1
|
Thanuja M, Ranganath SH, Bonanno JA, Srinivas SP. Nanoliposomes for Sensing Local Osmolarity of the Tear Film on the Corneal Surface. J Ocul Pharmacol Ther 2022; 38:549-560. [DOI: 10.1089/jop.2022.0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- M.Y. Thanuja
- Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology, Tumakuru, India
| | - Sudhir H. Ranganath
- Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology, Tumakuru, India
| | | | | |
Collapse
|
2
|
Zhao Y, Zhang H, Jin Q, Jia D, Liu T. Ratiometric Optical Fiber Dissolved Oxygen Sensor Based on Fluorescence Quenching Principle. SENSORS 2022; 22:s22134811. [PMID: 35808306 PMCID: PMC9269258 DOI: 10.3390/s22134811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022]
Abstract
In this study, a ratiometric optical fiber dissolved oxygen sensor based on dynamic quenching of fluorescence from a ruthenium complex is reported. Tris(4,7-diphenyl-1,10-phenanthrolin) ruthenium(II) dichloride complex (Ru(dpp)32+) is used as an oxygen-sensitive dye, and semiconductor nanomaterial CdSe/ZnS quantum dots (QDs) are used as a reference dye by mixing the two substances and coating it on the plastic optical fiber end to form a composite sensitive film. The linear relationship between the relative fluorescence intensity of the ruthenium complex and the oxygen concentration is described using the Stern–Volmer equation, and the ruthenium complex doping concentration in the sol-gel film is tuned. The sensor is tested in gaseous oxygen and aqueous solution. The experimental results indicate that the measurement of dissolved oxygen has a lower sensitivity in an aqueous environment than in a gaseous environment. This is due to the uneven distribution of oxygen in aqueous solution and the low solubility of oxygen in water, which results in a small contact area between the ruthenium complex and oxygen in solution, leading to a less-severe fluorescence quenching effect than that in gaseous oxygen. In detecting dissolved oxygen, the sensor has a good linear Stern–Volmer calibration plot from 0 to 18.25 mg/L, the linearity can reach 99.62%, and the sensitivity can reach 0.0310/[O2] unit. The salinity stability, repeatability, and temperature characteristics of the sensor are characterized. The dissolved oxygen sensor investigated in this research could be used in various marine monitoring and environmental protection applications.
Collapse
Affiliation(s)
- Yongkun Zhao
- Key Laboratory of Optoelectronics Information Technical Science, College of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (Y.Z.); (Q.J.); (D.J.); (T.L.)
| | - Hongxia Zhang
- Key Laboratory of Optoelectronics Information Technical Science, College of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (Y.Z.); (Q.J.); (D.J.); (T.L.)
- Correspondence:
| | - Qingwen Jin
- Key Laboratory of Optoelectronics Information Technical Science, College of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (Y.Z.); (Q.J.); (D.J.); (T.L.)
- School of Information Resources Management, Renmin University of China, Beijing 100872, China
| | - Dagong Jia
- Key Laboratory of Optoelectronics Information Technical Science, College of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (Y.Z.); (Q.J.); (D.J.); (T.L.)
| | - Tiegen Liu
- Key Laboratory of Optoelectronics Information Technical Science, College of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (Y.Z.); (Q.J.); (D.J.); (T.L.)
| |
Collapse
|
3
|
Ghosh S, Wang X, Wang J, Nguyen PD, Janczak CM, Aspinwall CA. Enhanced Fluorescent Protein Activity in Polymer Scaffold-Stabilized Phospholipid Nanoshells Using Neutral Redox Initiator Polymerization Conditions. ACS OMEGA 2018; 3:15890-15899. [PMID: 30533583 PMCID: PMC6276202 DOI: 10.1021/acsomega.8b01661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Phospholipid nanoshells, for example, liposomes, provide a versatile enabling platform for the development of nanometer-sized biosensors and molecular delivery systems. Utilization of phospholipid nanoshells is limited by the inherent instability in complex biological environments, where the phospholipid nanoshell may disassemble and degrade, thus releasing the contents and destroying sensor function. Polymer scaffold stabilization (PSS), wherein the phospholipid nanoshells are prepared by partitioning reactive monomers into the lipid bilayer lamella followed by radical polymerization, has emerged to increase phospholipid nanoshell stability. In this work, we investigated the effects of three different radical initiator conditions to fabricate stable PSS-phospholipid nanoshells yet retain the activity of encapsulated model fluorescent sensor proteins. To identify nondestructive initiation conditions, UV photoinitiation, neutral redox initiation, and thermal initiation were investigated as a function of PSS-phospholipid nanoshell stabilization and fluorescence emission intensity of enhanced green fluorescent protein (eGFP) and tandem dimer Tomato (td-Tomato). All three initiator approaches yielded comparably stable PSS-phospholipid nanoshells, although slight variations in PSS-phospholipid nanoshell size were observed, ranging from ca. 140 nm for unstabilized phospholipid nanoshells to 300-500 nm for PSS-phospholipid nanoshells. Fluorescence emission intensity of encapsulated eGFP was completely attenuated under thermal initiation (0% vs control), moderately attenuated under UV photoinitiation (40 ± 4% vs control), and unaffected by neutral redox initiation (97 ± 3% vs control). Fluorescence emission intensity of encapsulated td-Tomato was significantly attenuated under thermal initiation (13 ± 3% vs control), moderately attenuated UV photoinitiation (64 ± 5% vs control), and unaffected by neutral redox initiation (98% ± 4% vs control). Therefore, the neutral redox initiation method provides a significant advancement toward the preparation of protein-functionalized PSS-phospholipid nanoshells. These results should help to guide future applications and designs of biosensor platforms using PSS-phospholipid nanoshells and other polymer systems employing protein transducers.
Collapse
Affiliation(s)
- Surajit Ghosh
- Department
of Chemistry and Biochemistry, BIO5 Institute, and Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Xuemin Wang
- Department
of Chemistry and Biochemistry, BIO5 Institute, and Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jinyan Wang
- Department
of Chemistry and Biochemistry, BIO5 Institute, and Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Phuong-Diem Nguyen
- Department
of Chemistry and Biochemistry, BIO5 Institute, and Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Colleen M. Janczak
- Department
of Chemistry and Biochemistry, BIO5 Institute, and Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Craig A. Aspinwall
- Department
of Chemistry and Biochemistry, BIO5 Institute, and Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
4
|
Jiang Z, Yu X, Zhai S, Hao Y. Ratiometric Dissolved Oxygen Sensors Based on Ruthenium Complex Doped with Silver Nanoparticles. SENSORS 2017; 17:s17030548. [PMID: 28282946 PMCID: PMC5375834 DOI: 10.3390/s17030548] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/19/2017] [Accepted: 03/06/2017] [Indexed: 12/01/2022]
Abstract
A ratiometric optical sensor has been developed with electrospinning processing method for dissolved oxygen measurement. The sensing film is fabricated by using silver nano-particles (Ag NPs) doped with tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) dichloride complex (Ru(DPP)3Cl2) encapsulated in plasticized polymethyl methacrylate (PMMA). An insensitive 3-(2-benzothiazolyl)-7-(diethy lamino)-(6CI,7CI) (Coumarin6) is adopted as reference. The ratio of oxygenation is calculated at each image pixel of a 3CCD camera to quantify the oxygen concentration in aqueous environment. Compared to Ag-free film, the response time of Ag-containing films were improved from 1.5 s to 1.0 s upon switching from deoxygenated to air saturation and from 65 s to 45 s from air saturation to fully deoxygenated. The response times of the Ag-free film obtained by knifing was 2.0 s upon switching from deoxygenated to air saturation and 104 s from air saturation to fully deoxygenated. Results of the evaluation of accuracy, limit of detection, stability, and photostability are presented. An experiment measuring the spatiotemporal variation of oxygen distribution within the photosynthesis and respiration of Chlorella vulgaris is demonstrated. It is shown that the nanofiber-based optical sensor film could serve as a promising method for rapid oxygen monitoring in aqueous applications.
Collapse
Affiliation(s)
- Zike Jiang
- Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education, College of Marine Geosciences, Ocean University of China, Qingdao 266100, China.
| | - Xinsheng Yu
- Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education, College of Marine Geosciences, Ocean University of China, Qingdao 266100, China.
| | - Shikui Zhai
- Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education, College of Marine Geosciences, Ocean University of China, Qingdao 266100, China.
| | - Yingyan Hao
- Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education, College of Marine Geosciences, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
5
|
Bright LK, Baker CA, Bränström R, Saavedra SS, Aspinwall CA. Methacrylate Polymer Scaffolding Enhances the Stability of Suspended Lipid Bilayers for Ion Channel Recordings and Biosensor Development. ACS Biomater Sci Eng 2016; 1:955-963. [PMID: 26925461 PMCID: PMC4764998 DOI: 10.1021/acsbiomaterials.5b00205] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Black lipid membranes (BLMs) provide a synthetic environment that facilitates measurement of ion channel activity in diverse analytical platforms. The limited electrical, mechanical and temporal stabilities of BLMs pose a significant challenge to development of highly stable measurement platforms. Here, ethylene glycol dimethacrylate (EGDMA) and butyl methacrylate (BMA) were partitioned into BLMs and photopolymerized to create a cross-linked polymer scaffold in the bilayer lamella that dramatically improved BLM stability. The commercially available methacrylate monomers provide a simple, low cost, and broadly accessible approach for preparing highly stabilized BLMs useful for ion channel analytical platforms. When prepared on silane-modified glass microapertures, the resulting polymer scaffold-stabilized (PSS)-BLMs exhibited significantly improved lifetimes of 23 ± 9 to 40 ± 14 h and > 10-fold increase in mechanical stability, with breakdown potentials > 2000 mV attainable, depending on surface modification and polymer cross-link density. Additionally, the polymer scaffold exerted minimal perturbations to membrane electrical integrity as indicated by mean conductance measurements. When gramicidin A and α-hemolysin were reconstituted into PSS-BLMs, the ion channels retained function comparable to conventional BLMs. This approach is a key advance in the formation of stabilized BLMs and should be amenable to a wide range of receptor and ion channel functionalized platforms.
Collapse
Affiliation(s)
- Leonard K. Bright
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721
| | - Christopher A. Baker
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721
| | - Robert Bränström
- Endocrine and Sarcoma Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - S. Scott Saavedra
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721
- BIO5 Institute, University of Arizona, Tucson, AZ 85721
| | - Craig A. Aspinwall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721
- BIO5 Institute, University of Arizona, Tucson, AZ 85721
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
6
|
Søndergaard RV, Christensen NM, Henriksen JR, Kumar EKP, Almdal K, Andresen TL. Facing the Design Challenges of Particle-Based Nanosensors for Metabolite Quantification in Living Cells. Chem Rev 2015; 115:8344-78. [PMID: 26244372 DOI: 10.1021/cr400636x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Rikke V Søndergaard
- Department of Micro- and Nanotechnology, Technical University of Denmark , Produktionstorvet 423, 2800 Lyngby, Denmark
| | - Nynne M Christensen
- Department of Micro- and Nanotechnology, Technical University of Denmark , Produktionstorvet 423, 2800 Lyngby, Denmark
| | - Jonas R Henriksen
- Department of Micro- and Nanotechnology, Technical University of Denmark , Produktionstorvet 423, 2800 Lyngby, Denmark
| | - E K Pramod Kumar
- Department of Micro- and Nanotechnology, Technical University of Denmark , Produktionstorvet 423, 2800 Lyngby, Denmark
| | - Kristoffer Almdal
- Department of Micro- and Nanotechnology, Technical University of Denmark , Produktionstorvet 423, 2800 Lyngby, Denmark
| | - Thomas L Andresen
- Department of Micro- and Nanotechnology, Technical University of Denmark , Produktionstorvet 423, 2800 Lyngby, Denmark
| |
Collapse
|
7
|
Ray A, Kopelman R. Hydrogel nanosensors for biophotonic imaging of chemical analytes. Nanomedicine (Lond) 2014; 8:1829-38. [PMID: 24156487 DOI: 10.2217/nnm.13.166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Polymer-based hydrogel nanosensors have been developed and extensively utilized for the imaging and dynamic monitoring of chemical properties, response to external stimulants, and metabolism of cells and tissues, in real time, using optical imaging techniques. A large fraction of these polymeric nanoparticles are based on polyacrylamide (PAA) owing to its excellent properties such as nontoxicity, biocompatibility and flexibility of engineering. The properties of the PAA matrix can be specifically tailored, depending on the application, and the molecules can be loaded into the matrix. Various surface modifications enable one to control its behavior in cells and in vivo, and can be utilized for specific targeting to cells and subcellular organelles. This special report describes the recent advances in the design and application of the latest generation of PAA nanosensors for some physiologically important ions and small molecules.
Collapse
Affiliation(s)
- Aniruddha Ray
- Department of Chemistry & Biophysics, University of Michigan, 930 N University Avenue, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
8
|
Gallagher ES, Mansfield E, Aspinwall CA. Stabilized phospholipid membranes in chromatography: toward membrane protein-functionalized stationary phases. Anal Bioanal Chem 2014; 406:2223-9. [PMID: 24390459 PMCID: PMC3969766 DOI: 10.1007/s00216-013-7545-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/02/2013] [Indexed: 10/25/2022]
Abstract
Transmembrane protein (TMP)-functionalized materials have resulted in powerful new methods in chemical analysis. Of particular interest is the development of high-throughput, TMP-functionalized stationary phases for affinity chromatography of complex mixtures of analytes. Several natural and synthetic phospholipids and lipid mimics have been used for TMP reconstitution, although the resulting membranes often lack the requisite chemical and temporal stability for long-term use, a problem that is exacerbated in flowing separation systems. Polymerizable lipids with markedly increased membrane stability and TMP functionality have been developed over the past two decades. More recently, these lipids have been incorporated into a range of analytical methods, including separation techniques, and are now poised to have a significant impact on TMP-based separations. Here, we describe current methods for preparing TMP-containing stationary phases and examine the potential utility of polymerizable lipids in TMP affinity chromatography.
Collapse
Affiliation(s)
- Elyssia S. Gallagher
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721, USA
| | - Elisabeth Mansfield
- National Institute of Standards and Technology, Applied Chemicals and Materials Division, Boulder, Colorado, 80305, USA
| | - Craig A. Aspinwall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721, USA
- BIO5 Institute, University of Arizona, 1306 E. University Blvd, Tucson, Arizona, 85721, USA
| |
Collapse
|
9
|
Wang XD, Wolfbeis OS. Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem Soc Rev 2014; 43:3666-761. [PMID: 24638858 DOI: 10.1039/c4cs00039k] [Citation(s) in RCA: 585] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We review the current state of optical methods for sensing oxygen. These have become powerful alternatives to electrochemical detection and in the process of replacing the Clark electrode in many fields. The article (with 694 references) is divided into main sections on direct spectroscopic sensing of oxygen, on absorptiometric and luminescent probes, on polymeric matrices and supports, on additives and related materials, on spectroscopic schemes for read-out and imaging, and on sensing formats (such as waveguide sensing, sensor arrays, multiple sensors and nanosensors). We finally discuss future trends and applications and summarize the properties of the most often used indicator probes and polymers. The ESI† (with 385 references) gives a selection of specific applications of such sensors in medicine, biology, marine and geosciences, intracellular sensing, aerodynamics, industry and biotechnology, among others.
Collapse
Affiliation(s)
- Xu-dong Wang
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040 Regensburg, Germany.
| | | |
Collapse
|
10
|
ul Haque A, Chatni MR, Li G, Porterfield DM. Biochips and other microtechnologies for physiomics. Expert Rev Proteomics 2014; 4:553-63. [PMID: 17705712 DOI: 10.1586/14789450.4.4.553] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This paper presents a review of microtechnologies relevant to applications in cellular physiology, including biochips, electrochemical sensors and optrodic sensing techniques. Microelectrodes have been the main tools for measuring cellular electrophysiology, oxygen, nitric oxide, neurotransmitters, pH and various ions. Optical fiber sensing methods, such as indicator-based optrodes, with fluorescence lifetime measurement, are now emerging as viable alternatives to electroanalytical chemistry. These new optrode techniques are possible because of recent advances in the optoelectronics industry and are comparably easier to miniaturize, have faster response times, do not consume the analyte and have lower operational costs. This review serves as a summary and predicts future trends for both electrochemical and optical luminescence lifetime sensing as components in lab-on-a-chip devices for physiological sensing.
Collapse
Affiliation(s)
- Aeraj ul Haque
- Purdue University, Department of Agricultural & Biological Engineering, Physiological Sensing Facility, Bindley Bioscience Research Center, West Lafayette, IN 47907, USA.
| | | | | | | |
Collapse
|
11
|
Korzeniowska B, Nooney R, Wencel D, McDonagh C. Silica nanoparticles for cell imaging and intracellular sensing. NANOTECHNOLOGY 2013; 24:442002. [PMID: 24113689 DOI: 10.1088/0957-4484/24/44/442002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
There is increasing interest in the use of nanoparticles (NPs) for biomedical applications. In particular, nanobiophotonic approaches using fluorescence offers the potential of high sensitivity and selectivity in applications such as cell imaging and intracellular sensing. In this review, we focus primarily on the use of fluorescent silica NPs for these applications and, in so doing, aim to enhance and complement the key recent review articles on these topics. We summarize the main synthetic approaches, namely the Stöber and microemulsion processes, and, in this context, we deal with issues in relation to both covalent and physical incorporation of different types of dyes in the particles. The important issue of NP functionalization for conjugation to biomolecules is discussed and strategies published in the recent literature are highlighted and evaluated. We cite recent examples of the use of fluorescent silica NPs for cell imaging in the areas of cancer, stem cell and infectious disease research, and we review the current literature on the use of silica NPs for intracellular sensing of oxygen, pH and ionic species. We include a short final section which seeks to identify the main challenges and obstacles in relation to the potential widespread use of these particles for in vivo diagnostics and therapeutics.
Collapse
Affiliation(s)
- B Korzeniowska
- Optical Sensors Laboratory, School of Physical Sciences, NCSR, Dublin City University, Dublin 9, Ireland
| | | | | | | |
Collapse
|
12
|
Sierant M, Paluch P, Florczak M, Rozanski A, Miksa B. Photosensitive nanocapsules for use in imaging from poly(styrene-co-divinylbenzene) cross-linked with coumarin derivatives. Colloids Surf B Biointerfaces 2013; 111:571-8. [DOI: 10.1016/j.colsurfb.2013.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 06/29/2013] [Accepted: 07/01/2013] [Indexed: 12/23/2022]
|
13
|
Liu H, Yang H, Hao X, Xu H, Lv Y, Xiao D, Wang H, Tian Z. Development of polymeric nanoprobes with improved lifetime dynamic range and stability for intracellular oxygen sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:2639-48. [PMID: 23519925 DOI: 10.1002/smll.201203127] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/11/2013] [Indexed: 05/24/2023]
Abstract
A class of core-shell nanoparticles possessing a layer of biocompatible shell and hydrophobic core with embedded oxygen-sensitive platinum-porphyrin (PtTFPP) dyes is developed via a radical-initiated microemulsion co-polymerization strategy. The influences of host matrices and the PtTFPP incorporation manner on the photophysical properties and the oxygen-sensing performance of the nanoparticles are investigated. Self-loading capability with cells and intracellular-oxygen-sensing ability of the as-prepared nanoparticle probes in the range 0%-20% oxygen concentration are confirmed. Polymeric nanoparticles with optimized formats are characterized by their relatively small diameter (<50 nm), core-shell structures with biocompatible shells, covalent-attachment-imparted leak-free construction, improved lifetime dynamic range (up to 44 μs), excellent storage stability and photostability, and facile cell uptake. The nanoparticles' small sensor diameter and core-shell structure with biocompatible shell make them suitable for intracellular detection applications. For intracellular detection applications, the leak-free feature of the as-prepared nanoparticle sensor effectively minimizes potential chemical interferences and cytotoxicity. As a salient feature, improved lifetime dynamic range of the sensor is expected to enable precise oxygen detection and control in specific practical applications in stem-cell biology and medical research. Such a feature-packed nanoparticle oxygen sensor may find applications in precise oxygen-level mapping of living cells and tissue.
Collapse
Affiliation(s)
- Heng Liu
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences-UCAS, Beijing 100049, PR China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Asymmetric gold nanoparticles synthesized in the presence of maltose-modified poly(ethyleneimine). Colloids Surf A Physicochem Eng Asp 2012. [DOI: 10.1016/j.colsurfa.2012.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Muhandiramlage TP, Cheng Z, Roberts DL, Keogh JP, Hall HK, Aspinwall CA. Determination of pore sizes and relative porosity in porous nanoshell architectures using dextran retention with single monomer resolution and proton permeation. Anal Chem 2012; 84:9754-61. [PMID: 23083108 DOI: 10.1021/ac301510k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Unilamellar phospholipid vesicles prepared using the polymerizable lipid bis-sorbylphosphatidylcholine (bis-SorbPC) yield three-dimensional nanoarchitectures that are highly permeable to small molecules. The resulting porous phospholipid nanoshells (PPNs) are potentially useful for a range of biomedical applications including nanosensors and nanodelivery vehicles for cellular assays and manipulations. The uniformity and size distribution of the pores, key properties for sensor design and utilization, have not previously been reported. Fluorophore-assisted carbohydrate electrophoresis (FACE) was utilized to assess the nominal molecular weight cutoff limit (NMCL) of the PPN via analysis of retained dextran with single monomer resolution. The NMCL of PPNs prepared from pure bis-SorbPC was equivalent to a 1800 Da linear dextran, corresponding to a maximum pore diameter of 2.6 nm. Further investigation of PPNs prepared using binary mixtures of bis-SorbPC and dioleoylphosphatidylcholine (DOPC) revealed a similar NMCL when the bis-SorbPC content exceeded 30 mol %, whereas different size-dependent permeation was observed below this composition. Below 30 mol % bis-SorbPC, dextran retention provided insufficient mass resolution (162 Da) to observe porosity on the experimental time scale; however, proton permeability showed a marked enhancement for bis-SorbPC ≥ 10 mol %. Combined, these data suggest that the NMCL for native pores in bis-SorbPC PPNs results from an inherent property within the lipid assembly that can be partially disrupted by dilution of bis-SorbPC below a critical value for domain formation. Additionally, the analytical method described herein should prove useful for the challenging task of elucidating porosity in a range of three-dimensional nanomaterials.
Collapse
Affiliation(s)
- Thusitha P Muhandiramlage
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Feng Y, Cheng J, Zhou L, Zhou X, Xiang H. Ratiometric optical oxygen sensing: a review in respect of material design. Analyst 2012; 137:4885-901. [DOI: 10.1039/c2an35907c] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Esipova TV, Karagodov A, Miller J, Wilson DF, Busch TM, Vinogradov SA. Two new "protected" oxyphors for biological oximetry: properties and application in tumor imaging. Anal Chem 2011; 83:8756-65. [PMID: 21961699 DOI: 10.1021/ac2022234] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report the synthesis, calibration, and examples of application of two new phosphorescent probes, Oxyphor R4 and Oxyphor G4, optimized specifically for in vivo oxygen imaging by phosphorescence quenching. These "protected" dendritic probes can operate in either albumin-rich (blood plasma) or albumin-free (interstitial space) environments at all physiological oxygen concentrations, from normoxic to deep hypoxic conditions. Oxyphors R4 and G4 are derived from phosphorescent Pd-meso-tetra-(3,5-dicarboxyphenyl)-porphyrin (PdP) or Pd-meso-tetra-(3,5-dicarboxyphenyl)-tetrabenzoporphyrin (PdTBP), respectively, and possess features common for protected dendritic probes, i.e., hydrophobic dendritic encapsulation of phosphorescent metalloporphyrins and hydrophilic PEGylated periphery. The new Oxyphors are highly soluble in aqueous environments and do not permeate biological membranes. The probes were calibrated under physiological conditions (pH 6.4-7.8) and temperatures (22-38 °C), showing high stability, reproducibility of signals, and lack of interactions with biological solutes. Oxyphor G4 was used to dynamically image intravascular and interstitial oxygenation in murine tumors in vivo. The physiological relevance of the measurements was demonstrated by dynamically recording changes in tissue oxygenation during application of anesthesia (isofluorane). These experiments revealed that changes in isofluorane concentration significantly affect tissue oxygenation.
Collapse
Affiliation(s)
- Tatiana V Esipova
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | | | |
Collapse
|
19
|
Heider EC, Barhoum M, Edwards K, Gericke KH, Harris JM. Structural Characterization of Individual Vesicles using Fluorescence Microscopy. Anal Chem 2011; 83:4909-15. [DOI: 10.1021/ac200632h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Emily C. Heider
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Moussa Barhoum
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Kyle Edwards
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Karl-Heinz Gericke
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Joel M. Harris
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
20
|
Del Mercato LL, Abbasi AZ, Parak WJ. Synthesis and characterization of ratiometric ion-sensitive polyelectrolyte capsules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:351-363. [PMID: 21294264 DOI: 10.1002/smll.201001144] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/11/2010] [Indexed: 05/30/2023]
Abstract
Micrometer-sized polyelectrolyte capsules are synthesized, which have ion-sensitive fluorophores embedded in their cavities. As the membranes of the capsules are permeable to ions, the fluorescence of the capsules changed with the ion concentration. In particular, capsules sensitive to protons, sodium, potassium, and chloride ions are fabricated and their fluorescence response analyzed. In order to allow for ratiometric measurements, additional fluorophores whose emission do not depend on the ion concentration and which emit a different wavelength are co-embedded in the capsule cavities.
Collapse
Affiliation(s)
- Loretta L Del Mercato
- Fachbereich Physik and Wissenschaftliches Zentrum für, Materialwissenschaften, Philipps Universität Marburg, Marburg, Germany
| | | | | |
Collapse
|
21
|
Synthetic membranes (vesicles) in inorganic ion analysis: A review. Anal Chim Acta 2011; 683:156-69. [DOI: 10.1016/j.aca.2010.10.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/14/2010] [Accepted: 10/15/2010] [Indexed: 11/22/2022]
|
22
|
Bonnet S, Limburg B, Meeldijk JD, Klein Gebbink RJM, Killian JA. Ruthenium-Decorated Lipid Vesicles: Light-Induced Release of [Ru(terpy)(bpy)(OH2)]2+ and Thermal Back Coordination. J Am Chem Soc 2010; 133:252-61. [DOI: 10.1021/ja105025m] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sylvestre Bonnet
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, and Electron Microscopy Utrecht, Department of Biology,Organic Chemistry & Catalysis, Debye Institute for Nanomaterial Science, and Biochemistry of Membranes, Bijvoet Center, Department of Chemistry, Faculty of Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Bart Limburg
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, and Electron Microscopy Utrecht, Department of Biology,Organic Chemistry & Catalysis, Debye Institute for Nanomaterial Science, and Biochemistry of Membranes, Bijvoet Center, Department of Chemistry, Faculty of Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Johannes D. Meeldijk
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, and Electron Microscopy Utrecht, Department of Biology,Organic Chemistry & Catalysis, Debye Institute for Nanomaterial Science, and Biochemistry of Membranes, Bijvoet Center, Department of Chemistry, Faculty of Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Robertus J. M. Klein Gebbink
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, and Electron Microscopy Utrecht, Department of Biology,Organic Chemistry & Catalysis, Debye Institute for Nanomaterial Science, and Biochemistry of Membranes, Bijvoet Center, Department of Chemistry, Faculty of Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - J. Antoinette Killian
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, and Electron Microscopy Utrecht, Department of Biology,Organic Chemistry & Catalysis, Debye Institute for Nanomaterial Science, and Biochemistry of Membranes, Bijvoet Center, Department of Chemistry, Faculty of Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
23
|
Sinks LE, Robbins GP, Roussakis E, Troxler T, Hammer DA, Vinogradov SA. Two-photon microscopy of oxygen: polymersomes as probe carrier vehicles. J Phys Chem B 2010; 114:14373-82. [PMID: 20462225 PMCID: PMC2939231 DOI: 10.1021/jp100353v] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxygen concentration distributions in biological systems can be imaged by the phosphorescence quenching method in combination with two-photon laser scanning microscopy. In this paper, we identified the excitation regime in which the signal of a two-photon-enhanced phosphorescent probe (Finikova, O. S.; Lebedev, A. Y.; Aprelev, A.; Troxler, T.; Gao, F.; Garnacho, C.; Muro, S.; Hochstrasser, R. M.; Vinogradov, S. A. ChemPhysChem 2008, 9, 1673-1679) is dependent quadratically on the excitation power (quadratic regime), and performed simulations that relate the photophysical properties of the probe to the imaging resolution. Further, we characterized polymersomes as a method of probe encapsulation and delivery. Photophysical and oxygen sensing properties of the probe were found unchanged when the probe is encapsulated in polymersomes. Polymersomes were found capable of sustaining high probe concentrations, thereby serving to improve the signal-to-noise ratios for oxygen detection compared to the previously employed probe delivery methods. Imaging of polymersomes loaded with the probe was used as a test-bed for a new method.
Collapse
|
24
|
Lee YEK, Kopelman R. Optical nanoparticle sensors for quantitative intracellular imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 1:98-110. [PMID: 20049782 DOI: 10.1002/wnan.2] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Real-time measurements of biological/chemical/physical processes, with no interferences, are an ultimate goal for in vivo intracellular studies. To construct intracellular biosensors that meet such a goal, nanoparticle (NP) platforms seem to be most promising, because of their small size and excellent engineerability. This review describes the development of NP-based opical sensors and their intracellular applications. The sensor designs are classified into two types, based on the sensor structures regarding analyte receptor and signal transducer. Type 1 sensors, with a single component for both receptor and transducer, work by mechanisms similar to those of 'molecular probes'. Type 2 sensors, with a separate component for receptor and transducer, work by different mechanisms that require the presence of specific NPs. A synergistic increase in optical signal or selectivity has been reported for these second type of NP sensors. With ongoing rapid advances in nanotechnology and instrumentation, these NP systems will soon be capable of sensing at the single-molecule level, at the point of interest within the living cell, and capable of simultaneously detecting multiple analytes and physical parameters.
Collapse
|
25
|
Roberts DL, Ma Y, Bowles SE, Janczak CM, Pyun J, Saavedra SS, Aspinwall CA. Polymer-stabilized phospholipid vesicles with a controllable, pH-dependent disassembly mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:1908-10. [PMID: 19154125 PMCID: PMC2654230 DOI: 10.1021/la803358m] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this letter, we report a facile method to prepare robust phospholipid vesicles using commonly available phospholipids that are stabilized via the formation of an interpenetrating, acid-labile, cross-linked polymer network that imparts a site for controlled polymer destabilization and subsequent vesicle degradation. The polymer network was formed in the inner lamella of the phospholipid bilayer using 2,2-di(methacryloyloxy-1-ethoxy)propane (DMOEP) and butyl methacrylate (BMA). Upon exposure to acidic conditions, the highly cross-linked polymer network was partially converted to smaller linear polymers, resulting in substantially reduced vesicle stability upon exposure to chemical and physical insults. Isolated polymers had pH-dependent-solubility in THF. Transmission electron microscopy and dynamic light scattering revealed time-dependent enhanced vesicle stability in high concentrations of surfactant and vacuum conditions at elevated pH, whereas exposure to acidic pH rapidly decreased the vesicle stability, with complete destabilization observed in less than 24 h. The resultant transiently stabilized vesicles may prove useful for enhanced drug delivery and chemical sensing applications and allow for improved physiological clearance.
Collapse
Affiliation(s)
- David L. Roberts
- Department of Chemistry, University of Arizona, Tucson, AZ 85721-0041
| | - Yaning Ma
- Department of Chemistry, University of Arizona, Tucson, AZ 85721-0041
| | - Steven E. Bowles
- Department of Chemistry, University of Arizona, Tucson, AZ 85721-0041
| | | | - Jeffrey Pyun
- Department of Chemistry, University of Arizona, Tucson, AZ 85721-0041
| | - S. Scott Saavedra
- Department of Chemistry, University of Arizona, Tucson, AZ 85721-0041
| | | |
Collapse
|
26
|
McGee KA, Mann KR. Inefficient Crystal Packing in Chiral [Ru(phen)3](PF6)2 Enables Oxygen Molecule Quenching of the Solid-State MLCT Emission. J Am Chem Soc 2009; 131:1896-902. [DOI: 10.1021/ja8075605] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kari A. McGee
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Kent R. Mann
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
27
|
Lee YEK, Kopelman R, Smith R. Nanoparticle PEBBLE sensors in live cells and in vivo. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2009; 2:57-76. [PMID: 20098636 PMCID: PMC2809932 DOI: 10.1146/annurev.anchem.1.031207.112823] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nanoparticle sensors have been developed for real-time imaging and dynamic monitoring, both in live cells and in vivo, of molecular and ionic components, constructs, forces, and dynamics observed during biological, chemical, and physical processes. With their biocompatible small size and inert matrix, nanoparticle sensors have been successfully applied to noninvasive real-time measurements of analytes and fields in cells and in rodents, with spatial, temporal, physical, and chemical resolution. This review describes the diverse designs of nanoparticle sensors for ions and small molecules, physical fields, and biological features, as well as the characterization, properties, and applications of these nanosensors to in vitro and in vivo measurements. Their floating as well as localization abilities in biological media are captured by the acronym PEBBLE: photonic explorer for bioanalysis with biologically localized embedding.
Collapse
Affiliation(s)
- Yong-Eun Koo Lee
- University of Michigan, Department of Chemistry, 930 N. University, Ann Arbor, MI 48109-1055
| | - Raoul Kopelman
- University of Michigan, Department of Chemistry, 930 N. University, Ann Arbor, MI 48109-1055
| | - Ron Smith
- University of Michigan, Department of Chemistry, 930 N. University, Ann Arbor, MI 48109-1055
| |
Collapse
|
28
|
Ruda-Eberenz TA, Nagy A, Waldman WJ, Dutta PK. Entrapment of ionic tris(2,2'-bipyridyl) ruthenium(II) in hydrophobic siliceous zeolite: O2 sensing in biological environments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:9140-9147. [PMID: 18642937 DOI: 10.1021/la801204y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Synthesis of the ionic dye, tris(2,2'-bipyridyl) ruthenium(II) chloride (Ru(bpy) 3 2+.2Cl (-)) within the supercages of a highly hydrophobic zeolite Y is reported. Use of the neutral precursor Ru(bpy)Cl 2(CO) 2 allowed for high loading levels of Ru(bpy) 3 2+ (1 per 7 and 25 supercages). The emission quenching of the Ru(bpy) 3 2+-zeolite crystals dispersed in polydimethoxysiloxane (PDMS) films by dissolved oxygen in water was examined. The quenching data as a function of oxygen concentration was fit to a linear Stern-Volmer plot ( R2 = 0.98). Using the Stern-Volmer plot as calibration, changes in concentration of dissolved oxygen due to reaction with glucose in the presence of glucose oxidase was monitored. Human monocyte-derived macrophages internalized the submicron-sized Ru(bpy) 3 2+-zeolite crystals, and intracellular oxygen concentrations initiated by zymosan-mediated oxidative burst could be monitored by measuring the emission from Ru(bpy) 3 2+ by confocal fluorescence microscopy.
Collapse
Affiliation(s)
- Toni A Ruda-Eberenz
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
29
|
|
30
|
Cheng Z, D’Ambruoso GD, Aspinwall CA. Stabilized porous phospholipid nanoshells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:9507-11. [PMID: 17073472 PMCID: PMC3500630 DOI: 10.1021/la061542i] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Chemically stabilized, porous phospholipid nanoshells (PPNs) were prepared via copolymerization of reactive monomers with unilamellar bis-Sorbyl phosphatidylcholine vesicles. The resulting PPN vesicular assemblies possess a highly porous membrane structure that allows passage of small molecules, which can react with encapsulated proteins and reporters. The unique combination of membrane stability and porosity will prove useful for preparing nanometer-sized sensor, container, and reactor platforms stable in harsh chemical and biological environments.
Collapse
Affiliation(s)
| | | | - Craig A. Aspinwall
- To whom correspondence should be addressed: , phone: 520-621-6338, fax: 520-621-8407
| |
Collapse
|
31
|
Roche P, Al-Jowder R, Narayanaswamy R, Young J, Scully P. A novel luminescent lifetime-based optrode for the detection of gaseous and dissolved oxygen utilising a mixed ormosil matrix containing ruthenium (4,7-diphenyl-1,10-phenanthroline)3Cl2 (Ru.dpp). Anal Bioanal Chem 2006; 386:1245-57. [PMID: 16983531 DOI: 10.1007/s00216-006-0787-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 08/04/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
Abstract
A novel luminescent lifetime optrode is presented for the detection of gaseous and dissolved oxygen. The optrode utilises ruthenium (4,7-diphenyl-1,10-phenanthroline)(3)Cl(2) as the sensing fluorophore immobilised in a hydrophobic ormosil matrix. The ormosil matrix is synthesised at room temperature from octyltriethoxysilane and methyltriethoxysilane precursors. Investigations of different ormosils were conducted and the most effective one was selected for optrode production. Optrodes were tested for responses to gaseous and dissolved oxygen. Their responses were modelled using traditional two-site or two-exponential methods and feed-forward artificial neural networks. Comparison of the two modelling methodologies is presented and further improvements in modelling and ormosil design are suggested.
Collapse
Affiliation(s)
- P Roche
- School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M60 1QD, UK
| | | | | | | | | |
Collapse
|