1
|
Su H, Yang Q, Jiang MH, Peng YJ, Gao J, Liu YH, Zhu C. Fluorescence quenching of deprotonated phenylurea through twisting motion induced by an electron-donating substituent group. Phys Chem Chem Phys 2024; 26:21155-21162. [PMID: 39072416 DOI: 10.1039/d4cp02077d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The excited-state proton transfer (ESPT) reaction between anthracen-2-yl-3-phenylurea (PUA) derivatives and tetrabutylammonium acetate (TBAAc) in dimethyl sulfoxide (DMSO) solvent was theoretically investigated using time-dependent density functional theory. The electron-donating methoxy group (OMe) and electron-withdrawing trifluoromethyl group (CF3) were bonded to 2PUA to form OMe-2PUA and CF3-2PUA, respectively. Two hydrogen bonds formed in the 1 : 1 hydrogen-bonded complexes between the 2PUA derivative and acetate ion (AcO-), namely N1-H1⋯O1 and N2-H2⋯O2. Strong charge transfer (CT) due to the electron-donating OMe group led to H1 transfer in the S1 state for the OMe-2PUA:AcO- hydrogen-bonded complex. On the contrary, weak CT due to the electron-withdrawing CF3 group led to H2 transfer in the S1 state for CF3-2PUA. After the ESPT reaction, the binding energies of the hydrogen-bonded complexes strongly decreased in both cases, and this promoted the separation of contact-ion pairs (CIPs*) and formed different types of anionic species. CF3-2PUA- could keep its nearly planar structure in the S1 state and emit "abnormal" fluorescence. On the other hand, the anionic OMe-2PUA- underwent a twisting motion to form a twisted structure in the S1 state with very low energy, and this led to a rapid internal conversion (IC) to quench long-wave fluorescence in the emission spectra.
Collapse
Affiliation(s)
- Hang Su
- Key College of Mathematical Science, Bohai University, Jinzhou 121013, P. R. China
| | - Qian Yang
- College of Physical Science and Technology, Bohai University, Jinzhou 121013, P. R. China.
| | - Meng-Huan Jiang
- College of Physical Science and Technology, Bohai University, Jinzhou 121013, P. R. China.
| | - Ya-Jing Peng
- College of Physical Science and Technology, Bohai University, Jinzhou 121013, P. R. China.
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Yu-Hui Liu
- College of Physical Science and Technology, Bohai University, Jinzhou 121013, P. R. China.
| | - Chaoyuan Zhu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, P. R. China
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao-Tung University, Hsinchu 30010, Taiwan.
| |
Collapse
|
2
|
Liu XM, Xia QY, Ju XH. Theoretical investigation on regulating photophysical properties and proton transfer behavior by electronegativity for near-infrared emitting styryl dyes. Photochem Photobiol Sci 2024; 23:575-585. [PMID: 38386257 DOI: 10.1007/s43630-024-00540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
Our main focus is to explore the atomic electronegativity-dependent photoinduced behavior of styryl derivatives (HBO, HBS, and HBSe). The results of structural parameter calculation by the DFT method show that the intramolecular hydrogen bonds of normal and tautomer form are strengthened and weakened, respectively, in an excited state (S1), which is conducive to the excited intramolecular proton transfer (ESIPT) process. The enhancement of excited hydrogen bond is beneficial to the ESIPT process from the aspects of infrared vibration frequency (IR), Mulliken's charge analysis, and density gradient reduction (RDG). Additionally, by determining the bond energy with the band critical point (BCP) parameter, we found that the lower the electronegativity of the atom, the larger the hydrogen bond strength at the excited state and the more likely ESIPT reaction occurs. Meanwhile, the intramolecular H-bonds O-H…N in HBO, HBS, and HBSe are enhanced with the weakened electron-withdrawing capacity of the atom (from O to S and Se). Subsequently, frontier molecular orbital (FMOs) and charge density difference (CDD) analyses essentially revealed that electron redistribution induces the ESIPT process. Low atomic electronegativity exhibits the high chemical activity of the excited state. Furthermore, to demonstrate the electronegativity-dependent ESIPT behavior of the system, we built potential energy curves (PECs) and located the transition states (TS) of proton transfer processes.
Collapse
Affiliation(s)
- Xiu-Min Liu
- Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Qi-Ying Xia
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, People's Republic of China.
| | - Xue-Hai Ju
- Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China.
| |
Collapse
|
3
|
Fresch E, Collini E. The Role of H-Bonds in the Excited-State Properties of Multichromophoric Systems: Static and Dynamic Aspects. Molecules 2023; 28:molecules28083553. [PMID: 37110786 PMCID: PMC10141795 DOI: 10.3390/molecules28083553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Given their importance, hydrogen bonds (H-bonds) have been the subject of intense investigation since their discovery. Indeed, H-bonds play a fundamental role in determining the structure, the electronic properties, and the dynamics of complex systems, including biologically relevant materials such as DNA and proteins. While H-bonds have been largely investigated for systems in their electronic ground state, fewer studies have focused on how the presence of H-bonds could affect the static and dynamic properties of electronic excited states. This review presents an overview of the more relevant progress in studying the role of H-bond interactions in modulating excited-state features in multichromophoric biomimetic complex systems. The most promising spectroscopic techniques that can be used for investigating the H-bond effects in excited states and for characterizing the ultrafast processes associated with their dynamics are briefly summarized. Then, experimental insights into the modulation of the electronic properties resulting from the presence of H-bond interactions are provided, and the role of the H-bond in tuning the excited-state dynamics and the related photophysical processes is discussed.
Collapse
Affiliation(s)
- Elisa Fresch
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Elisabetta Collini
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
4
|
Dyakov YA, Adamson SO, Wang PK, Vetchinkin AS, Golubkov GV, Peskov VD, Rodionov AI, Syromyatnikov AG, Umanskii SY, Shestakov DV, Golubkov MG. Excited State Dynamics of CH3CHOO Criegee Intermediates in the Upper Atmosphere of the Earth. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793122030149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Chang XP, Yu L, Zhang TS, Cui G. Quantum mechanics/molecular mechanics studies on the mechanistic photophysics of sunscreen oxybenzone in methanol solution. Phys Chem Chem Phys 2022; 24:13293-13304. [PMID: 35607908 DOI: 10.1039/d2cp01263d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we have employed the QM(CASPT2//CASSCF)/MM method to explore the photophysical and photochemical mechanism of oxybenzone (OB) in methanol solution. Based on the optimized minima, conical intersections and crossing points, and minimum-energy reaction paths related to excited-state intramolecular proton transfer (ESIPT) and excited-state decay paths in the 1ππ*, 1nπ*, 3ππ*, 3nπ*, and S0 states, we have identified several feasible excited-state relaxation pathways for the initially populated S2(1ππ*) state to decay to the initial enol isomer' S0 state. The major one is the singlet-mediated and stretch-torsion coupled ESIPT pathway, in which the system first undergoes an essentially barrierless 1ππ* ESIPT process to generate the 1ππ* keto species, and finally realizes its ground state recovery through the subsequent carbonyl stretch-torsion facilitating S1 → S0 internal conversion (IC) and the reverse ground-state intramolecular proton transfer (GSIPT) process. The minor ones are related to intersystem crossing (ISC) processes. At the S2(1ππ*) minimum, an S2(1ππ*)/S1(1nπ*)/T2(3nπ*) three-state intersection region helps the S2 system branch into the T1 state through a S2 → S1 → T1 or S2 → T2 → T1 process. Once it has reached the T1 state, the system may relax to the S0 state via direct ISC or via subsequent nearly barrierless 3ππ* ESIPT to yield the T1 keto tautomer and ISC. The resultant S0 keto species significantly undergoes reverse GSIPT and only a small fraction yields the trans-keto form that relaxes back more slowly. However, due to small spin-orbit couplings at T1/S0 crossing points, the ISC to S0 state occurs very slowly. The present work rationalizes not only the ultrafast excited-state decay dynamics of OB but also its phosphorescence emission at low temperature.
Collapse
Affiliation(s)
- Xue-Ping Chang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Li Yu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Teng-Shuo Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Qian Y, Gong F, Li J, Ma P, Zhu H, He L, Xia J. A Solvent-Mediated Excited-State Intermolecular Proton Transfer Fluorescent Probe for Fe 3+ Sensing and Cell Imaging. Molecules 2022; 27:516. [PMID: 35056841 PMCID: PMC8778147 DOI: 10.3390/molecules27020516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/02/2022] [Accepted: 01/06/2022] [Indexed: 12/05/2022] Open
Abstract
Constructing excited-state intermolecular proton transfer (ESIPT-e) fluorophores represents significant challenges due to the harsh requirement of bearing a proton donor-acceptor (D-A) system and their matching proton donating-accepting ability in the same molecule. Herein, we synthesized a new-type ESIPT-e fluorophor (2-APC) using the "four-component one-pot" reaction. By the installing of a cyano-group on pyridine scaffold, the proton donating ability of -NH2 was greatly enhanced, enabling 2-APC to undergo ESIPT-e process. Surprisingly, 2-APC exhibited dual-emissions in protic solvents ethanol and normal fluorescence in aprotic solvents, which is vastly different from that of conventional ESIPT-a dyes. The ESIPT emission can be obviously suppressed by Fe3+ due to the coordination reaction of Fe3+ with the A-D system in 2-APC. From this basis, a highly sensitive and selective method was established using 2-APC as a fluorescent probe, which offers the sensitive detection of Fe3+ ranging from 0 to 13 μM with the detection limit of 7.5 nM. The recovery study of spiked Fe3+ measured by the probe showed satisfactory results (97.2103.4%) with the reasonable RSD ranging from 3.1 to 3.8%. Moreover, 2-APC can also exhibit aggregation-induced effect in poor solvent or solid-state, eliciting strong red fluorescence. 2-APC was also applied to cell-imaging, exhibiting good cell-permeability, biocompatibility and color rendering. This multi-mode emission of 2-APC is significant departure from that of conventional extended p-conjugated systems and ESIPT dyes based on a flat and rigid molecular design. The "one-pot synthesis" strategy for the construction of ESIPT molecules pioneered a new route to achieve tricolor-emissive fluorophores.
Collapse
Affiliation(s)
- You Qian
- College of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China; (Y.Q.); (P.M.); (H.Z.); (L.H.); (J.X.)
| | - Fuchun Gong
- College of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China; (Y.Q.); (P.M.); (H.Z.); (L.H.); (J.X.)
| | - Jiguang Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Pan Ma
- College of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China; (Y.Q.); (P.M.); (H.Z.); (L.H.); (J.X.)
| | - Hanming Zhu
- College of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China; (Y.Q.); (P.M.); (H.Z.); (L.H.); (J.X.)
| | - Lingzhi He
- College of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China; (Y.Q.); (P.M.); (H.Z.); (L.H.); (J.X.)
| | - Jiaoyun Xia
- College of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China; (Y.Q.); (P.M.); (H.Z.); (L.H.); (J.X.)
| |
Collapse
|
7
|
Chang XP, Zhang TS, Cui G. Theoretical Studies on the Excited-State Decay Mechanism of Homomenthyl Salicylate in a Gas Phase and an Acetonitrile Solution. J Phys Chem A 2021; 126:16-28. [PMID: 34963284 DOI: 10.1021/acs.jpca.1c07108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we employ the CASPT2//CASSCF and QM(CASPT2//CASSCF)/MM approaches to explore the photochemical mechanism of homomenthyl salicylate (HMS) in vacuum and an acetonitrile solution. The results show that in both cases, the excited-state relaxation mainly involves a spectroscopically "bright" S1(1ππ*) state and the lower-lying T1 and T2 states. In the major relaxation pathway, the photoexcited S1 keto system first undergoes an essentially barrierless excited-state intramolecular proton transfer (ESIPT) to generate the S1 enol minimum, near which a favorable S1/S0 conical intersection decays the system to the S0 state followed by a reverse ground-state intramolecular proton transfer (GSIPT) to repopulate the initial S0 keto species. In the minor one, an S1/T2/T1 three-state intersection in the keto region makes the T1 state populated via direct and T2-mediated intersystem crossing (ISC) processes. In the T1 state, an ESIPT occurs, which is followed by ISC near a T1/S0 crossing point in the enol region to the S0 state and finally back to the S0 keto species. In addition, a T1/S0 crossing point near the T1 keto minimum can also help the system decay to the S0 keto species. However, small spin-orbit couplings between T1 and S0 at these T1/S0 crossing points make ISC to the S0 state very slow and make the system trapped in the T1 state for a while. The present work rationalizes not only the ultrafast excited-state decay dynamics of HMS but also its low quantum yield of phosphorescence at 77 K.
Collapse
Affiliation(s)
- Xue-Ping Chang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, P. R. China
| | - Teng-Shuo Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
8
|
Li Y, Bai X, Liang R, Zhang X, Nguyen YH, VanVeller B, Du L, Phillips DL. Investigation of a Series of 2-(2'-Hydroxyaryl)benzazole Derivatives: Photophysical Properties, Excited-State Intramolecular Proton-Transfer Reactions, and Observation of Long-Lived Triplet Excited States. J Phys Chem B 2021; 125:12981-12989. [PMID: 34797676 DOI: 10.1021/acs.jpcb.1c05798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Excited state intramolecular proton transfer (ESIPT) has drawn much attention for its important applications in a variety of areas. Here, the steady-state and time-resolved absorption spectroscopic experiments as well as DFT/TD-DFT calculations are employed to study the photophysical properties and photochemical reaction mechanisms of 2-(2'-hydroxyphenyl) benzoxazole (HBO) and selected derivatives (compounds 1-3). Because of their larger π-conjugation framework, compounds 1-3 display red-shifted absorbance but blue-shifted fluorescence compared with HBO. A fast ESIPT process is observed directly for HBO while compound 3 has an enol/keto equilibrium type of ESIPT that exhibits dual emission. Interestingly, only the emission of the enol form is observed for compounds 1 and 2 which suggests that the ESIPT process is strongly inhibited. These results indicate the decoration with electron-withdrawing groups such as thiadiazol and pyrazine on the hydroxyphenyl ring (compounds 1 and 2) apparently suppresses the proton-transfer processes in their excited states. Whereas the ESIPT process is rarely increased for compound 3 that modified with the phenanthrol ring, because the effective conjugation is reduced for compound 3 compared with HBO. The work here provides fundamental insights that may be useful for designing novel ESIPT molecules in the future.
Collapse
Affiliation(s)
- Yuanchun Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, P.R. China.,Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong, S.A.R., P.R. China
| | - Xueqin Bai
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong, S.A.R., P.R. China
| | - Runhui Liang
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong, S.A.R., P.R. China
| | - Xiting Zhang
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong, S.A.R., P.R. China
| | - Yen H Nguyen
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Brett VanVeller
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Lili Du
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, P.R. China.,Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong, S.A.R., P.R. China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong, S.A.R., P.R. China
| |
Collapse
|
9
|
Liu YH, Yu SB, Peng YJ, Wang CW, Zhu C, Lin SH. Excited-state intramolecular proton transfer with and without the assistance of vibronic-transition-induced skeletal deformation in phenol-quinoline. RSC Adv 2021; 11:37299-37306. [PMID: 35496430 PMCID: PMC9043822 DOI: 10.1039/d1ra07042h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/05/2021] [Indexed: 11/27/2022] Open
Abstract
The excited-state intramolecular proton transfer (ESIPT) reaction of two phenol-quinoline molecules (namely PQ-1 and PQ-2) were investigated using time-dependent density functional theory. The five-(six-) membered-ring carbocycle between the phenol and quinolone moieties in PQ-1 (PQ-2) actually causes a relatively loose (tight) hydrogen bond, which results in a small-barrier (barrier-less) on an excited-state potential energy surface with a slow (fast) ESIPT process with (without) involving the skeletal deformation motion up to the electronic excitation. The skeletal deformation motion that is induced from the largest vibronic excitation with low frequency can assist in decreasing the donor-acceptor distance and lowering the reaction barrier in the excited-state potential energy surface, and thus effectively enhance the ESIPT reaction for PQ-1. The Franck-Condon simulation indicated that the low-frequency mode with vibronic excitation 0 → 1' is an original source of the skeletal deformation vibration. The present simulation presents physical insights for phenol-quinoline molecules in which relatively tight or loose hydrogen bonds can influence the ESIPT reaction process with and without the assistance of the skeletal deformation motion.
Collapse
Affiliation(s)
- Yu-Hui Liu
- College of Physical Science and Technology, Bohai University Jinzhou 121013 China
| | - Shi-Bo Yu
- College of Physical Science and Technology, Bohai University Jinzhou 121013 China
| | - Ya-Jing Peng
- College of Physical Science and Technology, Bohai University Jinzhou 121013 China
| | - Chen-Wen Wang
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao-Tung University Hsinchu 30010 Taiwan
| | - Chaoyuan Zhu
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao-Tung University Hsinchu 30010 Taiwan
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan
| | - Sheng-Hsien Lin
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao-Tung University Hsinchu 30010 Taiwan
| |
Collapse
|
10
|
Jankowska J, Sobolewski AL. Modern Theoretical Approaches to Modeling the Excited-State Intramolecular Proton Transfer: An Overview. Molecules 2021; 26:molecules26175140. [PMID: 34500574 PMCID: PMC8434569 DOI: 10.3390/molecules26175140] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 02/02/2023] Open
Abstract
The excited-state intramolecular proton transfer (ESIPT) phenomenon is nowadays widely acknowledged to play a crucial role in many photobiological and photochemical processes. It is an extremely fast transformation, often taking place at sub-100 fs timescales. While its experimental characterization can be highly challenging, a rich manifold of theoretical approaches at different levels is nowadays available to support and guide experimental investigations. In this perspective, we summarize the state-of-the-art quantum-chemical methods, as well as molecular- and quantum-dynamics tools successfully applied in ESIPT process studies, focusing on a critical comparison of their specific properties.
Collapse
Affiliation(s)
- Joanna Jankowska
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
- Correspondence:
| | | |
Collapse
|
11
|
Li Y, Siddique F, Aquino AJA, Lischka H. Molecular Dynamics Simulation of the Excited-State Proton Transfer Mechanism in 3-Hydroxyflavone Using Explicit Hydration Models. J Phys Chem A 2021; 125:5765-5778. [PMID: 34165983 DOI: 10.1021/acs.jpca.1c03687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
3-Hydroxyflavon (3-HF) represents an interesting paradigmatic compound to study excited-state intramolecular proton transfer (ESIPT) and intermolecular (ESInterPT) processes to explain the experimentally observed dual fluorescence in solvents containing protic contamination (water) as opposed to single fluorescence in highly purified nonpolar solvents. In this work, adiabatic on-the-fly molecular dynamics simulations have been performed for isolated 3-HF in an aqueous solution using a polarizable continuum model and including explicit water molecules to represent adequately hydrogen bonding. For the calculation of the excited state, time-dependent density functional theory and the Becke-3-Lee-Yang-Parr (B3LYP) functional have been used. For the isolated 3-HF, ultrafast ESIPT from the enol group to the neighboring keto group has been observed. The calculated PT time of 48 fs agrees well with the experimental value of 39 fs. Addition of one water molecule quenches this ESIPT process but shows an intermolecular concerted or stepwise tautomerization process via the bridging water molecule. Adding a second or more water molecules inhibits this ESInterPT process to a large degree. Most of the trajectories do not show any PT, preserving the initial excited-state enol structure, which is the origin of the violet-blue fluorescence appearing in the solvents contaminated with protic components.
Collapse
Affiliation(s)
- Yingchao Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Farhan Siddique
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Adélia J A Aquino
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China.,Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Hans Lischka
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China.,Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
12
|
Theoretical investigations on forward-backward ESIPT processes of three fluorophores deriving from 2-(2'-hydroxyphenyl)thiazole. Photochem Photobiol Sci 2021; 20:533-546. [PMID: 33788175 DOI: 10.1007/s43630-021-00036-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
The photophysical properties and excited-state intramolecular proton transfer (ESIPT) processes for 2-(2'-hydroxyphenyl)-4-chloromethylthiazole (1), 2-(2'-hydroxyphenyl)-4-phenylthiazole (2), 2-(2'-hydroxyphenyl)-4-hydroxymethyl-thiazole (3) were studied at the TD-B3PW91/6-31 + G(d, p)/IEFPCM level. The structures of 1-3 were fully optimized and the corresponding structural parameters, infrared spectra and electron densities in the ground (S0) and the first excited (S1) states were analyzed. The calculated absorption and fluorescence wavelengths of 1-3 reproduced the experimental data. The potential energy curves of the S0 and S1 states were built and the ESIPT processes were clarified. Our results showed that the intramolecular H-bonds of 3 and 2 in the S1 state were the strongest and the weakest, respectively, and then the ESIPT potential barriers of 3 and 2 were the lowest and highest, respectively. Among the three phenol-thiazole type probes, the compound 2 with phenyl ring group at the 4 position of the thiazole ring had the larger π-conjugation, and had the higher ESIPT potential barrier at the same time. The corresponding compound 1 and 3 with CH2Cl and CH2OH had the lower ESIPT barrier.
Collapse
|
13
|
Joshi HC, Antonov L. Excited-State Intramolecular Proton Transfer: A Short Introductory Review. Molecules 2021; 26:molecules26051475. [PMID: 33803102 PMCID: PMC7963178 DOI: 10.3390/molecules26051475] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/03/2022] Open
Abstract
In this short review, we attempt to unfold various aspects of excited-state intramolecular proton transfer (ESIPT) from the studies that are available up to date. Since Weller’s discovery of ESIPT in salicylic acid (SA) and its derivative methyl salicylate (MS), numerous studies have emerged on the topic and it has become an attractive field of research because of its manifold applications. Here, we discuss some critical aspects of ESIPT and tautomerization from the mechanistic viewpoint. We address excitation wavelength dependence, anti-Kasha ESIPT, fast and slow ESIPT, reversibility and irreversibility of ESIPT, hydrogen bonding and geometrical factors, excited-state double proton transfer (ESDPT), concerted and stepwise ESDPT.
Collapse
Affiliation(s)
- Hem C. Joshi
- Institute for Plasma Research, Bhat, Gandhinagar 382428, India;
| | - Liudmil Antonov
- Institute of Electronics, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria
- Correspondence:
| |
Collapse
|
14
|
Adhikari M, Joshi NK, Joshi HC, Mehata MS, Mishra H, Pant S. Revisiting the photochemistry 2,5‐dihydroxy benzoic acid (gentisic acid): Solvent and pH effect. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Meena Adhikari
- Photophysics Laboratory, Department of Physics, DSB Campus Kumaun University Nainital India
| | - Neeraj K. Joshi
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa Ontario Canada
| | - Hem C. Joshi
- Laser Diagnostics Division Institute for Plasma Research Gandhinagar India
| | - Mohan S. Mehata
- Laser Spectroscopy Laboratory, Department of Applied Physics Delhi Technical University Delhi India
| | - Hirdyesh Mishra
- Department of Physics, Mahila Maha Vidhyalaya Banaras Hindu University Varanasi India
| | - Sanjay Pant
- Photophysics Laboratory, Department of Physics, DSB Campus Kumaun University Nainital India
| |
Collapse
|
15
|
Kappelt A, Giese M. Photo-switchable Fluorescence in Hydrogen-Bonded Liquid Crystals. Chemistry 2020; 26:13347-13351. [PMID: 32428261 PMCID: PMC7693191 DOI: 10.1002/chem.202001696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 11/05/2022]
Abstract
A series of hydrogen-bonded liquid crystals showing switchable fluorescence is reported. The fluorescence behavior results from the unique combination of hydrogen bonding, liquid crystallinity, and photobasicity. Thus, the molecular mobility in the mesophase is essential for the reversible photo-initiated proton transfer switching on the fluorescence of the assemblies. The application potential of the materials for photo-patterning was demonstrated.
Collapse
Affiliation(s)
- Alexander Kappelt
- Organic Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| | - Michael Giese
- Organic Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| |
Collapse
|
16
|
Blodgett KN, Fischer JL, Zwier TS, Sibert EL. The missing NH stretch fundamental in S 1 methyl anthranilate: IR-UV double resonance experiments and local mode theory. Phys Chem Chem Phys 2020; 22:14077-14087. [PMID: 32568351 DOI: 10.1039/d0cp01916j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The infrared spectra of jet-cooled methyl anthranilate (MA) and the MA-H2O complex are reported in both S0 and S1 states, recorded using fluorescence-dip infrared (FDIR) spectroscopy under jet-cooled conditions. Using a combination of local mode CH stretch modeling and scaled harmonic vibrational character, a near-complete assignment of the infrared spectra is possible over the 1400-3700 cm-1 region. While the NH stretch fundamentals are easily observed in the S0 spectrum, in the S1 state, the hydrogen bonded NH stretch shift is not readily apparent. Scaled harmonic calculations predict this fundamental at just below 2900 cm-1 with an intensity around 400 km mol-1. However, the experimental spectrum shows no evidence of this transition. A local mode theory is developed in which the NH stretch vibration is treated adiabatically. Minimizing the energy of the corresponding stretch state with one quantum of excitation leads to a dislocation of the H atom where there is equal sharing between N and O atoms. The sharing occurs as a result of significant molecular arrangement due to strong coupling of this NH stretch to other internal degrees of freedom and in particular to the contiguous HNC bend. A two-dimensional model of the coupling between the NH stretch and this bend highlights important nonlinear effects that are not captured by low order vibrational perturbation theory. In particular, the model predicts a dramatic dilution of the NH stretch oscillator strength over many transitions spread over more than 1000 cm-1, making it difficult to observe experimentally.
Collapse
Affiliation(s)
- Karl N Blodgett
- Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA.
| | | | | | | |
Collapse
|
17
|
Morawski OW, Kielesiński Ł, Gryko DT, Sobolewski AL. Highly Polarized Coumarin Derivatives Revisited: Solvent-Controlled Competition Between Proton-Coupled Electron Transfer and Twisted Intramolecular Charge Transfer. Chemistry 2020; 26:7281-7291. [PMID: 32212353 DOI: 10.1002/chem.202001079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/24/2020] [Indexed: 11/08/2022]
Abstract
Linking a polarized coumarin unit with an aromatic substituent via an amide bridge results in weak electronic coupling that affects the intramolecular electron-transfer (ET) process. As a result of this, interesting solvent-dependent photophysical properties can be observed. In polar solvents, electron transfer in coumarin derivatives of this type induces a mutual twist of the electron-donating and -accepting molecular units (TICT process) that facilitates radiationless decay processes (internal conversion). In the dyad with the strongest intramolecular hydrogen bond, the planar form is stabilized, such that twisting can only occur in highly polar solvents, whereas a fast proton-coupled electron-transfer (PCET process) occurs in nonpolar n-alkanes. The kPCET rate constant decreases linearly with the energy of the fluorescence maximum in different solvents. This observation can be explained in terms of competition between electron- and proton-transfer from a highly polarized (ca. 15 D) and fluorescent locally excited (1 LE) state to a much less polarized (ca. 4 D) charge-transfer (1 CT) state, a unique occurrence. Photophysical measurements performed for a family of related coumarin dyads, together with results of quantum-chemical computations, give insight into the mechanism of the ET process, which is followed by either a TICT or a PCET process. Our results reveal that dielectric solvation of the excited state slows down the PCET process, even in nonpolar solvents.
Collapse
Affiliation(s)
- Olaf W Morawski
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668, Warsaw, Poland
| | - Łukasz Kielesiński
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668, Warsaw, Poland.,Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Andrzej L Sobolewski
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668, Warsaw, Poland
| |
Collapse
|
18
|
Su S, Fang H. Theoretical investigation on the ESIPT mechanism and fluorescent sensing mechanism of 2-(2'-hydroxyphenyl) thiazole-4-carboxaldeyde in methanol. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 233:118214. [PMID: 32151989 DOI: 10.1016/j.saa.2020.118214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/26/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
2-(2'-Hydroxyphenyl) thiazole-4-carboxaldeyde (aldehyde 1) and hemiacetal 2 were selected to study the mechanism of excited-state intramolecular proton transfer and the detecting of Al3+ ion in methanol by using density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. Our theoretical results are in good agreement with the experimental values. The intramolecular H-bond is enhanced in the first excited-state based on the analyses of structural parameters, frontier molecular orbitals and electronic spectra. The stronger intramolecular H-bond is more favorable for ESIPT process. In order to further demonstrate the proton transfer process, we constructed the potential energy curves of probe 1 and 2 in both ground- and excited-states, and concluded that proton transfer processes in probe 1 and 2 are apt to happen in the S1 state. In addition, the Mayer bond order, energy gap and absorption and fluorescence spectra were applied to interpret the process of detection of Al3+ ion.
Collapse
Affiliation(s)
- Shenyang Su
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Hua Fang
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
19
|
Ni M, Su S, Fang H. Substituent control of photophysical properties for excited-state intramolecular proton transfer (ESIPT) of o-LHBDI derivatives: a TD-DFT investigation. J Mol Model 2020; 26:108. [PMID: 32328800 DOI: 10.1007/s00894-020-04378-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/07/2020] [Indexed: 11/24/2022]
Abstract
The substituted effect on excited-state intramolecular proton transfer (ESIPT) of o-LHBDI derivatives (4R-o-LHBDI) was investigated by DFT and TD-DFT methods. The structures of 4R-o-LHBDI (R: OH, NH2, CN, NO2, CF3) were fully optimized, and the H-bond distances, bond angles, and infrared spectra of the atoms involved in PT process in the S0 and S1 states were analyzed. The absorption and fluorescence spectra were calculated, and the potential energy curves in both S0 and S1 states were constructed. Moreover, the effects of different substituents on the ESIPT mechanism of 4R-o-LHBDI (R: OH, NH2, CN, NO2, CF3) were studied. The results indicate that ESIPT in the 4R-o-LHBDI is a little harder to proceed than that in o-LHBDI since the ESIPT barrier of 4R-o-LHBDI is slightly bigger than that value of o-LHBDI. When the substituent has stronger electron-withdrawing ability or weaker electron-donating ability, the ESIPT process has the smaller potential barrier. Graphical abstract.
Collapse
Affiliation(s)
- Mei Ni
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Shenyang Su
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Hua Fang
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
20
|
Zhong Y, Chen Y, Feng X, Sun Y, Cui S, Li X, Jin X, Zhao G. Hydrogen-bond facilitated intramolecular proton transfer in excited state and fluorescence quenching mechanism of flavonoid compounds in aqueous solution. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112562] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Li C, Hu B, Liu Y. Unraveling the effect of two different polar solvents on the excited-state intramolecular proton transfer of 4'-methoxy-3-hydroxyflavone fluorescent dye. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 225:117487. [PMID: 31476648 DOI: 10.1016/j.saa.2019.117487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/15/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
The fluorescence properties of 4'-methoxy-3-hydroxyflavone (M3HF) dye in different solvents were investigated through experimental (Phys. Chem. Chem. Phys., 2018, 20, 7885) and theoretical (Org. Chem. Front., 2019, 6, 218) methods. However, the intermolecular hydrogen bonds between M3HF and solvents were ignored. In this work, we investigated the effect of methanol (MeOH) and N,N-dimethylformamide (DMF) solvents on the excited-state intramolecular proton transfer (ESIPT) of M3HF fluorescent dye. In excited state (S1), the intramolecular hydrogen bonds are significantly strengthened, which can facilitate the ESIPT processes. The calculated absorption and fluorescence spectra agree well with the experimental date. The fluorescence spectra of M3HF and ESIPT tautomers (T⁎) were found to be sensitive to the solvent polarity. Upon photo-excitation, the electron density of the M3HF molecular is redistributed, which can provide driving force for the ESIPT. The polar solvents MeOH (hydrogen bond donor) and DMF (hydrogen bond acceptor) can form different types of intermolecular hydrogen bonds with M3HF. The two different bonding modes of intermolecular hydrogen bonds are expected to weaken the intramolecular hydrogen bond of M3HF to varying degrees. The analysis of the potential energy curves indicate that the ESIPT processes of M3HF can be hindered by the intermolecular hydrogen bonds. The intermolecular hydrogen bond of M3HF-DMF complex is weaker than that of M3HF-MeOH complex, while the potential barrier of the ESIPT process in DMF solvent is higher than that of in the MeOH solvent. This is principally because, in DMF solvent, the hydroxyl group H1 atom of M3HF can be captured by the O3 atom of DMF and form O3H1 bond with O3 atom in the intermediate process of ESIPT. There appears an energy barrier hopping point on the potential energy curve of M3HF in DMF solvent but does not appear in MeOH solvent.
Collapse
Affiliation(s)
- Chaozheng Li
- School of Mechanical and Electrical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Bo Hu
- School of Mechanical and Electrical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yufang Liu
- College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
22
|
Barboza CA, Gawrys P, Banasiewicz M, Suwinska K, Sobolewski AL. Photophysical transformations induced by chemical substitution to salicylaldimines. Phys Chem Chem Phys 2020; 22:6698-6705. [DOI: 10.1039/d0cp00110d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The role of electron-acceptor strength and microenvironment polarity on the photophysical properties of salicylaldimines.
Collapse
Affiliation(s)
| | - Pawel Gawrys
- Physics Institute
- Polish Academy of Sciences
- Warsaw
- Poland
| | | | - Kinga Suwinska
- Faculty of Mathematics and Natural Sciences
- Cardinal Stefan Wyszynski University in Warsaw
- Warsaw
- Poland
| | | |
Collapse
|
23
|
Karimova NV, Luo M, Grassian VH, Gerber RB. Absorption spectra of benzoic acid in water at different pH and in the presence of salts: insights from the integration of experimental data and theoretical cluster models. Phys Chem Chem Phys 2020; 22:5046-5056. [PMID: 32077456 DOI: 10.1039/c9cp06728k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The absorption spectra of molecular organic chromophores in aqueous media are of considerable importance in environmental chemistry. In this work, the UV-vis spectra of benzoic acid (BA), the simplest aromatic carboxylic acid, in aqueous solutions at varying pH and in the presence of salts are measured experimentally. The solutions of different pH provide insights into the contributions from both the non-dissociated acid molecule and the deprotonated anionic species. The microscopic interpretation of these spectra is then provided by quantum chemical calculations for small cluster models of benzoic species (benzoic acid and benzoate anion) with water molecules. Calculations of the UV-vis absorbance spectra are then carried out for different clusters such as C6H5COOH·(H2O)n and C6H5COO-·(H2O)n, where n = 0-8. The following main conclusions from these calculations and the comparison to experimental results can be made: (i) the small water cluster yields good quantitative agreement with observed solution experiments; (ii) the main peak position is found to be very similar at different levels of theory and is in excellent agreement with the experimental value, however, a weaker feature about 1 eV to lower energy (red shift) of the main peak is correctly reproduced only by using high level of theory, such as Algebraic Diagrammatic Construction (ADC); (iii) dissociation of the BA into ions is found to occur with a minimum of water molecules of n = 8; (iv) the deprotonation of BA has an influence on the computed spectrum and the energetics of the lowest energy electronic transitions; (v) the effect of the water on the spectra is much larger for the deprotonated species than for the non-dissociated acid. It was found that to reproduce experimental spectrum at pH 8.0, additional continuum representation for the extended solvent environment must be included in combination with explicit solvent molecules (n ≥ 3); (vi) salts (NaCl and CaCl2) have minimal effect on the absorption spectrum and; (vii) experimental results showed that B-band of neutral BA is not sensitive to the solvent effects whereas the effect of the water on the C-band is significant. The water effects blue-shift this band up to ∼0.2 eV. Overall, the results demonstrate the ability to further our understanding of the microscopic interpretation of the electronic structure and absorption spectra of BA in aqueous media through calculations restricted to small cluster models.
Collapse
Affiliation(s)
- Natalia V Karimova
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| | - Man Luo
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA and Department of Nanoengineering and Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA
| | - R Benny Gerber
- Department of Chemistry, University of California, Irvine, CA 92697, USA and Institute of Chemistry and Fritz Haber Research Center, Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
24
|
Huang F, An B, Jiang Y, Dun S, Zhang J, Guo X. Theoretical investigation of excited-state proton transfer (ESPT) for 2,5-bis(2-benzothiazolyl)hydroquinone: single or double? Mol Phys 2019. [DOI: 10.1080/00268976.2019.1705413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Fuhua Huang
- Institute of Upconversion Nanoscale Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloy, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, People’s Republic of China
| | - Beibei An
- Institute of Upconversion Nanoscale Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloy, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, People’s Republic of China
| | - Yumiao Jiang
- Institute of Upconversion Nanoscale Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloy, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, People’s Republic of China
| | - Shuopan Dun
- Institute of Upconversion Nanoscale Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloy, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, People’s Republic of China
| | - Jinglai Zhang
- Institute of Upconversion Nanoscale Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloy, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, People’s Republic of China
| | - Xugeng Guo
- Institute of Upconversion Nanoscale Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloy, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, People’s Republic of China
| |
Collapse
|
25
|
Blodgett KN, Sun D, Fischer JL, Sibert EL, Zwier TS. Vibronic spectroscopy of methyl anthranilate and its water complex: hydrogen atom dislocation in the excited state. Phys Chem Chem Phys 2019; 21:21355-21369. [PMID: 31531502 DOI: 10.1039/c9cp04556b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Laser-induced fluorescence (LIF) excitation, dispersed fluorescence (DFL), UV-UV-hole burning, and UV-depletion spectra have been collected on methyl anthranilate (MA, methyl 2-aminobenzoate) and its water-containing complex (MA-H2O), under jet-cooled conditions in the gas phase. As a close structural analog of a sunscreen agent, MA has a strong absorption due to the S0-S1 transition that begins in the UV-A region, with the electronic origin at 28 852 cm-1 (346.6 nm). Unlike most sunscreens that have fast non-radiative pathways back to the ground state, MA fluoresces efficiently, with an excited state lifetime of 27 ns. Relative to methyl benzoate, inter-system crossing to the triplet manifold is shut off in MA by the strong intramolecular NHO[double bond, length as m-dash]C H-bond, which shifts the 3nπ* state well above the 1ππ* S1 state. Single vibronic level DFL spectra are used to obtain a near-complete assignment of the vibronic structure in the excited state. Much of the vibrational structure in the excitation spectrum is Franck-Condon activity due to three in-plane vibrations that modulate the distance between the NH2 and CO2Me groups, ν33 (421 cm-1), ν34 (366 cm-1), and ν36 (179 cm-1). Based on the close correspondence between experiment and theory at the TD-DFT B3LYP-D3BJ/def2TZVP level of theory, the major structural changes associated with electronic excitation are evaluated, leading to the conclusion that the major motion is a reorientation and constriction of the 6-membered H-bonded ring closed by the intramolecular NHO[double bond, length as m-dash]C H-bond. This leads to a shortening of the NHO[double bond, length as m-dash]C H-bond distance from 1.926 Å to 1.723 Å, equivalent to about a 25% reduction in the HO distance compared to full H-atom transfer. As a result, the excited state process near the S1 origin is a hydrogen atom dislocation that is brought about primarily by heavy atom motion, since the shortened H-bond distance results from extensive heavy-atom motion, with only a 0.03 Å increase in the NH bond length relative to its ground state value.
Collapse
Affiliation(s)
- Karl N Blodgett
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| | - Dewei Sun
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| | - Joshua L Fischer
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| | - Edwin L Sibert
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Timothy S Zwier
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| |
Collapse
|
26
|
Mohan M, Satyanarayan M, Trivedi DR. Exploring the possibilities of double proton transfer in hydrazides: A theoretical approach. J PHYS ORG CHEM 2019. [DOI: 10.1002/poc.4003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Makesh Mohan
- Optoelectronics Laboratory, Department of PhysicsNational Institute of Technology Karnataka (NITK) Surathkal Mangalore India
| | - M.N. Satyanarayan
- Optoelectronics Laboratory, Department of PhysicsNational Institute of Technology Karnataka (NITK) Surathkal Mangalore India
| | - Darshak R. Trivedi
- Supramolecular Chemistry Laboratory, Department of ChemistryNational Institute of Technology Karnataka (NITK) Surathkal Mangalore India
| |
Collapse
|
27
|
Xia SH, Che M, Liu Y, Zhang Y, Cui G. Photochemical mechanism of 1,5-benzodiazepin-2-one: electronic structure calculations and nonadiabatic surface-hopping dynamics simulations. Phys Chem Chem Phys 2019; 21:10086-10094. [PMID: 31062014 DOI: 10.1039/c9cp00692c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Due to the significant applications in bioimaging, sensing, optoelectronics etc., photoluminescent materials have attracted more and more attention in recent years. 1,5-Benzodiazepin-2-one and its derivatives have been used as fluorogenic probes for the detection of biothiols. However, their photochemical and photophysical properties have remained ambiguous until now. In this work, we have adopted combined static electronic structure calculations and nonadiabatic surface-hopping dynamics simulations to study the photochemical mechanism of 1,5-benzodiazepin-2-one. Firstly, we optimized minima and conical intersections in S0 and S1 states; then, we proposed three nonadiabatic decay pathways that efficiently populate the ground state from the Franck-Condon region based on computed electronic structure information and dynamics simulations. In the first pathway, upon photoexcitation to the S1 state, the system proceeds with an ultrafast excited-state intramolecular proton transfer (ESIPT) process. Then, the molecule tends to rotate around the C-C bond until it encounters keto conical intersections, from which the system can easily decay to the ground state. The other two pathways involve the enol channels in which the S1 system hops to the ground state via two enol S1/S0 conical intersections, respectively. These three energetically allowed S1 excited-state deactivation pathways are responsible for the decrease of fluorescence quantum yield. The present work will provide detailed mechanistic information of similar systems.
Collapse
Affiliation(s)
- Shu-Hua Xia
- Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing 100081, China.
| | | | | | | | | |
Collapse
|
28
|
Roohi H, Alizadeh P. Fine-tuned dual fluorescence behavior of N-substituted aniline-imidazopyridine based switches: Mechanistic understanding, substituent and solvent effects. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 214:407-428. [PMID: 30802798 DOI: 10.1016/j.saa.2019.02.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/24/2018] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
In order to understand the fine-tuned photo-physical behaviors of the N(X)-H⋯N systems, the excited state intramolecular proton transfer (ESIPT) switching in the N-substituted X1-5-NHIPA molecules (NHIPA = 2-(imidazo[1,2-a]pyridin-2-yl)aniline and X = H, COCH3, CH3C6H4SO2, C6F5SO2, and COCF3) were investigated in detail in gas phase and three solvent media at TD-PBE0/6-311++G(d,p) and TD-M06-2X/6-311++G(d,p) levels of theory. ESIPT reactions at S1 state were approximately without energy barrier, exergonic processes and were quantitatively demonstrated to be mainly sensitive to substituents and solvent media. The X-NHIPA (X = CH3C6H4SO2, C6F5SO2 and CF3CO) compounds were predicted to undergo fast, irreversible proton transfer at S1 state and, in turn, exhibit tautomer emission with anomalous large Stokes shift in the gas phase. In the toluene solvent, except for C6F5SO2-NHIPA that showed exclusively a tautomer emission with a long wavelength, all other X-NHIPA molecules were predicted to involve in the reversible ESIPT and hence exhibit a dual normal and tautomer emissions behavior, in good agreement with the experimental observations. In polar solvents, it is expected that all compounds show dual normal and tautomer emissions. The nearly equal intensities of the normal and tautomer emissions can lead to the generation of the white lights with the potential in lighting applications.
Collapse
Affiliation(s)
- Hossein Roohi
- Computational Quantum Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran.
| | - Parvaneh Alizadeh
- Computational Quantum Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| |
Collapse
|
29
|
Liu LY, Wu SS, Yu J, Chai S, Cong SL. Theoretical insights into excited-state intramolecular and multiple intermolecular hydrogen bonds in 2-(2-Hydroxy-phenyl)-4(3H)-quinazolinone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 207:61-67. [PMID: 30195187 DOI: 10.1016/j.saa.2018.08.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/12/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
The photophysical properties and photochemistry reactions of 2-(2-Hydroxy-phenyl)-4(3H)-quinazolinone (HPQ) system in different solutions are studied by using density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. Our theoretical investigation explores that an ultrafast barrier-free excited state intramolecular proton transfer (ESIPT) process occurs and the configuration twisting is found in the electronic excited state. In the polar protic methanol solution, the hydrogen-bonded complex composed by HPQ and two methanol molecules (HPQ-2M) could exist stably in the ground state. Upon photoexcitation the isolated HPQ is initially excited to the first excited state, while the HPQ-2M system is firstly excited to the S3 state and undergoes internal conversion (IC) to the S1 state. The intermolecular hydrogen bonds are strengthened in the excited state. The simulated electronic spectra agree well with the experimental results. The strengthening of the intermolecular hydrogen bonds is also confirmed by the calculated vibrational spectra. In addition, the intramolecular charge transfer happens in both HPQ and HPQ-2M systems from the frontier molecular orbital analysis.
Collapse
Affiliation(s)
- Li-Yan Liu
- School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Shuai-Shuai Wu
- School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Jie Yu
- School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Shuo Chai
- School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China; State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China.
| | - Shu-Lin Cong
- School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China
| |
Collapse
|
30
|
Crespo-Otero R, Li Q, Blancafort L. Exploring Potential Energy Surfaces for Aggregation-Induced Emission-From Solution to Crystal. Chem Asian J 2019; 14:700-714. [PMID: 30548109 DOI: 10.1002/asia.201801649] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/07/2018] [Indexed: 11/12/2022]
Abstract
Aggregation-induced emission (AIE) is a phenomenon where non-luminescent compounds in solution become strongly luminescent in aggregate and solid phase. It provides a fertile ground for luminescent applications that has rapidly developed in the last 15 years. In this review, we focus on the contributions of theory and computations to understanding the molecular mechanism behind it. Starting from initial models, such as restriction of intramolecular rotations (RIR), and the calculation of non-radiative rates with Fermi's golden rule (FGR), we center on studies of the global excited-state potential energy surfaces that have provided the basis for the restricted access to a conical intersection (RACI) model. In this model, which has been shown to apply for a diverse group of AIEgens, the lack of fluorescence in solution comes from radiationless decay at a CI in solution that is hindered in the aggregate state. We also highlight how intermolecular interactions modulate the photophysics in the aggregate phase, in terms of fluorescence quantum yield and emission color.
Collapse
Affiliation(s)
- Rachel Crespo-Otero
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom
| | - Quansong Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, South Zhongguancun Street 5, 100081, Beijing, China
| | - Lluís Blancafort
- Institut de Química Computacional i Catàlisi (IQCC) i Departament de Química, Facultat de Ciències, Universitat de Girona, C/M. A. Capmany 69, 17003, Girona, Spain
| |
Collapse
|
31
|
Excited states dissociation dynamics of indole-x-carboxaldehyde (x = 4, 5, 6, 7): Theoretical and experimental study. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Wen K, Guo X, Zhang J. Computational prediction on photophysical properties of two excited state intramolecular proton transfer (ESIPT) fluorophores bearing the benzothiazole group. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1542169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Keke Wen
- Department of Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, People’s Republic of China
| | - Xugeng Guo
- Department of Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, People’s Republic of China
| | - Jinglai Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, People’s Republic of China
| |
Collapse
|
33
|
Dyakov YA, Toliautas S, Trakhtenberg LI, Valkunas L. Excited state photodissociation dynamics of 2-, 3-, 4-hydroxyacetophenone: Theoretical study. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Zhao L, Liu J, Zhou P. The photoinduced isomerization mechanism of the 2-(1-(methylimino)methyl)-6-chlorophenol (SMAC): Nonadiabatic surface hopping dynamics simulations. J Chem Phys 2018; 149:034309. [PMID: 30037240 DOI: 10.1063/1.5034379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The photophysical properties of the Schiff base family are crucial for their applications such as molecular switches and molecular memories. However, it was found that the photophysical behavior is not uniform for all Schiff base molecules, which shows a significant substituent dependent property. In this article, we studied the photoisomerization mechanism of one Schiff base chlorosubstituted derivative 2-(1-(methylimino)methyl)-6-chlorophenol by employing geometrical optimization, energy profiles scanning, and on-the-fly dynamical simulations. Three types of minimum energy conical intersections were located on the S1/S0 crossing seam, with two characterized by twisting motion of the C=N bond and one featured with the excited state intramolecular proton transfer process and then twisting motion around the C=C bond [excited-state intramolecular proton transfer process (ESIPT)-then-twisting]. By a combination of the dynamics simulation results with the energy profiles scanned along with the ESIPT coordinate, it was found that the photophysical property of the targeted molecule is different from that of most Schiff base members, which prefer to decay by a twisting motion around the C=N bridge bond rather than the ESIPT-then-twisting channel. The minor ESIPT channel is probably governed by a tunneling mechanism. The proposed deactivation mechanism can provide a reasonable explanation for the observations in the experiment and would provide fundamental indications for further design of new and efficient photochromic products.
Collapse
Affiliation(s)
- Li Zhao
- School of Science, China University of Petroleum, Qingdao 266580, Shandong, China
| | - Jianyong Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Panwang Zhou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
35
|
Choi E, Lee CH, Jun B, Nam EB, Jeong H, Lee SU. Efficiency Tuning of UVA/UVB Absorbance through Control over the Intramolecular Hydrogen Bonding of Triazine Derivatives. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Eunyoung Choi
- Department of Bionano Technology; Hanyang University; Ansan 15588 South Korea
| | - Chi Ho Lee
- Department of Bionano Technology; Hanyang University; Ansan 15588 South Korea
| | - Byeongsun Jun
- Department of Bionano Technology; Hanyang University; Ansan 15588 South Korea
| | - Eun Bi Nam
- Department of Bionano Technology; Hanyang University; Ansan 15588 South Korea
| | - Hoejoong Jeong
- Department of Bionano Technology; Hanyang University; Ansan 15588 South Korea
| | - Sang Uck Lee
- Department of Bionano Technology; Hanyang University; Ansan 15588 South Korea
- Department of Chemical and Molecular Engineering; Hanyang University; Ansan 15588 South Korea
| |
Collapse
|
36
|
Iravani M, Omidyan R. Photochromism of 2-(2-Hydroxyphenyl) Benzothiazole (HBT) and Its Derivatives: A Theoretical Study. J Phys Chem A 2018. [PMID: 29522339 DOI: 10.1021/acs.jpca.8b00266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydroxyphenyl benzothiazole (HBT), is a well-known organic system based on its special characteristic of the excited state hydrogen transfer (ESHT) following photoexcitation. However, the capability of this system regarding photochromism and photoswitching has not been addressed yet. In this study, we have investigated this issue by the aim of the MP2, CC2, ADC(2), and CASSCF theoretical methods. Also, we have considered several electron withdrawing groups and investigated their effects on the photophysical characteristics and spectroscopic properties of the enol and keto tautomers of the titled system. It has been predicted that the main HBT and its considered substitutions fulfill the essential characteristics required for photochromism. Also, substitution is an effective idea for tuning the photophysical nature of HBT and its similar systems. Our theoretical results verify that different substitutions alter the UV absorption of HBT systems from 330 to 351 nm and also the corresponding absorption wavelength of the γ-forms of 526-545 nm.
Collapse
Affiliation(s)
- Maryam Iravani
- Department of Chemistry , University of Isfahan , 81746-73441 Isfahan , Iran
| | - Reza Omidyan
- Department of Chemistry , University of Isfahan , 81746-73441 Isfahan , Iran
| |
Collapse
|
37
|
Yuan H, Feng S, Wen K, Guo X, Zhang J. The excited-state intramolecular proton transfer in NH-type dye molecules with a seven-membered-ring intramolecular hydrogen bond: A theoretical insight. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 191:421-426. [PMID: 29069638 DOI: 10.1016/j.saa.2017.10.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/09/2017] [Accepted: 10/15/2017] [Indexed: 06/07/2023]
Abstract
Excited-state intramolecular proton transfer (ESIPT) reactions of a series of N(R)H⋯N-type seven-membered-ring hydrogen-bonding compounds were explored by employing density functional theory/time-dependent density functional theory calculations with the PBE0 functional. Our results indicate that the absorption and emission spectra predicted theoretically match very well the experimental findings. Additionally, as the electron-withdrawing strength of R increases, the intramolecular H-bond of the NS1 form gradually enhances, and the forward energy barrier along the ESIPT reaction gradually decreases. For compound 4, its ESIPT reaction is found to be a barrierless process due to the involvement of a strong electron-withdrawing COCF3 group. It is therefore a reasonable presumption that the ESIPT efficiency of these N(R)H⋯N-type seven-membered-ring H-bonding systems can be improved when a strong electron-withdrawing group in R is introduced.
Collapse
Affiliation(s)
- Huijuan Yuan
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, PR China
| | - Songyan Feng
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, PR China
| | - Keke Wen
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, PR China
| | - Xugeng Guo
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, PR China.
| | - Jinglai Zhang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, PR China.
| |
Collapse
|
38
|
Chaiwongwattana S, Škalamera Đ, Došlić N, Bohne C, Basarić N. Substitution pattern on anthrol carbaldehydes: excited state intramolecular proton transfer (ESIPT) with a lack of phototautomer fluorescence. Phys Chem Chem Phys 2018; 19:28439-28449. [PMID: 29039432 DOI: 10.1039/c7cp05472f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photophysical properties and excited state intramolecular proton transfer (ESIPT) reactivity for anthrol carbaldehydes 1-5 have been investigated computationally and experimentally by steady-state and time-resolved fluorescence and laser flash photolysis (LFP). 1,2-Disubstituted anthrol carbaldehydes 1 and 2 are not ESIPT reactive, contrary to naphthol analogues. The main deactivation channels from S1 for 1 and 2 are fluorescence (ΦF = 0.1-0.2) and intersystem crossing (ISC) to almost isoenergetic T2 states. The triplet states from 1 and 2 were detected by LFP (in N2-purged CH3CN, τ = 15 ± 2 μs for 1, and τ = 5.5 ± 0.1 μs for 2). In contrast, 2,3-disubstituted anthrols 3-5 undergo efficient barrierless ultrafast ESIPT. However, the typical dual emission from locally excited states and ESIPT tautomers were not observed since ESIPT proceeds via a conical intersection with S0 delivering the keto-tautomer in the hot ground state. Therefore, anthrols 3-5 are about ten times less fluorescent compared to 1 and 2, and the emission for 3-5 originates from less-populated conformers that cannot undergo ESIPT. Keto-tautomers for 3-5 were detected in CH3CN by LFP (λmax = 370 nm, τ = 30-40 ns). The difference in ESIPT reactivity for 1-3 was fully disclosed by calculations at ADC(2)/aug-cc-pVDZ level of theory, and particularly, by calculation of charge redistribution upon excitation to S1. Only 2,3-disubstituted anthrols exhibit polarization in S1 that increases the electron density on the carbonyl and decreases this density on the phenolic OH, setting the stage for ultrafast ESIPT.
Collapse
Affiliation(s)
- S Chaiwongwattana
- Institute of Science, Suranaree University of Technology, 30000 Nakhon Ratchasima, Thailand
| | | | | | | | | |
Collapse
|
39
|
Rodrigues N, Cole-Filipiak N, Horbury M, Staniforth M, Karsili T, Peperstraete Y, Stavros V. Photophysics of the sunscreen ingredient menthyl anthranilate and its precursor methyl anthranilate: A bottom-up approach to photoprotection. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.11.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
Yuan H, Feng S, Wen K, Zhu Q, An B, Guo X, Zhang J. A quantum-chemical insight into the tunable fluorescence color and distinct photoisomerization mechanisms between a novel ESIPT fluorophore and its protonated form. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 183:123-130. [PMID: 28441539 DOI: 10.1016/j.saa.2017.04.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/08/2017] [Accepted: 04/16/2017] [Indexed: 06/07/2023]
Abstract
Enol-keto proton tautomerization and cis-trans isomerization reactions of a novel excited-state intramolecular proton transfer (ESIPT) fluorophore of BTImP and its protonated form (BTImP+) were explored using density functional theory/time-dependent density functional theory (DFT/TD-DFT) computational methods with a B3LYP hybrid functional and the 6-31+G(d,p) basis set. In addition, the absorption and fluorescence spectra were calculated at the TD-B3LYP/6-31+G(d,p) level of theory. Our results reveal that both BTImP and BTImP+ can undergo an ultrafast ESIPT reaction, giving rise to the single fluorescence emission with different fluorescence colors, which are nicely consistent with the experimental findings. Calculations also show that following the ultrafast ESIPT, BTImP and BTImP+ can experience the distinctly different cis-trans isomerization processes. The intersystem crossing between the first excited singlet S1 state and triplet T1 state is found to play an important role in the photoisomerization process of BTImP+. In addition, the energy barrier of the trans-keto→cis-keto isomerization in the ground state of BTImP+ is calculated to be 10.49kcalmol-1, which implies that there may exist a long-lived trans-keto species in the ground state for BTImP+.
Collapse
Affiliation(s)
- Huijuan Yuan
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Songyan Feng
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Keke Wen
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Qiuling Zhu
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Beibei An
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Xugeng Guo
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China.
| | - Jinglai Zhang
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China.
| |
Collapse
|
41
|
Chansen W, Salaeh R, Prommin C, Kerdpol K, Daengngern R, Kungwan N. Theoretical study on influence of geometry controlling over the excited-state intramolecular proton transfer of 10-hydroxybenzo[ h ]quinoline and its derivatives. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
42
|
Omidyan R, Amanollahi Z, Azimi G. Protonated serotonin: Geometry, electronic structures and photophysical properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 182:8-16. [PMID: 28388475 DOI: 10.1016/j.saa.2017.03.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/25/2017] [Accepted: 03/30/2017] [Indexed: 06/07/2023]
Abstract
The geometry and electronic structures of protonated serotonin have been investigated by the aim of MP2 and CC2 methods. The relative stabilities, transition energies and geometry of sixteen different protonated isomers of serotonin have been presented. It has been predicted that protonation does not exhibit essential alteration on the S1←S0 electronic transition energy of serotonin. Instead, more complicated photophysical nature in respect to its neutral analogue is suggested for protonated system owing to radiative and non-radiative deactivation pathways. In addition to hydrogen detachment (HD), hydrogen/proton transfer (H/PT) processes from ammonium to indole ring along the NH+⋯π hydrogen bond have been predicted as the most important photophysical consequences of SERH+ at S1 excited state. The PT processes is suggested to be responsible for fluorescence of SERH+ while the HD driving coordinate is proposed for elucidation of its nonradiative deactivation mechanism.
Collapse
Affiliation(s)
- Reza Omidyan
- Department of Chemistry, University of Isfahan, 81746-73441, Isfahan, Iran.
| | - Zohreh Amanollahi
- Department of Chemistry, University of Isfahan, 81746-73441, Isfahan, Iran
| | - Gholamhassan Azimi
- Department of Chemistry, University of Isfahan, 81746-73441, Isfahan, Iran
| |
Collapse
|
43
|
Jankowska J, Barbatti M, Sadlej J, Sobolewski AL. Tailoring the Schiff base photoswitching – a non-adiabatic molecular dynamics study of substituent effect on excited state proton transfer. Phys Chem Chem Phys 2017; 19:5318-5325. [DOI: 10.1039/c6cp08545h] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dynamics reveals how to design chemical substitutions to control excited-state proton transfer efficiency.
Collapse
Affiliation(s)
- Joanna Jankowska
- Institute of Physics
- Polish Academy of Sciences
- 02-668 Warsaw
- Poland
- Faculty of Chemistry
| | | | - Joanna Sadlej
- Faculty of Chemistry
- University of Warsaw
- 02-093 Warsaw
- Poland
| | | |
Collapse
|
44
|
Liu X, Zhao J, Zheng Y. Insight into the excited-state double proton transfer mechanisms of doxorubicin in acetonitrile solvent. RSC Adv 2017. [DOI: 10.1039/c7ra08945g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Doxorubicin (DXR) is theoretically investigated with an aim to explore the excited-state intramolecular double proton transfer (ESIDPT) mechanism regarding stepwise versus synchronous double proton transfer.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Physics
- Shandong University
- Jinan 250100
- China
| | - Jinfeng Zhao
- School of Physics
- Shandong University
- Jinan 250100
- China
| | - Yujun Zheng
- School of Physics
- Shandong University
- Jinan 250100
- China
| |
Collapse
|
45
|
Niziński S, Wendel M, Rode MF, Prukała D, Sikorski M, Wybraniec S, Burdziński G. Photophysical properties of betaxanthins: miraxanthin V – insight into the excited-state deactivation mechanism from experiment and computations. RSC Adv 2017. [DOI: 10.1039/c6ra28110a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fast radiationless S1 → S0 transition in photo-excited betaxanthins is due to conical intersection seam between S1 and S0 surfaces.
Collapse
Affiliation(s)
- Stanisław Niziński
- Quantum Electronics Laboratory
- Faculty of Physics
- Adam Mickiewicz University in Poznań
- Poznań
- Poland
| | - Monika Wendel
- Quantum Electronics Laboratory
- Faculty of Physics
- Adam Mickiewicz University in Poznań
- Poznań
- Poland
| | - Michał F. Rode
- Institute of Physics
- Polish Academy of Sciences
- 02-668 Warsaw
- Poland
| | - Dorota Prukała
- Faculty of Chemistry
- Adam Mickiewicz University in Poznań
- 61-614 Poznań
- Poland
| | - Marek Sikorski
- Faculty of Chemistry
- Adam Mickiewicz University in Poznań
- 61-614 Poznań
- Poland
| | - Sławomir Wybraniec
- Faculty of Chemical Engineering and Technology
- Institute C-1
- Section of Analytical Chemistry
- Cracow University of Technology
- 31-155 Cracow
| | - Gotard Burdziński
- Quantum Electronics Laboratory
- Faculty of Physics
- Adam Mickiewicz University in Poznań
- Poznań
- Poland
| |
Collapse
|
46
|
Omidyan R, Iravani M. Excited-state intramolecular proton transfer and photoswitching in hydroxyphenyl-imidazopyridine derivatives: A theoretical study. J Chem Phys 2016; 145:184303. [DOI: 10.1063/1.4967199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Reza Omidyan
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Maryam Iravani
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| |
Collapse
|
47
|
Methanol-mediated excited-state double proton transfer in 1 H -pyrrolo[3,2- h ]quinoline: Concerted or Sequential Mechanism? COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Marchetti B, Karsili TNV. Theoretical insights into the photo-protective mechanisms of natural biological sunscreens: building blocks of eumelanin and pheomelanin. Phys Chem Chem Phys 2016; 18:3644-58. [PMID: 26753793 DOI: 10.1039/c5cp06767g] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Eumelanin (EM) and pheomelanin (PM) are ubiquitous in mammalian skin and hair--protecting against harmful radiation from the sun. Their primary roles are to absorb solar radiation and efficiently dissipate the excess excited state energy in the form of heat without detriment to the polymeric structure. EU and PM exist as polymeric chains consisting of exotic arrangements of functionalised heteroaromatic molecules. Here we have used state-of-the-art electronic structure calculations and on-the-fly surface hopping molecular dynamics simulations to study the intrinsic deactivation paths of various building blocks of EU and PM. Ultrafast excited state decay, via electron-driven proton transfer (in EU and PM) and proton-transfer coupled ring-opening (in PM) reactions, have been identified to proceed along hitherto unknown charge-separated states in EU and PM oligomers. These results shed light on the possible relaxation pathways that dominate the photochemistry of natural skin melanins. Extrapolation of such findings could provide a gateway into engineering more effective molecular constituents in commercial sunscreens--with reduced phototoxicity.
Collapse
Affiliation(s)
| | - Tolga N V Karsili
- Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, D85747 Garching, Germany.
| |
Collapse
|
49
|
Stasyuk AJ, Chen YT, Chen CL, Wu PJ, Chou PT. A new class of N-H excited-state intramolecular proton transfer (ESIPT) molecules bearing localized zwitterionic tautomers. Phys Chem Chem Phys 2016; 18:24428-36. [PMID: 27537476 DOI: 10.1039/c6cp05236c] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A series of new amino (NH)-type intramolecular hydrogen-bonding (H-bonding) compounds have been strategically designed and synthesized. These molecules comprise a 2-(imidazo[1,2-a]pyridin-2-yl)aniline moiety, in which one of the amino hydrogens was replaced with substituents of different electronic properties. This, together with the versatile capability for modifying the parent moiety, makes feasible comprehensive spectroscopy and dynamics studies of excited-state intramolecular proton transfer (ESIPT) as a function of N-H acidity. Different from other (NH)-type ESIPT systems where the ESIPT rate and exergonicity increase with an increase in the N-H acidity and hence the H-bonding strength, the results reveal an irregular relationship among ESIPT dynamics, thermodynamics and H-bond strength. This discrepancy may be rationalized by the localized zwitterionic nature of 2-(imidazo[1,2-a]pyridin-2-yl)aniline in the proton-transfer tautomer form, which is different from the π-delocalized tautomer form in other (NH)-type ESIPT systems.
Collapse
Affiliation(s)
- Anton J Stasyuk
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, Republic of China.
| | | | | | | | | |
Collapse
|
50
|
Stasyuk AJ, Cywiński PJ, Gryko DT. Excited-state intramolecular proton transfer in 2′-(2′-hydroxyphenyl)imidazo[1,2- a ]pyridines. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2016. [DOI: 10.1016/j.jphotochemrev.2016.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|