Cell Manipulations Using Artificial Bacterial Flagella. MICROMACHINES 2016; 7:E25. [PMID: 30407399 PMCID: PMC6190376 DOI: 10.3390/mi7020025] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 01/09/2023]
Abstract
Herein, we assess the functionality of magnetic helical microswimmers as basic tools for the manipulation of soft materials, including microdroplets and single cells. Their ability to perform a range of unit operations is evaluated and the operational challenges associated with their use are established. In addition, we also report on interactions observed between the head of such helical swimmers and the boundaries of droplets and cells and discuss the possibilities of assembling an artificial swimming microorganism or a motorized cell.
Collapse
Affiliation(s)
- Yun Ding
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland.
| | - Famin Qiu
- Institute for Robotics and Intelligent Systems, ETH Zürich, Tannenstrasse 3, 8092 Zürich, Switzerland.
| | - Xavier Casadevall I Solvas
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland.
| | - Flora Wing Yin Chiu
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland.
| | - Bradley J Nelson
- Institute for Robotics and Intelligent Systems, ETH Zürich, Tannenstrasse 3, 8092 Zürich, Switzerland.
| | - Andrew deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland.
| |
Collapse
|
11
|
Gotovtsev PM, Yuzbasheva EY, Gorin KV, Butylin VV, Badranova GU, Perkovskaya NI, Mostova EB, Namsaraev ZB, Rudneva NI, Komova AV, Vasilov RG, Sineokii SP. Immobilization of microbial cells for biotechnological production: Modern solutions and promising technologies. APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815080025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
George SM, Moon H. Digital microfluidic three-dimensional cell culture and chemical screening platform using alginate hydrogels. BIOMICROFLUIDICS 2015; 9:024116. [PMID: 25945142 PMCID: PMC4401805 DOI: 10.1063/1.4918377] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/07/2015] [Indexed: 05/26/2023]
Abstract
Electro wetting-on-dielectric (EWOD) digital microfluidics (DMF) can be used to develop improved chemical screening platforms using 3-dimensional (3D) cell culture. Alginate hydrogels are one common method by which a 3D cell culture environment is created. This paper presents a study of alginate gelation on EWOD DMF and investigates designs to obtain uniform alginate hydrogels that can be repeatedly addressed by any desired liquids. A design which allows for gels to be retained in place during liquid delivery and removal without using any physical barriers or hydrophilic patterning of substrates is presented. A proof of concept screening platform is demonstrated by examining the effects of different concentrations of a test chemical on 3D cells in alginate hydrogels. In addition, the temporal effects of the various chemical concentrations on different hydrogel posts are demonstrated, thereby establishing the benefits of an EWOD DMF 3D cell culture and chemical screening platform using alginate hydrogels.
Collapse
Affiliation(s)
- Subin M George
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington , Arlington, Texas 76019, USA
| | - Hyejin Moon
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington , Arlington, Texas 76019, USA
| |
Collapse
|
13
|
Vasdekis AE, Stephanopoulos G. Review of methods to probe single cell metabolism and bioenergetics. Metab Eng 2015; 27:115-135. [PMID: 25448400 PMCID: PMC4399830 DOI: 10.1016/j.ymben.2014.09.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 11/26/2022]
Abstract
Single cell investigations have enabled unexpected discoveries, such as the existence of biological noise and phenotypic switching in infection, metabolism and treatment. Herein, we review methods that enable such single cell investigations specific to metabolism and bioenergetics. Firstly, we discuss how to isolate and immobilize individuals from a cell suspension, including both permanent and reversible approaches. We also highlight specific advances in microbiology for its implications in metabolic engineering. Methods for probing single cell physiology and metabolism are subsequently reviewed. The primary focus therein is on dynamic and high-content profiling strategies based on label-free and fluorescence microspectroscopy and microscopy. Non-dynamic approaches, such as mass spectrometry and nuclear magnetic resonance, are also briefly discussed.
Collapse
Affiliation(s)
- Andreas E Vasdekis
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99354, USA.
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Room 56-469, Cambridge, MA 02139, USA.
| |
Collapse
|
14
|
Optimization of flow assisted entrapment of pollen grains in a microfluidic platform for tip growth analysis. Biomed Microdevices 2014; 16:23-33. [PMID: 24013680 DOI: 10.1007/s10544-013-9802-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A biocompatible polydimethylsiloxane (PDMS) biomicrofluidic platform is designed, fabricated and tested to study protuberance growth of single plant cells in a micro-vitro environment. The design consists of an inlet to introduce the cell suspension into the chip, three outlets to conduct the medium or cells out of the chip, a main distribution chamber and eight microchannels connected to the main chamber to guide the growth of tip growing plant cells. The test cells used here were pollen grains which produce cylindrical protrusions called pollen tubes. The goal was to adjust the design of the microfluidic network with the aim to enhance the uniformly distributed positioning of pollen grains at the entrances of the microchannels and to provide identical fluid flow conditions for growing pollen tubes along each microchannel. Computational fluid analysis and experimental testing were carried out to estimate the trapping efficiencies of the different designs.
Collapse
|
15
|
Sun YM, Wang W, Wei YY, Deng NN, Liu Z, Ju XJ, Xie R, Chu LY. In situ fabrication of a temperature- and ethanol-responsive smart membrane in a microchip. LAB ON A CHIP 2014; 14:2418-2427. [PMID: 24874275 DOI: 10.1039/c4lc00273c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Here we report a simple and versatile strategy for the in situ fabrication of nanogel-containing smart membranes in microchannels of microchips. The fabrication approach is demonstrated by the in situ formation of a chitosan membrane containing poly(N-isopropylacrylamide) (PNIPAM) nanogels in a microchannel of a microchip. The PNIPAM nanogels, that allow temperature- and ethanol-responsive swelling-shrinking volume transitions, serve as smart nanovalves for controlling the diffusional permeability of solutes across the membrane. Such self-regulation of the membrane permeability is investigated by using fluorescein isothiocyanate (FITC) as a tracer molecule. This approach provides a promising strategy for the in situ fabrication of versatile nanogel-containing smart membranes within microchips via simply changing the functional nanogels for developing micro-scale detectors, sensors, separators and controlled release systems.
Collapse
Affiliation(s)
- Yi-Meng Sun
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Neto E, Alves CJ, Sousa DM, Alencastre IS, Lourenço AH, Leitão L, Ryu HR, Jeon NL, Fernandes R, Aguiar P, Almeida RD, Lamghari M. Sensory neurons and osteoblasts: close partners in a microfluidic platform. Integr Biol (Camb) 2014; 6:586-95. [DOI: 10.1039/c4ib00035h] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We presented a microfluidic-based coculture system as a new tool to be explored for modeling biological processes and pharmacological screening concerning peripheral tissues innervation.
Collapse
Affiliation(s)
- Estrela Neto
- INEB – Instituto de Engenharia Biomédica
- 823 4150-180 Porto, Portugal
- FMUP – Faculdade de Medicina da Universidade do Porto
- Porto, Portugal
| | - Cecília J. Alves
- INEB – Instituto de Engenharia Biomédica
- 823 4150-180 Porto, Portugal
| | - Daniela M. Sousa
- INEB – Instituto de Engenharia Biomédica
- 823 4150-180 Porto, Portugal
| | | | - Ana H. Lourenço
- INEB – Instituto de Engenharia Biomédica
- 823 4150-180 Porto, Portugal
| | - Luís Leitão
- IBMC – Instituto de Biologia Molecular e Celular
- Universidade do Porto
- Porto, Portugal
| | - Hyun R. Ryu
- WCU Multiscale Mechanical Design
- Seoul National University
- Seoul, Korea
| | - Noo L. Jeon
- WCU Multiscale Mechanical Design
- Seoul National University
- Seoul, Korea
- School of Mechanical and Aerospace Engineering
- Seoul National University
| | - Rui Fernandes
- IBMC – Instituto de Biologia Molecular e Celular
- Universidade do Porto
- Porto, Portugal
| | - Paulo Aguiar
- Centro de Matemática da Universidade do Porto
- Porto, Portugal
| | - Ramiro D. Almeida
- CNC – Center for Neuroscience and Cell Biology
- Department of Life Sciences
- University of Coimbra
- Coimbra, Portugal
| | - Meriem Lamghari
- INEB – Instituto de Engenharia Biomédica
- 823 4150-180 Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar
- Universidade do Porto
- Porto, Portugal
| |
Collapse
|
17
|
Cell detachment: Post-isolation challenges. Biotechnol Adv 2013; 31:1664-75. [DOI: 10.1016/j.biotechadv.2013.08.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/17/2013] [Accepted: 08/17/2013] [Indexed: 12/16/2022]
|
18
|
Sahiner N. Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and their use in catalysis. Prog Polym Sci 2013. [DOI: 10.1016/j.progpolymsci.2013.06.004] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Huang HC, Chang YJ, Chen WC, Harn HIC, Tang MJ, Wu CC. Enhancement of renal epithelial cell functions through microfluidic-based coculture with adipose-derived stem cells. Tissue Eng Part A 2013; 19:2024-34. [PMID: 23557379 DOI: 10.1089/ten.tea.2012.0605] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Current hemodialysis has functional limitations and is insufficient for renal transplantation. The bioartificial tubule device has been developed to contribute to metabolic functions by implanting renal epithelial cells into hollow tubes and showed a higher survival rate in acute kidney injury patients. In healthy kidney, epithelial cells are surrounded by various types of cells that interact with extracellular matrices, which are primarily composed of laminin and collagen. The current study developed a microfluidic coculture platform to enhance epithelial cell function in bioartificial microenvironments with multiple microfluidic channels that are microfabricated by polydimethylsiloxane. Collagen gel (CG) encapsulated with adipose-derived stem cells (CG-ASC) was injected into a central microfluidic channel for three-dimensional (3D) culture. The resuspended Madin-Darby canine kidney (MDCK) cells were injected into nascent channels and formed an epithelial monolayer. In comparison to coculture different cells using the commercial transwell system, the current coculture device allowed living cell monitoring of both the MDCK epithelial monolayer and CG-ASC in a 3D microenvironment. By coculture with CG-ASC, the cell height was increased with columnar shapes in MDCK. Promotion of cilia formation and functional expression of the ion transport protein in MDCK were also observed in the cocultured microfluidic device. When applying fluid flow, the intracellular protein dynamics can be monitored in the current platform by using the time-lapse confocal microscopy and transfection of GFP-tubulin plasmid in MDCK. Thus, this microfluidic coculture device provides the renal epithelial cells with both morphological and functional improvements that may avail to develop bioartificial renal chips.
Collapse
Affiliation(s)
- Hui-Chun Huang
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Tissue scaffolds play a vital role in tissue engineering by providing a native tissue-mimicking environment for cell proliferation and differentiation as well as tissue regeneration. Fabrication of tissue scaffolds has been drawing increasing research attention and a number of fabrication techniques have been developed. To better mimic the microenvironment of native tissues, novel techniques have emerged in recent years to encapsulate cells into the engineered scaffolds during the scaffold fabrication process. Among them, bio-Rapid-Prototyping (bioRP) techniques, by which scaffolds with encapsulated cells can be fabricated with controlled internal microstructure and external shape, shows significant promise. It is noted in the bioRP processes, cells may be continuously subjected to environmental stresses such as mechanical, electrical forces and laser exposure. If the stress is greater than a certain level, the cell membrane may be ruptured, leading to the so-called process-induced cell damage. This paper reviews various cell encapsulation techniques for tissue scaffold fabrication, with emphasis on the bioRP technologies and their technical features. To understand the process-induced cell damage in the bioRP processes, this paper also surveys the cell damage mechanisms under different stresses. The process-induced cell damage models are also examined to provide a cue to the cell viability preservation in the fabrication process. Discussions on further improvements of bioRP technologies are given and ongoing research into mechanical cell damage mechanism are also suggested in this review.
Collapse
|
21
|
Abstract
BACKGROUND Microfluidic technology emerges as a convenient route to applying automated and reliable assays in a high-throughput manner with low cost. OBJECTIVE This review aims to answer questions related to the capabilities and potential applications of microfluidic assays that can benefit the drug development process and extends an outlook on its future trends. METHODS This article reviews recent publications in the field of microfluidics, with an emphasis on novel applications for drug development. RESULTS/CONCLUSION Microfluidics affords unique capabilities in sample preparation and separation, combinatorial synthesis and array formation, and incorporating nanotechnology for more functionalities. The pharmaceutical industry, facing challenges from limited productivity and accelerated competition, can thus greatly benefit from applying new microfluidic assays in various drug development stages, from target screening and lead optimization to absorption distribution metabolism elimination and toxicity studies in preclinical evaluations, diagnostics in clinical trials and drug formulation and manufacturing process optimization.
Collapse
Affiliation(s)
- Yuan Wen
- The Ohio State University, Department of Chemical and Biomolecular Engineering, 140 West 19th Avenue, Columbus, Ohio 43210, USA +1 614 2926611 ; +1 614 2923769 ;
| | | |
Collapse
|
22
|
Kim CS, Choi BH, Seo JH, Lim G, Cha HJ. Mussel adhesive protein-based whole cell array biosensor for detection of organophosphorus compounds. Biosens Bioelectron 2013; 41:199-204. [DOI: 10.1016/j.bios.2012.08.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/31/2012] [Accepted: 08/08/2012] [Indexed: 02/07/2023]
|
23
|
Gordonov T, Liba B, Terrell JL, Cheng Y, Luo X, Payne GF, Bentley WE. Bridging the bio-electronic interface with biofabrication. J Vis Exp 2012:e4231. [PMID: 22710498 DOI: 10.3791/4231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Advancements in lab-on-a-chip technology promise to revolutionize both research and medicine through lower costs, better sensitivity, portability, and higher throughput. The incorporation of biological components onto biological microelectromechanical systems (bioMEMS) has shown great potential for achieving these goals. Microfabricated electronic chips allow for micrometer-scale features as well as an electrical connection for sensing and actuation. Functional biological components give the system the capacity for specific detection of analytes, enzymatic functions, and whole-cell capabilities. Standard microfabrication processes and bio-analytical techniques have been successfully utilized for decades in the computer and biological industries, respectively. Their combination and interfacing in a lab-on-a-chip environment, however, brings forth new challenges. There is a call for techniques that can build an interface between the electrode and biological component that is mild and is easy to fabricate and pattern. Biofabrication, described here, is one such approach that has shown great promise for its easy-to-assemble incorporation of biological components with versatility in the on-chip functions that are enabled. Biofabrication uses biological materials and biological mechanisms (self-assembly, enzymatic assembly) for bottom-up hierarchical assembly. While our labs have demonstrated these concepts in many formats, here we demonstrate the assembly process based on electrodeposition followed by multiple applications of signal-based interactions. The assembly process consists of the electrodeposition of biocompatible stimuli-responsive polymer films on electrodes and their subsequent functionalization with biological components such as DNA, enzymes, or live cells. Electrodeposition takes advantage of the pH gradient created at the surface of a biased electrode from the electrolysis of water. Chitosan and alginate are stimuli-responsive biological polymers that can be triggered to self-assemble into hydrogel films in response to imposed electrical signals. The thickness of these hydrogels is determined by the extent to which the pH gradient extends from the electrode. This can be modified using varying current densities and deposition times. This protocol will describe how chitosan films are deposited and functionalized by covalently attaching biological components to the abundant primary amine groups present on the film through either enzymatic or electrochemical methods. Alginate films and their entrapment of live cells will also be addressed. Finally, the utility of biofabrication is demonstrated through examples of signal-based interaction, including chemical-to-electrical, cell-to-cell, and also enzyme-to-cell signal transmission. Both the electrodeposition and functionalization can be performed under near-physiological conditions without the need for reagents and thus spare labile biological components from harsh conditions. Additionally, both chitosan and alginate have long been used for biologically-relevant purposes. Overall, biofabrication, a rapid technique that can be simply performed on a benchtop, can be used for creating micron scale patterns of functional biological components on electrodes and can be used for a variety of lab-on-a-chip applications.
Collapse
Affiliation(s)
- Tanya Gordonov
- Fischell Department of Bioengineering, University of Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Martinez CJ, Kim JW, Ye C, Ortiz I, Rowat AC, Marquez M, Weitz D. A Microfluidic Approach to Encapsulate Living Cells in Uniform Alginate Hydrogel Microparticles. Macromol Biosci 2012; 12:946-51. [DOI: 10.1002/mabi.201100351] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/18/2011] [Indexed: 11/09/2022]
|
25
|
Terrell JL, Gordonov T, Cheng Y, Wu HC, Sampey D, Luo X, Tsao CY, Ghodssi R, Rubloff GW, Payne GF, Bentley WE. Integrated biofabrication for electro-addressed in-film bioprocessing. Biotechnol J 2012; 7:428-39. [DOI: 10.1002/biot.201100181] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 11/14/2011] [Accepted: 12/22/2011] [Indexed: 01/17/2023]
|
26
|
Medium to High Throughput Screening: Microfabrication and Chip-Based Technology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 745:181-209. [DOI: 10.1007/978-1-4614-3055-1_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Kiriya D, Ikeda M, Onoe H, Takinoue M, Komatsu H, Shimoyama Y, Hamachi I, Takeuchi S. Meter-Long and Robust Supramolecular Strands Encapsulated in Hydrogel Jackets. Angew Chem Int Ed Engl 2011; 51:1553-7. [DOI: 10.1002/anie.201104043] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 10/21/2011] [Indexed: 11/07/2022]
|
28
|
Kiriya D, Ikeda M, Onoe H, Takinoue M, Komatsu H, Shimoyama Y, Hamachi I, Takeuchi S. Meter-Long and Robust Supramolecular Strands Encapsulated in Hydrogel Jackets. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201104043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
29
|
Witters D, Vergauwe N, Vermeir S, Ceyssens F, Liekens S, Puers R, Lammertyn J. Biofunctionalization of electrowetting-on-dielectric digital microfluidic chips for miniaturized cell-based applications. LAB ON A CHIP 2011; 11:2790-4. [PMID: 21720645 DOI: 10.1039/c1lc20340a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In this paper we report on the controlled biofunctionalization of the hydrophobic layer of electrowetting-on-dielectric (EWOD) based microfluidic chips with the aim to execute (adherent) cell-based assays. The biofunctionalization technique involves a dry lift-off method with an easy to remove Parylene-C mask and allows the creation of spatially controlled micropatches of biomolecules in the Teflon-AF(®) layer of the chip. Compared to conventional methods, this method (i) is fully biocompatible; and (ii) leaves the hydrophobicity of the chip surface unaffected by the fabrication process, which is a crucial feature for digital microfluidic chips. In addition, full control of the geometry and the dimensions of the micropatches is achieved, allowing cells to be arrayed as cell clusters or as single cells on the digital microfluidic chip surface. The dry Parylene-C lift-off technique proves to have great potential for precise biofunctionalization of digital microfluidic chips, and can enhance their use for heterogeneous bio-assays that are of interest in various biomedical applications.
Collapse
Affiliation(s)
- Daan Witters
- BIOSYST-MeBioS, Willem de Croylaan 42, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
30
|
Application of high throughput perfusion micro 3-D cell culture platform for the precise study of cellular responses to extracellular conditions -effect of serum concentrations on the physiology of articular chondrocytes. Biomed Microdevices 2011; 13:131-41. [PMID: 20957436 DOI: 10.1007/s10544-010-9478-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mammalian cells are sensitive to extracellular microenvironments. In order to faithfully explore the physiological responses of cells to extracellular conditions, a steady, homogenous, and three-dimensional (3-D) culture environment is required because it can provide a more quantifiable and biologically-relevant culture condition. To achieve this, this study reports a perfusion micro cell culture platform encompassing 22 microbioreactor units for high throughput 3-D cell culture. The cell culture platform structurally consisting of a plug and a microbioreactor chamber module was simply fabricated by replica molding of polydimethylsiloxane (PDMS) polymer. The platform features in the proposed plug module with multiple molds incorporated, facilitating the preparation of cell encapsulated 3-D hydrogel constructs in a precise and efficient manner. This trait is found particularly useful for high-precision and high-throughput micro 3-D cell culture-based assay. In this study, the real value of the proposed platform to maintain a stable and homogenous culture condition was discussed. Besides, the application of the presented platform for precisely investigating the effect of serum concentration on the metabolic activities and biosynthetic abilities of articular chondrocytes was also demonstrated. As a whole, the proposed device has paved an alternative route to carry out high throughput micro-scale 3-D perfusion cell culture in a simple, cost-effective and precise manner. The promising applications include 3-D cell culture-based high throughput drug or toxicity testing/screening, or other investigations on the cell biology, where the precise quantification of the links between the cellular responses and extracellular conditions is required.
Collapse
|
31
|
Braschler T, Valero A, Colella L, Pataky K, Brugger J, Renaud P. Link between alginate reaction front propagation and general reaction diffusion theory. Anal Chem 2011; 83:2234-42. [PMID: 21351747 DOI: 10.1021/ac103118r] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We provide a common theoretical framework reuniting specific models for the Ca(2+)-alginate system and general reaction diffusion theory along with experimental validation on a microfluidic chip. As a starting point, we use a set of nonlinear, partial differential equations that are traditionally solved numerically: the Mikkelsen-Elgsaeter model. Applying the traveling-wave hypothesis as a major simplification, we obtain an analytical solution. The solution indicates that the fundamental properties of the alginate reaction front are governed by a single dimensionless parameter λ. For small λ values, a large depletion zone accompanies the reaction front. For large λ values, the alginate reacts before having the time to diffuse significantly. We show that the λ parameter is of general importance beyond the alginate model system, as it can be used to classify known solutions for second-order reaction diffusion schemes, along with the novel solution presented here. For experimental validation, we develop a microchip model system, in which the alginate gel formation can be carried out in a highly controlled, essentially 1D environment. The use of a filter barrier enables us to rapidly renew the CaCl(2) solution, while maintaining flow speeds lower than 1 μm/s for the alginate compartment. This allows one to impose an exactly known bulk CaCl(2) concentration and diffusion resistance. This experimental model system, taken together with the theoretical development, enables the determination of the entire set of physicochemical parameters governing the alginate reaction front in a single experiment.
Collapse
|
32
|
Kilonzo P, Margaritis A, Bergougnou M. Effects of surface treatment and process parameters on immobilization of recombinant yeast cells by adsorption to fibrous matrices. BIORESOURCE TECHNOLOGY 2011; 102:3662-3672. [PMID: 21185170 DOI: 10.1016/j.biortech.2010.11.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 11/11/2010] [Accepted: 11/15/2010] [Indexed: 05/30/2023]
Abstract
The effects of surface properties of Saccharomyces cerevisiae strains 468/pGAC9 and 468 on adhesion to polyethyleneimine (PEI) and/glutaraldehyde (GA) pre-treated cotton (CT), polyester (PE), polyester+cotton (PECT), nylon (NL), polyurethane foam (PUF), and cellulose re-enforced polyurethane (CPU) fibers were investigated. Process parameters (circulation velocity, pH, ionic strength, media composition and surfactants) were also examined. 80%, 90%, and 35% of the cells were adsorbed onto unmodified CT, PUF, and PE, respectively. PEI-GA pre-treated CT and alkali treated PE yielded 25% and 60% cell adhesion, respectively. Adsorption rate (K(a)) ranged from 0.06 to 0.17 for CT and 0.06-0.16 for PE at varied pH. Adhesion increased by 15% in the presence of ethanol, low pH and ionic strength, and decreased by 23% in the presence of yeast extract and glucose. Shear flow and 1% Triton X-100 detached 62% and 36% nonviable cells from PE and CT, respectively, suggesting that cell immobilization in fibrous-bed bioreactors can be controlled to optimize cell density for long-term stability.
Collapse
Affiliation(s)
- Peter Kilonzo
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
33
|
Ishii KS, Hu W, Namekar SA, Ohta AT. An Optically Controlled 3D Cell Culturing System. ADVANCES IN OPTOELECTRONICS 2011; 2011:253989. [PMID: 22701475 PMCID: PMC3373019 DOI: 10.1155/2011/253989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A novel 3D cell culture system was developed and tested. The cell culture device consists of a microfluidic chamber on an optically absorbing substrate. Cells are suspended in a thermoresponsive hydrogel solution, and optical patterns are utilized to heat the solution, producing localized hydrogel formation around cells of interest. The hydrogel traps only the desired cells in place while also serving as a biocompatible scaffold for supporting the cultivation of cells in 3D. This is demonstrated with the trapping of MDCK II and HeLa cells. The light intensity from the optically induced hydrogel formation does not significantly affect cell viability.
Collapse
Affiliation(s)
- Kelly S Ishii
- Department of Electrical Engineering, University of Hawaii at Manoa, 2540 Dole Street, Holmes Hall 483, Honolulu, HI 96822, USA
| | | | | | | |
Collapse
|
34
|
Braschler T, Valero A, Colella L, Pataky K, Brugger J, Renaud P. Fluidic microstructuring of alginate hydrogels for the single cell niche. LAB ON A CHIP 2010; 10:2771-2777. [PMID: 20820482 DOI: 10.1039/c004988c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Controlling alginate gel formation by diffusion of Ca(2+) ions through a filter barrier, a layer-by-layer deposition technique with resolution on the size scale of a single cell is presented. It offers the possibility of exposing cells under biocompatible conditions to microheterogeneous three-dimensional environments, mimicking the layered structure of extracellular matrix in tissues.
Collapse
Affiliation(s)
- Thomas Braschler
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
35
|
Chen MCW, Gupta M, Cheung KC. Alginate-based microfluidic system for tumor spheroid formation and anticancer agent screening. Biomed Microdevices 2010; 12:647-54. [PMID: 20237849 DOI: 10.1007/s10544-010-9417-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We demonstrate a microfluidic system for long-term tumor cell culture and drug testing. Three-dimensional cell culture is critical in characterizing anticancer treatments since it may provide a better model than monolayer culture of tumor cells. Breast tumor cells were encapsulated within alginate which was gelled in situ within the microchannels. Tumor spheroid formation was observed several days after cell seeding, and various concentrations of doxorubicin were applied to the encapsulated cell aggregates. Drug effects on cell viability and proliferation were measured. In future, hydrogel-based microfluidic devices can comprise part of systems which replace labor intensive screening platforms currently implemented in the laboratory, and they address a need for improving preclinical testing of cancer cell sensitivity to anti-cancer drugs.
Collapse
Affiliation(s)
- Michael C W Chen
- Department of Electrical & Computer Engineering, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
36
|
Yu L, Chen MCW, Cheung KC. Droplet-based microfluidic system for multicellular tumor spheroid formation and anticancer drug testing. LAB ON A CHIP 2010; 10:2424-32. [PMID: 20694216 DOI: 10.1039/c004590j] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Creating multicellular tumor spheroids is critical for characterizing anticancer treatments since it may provide a better model than monolayer culture of tumor cells. Moreover, continuous dynamic perfusion allows the establishment of long term cell culture and subsequent multicellular spheroid formation. A droplet-based microfluidic system was used to form alginate beads with entrapped breast tumor cells. After gelation, the alginate beads were trapped in microsieve structures for cell culture in a continuous perfusion system. The alginate environment permitted cell proliferation and the formation of multicellular spheroids was observed. The dose-dependent response of the tumor spheroids to doxorubicin, and anticancer drug, showed multicellular resistance compared to conventional monolayer culture. The microsieve structures maintain constant location of each bead in the same position throughout the device seeding process, cell proliferation and spheroid formation, treatment with drug, and imaging, permitting temporal and spatial tracking.
Collapse
Affiliation(s)
- Linfen Yu
- University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
37
|
Abstract
The potential of stem cells in clinics and as a diagnostic tool is still largely unmet, partially due to a lack of in vitro models that efficiently mimic the in vivo stem cell microenvironment-or niche-and thus would allow reproducible propagation of stem cells or their controlled differentiation in vitro. The current methodological challenges in studying and manipulating stem cells have spurred intense development and application of microfabrication and micropatterning technologies in stem cell biology. These approaches can be readily used to dissect the complex molecular interplay of stem cells and their niche and study single-cell behavior in high-throughput. Increased merging of microfabrication with advanced biomaterials technologies may ultimately result in functional artificial niches capable of recapitulating extrinsic stem cell regulation in vitro and on a single-cell level.
Collapse
|
38
|
Liu Y, Kim E, Ghodssi R, Rubloff GW, Culver JN, Bentley WE, Payne GF. Biofabrication to build the biology–device interface. Biofabrication 2010; 2:022002. [DOI: 10.1088/1758-5082/2/2/022002] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Wu MH, Huang SB, Lee GB. Microfluidic cell culture systems for drug research. LAB ON A CHIP 2010; 10:939-56. [PMID: 20358102 DOI: 10.1039/b921695b] [Citation(s) in RCA: 268] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In pharmaceutical research, an adequate cell-based assay scheme to efficiently screen and to validate potential drug candidates in the initial stage of drug discovery is crucial. In order to better predict the clinical response to drug compounds, a cell culture model that is faithful to in vivo behavior is required. With the recent advances in microfluidic technology, the utilization of a microfluidic-based cell culture has several advantages, making it a promising alternative to the conventional cell culture methods. This review starts with a comprehensive discussion on the general process for drug discovery and development, the role of cell culture in drug research, and the characteristics of the cell culture formats commonly used in current microfluidic-based, cell-culture practices. Due to the significant differences in several physical phenomena between microscale and macroscale devices, microfluidic technology provides unique functionality, which is not previously possible by using traditional techniques. In a subsequent section, the niches for using microfluidic-based cell culture systems for drug research are discussed. Moreover, some critical issues such as cell immobilization, medium pumping or gradient generation in microfluidic-based, cell-culture systems are also reviewed. Finally, some practical applications of microfluidic-based, cell-culture systems in drug research particularly those pertaining to drug toxicity testing and those with a high-throughput capability are highlighted.
Collapse
Affiliation(s)
- Min-Hsien Wu
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| | | | | |
Collapse
|
40
|
Chueh BH, Zheng Y, Torisawa YS, Hsiao AY, Ge C, Hsiong S, Huebsch N, Franceschi R, Mooney DJ, Takayama S. Patterning alginate hydrogels using light-directed release of caged calcium in a microfluidic device. Biomed Microdevices 2010; 12:145-51. [PMID: 19830565 PMCID: PMC2825700 DOI: 10.1007/s10544-009-9369-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This paper describes a simple reversible hydrogel patterning method for 3D cell culture. Alginate gel is formed in select regions of a microfluidic device through light-triggered release of caged calcium. In the pre-gelled alginate solution, calcium is chelated by DM-nitrophen (DM-n) to prevent cross-linking of alginate. After sufficient UV exposure the caged calcium is released from DM-n causing alginate to cross-link. The effect of using different concentrations of calcium and chelating agents as well as the duration of UV exposure is described. Since the cross-linking is based on calcium concentration, the cross-linked alginate can easily be dissolved by EDTA. We also demonstrate application of this capability to patterned microscale 3D co-culture using endothelial cells and osteoblastic cells in a microchannel.
Collapse
Affiliation(s)
- Bor-han Chueh
- Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ying Zheng
- Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yu-suke Torisawa
- Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amy Y. Hsiao
- Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chunxi Ge
- Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Susan Hsiong
- School of Engineering and Applied Science, Harvard University, Cambridge, MA 02115, USA
| | - Nathaniel Huebsch
- School of Engineering and Applied Science, Harvard University, Cambridge, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Renny Franceschi
- Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - David J. Mooney
- School of Engineering and Applied Science, Harvard University, Cambridge, MA 02115, USA
| | - Shuichi Takayama
- Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Macromolecular Science & Engineering program, University of Michigan, Ann Arbor, MI 48109, USA,
| |
Collapse
|
41
|
Guiseppi-Elie A. Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials 2010; 31:2701-16. [PMID: 20060580 DOI: 10.1016/j.biomaterials.2009.12.052] [Citation(s) in RCA: 388] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 12/18/2009] [Indexed: 10/20/2022]
Abstract
Electroconductive hydrogels (ECHs) are composite biomaterials that bring together the redox switching and electrical properties of inherently conductive electroactive polymers (CEPs) with the facile small molecule transport, high hydration levels and biocompatibility of cross-linked hydrogels. General methods for the synthesis of electroconductive hydrogels as polymer blends and as polymer co-networks via chemical oxidative, electrochemical and/or a combination of chemical oxidation followed by electrochemical polymerization techniques are reviewed. Specific examples are introduced to illustrate the preparation of electroconductive hydrogels that were synthesized from poly(HEMA)-based hydrogels with polyaniline and from poly(HEMA)-based hydrogels with polypyrrole. The key applications of electroconductive hydrogels; as biorecognition membranes for implantable biosensors, as electro-stimulated drug release devices for programmed delivery, and as the low interfacial impedance layers on neuronal prostheses are highlighted. These applications provide great new horizons for these stimuli responsive, biomimetic polymeric materials.
Collapse
Affiliation(s)
- Anthony Guiseppi-Elie
- ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, VA 23219, USA.
| |
Collapse
|
42
|
Luo X, Berlin DL, Betz J, Payne GF, Bentley WE, Rubloff GW. In situ generation of pH gradients in microfluidic devices for biofabrication of freestanding, semi-permeable chitosan membranes. LAB ON A CHIP 2010; 10:59-65. [PMID: 20024051 DOI: 10.1039/b916548g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We report the in situ generation of pH gradients in microfluidic devices for biofabrication of freestanding, semi-permeable chitosan membranes. The pH-stimuli-responsive polysaccharide chitosan was enlisted to form a freestanding hydrophilic membrane structure in microfluidic networks where pH gradients are generated at the converging interface between a slightly acidic chitosan solution and a slightly basic buffer solution. A simple and effective pumping strategy was devised to realize a stable flow interface thereby generating a stable, well-controlled and localized pH gradient. Chitosan molecules were deprotonated at the flow interface, causing gelation and solidification of a freestanding chitosan membrane from a nucleation point at the junction of two converging flow streams to an anchoring point where the two flow streams diverge to two output channels. The fabricated chitosan membranes were about 30-60 microm thick and uniform throughout the flow interface inside the microchannels. A T-shaped membrane formed by sequentially fabricating orthogonal membranes demonstrates flexibility of the assembly process. The membranes are permeable to aqueous solutions and are removed by mildly acidic solutions. Permeability tests suggested that the membrane pore size was a few nanometres, i.e., the size range of antibodies. Building on the widely reported use of chitosan as a soft interconnect for biological components and microfabricated devices and the broad applications of membrane functionalities in microsystems, we believe that the facile, rapid biofabrication of freestanding chitosan membranes can be applied to many biochemical, bioanalytical, biosensing applications and cellular studies.
Collapse
Affiliation(s)
- Xiaolong Luo
- University of Maryland Biotechnology Institute (UMBI), University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Kim Y, Kuczenski B, LeDuc PR, Messner WC. Modulation of fluidic resistance and capacitance for long-term, high-speed feedback control of a microfluidic interface. LAB ON A CHIP 2009; 9:2603-2609. [PMID: 19680585 DOI: 10.1039/b822423d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Existing microfluidic systems can control local chemical environments by directing the interface between laminar flowing streams for applications ranging from subcellular stimulation to fuel cells. However, conventional flow modulation methods have not yet provided a robust and reliable way to dynamically control laminar flow interfaces for very long time periods. Such control is important in biological investigations, since response times for living cells and tissues can be as long as several days. Here, we describe a novel long-term, high-speed approach that employs modulation of fluidic resistance and fluidic capacitance between a fluid reservoir and a microfluidic network with feedback control to enable long-term dynamic control of a microfluidic interface in time and space. Our method involves constricting a narrow tube through a pinching approach to modulate fluidic resistance while also controlling a small variable reservoir in the fluidic network through a squeezing approach to modulate fluidic capacitance. We designed a well-tuned proportional-integral-derivative (PID) controller for the closed-loop control system that resulted in control of pressure for short-term (2 s) and long-term (15 h) experiments. Further, we integrated a pressure-based feedback control approach into this method, which enables both long-term spatiotemporal control of our microfluidic interface at frequencies greater than 1 Hz and a reservoir capacity to enable experiments for longer than 60 days. This long-term and high-speed control is not possible with standard microfluidic laboratory practices. Our system has a diversity of potential applications including long-term cellular studies in cancer metastasis or embryonic development.
Collapse
Affiliation(s)
- YongTae Kim
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
45
|
Flueckiger J, Cheung KC. Microfluidic system for controlled gelation of a thermally reversible hydrogel. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2009; 3:195-201. [PMID: 23853240 DOI: 10.1109/tbcas.2009.2021657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The integration of cell culture and characterization onto a miniaturized platform promises to benefit many applications such as tissue engineering, drug screening, and those involving small, precious cell populations. This paper presents the controlled on-chip gelation of a thermally-reversible hydrogel. Channel design and flowrate control are crucial in determining hydrogel geometry, while integrated temperature control triggers reversible gel formation. Formation of hydrogel droplets through shearing of immiscible flows is demonstrated with subsequent on-chip gelation. The temperature of phase transition occurs between 32degC-34degC, well within the range for mammalian cell encapsulation and culture.
Collapse
|
46
|
Chu YF, Hsu CH, Soma PK, Lo YM. Immobilization of bioluminescent Escherichia coli cells using natural and artificial fibers treated with polyethyleneimine. BIORESOURCE TECHNOLOGY 2009; 100:3167-3174. [PMID: 19285859 DOI: 10.1016/j.biortech.2009.01.072] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 01/12/2009] [Accepted: 01/20/2009] [Indexed: 05/27/2023]
Abstract
Biosensors based on whole-cell bioluminescence have the potential to become a cost-effective alternative to conventional detection methods upon validation of target selectivity and sensitivity. However, quantitative analysis of bioluminescence is greatly hindered due to lack of control over the total number of cells in a suspending culture. In this study, the effect of surface properties of genetically engineered luminous E. coli cells and fibrous matrices on the immobilization capacity and effectiveness under various environmental conditions were characterized. Four different fibers, including cotton, polyester, viscose rayon, and silk, were investigated. Although cell adhesion was observed on untreated viscose and cotton fibers, viscose fiber pretreated with 0.667% polyethyleneimine (PEI) was found capable of immobilizing the most viable E. coli DPD2234 cells, followed by viscose treated with 0.33% and 1% PEI. The cells immobilized on PEI-treated viscose remained viable and yielded 20% or more bioluminescence signals immediately upon contact with the inducer up to 72 h without feeding nutrients to the cells, suggesting that viscose treated with 0.667% PEI could provide a stable immobilization mechanism for bioluminescent E. coli cells with long sensing period, quick response time, and good signal reproducibility.
Collapse
Affiliation(s)
- Yi-Fang Chu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19717, USA
| | | | | | | |
Collapse
|
47
|
Lai HH, Quinto-Su PA, Sims CE, Bachman M, Li GP, Venugopalan V, Allbritton NL. Characterization and use of laser-based lysis for cell analysis on-chip. J R Soc Interface 2008; 5 Suppl 2:S113-21. [PMID: 18583277 DOI: 10.1098/rsif.2008.0177.focus] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We demonstrate the use of a pulsed laser microbeam for cell lysis followed by electrophoretic separation of cellular analytes in a microfluidic device. The influence of pulse energy and laser focal point within the microchannel on the threshold for plasma formation was measured. The thickness of the poly(dimethylsiloxane) (PDMS) layer through which the beam travelled was a critical determinant of the threshold energy. An effective optical path length, Leff, for the laser beam can be used to predict the threshold for optical breakdown at different microchannel locations. A key benefit of laser-based cell lysis is the very limited zone (less than 5 microm) of lysis. A second asset is the rapid cell lysis times (approx. microseconds). These features enable two analytes, fluorescein and Oregon Green, from a cell to be electrophoretically separated in the channel in which cell lysis occurred. The resolution and efficiency of the separation of the cellular analytes are similar to those of standards demonstrating the feasibility of using a pulsed laser microbeam in single-cell analysis.
Collapse
Affiliation(s)
- Hsuan-Hong Lai
- Department of Electrical Engineering and Computer Science, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Wu Z, Hjort K, Wicher G, Fex Svenningsen Å. Microfluidic high viability neural cell separation using viscoelastically tuned hydrodynamic spreading. Biomed Microdevices 2008; 10:631-8. [DOI: 10.1007/s10544-008-9174-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
49
|
Huang WH, Ai F, Wang ZL, Cheng JK. Recent advances in single-cell analysis using capillary electrophoresis and microfluidic devices. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 866:104-22. [DOI: 10.1016/j.jchromb.2008.01.030] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 01/10/2008] [Accepted: 01/18/2008] [Indexed: 01/09/2023]
|
50
|
Tan WH, Takeuchi S. Dynamic microarray system with gentle retrieval mechanism for cell-encapsulating hydrogel beads. LAB ON A CHIP 2008; 8:259-66. [PMID: 18231664 DOI: 10.1039/b714573j] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This paper describes a selective retrieval method for arrayed monodisperse hydrogel beads containing cells. We implemented modifications such as: (i) the incorporation of cavities as nucleation sites, (ii) indirect retrieval using bubble powered jets and (iii) the use of low boiling point fluid in our device to realize a gentle optical-based retrieval method. Parametric studies confirmed that these modifications dramatically reduced both the intensity and duration of applied laser for bubble formation. We also demonstrated for the first time the formation of a bead-based dynamic cell microarray by introducing cell-encapsulating alginate beads into our dynamic microfluidic system, and successfully retrieved an alginate bead from a fluidic trap. Tests with trypan blue revealed that membrane integrity of the encapsulated cells was not compromised by the retrieval process.
Collapse
Affiliation(s)
- Wei-Heong Tan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | | |
Collapse
|