1
|
Spesia MB, Durantini EN. Photosensitizers combination approach to enhance photodynamic inactivation of planktonic and biofilm bacteria. Photochem Photobiol Sci 2023; 22:2433-2444. [PMID: 37490212 DOI: 10.1007/s43630-023-00461-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
To improve bacterial photodynamic inactivation (PDI), this work analyzes the photodynamic effect caused by the combination of photosensitizers (PSs) on two bacterial models and different growth mode. Simultaneous administration of PSs from different families, zinc(II) 2,9,16,23-tetrakis[4-(N-methylpyridyloxy)]phthalocyanine (ZnPPc4+), 5,10,15,20-tetra(4-N,N,N-trimethylammonium phenyl)porphyrin (TMAP4+), meso-tetrakis(9-ethyl-9-methyl-3-carbazoyl)chlorin (TEMCC4+) and 5,10,15,20-tetrakis[4-(3-N,N-dimethylaminopropoxy)phenyl] chlorin (TAPC) was investigated against Staphylococcus aureus and Escherichia coli, in planktonic form, biofilm and growth curve. Various PSs combinations showed greater inactivation compared to when used separately under the same conditions but at twice the concentration. However, differences were found in the effectiveness of the PSs combinations on Gram positive and negative bacteria, as well as in planktonic or biofilm form. Likewise, the combination of three PSs completely stopped E. coli growth under optimal nutritional conditions. PSs combination allows extending the range of light absorption by agents that absorb in different areas of the visible spectrum. Therefore, PDI with combined PSs increases its antimicrobial capacity using agents' concentrations and light fluences lower than those necessary to cause the same effect as single PS. These advances represent a starting point for future research on the potentiation of PDI promoted by the combined use of PSs.
Collapse
Affiliation(s)
- Mariana B Spesia
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina.
| | - Edgardo N Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
2
|
Li Y, Sun G, Xie J, Xiao S, Lin C. Antimicrobial photodynamic therapy against oral biofilm: influencing factors, mechanisms, and combined actions with other strategies. Front Microbiol 2023; 14:1192955. [PMID: 37362926 PMCID: PMC10288113 DOI: 10.3389/fmicb.2023.1192955] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Oral biofilms are a prominent cause of a wide variety of oral infectious diseases which are still considered as growing public health problems worldwide. Oral biofilms harbor specific virulence factors that would aggravate the infectious process and present resistance to some traditional therapies. Antimicrobial photodynamic therapy (aPDT) has been proposed as a potential approach to eliminate oral biofilms via in situ-generated reactive oxygen species. Although numerous types of research have investigated the effectiveness of aPDT, few review articles have listed the antimicrobial mechanisms of aPDT on oral biofilms and new methods to improve the efficiency of aPDT. The review aims to summarize the virulence factors of oral biofilms, the progress of aPDT in various oral biofilm elimination, the mechanism mediated by aPDT, and combinatorial approaches of aPDT with other traditional agents.
Collapse
Affiliation(s)
- Yijun Li
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Guanwen Sun
- Department of Stomatology, Fujian Medical University Xiamen Humanity Hospital, Xiamen, China
| | - Jingchan Xie
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Suli Xiao
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Chen Lin
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| |
Collapse
|
3
|
Batishchev OV, Kalutskii MA, Varlamova EA, Konstantinova AN, Makrinsky KI, Ermakov YA, Meshkov IN, Sokolov VS, Gorbunova YG. Antimicrobial activity of photosensitizers: arrangement in bacterial membrane matters. Front Mol Biosci 2023; 10:1192794. [PMID: 37255538 PMCID: PMC10226669 DOI: 10.3389/fmolb.2023.1192794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
Porphyrins are well-known photosensitizers (PSs) for antibacterial photodynamic therapy (aPDT), which is still an underestimated antibiotic-free method to kill bacteria, viruses, and fungi. In the present work, we developed a comprehensive tool for predicting the structure and assessment of the photodynamic efficacy of PS molecules for their application in aPDT. We checked it on a series of water-soluble phosphorus(V) porphyrin molecules with OH or ethoxy axial ligands and phenyl/pyridyl peripheral substituents. First, we used biophysical approaches to show the effect of PSs on membrane structure and their photodynamic activity in the lipid environment. Second, we developed a force field for studying phosphorus(V) porphyrins and performed all-atom molecular dynamics simulations of their interactions with bacterial lipid membranes. Finally, we obtained the structure-activity relationship for the antimicrobial activity of PSs and tested our predictions on two models of Gram-negative bacteria, Escherichia coli and Acinetobacter baumannii. Our approach allowed us to propose a new PS molecule, whose MIC50 values after an extremely low light dose of 5 J/cm2 (5.0 ± 0.4 μg/mL for E. coli and 4.9 ± 0.8 μg/mL for A. baumannii) exceeded those for common antibiotics, making it a prospective antimicrobial agent.
Collapse
Affiliation(s)
- Oleg V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maksim A. Kalutskii
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A. Varlamova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna N. Konstantinova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Kirill I. Makrinsky
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yury A. Ermakov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ivan N. Meshkov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Valerij S. Sokolov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yulia G. Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Gonzalez Lopez EJ, Martínez SR, Aiassa V, Santamarina SC, Domínguez RE, Durantini EN, Heredia DA. Tuning the Molecular Structure of Corroles to Enhance the Antibacterial Photosensitizing Activity. Pharmaceutics 2023; 15:pharmaceutics15020392. [PMID: 36839714 PMCID: PMC9959985 DOI: 10.3390/pharmaceutics15020392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The increase in the antibiotic resistance of bacteria is a serious threat to public health. Photodynamic inactivation (PDI) of micro-organisms is a reliable antimicrobial therapy to treat a broad spectrum of complex infections. The development of new photosensitizers with suitable properties is a key factor to consider in the optimization of this therapy. In this sense, four corroles were designed to study how the number of cationic centers can influence the efficacy of antibacterial photodynamic treatments. First, 5,10,15-Tris(pentafluorophenyl)corrole (Co) and 5,15-bis(pentafluorophenyl)-10-(4-(trifluoromethyl)phenyl)corrole (Co-CF3) were synthesized, and then derivatized by nucleophilic aromatic substitution with 2-dimethylaminoethanol and 2-(dimethylamino)ethylamine, obtaining corroles Co-3NMe2 and Co-CF3-2NMe2, respectively. The straightforward synthetic strategy gave rise to macrocycles with different numbers of tertiary amines that can acquire positive charges in an aqueous medium by protonation at physiological pH. Spectroscopic and photodynamic studies demonstrated that their properties as chromophores and photosensitizers were unaffected, regardless of the substituent groups on the periphery. All tetrapyrrolic macrocycles were able to produce reactive oxygen species (ROS) by both photodynamic mechanisms. Uptake experiments, the level of ROS produced in vitro, and PDI treatments mediated by these compounds were assessed against clinical strains: methicillin-resistant Staphylococcus aureus and Klebsiella pneumoniae. In vitro experiments indicated that the peripheral substitution significantly affected the uptake of the photosensitizers by microbes and, consequently, the photoinactivation performance. Co-3NMe2 was the most effective in killing both Gram-positive and Gram-negative bacteria (inactivation > 99.99%). This work lays the foundations for the development of new corrole derivatives having pH-activable cationic groups and with plausible applications as effective broad-spectrum antimicrobial photosensitizers.
Collapse
Affiliation(s)
- Edwin J. Gonzalez Lopez
- IDAS-CONCIET-UNRC, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, Río Cuarto X5804BYA, Argentina
| | - Sol R. Martínez
- IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, Río Cuarto X5804BYA, Argentina
| | - Virginia Aiassa
- UNITEFA-CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Sofía C. Santamarina
- IDAS-CONCIET-UNRC, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, Río Cuarto X5804BYA, Argentina
| | - Rodrigo E. Domínguez
- INFIQC-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Edgardo N. Durantini
- IDAS-CONCIET-UNRC, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, Río Cuarto X5804BYA, Argentina
| | - Daniel A. Heredia
- IDAS-CONCIET-UNRC, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, Río Cuarto X5804BYA, Argentina
- Correspondence: ; Tel.: +54-0358-4676-538
| |
Collapse
|
5
|
Zhang Z, Qin J, Wang Z, Chen F, Liao X, Hu X, Dong L. Sodium copper chlorophyll mediated photodynamic treatment inactivates Escherichia coli via oxidative damage. Food Res Int 2022; 157:111472. [PMID: 35761703 DOI: 10.1016/j.foodres.2022.111472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/22/2022] [Accepted: 06/04/2022] [Indexed: 11/17/2022]
Abstract
Photodynamic technology (PDT) is an emerging non-thermal processing technique, however, due to a lack of edible photosensitizers, its application to the food industry is limited. To better understand sodium copper chlorophyll (SCC) feasibility as a photosensitizer, we analyzed the effects of PDT-SCC on Escherichia coli O157:H7 inactivation using different lighting times (15, 30, 45, 60, and 75 min), lighting power (30, 60, 90, 120, and 150 W), and SCC concentrations (2, 4, 6, 8, and 10 mM). We showed that bactericidal effects depended on all three parameters, but the most suitable sterilization condition for E. coli occurred at 10 mM SCC, for 60 min at 120 W. We also investigated cell morphology, reactive oxygen species (ROS) production, the activity of three oxidative response enzymes (superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX)), and ompA, ompF, uvrA, and recA expression. When compared with the control group, PDT-SCC destroyed bacterial morphology, increased ROS production, decreased antioxidant enzyme activity (SOD, CAT, and GPX), down-regulated membrane protein gene expression, including ompA and ompF, and up-regulated the DNA damage-repair related genes, uvrA and recA. Thus, bacterial rupture caused by oxidative damage could be the main mechanism underpinning PDT-SCC action.
Collapse
Affiliation(s)
- Zequn Zhang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Jianran Qin
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Zhe Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Li Dong
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
6
|
Spesia MB, Durantini EN. Evolution of Phthalocyanine Structures as Photodynamic Agents for Bacteria Inactivation. CHEM REC 2022; 22:e202100292. [PMID: 35018719 DOI: 10.1002/tcr.202100292] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/21/2021] [Indexed: 12/23/2022]
Abstract
Phthalocyanine derivatives have been proposed as photosensitizers for the treatment of several microbial infections. In this review, the progress in the structures of phthalocyanines was analyzed, considering that these compounds can easily functionalize and can form complexes with various metal ions. In this sense, different substituents were used to increase the interaction with the microorganisms, improving their photodynamic inactivation. Furthermore, these photosensitizers absorb strongly at phototherapeutic window, emit red fluorescence, and efficiently produce the formation of reactive oxygen species. Subsequently, the influence of binding, bacteria types, cell density, washing effect, and media on photoinactivation was remarked to elimination of microbes. Finally, photokilling of bacterial biofilm by phthalocyanines and the mechanism of action were discussed. Therefore, this review brings together the main features of phthalocyanines as antimicrobial phototherapeutic agents.
Collapse
Affiliation(s)
- Mariana B Spesia
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - Edgardo N Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
7
|
Shi Q, Wang JJ, Chen L, Peng Z, Zeng QH, Zhu Y, Zhao Y. Fenton reaction-assisted photodynamic inactivation of calcined melamine sponge against Salmonella and its application. Food Res Int 2022; 151:110847. [PMID: 34980385 DOI: 10.1016/j.foodres.2021.110847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/30/2021] [Accepted: 11/27/2021] [Indexed: 11/27/2022]
Abstract
Photodynamic inactivation (PDI) is an effective alternative to traditional antibiotics to broadly kill bacteria. This study aimed to develop a potent PDI system by coupling calcinated melamine sponges (CMSs) with the Fenton reaction. The results showed that CMS calcined at 350 ℃ was successfully carbonized with intact and porous structures, and it possessed excellent hydrophilicity and photothermal conversion performance. When Fe2+ was added and internalized, the Fenton reaction in which Fe2+ reacted with H2O2 in cells occurred to produce reactive oxygen species (ROS) (OH, OOH, etc.) and O2, and notably, the O2 molecules could serve as a raw material to absorb the photothermal energy of CMS to generate highly reactive 1O2. Under synergistic effects, CMS-350 coupled with Fe2+ potently inactivated > 6 Log CFU/mL (>99.9999%) of Salmonella under 201.6 J/cm2 blue LED illumination by destroying Na+/K+-ATPase and Ca2+/Mg2+-ATPase, DNA synthesis-related enzymes, cell membranes, etc. Meanwhile, the composite photocatalyst was proven to be nontoxic and could inactivate Salmonella in various foods, including vegetables (Brassica chinensis L), eggs and fresh cucumber juice. As a result, CMS coupled with the Fenton reaction greatly improves the inactivation potency of PDI against harmful bacteria.
Collapse
Affiliation(s)
- Qiandai Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Department of Food Science, Foshan University, Foshan 528000, China; Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong 350108, China.
| | - Lu Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qiao-Hui Zeng
- Department of Food Science, Foshan University, Foshan 528000, China; Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong 350108, China
| | - Yongheng Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China.
| |
Collapse
|
8
|
Yang W, Yoon Y, Lee Y, Oh H, Choi J, Shin S, Lee S, Lee H, Lee Y, Seo J. Photosensitizer-peptoid conjugates for photoinactivation of Gram-negative bacteria: structure-activity relationship and mechanistic studies. Org Biomol Chem 2021; 19:6546-6557. [PMID: 34259297 DOI: 10.1039/d1ob00926e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Multitarget engagement is considered an effective strategy to overcome the threat of bacterial infection, and antimicrobials with multiple mechanisms of action have been successful as natural chemical weaponry. Here, we synthesized a library of photosensitizer-peptoid conjugates (PsPCs) as novel antimicrobial photodynamic therapy (aPDT) agents. The peptoids, linkers, and photosensitizers were varied, and their structure-antimicrobial activity relationships against Escherichia coli were evaluated; PsPC 9 was indicated to be the most promising photoresponsive antimicrobial agent among the synthesized PsPCs. Spectroscopic analyses indicated that 9 generated singlet oxygen upon absorption of visible light (420 nm) while maintaining the weakly helical conformation of the peptoid. Mechanistic studies suggested that damage to the bacterial membrane and cleavage of DNA upon light irradiation were the main causes of bactericidal activity, which was supported by flow cytometry and DNA gel electrophoresis experiments. We demonstrated that the optimal combination of membrane-active peptoids and photosensitizers can generate an efficient aPDT agent that targets multiple sites of bacterial components and kills bacteria by membrane disruption and reactive oxygen species generation.
Collapse
Affiliation(s)
- Woojin Yang
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Younggun Yoon
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Yunjee Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Hyeongyeol Oh
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Jieun Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Sujin Shin
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), 49 Dosicheomdansaneopro, Nam-gu, Gwangju 61751, South Korea
| | - Hohjai Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Jiwon Seo
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| |
Collapse
|
9
|
Rapacka-Zdończyk A, Woźniak A, Michalska K, Pierański M, Ogonowska P, Grinholc M, Nakonieczna J. Factors Determining the Susceptibility of Bacteria to Antibacterial Photodynamic Inactivation. Front Med (Lausanne) 2021; 8:642609. [PMID: 34055830 PMCID: PMC8149737 DOI: 10.3389/fmed.2021.642609] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/12/2021] [Indexed: 01/23/2023] Open
Abstract
Photodynamic inactivation of microorganisms (aPDI) is an excellent method to destroy antibiotic-resistant microbial isolates. The use of an exogenous photosensitizer or irradiation of microbial cells already equipped with endogenous photosensitizers makes aPDI a convenient tool for treating the infections whenever technical light delivery is possible. Currently, aPDI research carried out on a vast repertoire of depending on the photosensitizer used, the target microorganism, and the light delivery system shows efficacy mostly on in vitro models. The search for mechanisms underlying different responses to photodynamic inactivation of microorganisms is an essential issue in aPDI because one niche (e.g., infection site in a human body) may have bacterial subpopulations that will exhibit different susceptibility. Rapidly growing bacteria are probably more susceptible to aPDI than persister cells. Some subpopulations can produce more antioxidant enzymes or have better performance due to efficient efflux pumps. The ultimate goal was and still is to identify and characterize molecular features that drive the efficacy of antimicrobial photodynamic inactivation. To this end, we examined several genetic and biochemical characteristics, including the presence of individual genetic elements, protein activity, cell membrane content and its physical properties, the localization of the photosensitizer, with the result that some of them are important and others do not appear to play a crucial role in the process of aPDI. In the review, we would like to provide an overview of the factors studied so far in our group and others that contributed to the aPDI process at the cellular level. We want to challenge the question, is there a general pattern of molecular characterization of aPDI effectiveness? Or is it more likely that a photosensitizer-specific pattern of molecular characteristics of aPDI efficacy will occur?
Collapse
Affiliation(s)
| | - Agata Woźniak
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Klaudia Michalska
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Pierański
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Patrycja Ogonowska
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Mariusz Grinholc
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Nakonieczna
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
10
|
Openda YI, Ngoy BP, Muya JT, Nyokong T. Synthesis, theoretical calculations and laser flash photolysis studies of selected amphiphilic porphyrin derivatives used as biofilm photodegradative materials. NEW J CHEM 2021. [DOI: 10.1039/d1nj02651h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Two positively charged metalloporphyrins were synthesized and theoretical studies were carried out. The complexes efficiently eradicated S. aureus and E. coli bacterial cells at 415 nm.
Collapse
Affiliation(s)
- Yolande Ikala Openda
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Bokolombe Pitchou Ngoy
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
- Département de Chimie, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Jules Tshishimbi Muya
- Département de Chimie, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
11
|
Mu C, Wang W, Wang J, Gong C, Zhang D, Zhang X. Probe‐Free Direct Identification of Type I and Type II Photosensitized Oxidation Using Field‐Induced Droplet Ionization Mass Spectrometry. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chaonan Mu
- College of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (ReCAST) Nankai University Tianjin 300071 China
| | - Wei Wang
- College of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (ReCAST) Nankai University Tianjin 300071 China
| | - Jie Wang
- College of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (ReCAST) Nankai University Tianjin 300071 China
| | - Chu Gong
- College of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (ReCAST) Nankai University Tianjin 300071 China
| | - Dongmei Zhang
- College of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (ReCAST) Nankai University Tianjin 300071 China
| | - Xinxing Zhang
- College of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (ReCAST) Nankai University Tianjin 300071 China
| |
Collapse
|
12
|
Mu C, Wang W, Wang J, Gong C, Zhang D, Zhang X. Probe‐Free Direct Identification of Type I and Type II Photosensitized Oxidation Using Field‐Induced Droplet Ionization Mass Spectrometry. Angew Chem Int Ed Engl 2020; 59:21515-21519. [DOI: 10.1002/anie.202010294] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Chaonan Mu
- College of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (ReCAST) Nankai University Tianjin 300071 China
| | - Wei Wang
- College of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (ReCAST) Nankai University Tianjin 300071 China
| | - Jie Wang
- College of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (ReCAST) Nankai University Tianjin 300071 China
| | - Chu Gong
- College of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (ReCAST) Nankai University Tianjin 300071 China
| | - Dongmei Zhang
- College of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (ReCAST) Nankai University Tianjin 300071 China
| | - Xinxing Zhang
- College of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (ReCAST) Nankai University Tianjin 300071 China
| |
Collapse
|
13
|
Morici P, Battisti A, Tortora G, Menciassi A, Checcucci G, Ghetti F, Sgarbossa A. The in vitro Photoinactivation of Helicobacter pylori by a Novel LED-Based Device. Front Microbiol 2020; 11:283. [PMID: 32153551 PMCID: PMC7047934 DOI: 10.3389/fmicb.2020.00283] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/07/2020] [Indexed: 12/22/2022] Open
Abstract
The rise of antibiotic resistance is the main cause for the failure of conventional antibiotic therapy of Helicobacter pylori infection, which is often associated with severe gastric diseases, including gastric cancer. In the last years, alternative non-pharmacological approaches have been considered in the treatment of H. pylori infection. Among these, antimicrobial PhotoDynamic Therapy (aPDT), a light-based treatment able to photoinactivate a wide range of bacteria, viruses, fungal and protozoan parasites, could represent a promising therapeutic strategy. In the case of H. pylori, aPDT can exploit photoactive endogenous porphyrins, such as protoporphyrin IX and coproporphyrin I and III, to induce photokilling, without any other exogenous photosensitizers. With the aim of developing an ingestible LED-based robotic pill for minimally invasive intragastric treatment of H. pylori infection, it is crucial to determine the best illumination parameters to activate the endogenous photosensitizers. In this study the photokilling effect on H. pylori has been evaluated by using a novel LED-based device, designed for testing the appropriate LEDs for the pill and suitable to perform in vitro irradiation experiments. Exposure to visible light induced bacterial photokilling most effectively at 405 nm and 460 nm. Sub-lethal light dose at 405 nm caused morphological changes on bacterial surface indicating the cell wall as one of the main targets of photodamage. For the first time endogenous photosensitizing molecules other than porphyrins, such as flavins, have been suggested to be involved in the 460 nm H. pylori photoinactivation.
Collapse
Affiliation(s)
- Paola Morici
- Nanoscience Institute, CNR and NEST, Scuola Normale Superiore, Pisa, Italy
| | - Antonella Battisti
- Nanoscience Institute, CNR and NEST, Scuola Normale Superiore, Pisa, Italy
| | - Giuseppe Tortora
- The BioRobotics Institute, Polo Sant'Anna Valdera, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Arianna Menciassi
- The BioRobotics Institute, Polo Sant'Anna Valdera, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Giovanni Checcucci
- Nanoscience Institute, CNR and NEST, Scuola Normale Superiore, Pisa, Italy
| | - Francesco Ghetti
- Nanoscience Institute, CNR and NEST, Scuola Normale Superiore, Pisa, Italy
| | | |
Collapse
|
14
|
Jiménez-Munguía I, Fedorov AK, Abdulaeva IA, Birin KP, Ermakov YA, Batishchev OV, Gorbunova YG, Sokolov VS. Lipid Membrane Adsorption Determines Photodynamic Efficiency of β-Imidazolyl-Substituted Porphyrins. Biomolecules 2019; 9:E853. [PMID: 31835568 PMCID: PMC6995582 DOI: 10.3390/biom9120853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/04/2019] [Accepted: 12/07/2019] [Indexed: 11/16/2022] Open
Abstract
Photosensitizers (PSs) represent a group of molecules capable of generating reactive oxygen species (ROS), such as singlet oxygen (SO); thus, they are considered to be promising agents for anti-cancer therapy. The enhancement of the photodynamic efficiency of these compounds requires increasing the PS activity in the cancer cell milieu and exactly at the target cells. In the present work, we report the synthesis, lipid membrane binding and photodynamic activity of three novel cationic PSs based on β-imidazolyl-substituted porphyrin and its Zn(II) and In(III) complexes (1H2, 1Zn and 1In). Comparison of the behavior of the investigated porphyrins at the bilayer lipid membrane (BLM) demonstrated the highest adsorption for the 1In complex and the lowest one for 1Zn. The photodynamic efficiency of these porphyrins was evaluated by determining the oxidation rate of the styryl dye, di-4-ANEPPS, incorporated into the lipid membrane. These rates were proportional to the surface density (SD) of the porphyrin molecules at the BLM and were roughly the same for all three porphyrins. This indicates that the adsorption of these porphyrins at the BLM determines their photodynamic efficiency rather than the extinction or quantum yield of singlet oxygen.
Collapse
Affiliation(s)
- Irene Jiménez-Munguía
- National University of Science and Technology “MISiS”, 4 Leninskiy pr. 119049 Moscow, Russia
| | - Arseniy K. Fedorov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr. 119071 Moscow, Russia; (A.K.F.); (I.A.A.); (K.P.B.); (Y.A.E.); (O.V.B.); (V.S.S.)
| | - Inna A. Abdulaeva
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr. 119071 Moscow, Russia; (A.K.F.); (I.A.A.); (K.P.B.); (Y.A.E.); (O.V.B.); (V.S.S.)
| | - Kirill P. Birin
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr. 119071 Moscow, Russia; (A.K.F.); (I.A.A.); (K.P.B.); (Y.A.E.); (O.V.B.); (V.S.S.)
| | - Yury A. Ermakov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr. 119071 Moscow, Russia; (A.K.F.); (I.A.A.); (K.P.B.); (Y.A.E.); (O.V.B.); (V.S.S.)
| | - Oleg V. Batishchev
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr. 119071 Moscow, Russia; (A.K.F.); (I.A.A.); (K.P.B.); (Y.A.E.); (O.V.B.); (V.S.S.)
- Moscow Institute of Physics and Technology, 9 Institutskiy Lane, Dolgoprudniy, 141700 Moscow Region, Russia
| | - Yulia G. Gorbunova
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr. 119071 Moscow, Russia; (A.K.F.); (I.A.A.); (K.P.B.); (Y.A.E.); (O.V.B.); (V.S.S.)
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninskiy pr. 119119 Moscow, Russia
| | - Valerij S. Sokolov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr. 119071 Moscow, Russia; (A.K.F.); (I.A.A.); (K.P.B.); (Y.A.E.); (O.V.B.); (V.S.S.)
| |
Collapse
|
15
|
Galstyan A, Dobrindt U. Determining and unravelling origins of reduced photoinactivation efficacy of bacteria in milk. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 197:111554. [PMID: 31326843 DOI: 10.1016/j.jphotobiol.2019.111554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/30/2019] [Accepted: 07/10/2019] [Indexed: 12/28/2022]
Abstract
Bovine mastitis is an endemic disease of dairy cattle that is considered to be one of the most frequent and costly diseases in veterinary medicine. An increase in the incidence of disease results in the increased use of antibiotics, which in turn increases the potential of bacterial resistance. This study aimed to investigate the effectiveness of antimicrobial photodynamic therapy (aPDT) in the treatment of bovine mastitis, as an alternative to systemic antibiotics. To identify the key factors affecting photoinactivation efficacy, realistic experiments in view of the end-use were conducted in milk samples using two different photosensitizers: methylene blue (MB) and silicon (IV) phthalocyanine derivative (SiPc). We explored the effects of divalent ions and fat content on the aPDT outcome and determined influence of different proteins on aPDT efficacy. Levels of bacterial sensitivity to PSs varied depending on the type of bacteria (Gram-positive vs. Gram-negative) and light exposure time. Critical interrelated factors affecting aPDT in milk were identified and an efficient combination of treatment conditions that can lead to a full photodynamic inactivation of bacteria was determined.
Collapse
Affiliation(s)
- Anzhela Galstyan
- Center for Soft Nanoscience, University of Münster, Busso-Peus-Straße 10, D-48149 Münster, Germany.
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Mendelstraße 7, D-48149 Münster, Germany
| |
Collapse
|
16
|
Caruso E, Malacarne MC, Banfi S, Gariboldi MB, Orlandi VT. Cationic diarylporphyrins: In vitro versatile anticancer and antibacterial photosensitizers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 197:111548. [PMID: 31288120 DOI: 10.1016/j.jphotobiol.2019.111548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 06/07/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
Abstract
The visible light combined with photosensitizers (PSs) is exploited in both antitumoral and antimicrobial fields inducing a photo-oxidative stress within the target cells. Among the different PSs, porphyrins belong to the family of the most promising compounds to be used in clinical photodynamic applications. Although in the last years many porphyrins have been synthesised and tested, only a few reports concern the in vitro effects of the 5,15-diarylporphyrins. In this work, the activity of four 5,15-diarylporphyrins (compounds 7-10), bearing alkoxy-linked pyridinium appendixes, have been tested on cancer cell lines and against bacterial cultures. Among the synthetized PSs, compounds 7 and 9 are not symmetrically substituted porphyrins showing one cationic charge tethered at the end of one 4C or 8C carbon chains, respectively. On the other hand, compounds 8 and 10 are symmetrically substituted and show two chains of C4 and C8 carbons featuring a cationic charge at the end of both chains. The dicationic 8 and 10 were more hydrophilic than monocationic 7 and 9, outlining that the presence of two pyridinium salts have a higher impact on the solubility in the aqueous phase than the lipophilic effect exerted by the length of the alkyl chains. Furthermore, these four PSs showed a similar rate of photobleaching, irrespective of the length and number of chains and the number of positive charges. Among the eukaryotic cell lines, the SKOV3 cells were particularly sensitive to the photodynamic activity of all the tested diarylporphyrins, while the HCT116 cells were found more sensitive to PSs bearing C4 chain (7 and 8), regardless the number of cationic charges. The photo-induced killing effect of these porphyrins was also tested against two different bacterial cultures. As expected, the Gram positive Bacillus subtilis was more sensitive than the Gram negative Escherichia coli, and the dicationic porphyrin 8, bearing two C4 chains, was the most efficient on both microorganisms. In conclusion, the new compound 8 seems to be an optimal candidate to deepen as versatile anticancer and antibacterial photosensitizer.
Collapse
Affiliation(s)
- Enrico Caruso
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, VA, Italy..
| | - Miryam Chiara Malacarne
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, VA, Italy
| | - Stefano Banfi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, VA, Italy
| | - Marzia Bruna Gariboldi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, VA, Italy
| | - Viviana Teresa Orlandi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, VA, Italy
| |
Collapse
|
17
|
Castro KADF, Moura NMM, Figueira F, Ferreira RI, Simões MMQ, Cavaleiro JAS, Faustino MAF, Silvestre AJD, Freire CSR, Tomé JPC, Nakagaki S, Almeida A, Neves MGPMS. New Materials Based on Cationic Porphyrins Conjugated to Chitosan or Titanium Dioxide: Synthesis, Characterization and Antimicrobial Efficacy. Int J Mol Sci 2019; 20:E2522. [PMID: 31121942 PMCID: PMC6566955 DOI: 10.3390/ijms20102522] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/15/2019] [Accepted: 05/18/2019] [Indexed: 11/28/2022] Open
Abstract
The post-functionalization of 5,10,15-tris(1-methylpyridinium-4-yl)-20-(pentafluorophenyl)porphyrin tri-iodide, known as a highly efficient photosensitizer (PS) for antimicrobial photodynamic therapy (aPDT), in the presence of 3- or 4-mercaptobenzoic acid, afforded two new tricationic porphyrins with adequate carboxylic pending groups to be immobilized on chitosan or titanium oxide. The structural characterization of the newly obtained materials confirmed the success of the porphyrin immobilization on the solid supports. The photophysical properties and the antimicrobial photodynamic efficacy of the non-immobilized porphyrins and of the new conjugates were evaluated. The results showed that the position of the carboxyl group in the mercapto units or the absence of these substituents in the porphyrin core could modulate the action of the photosensitizer towards the bioluminescent Gram-negative Escherichia coli bacterium. The antimicrobial activity was also influenced by the interaction between the photosensitizer and the type of support (chitosan or titanium dioxide). The new cationic porphyrins and some of the materials were shown to be very stable in PBS and effective in the photoinactivation of E. coli bacterium. The physicochemical properties of TiO2 allowed the interaction of the PS with its surface, increasing the absorption profile of TiO2, which enables the use of visible light, inactivating the bacteria more efficiently than the corresponding PS immobilized on chitosan.
Collapse
Affiliation(s)
- Kelly A D F Castro
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Nuno M M Moura
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Flávio Figueira
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
- CICECO, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Rosalina I Ferreira
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Mário M Q Simões
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - José A S Cavaleiro
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - M Amparo F Faustino
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | - Carmen S R Freire
- CICECO, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - João P C Tomé
- CQE, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, n1, 1049-001 Lisboa, Portugal.
| | - Shirley Nakagaki
- Laboratório de Bioinorgânica e Catálise, Departamento de Química, Universidade Federal do Paraná, Curitiba, Paraná 81531-990, Brasil.
| | - A Almeida
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - M Graça P M S Neves
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
18
|
Sub-lethal antimicrobial photodynamic inactivation: an in vitro study on quorum sensing-controlled gene expression of Pseudomonas aeruginosa biofilm formation. Lasers Med Sci 2019; 34:1159-1165. [DOI: 10.1007/s10103-018-02707-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
|
19
|
Hurst AN, Scarbrough B, Saleh R, Hovey J, Ari F, Goyal S, Chi RJ, Troutman JM, Vivero-Escoto JL. Influence of Cationic meso-Substituted Porphyrins on the Antimicrobial Photodynamic Efficacy and Cell Membrane Interaction in Escherichia coli. Int J Mol Sci 2019; 20:ijms20010134. [PMID: 30609680 PMCID: PMC6337135 DOI: 10.3390/ijms20010134] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/24/2018] [Accepted: 12/25/2018] [Indexed: 11/16/2022] Open
Abstract
Photodynamic inactivation (PDI) is a non-antibiotic option for the treatment of infectious diseases. Although Gram-positive bacteria have been shown to be highly susceptible to PDI, the inactivation of Gram-negative bacteria has been more challenging due to the impermeability properties of the outer membrane. In the present study, a series of photosensitizers which contain one to four positive charges (1–4) were used to evaluate the charge influence on the PDI of a Gram-negative bacteria, Escherichia coli (E. coli), and their interaction with the cell membrane. The dose-response PDI results confirm the relevance of the number of positive charges on the porphyrin molecule in the PDI of E. coli. The difference between the Hill coefficients of cationic porphyrins with 1–3 positive charges and the tetra-cationic porphyrin (4) revealed potential variations in their mechanism of inactivation. Fluorescent live-cell microscopy studies showed that cationic porphyrins with 1–3 positive charges bind to the cell membrane of E. coli, but are not internalized. On the contrary, the tetra-cationic porphyrin (4) permeates through the membrane of the cells. The contrast in the interaction of cationic porphyrins with E. coli confirmed that they followed different mechanisms of inactivation. This work helps to have a better understanding of the structure-activity relationship in the efficiency of the PDI process of cationic porphyrins against Gram-negative bacteria.
Collapse
Affiliation(s)
- Alexandra N Hurst
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Beth Scarbrough
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Roa Saleh
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Jessica Hovey
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Farideh Ari
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Shreya Goyal
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Richard J Chi
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Jerry M Troutman
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Juan L Vivero-Escoto
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
20
|
Hu J, Lin S, Tan BK, Hamzah SS, Lin Y, Kong Z, Zhang Y, Zheng B, Zeng S. Photodynamic inactivation of Burkholderia cepacia by curcumin in combination with EDTA. Food Res Int 2018; 111:265-271. [DOI: 10.1016/j.foodres.2018.05.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 10/16/2022]
|
21
|
Hu X, Huang YY, Wang Y, Wang X, Hamblin MR. Antimicrobial Photodynamic Therapy to Control Clinically Relevant Biofilm Infections. Front Microbiol 2018; 9:1299. [PMID: 29997579 PMCID: PMC6030385 DOI: 10.3389/fmicb.2018.01299] [Citation(s) in RCA: 282] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Biofilm describes a microbially-derived sessile community in which microbial cells are firmly attached to the substratum and embedded in extracellular polymeric matrix. Microbial biofilms account for up to 80% of all bacterial and fungal infections in humans. Biofilm-associated pathogens are particularly resistant to antibiotic treatment, and thus novel antibiofilm approaches needed to be developed. Antimicrobial Photodynamic therapy (aPDT) had been recently proposed to combat clinically relevant biofilms such as dental biofilms, ventilator associated pneumonia, chronic wound infections, oral candidiasis, and chronic rhinosinusitis. aPDT uses non-toxic dyes called photosensitizers (PS), which can be excited by harmless visible light to produce reactive oxygen species (ROS). aPDT is a multi-stage process including topical PS administration, light irradiation, and interaction of the excited state with ambient oxygen. Numerous in vitro and in vivo aPDT studies have demonstrated biofilm-eradication or substantial reduction. ROS are produced upon photo-activation and attack adjacent targets, including proteins, lipids, and nucleic acids present within the biofilm matrix, on the cell surface and inside the microbial cells. Damage to non-specific targets leads to the destruction of both planktonic cells and biofilms. The review aims to summarize the progress of aPDT in destroying biofilms and the mechanisms mediated by ROS. Finally, a brief section provides suggestions for future research.
Collapse
Affiliation(s)
- Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
| | - Ying-Ying Huang
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
| | - Yuguang Wang
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Michael R. Hamblin
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States
| |
Collapse
|
22
|
Enzyme-mediated photoinactivation of Enterococcus faecalis using Rose Bengal-acetate. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 179:84-90. [DOI: 10.1016/j.jphotobiol.2018.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/15/2017] [Accepted: 01/08/2018] [Indexed: 12/27/2022]
|
23
|
Sah U, Sharma K, Chaudhri N, Sankar M, Gopinath P. Antimicrobial photodynamic therapy: Single-walled carbon nanotube (SWCNT)-Porphyrin conjugate for visible light mediated inactivation of Staphylococcus aureus. Colloids Surf B Biointerfaces 2017; 162:108-117. [PMID: 29190461 DOI: 10.1016/j.colsurfb.2017.11.046] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/23/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022]
Abstract
Due to the excessive use of antibiotics over the years, the microorganisms have developed resistance to numerous drugs. The growth of multi-resistant organisms (MROs) heads due to the insufficient treatment with the currently available medications which present a great threat to the biotic component of the environment as well as to the food technology sectors. The goal of this research was to develop a nano-composite made up of single-walled carbon nanotubes (SWCNTs) and amine-functionalized porphyrin, which could further be used for the anti-microbial studies in presence of visible light showing photodynamic effect to inactivate cells. Photodynamic antimicrobial chemotherapy is gaining significant interest due to its capabilities as an innovative form of antimicrobial treatment. The development of anti-microbial photodynamic therapy (a-PDT) is a non-antibiotic access to inactivate microorganisms. We examined the synthesis of amine-functionalized porphyrin and conjugated it to the oxidised single-walled carbon nanotubes (SWCNTs). By the use of appropriate amount of single-walled carbon nanotubes (SWCNTs), we have shown the interaction between the porphyrin conjugated nanotubes and the bacterial cells in presence of visible light led to the cell membrane damage, concluding that SWCNT-porphyrin conjugates can be used as an antibacterial agent. The characterization of the oxidised SWCNT and SWCNT-porphyrin conjugates was determined by field emission scanning electron microscopy (FE-SEM), which provides detailed information about the composition and the morphological analysis. The particle size measurements were carried out by transmission electron microscopy (TEM). On investigating under the florescence microscopy, red fluorescence was observed. Thus, these properties demand us to design this facile material comprised of SWCNT-aminoporphyrin conjugates that shows potent antibacterial activity.
Collapse
Affiliation(s)
- Upasana Sah
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India; Centre of Excellence: Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Kajal Sharma
- Centre of Excellence: Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Nivedita Chaudhri
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Muniappan Sankar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India; Centre of Excellence: Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| | - P Gopinath
- Centre of Excellence: Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India; Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
24
|
Rout B, Liu CH, Wu WC. Photosensitizer in lipid nanoparticle: a nano-scaled approach to antibacterial function. Sci Rep 2017; 7:7892. [PMID: 28801673 PMCID: PMC5554217 DOI: 10.1038/s41598-017-07444-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/21/2017] [Indexed: 12/17/2022] Open
Abstract
Photosensitization-based antimicrobial therapy (PAT) is an alternative therapy aimed at achieving bacterial inactivation. Researchers use various photosensitizers to achieve bacterial inactivation. However, the most widely used approach involves the use of photosensitizers dispersed in aqueous solution, which could limit the effectiveness of photodynamic inactivation. Therefore, the approaches to encapsulate the photosensitizer in appropriate vehicles can enhance the delivery of the photosensitizer. Herein, Toluidine Blue O (TBO) was the photosensitizer, and lipid nanoparticles were used for its encapsulation. The lipid nanoparticle-based delivery system has been tailor-made for decreasing the average size and viscosity and increasing the formulation stability as well as the wettability of skin. Usage of an appropriate vehicle will also increase the cellular uptake of the photosensitizer into the bacterial cells, leading to the damage on cell membrane and genomic DNA. Evidence of effectiveness of the developed PAT on planktonic bacteria and biofilms was examined by fluorescence microscopy and scanning electron microscopy. Lipid nanoparticles protected the photosensitizer from aggregation and made the application easy on the skin as indicated in data of size distribution and contact angle. The use of lipid nanoparticles for encapsulating TBO could enhance photosensitization-based antimicrobial therapy as compared to the aqueous media for delivering photosensitizers.
Collapse
Affiliation(s)
- Bishakh Rout
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, 259, Wen-Hwa First Road, Kwei-Shan, Tao-Yuan, 333, Taiwan
| | - Chi-Hsien Liu
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, 259, Wen-Hwa First Road, Kwei-Shan, Tao-Yuan, 333, Taiwan. .,Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, 261, Wen-Hwa First Road, Taoyuan, Taiwan. .,Department of Chemical Engineering, Ming Chi University of Technology, 84, Gung-Juan Road, New Taipei City, Taiwan. .,Department of Ophthalmology, Chang Gung Memorial Hospital, 5, Fu-Hsing Street, Taoyuan, Taiwan.
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, 5, Fu-Hsing Street, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, 259, Wen-Hwa First Road, Taoyuan, Taiwan
| |
Collapse
|
25
|
Antibacterial Mechanism of 405-Nanometer Light-Emitting Diode against Salmonella at Refrigeration Temperature. Appl Environ Microbiol 2017; 83:AEM.02582-16. [PMID: 28003197 DOI: 10.1128/aem.02582-16] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/10/2016] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to elucidate the antibacterial mechanism of 405 ± 5-nm light-emitting diode (LED) illumination against Salmonella at 4°C in phosphate-buffered saline (PBS) by determining endogenous coproporphyrin content, DNA oxidation, damage to membrane function, and morphological change. Gene expression levels, including of oxyR, recA, rpoS, sodA, and soxR, were also examined to understand the response of Salmonella to LED illumination. The results showed that Salmonella strains responded differently to LED illumination, revealing that S. enterica serovar Enteritidis (ATCC 13076) and S. enterica subsp. enterica serovar Saintpaul (ATCC 9712) were more susceptible and resistant, respectively, than the 16 other strains tested. There was no difference in the amounts of endogenous coproporphyrin in the two strains. Compared with that in nonilluminated cells, the DNA oxidation levels in illuminated cells increased. In illuminated cells, we observed a loss of efflux pump activity, damage to the glucose uptake system, and changes in membrane potential and integrity. Transmission electron microscopy revealed a disorganization of chromosomes and ribosomes due to LED illumination. The levels of the five genes measured in the nonilluminated and illuminated S Saintpaul cells were upregulated in PBS at a set temperature of 4°C, indicating that increased gene expression levels might be due to a temperature shift and nutrient deficiency rather than to LED illumination. In contrast, only oxyR in S Enteritidis cells was upregulated. Thus, different sensitivities of the two strains to LED illumination were attributed to differences in gene regulation.IMPORTANCE Bacterial inactivation using visible light has recently received attention as a safe and environmentally friendly technology, in contrast with UV light, which has detrimental effects on human health and the environment. This study was designed to understand how 405 ± 5-nm light-emitting diode (LED) illumination kills Salmonella strains at refrigeration temperature. The data clearly demonstrated that the effectiveness of LED illumination on Salmonella strains depended highly on the serotype and strain. Our findings also revealed that its antibacterial mechanism was mainly attributed to DNA oxidation and a loss of membrane functions rather than membrane lipid peroxidation, which has been proposed by other researchers who studied the antibacterial effect of LED illumination by adding exogenous photosensitizers, such as chlorophyllin and hypericin. Therefore, this study suggests that the detailed antibacterial mechanisms of 405-nm LED illumination without additional photosensitizers may differ from that by exogenous photosensitizers. Furthermore, a change in stress-related gene regulation may alter the susceptibility of Salmonella cells to LED illumination at refrigeration temperature. Thus, our study provides new insights into the antibacterial mechanism of 405 ± 5-nm LED illumination on Salmonella cells.
Collapse
|
26
|
Skwor TA, Klemm S, Zhang H, Schardt B, Blaszczyk S, Bork MA. Photodynamic inactivation of methicillin-resistant Staphylococcus aureus and Escherichia coli: A metalloporphyrin comparison. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 165:51-57. [DOI: 10.1016/j.jphotobiol.2016.10.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/10/2016] [Accepted: 10/14/2016] [Indexed: 12/18/2022]
|
27
|
Singh M, Pakshirajan K, Trivedi V. Photo-inactivation of Escherichia coli and Enterococcus hirae using methylene blue and sodium anthraquinone-2-sulphonate: effect of process parameters. 3 Biotech 2016; 6:176. [PMID: 28330248 PMCID: PMC4992475 DOI: 10.1007/s13205-016-0487-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/02/2016] [Indexed: 11/29/2022] Open
Abstract
In this study, effect of different parameters, viz. concentration of photosensitizer (PS), pH of the bacterial cell suspension and initial cell count, on photo-inactivation of Escherichia coli and Enterococcus hirae bacteria using methylene blue (MB) and sodium anthraquinone-2-sulphonate (SAQS) was investigated employing the statistically valid full factorial design of experiments. The inactivation efficiency of E. hirae using MB ranges between 10.81 and 48.55 %, whereas in the case of E. coli it ranges between 10.41 and 46.44 %. Using SAQS, the inactivation efficiency of E. hirae was within 5.26–39.03 %, and in the case of E. coli it varied in the range 4.65–37.66 %. Statistical analysis of the photo-inactivation results in the form of analysis of variance (ANOVA) and student ‘t’ test revealed significant individual effect of these process parameters. In addition, an increase in dark incubation period with MB or SAQS resulted in enhanced photo-inactivation efficiency against both the microorganisms. Reactive oxygen species measurement and analysis of lipid peroxidation and protein carbonyl index helped in a better understanding of the photo-inactivation mechanism.
Collapse
Affiliation(s)
- Madhavi Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Kannan Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Vishal Trivedi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
28
|
Jiang L, Gan CRR, Gao J, Loh XJ. A Perspective on the Trends and Challenges Facing Porphyrin-Based Anti-Microbial Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3609-3644. [PMID: 27276371 DOI: 10.1002/smll.201600327] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/05/2016] [Indexed: 06/06/2023]
Abstract
The emergence of multidrug resistant bacterium threatens to unravel global healthcare systems, built up over centuries of medical research and development. Current antibiotics have little resistance against this onslaught as bacterium strains can quickly evolve effective defense mechanisms. Fortunately, alternative therapies exist and, at the forefront of research lays the photodynamic inhibition approach mediated by porphyrin based photosensitizers. This review will focus on the development of various porphyrins compounds and their incorporation as small molecules, into polymers, fibers and thin films as practical therapeutic agents, utilizing photodynamic therapy to inhibit a wide spectrum of bacterium. The use of photodynamic therapy of these porphyrin molecules are discussed and evaluated according to their electronic and bulk material effect on different bacterium strains. This review also provides an insight into the general direction and challenges facing porphyrins and derivatives as full-fledged therapeutic agents and what needs to be further done in order to be bestowed their rightful and equal status in modern medicine, similar to the very first antibiotic; penicillin itself. It is hoped that, with this perspective, new paradigms and strategies in the application of porphyrins and derivatives will progressively flourish and lead to advances against disease.
Collapse
Affiliation(s)
- Lu Jiang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Republic of Singapore
| | - Ching Ruey Raymond Gan
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Republic of Singapore
| | - Jian Gao
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Republic of Singapore
- Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Republic of Singapore
| |
Collapse
|
29
|
Bartolomeu M, Coimbra Š, Cunha Â, Neves MG, Cavaleiro JA, Faustino MA, Almeida A. Indirect and direct damage to genomic DNA induced by 5,10,15-tris(1-methylpyridinium-4-yl)-20-(pentafluorophenyl)porphyrin upon photodynamic action. J PORPHYR PHTHALOCYA 2016. [DOI: 10.1142/s1088424616500127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Photodynamic inactivation has been proposed as an efficient antimicrobial treatment for localized infections. Even though it is generally accepted that the cell wall and membrane components are the main targets of the photodynamic process, the importance of the nucleic acids as photodynamic targets is not yet fully understood. In this study, we investigated the photodamage of the genomic nucleic acids of the Gram negative bacterium Escherichia coli, using 5,10,15-tris(1-methylpyridinium-4-yl)-20-(pentafluorophenyl)porphyrin tri-iodide (Tri-Py[Formula: see text]-Me-PF) as photosensitizing agent. We tested, for the first time, the indirect photodamage effects on genomic DNA extracted from photosensitized bacteria and compared it with the direct effects on genomic DNA extracted from non-photosensitized cells, treated in otherwise similar experimental conditions. The results suggest that DNA does not seem to be a major target of photodynamic inactivation, once direct exposure to photosensitization does not damage DNA and does not significantly alter DNA concentration. The decrease in DNA concentration observed during the indirect exposure to photosensitization is directly related with the reduction of the concentration of bacterial cells. However, RNA synthesis was severely affected, once an indirect effect on proteins involved in the transcription process may cause a marked decrease in the RNA pool.
Collapse
Affiliation(s)
- Maria Bartolomeu
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Šónia Coimbra
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ângela Cunha
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Maria G.P.M.S. Neves
- Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - José A.S. Cavaleiro
- Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Maria A.F. Faustino
- Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Adelaide Almeida
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
30
|
Mamone L, Ferreyra DD, Gándara L, Di Venosa G, Vallecorsa P, Sáenz D, Calvo G, Batlle A, Buzzola F, Durantini EN, Casas A. Photodynamic inactivation of planktonic and biofilm growing bacteria mediated by a meso-substituted porphyrin bearing four basic amino groups. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 161:222-9. [PMID: 27285813 DOI: 10.1016/j.jphotobiol.2016.05.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 05/15/2016] [Accepted: 05/30/2016] [Indexed: 01/02/2023]
Affiliation(s)
- L Mamone
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina
| | - D D Ferreyra
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, X5804BYA Río Cuarto, Córdoba, Argentina
| | - L Gándara
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina
| | - G Di Venosa
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina
| | - P Vallecorsa
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina
| | - D Sáenz
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina
| | - Gustavo Calvo
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina
| | - A Batlle
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina
| | - F Buzzola
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), CONICET-UBA, Argentina
| | - E N Durantini
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, X5804BYA Río Cuarto, Córdoba, Argentina
| | - A Casas
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina.
| |
Collapse
|
31
|
Photodynamic inactivation of Klebsiella pneumoniae biofilms and planktonic cells by 5-aminolevulinic acid and 5-aminolevulinic acid methyl ester. Lasers Med Sci 2016; 31:557-65. [PMID: 26886586 DOI: 10.1007/s10103-016-1891-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/24/2016] [Indexed: 12/27/2022]
Abstract
The treatment of Klebsiella pneumoniae, particularly extended-spectrum β-lactamase (ESBL)-producing K. pneumoniae, is currently a great challenge. Photodynamic antimicrobial chemotherapy is a promising approach for killing antibiotic-resistant bacteria. The aim of this study was to evaluate the capacity of 5-aminolevulinic acid (5-ALA) and its derivative 5-ALA methyl ester (MAL) in the presence of white light to cause photodynamic inactivation (PDI) of K. pneumoniae planktonic and biofilm cells. In the presence of white light, 5-ALA and MAL inactivated planktonic cells in a concentration-dependent manner. Biofilms were also sensitive to 5-ALA and MAL-mediated PDI. The mechanisms by which 5-ALA and MAL caused PDI of ESBL-producing K. pneumonia were also investigated. Exposure of K. pneumonia to light in the presence of either 5-ALA or MAL induced cleavage of genomic DNA and the rapid release of intracellular biopolymers. Intensely denatured cytoplasmic contents and aggregated ribosomes were also detected by transmission electron microscopy. Scanning electron microscopy showed that PDI of biofilms caused aggregated bacteria to detach and that the bacterial cell envelope was damaged. This study provides insights into 5-ALA and MAL-mediated PDI of ESBL-producing K. pneumoniae.
Collapse
|
32
|
Orlandi VT, Bolognese F, Chiodaroli L, Tolker-Nielsen T, Barbieri P. Pigments influence the tolerance of Pseudomonas aeruginosa PAO1 to photodynamically induced oxidative stress. MICROBIOLOGY-SGM 2015; 161:2298-309. [PMID: 26419906 DOI: 10.1099/mic.0.000193] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen known to be resistant to different classes of antibiotics and disinfectants. P. aeruginosa also displays a certain degree of tolerance to photodynamic therapy (PDT), an alternative antimicrobial approach exploiting a photo-oxidative stress induced by exogenous photosensitizers and visible light. To evaluate whether P. aeruginosa pigments can contribute to its relative tolerance to PDT, we analysed the response to this treatment of isogenic transposon mutants of P. aeruginosa PAO1 with altered pigmentation. In general, in the presence of pigments a higher tolerance to PDT-induced photo-oxidative stress was observed. Hyperproduction of pyomelanin makes the cells much more tolerant to stress caused by either radicals or singlet oxygen generated by different photosensitizers upon photoactivation. Phenazines, pyocyanin and phenazine-1-carboxylic acid, produced in different amounts depending on the cultural conditions, are able to counteract both types of PDT-elicited reactive oxygen species. Hyperproduction of pyoverdine, caused by a mutation in a quorum-sensing gene, rendered P. aeruginosa more tolerant to a photosensitizer that generates mainly singlet oxygen, although in this case the observed tolerance to photo-oxidative stress cannot be exclusively attributed to the presence of the pigment.
Collapse
Affiliation(s)
- Viviana T Orlandi
- 1Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Fabrizio Bolognese
- 1Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Luca Chiodaroli
- 1Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Tim Tolker-Nielsen
- 2Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paola Barbieri
- 1Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
33
|
Grinholc M, Rodziewicz A, Forys K, Rapacka-Zdonczyk A, Kawiak A, Domachowska A, Golunski G, Wolz C, Mesak L, Becker K, Bielawski KP. Fine-tuning recA expression in Staphylococcus aureus for antimicrobial photoinactivation: importance of photo-induced DNA damage in the photoinactivation mechanism. Appl Microbiol Biotechnol 2015; 99:9161-76. [PMID: 26252968 PMCID: PMC4619464 DOI: 10.1007/s00253-015-6863-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/13/2015] [Accepted: 07/16/2015] [Indexed: 11/25/2022]
Abstract
Bacterial cell envelope is generally accepted as the primary target for a photo-induced oxidative stress. It is plausible that DNA damage occurs during the antimicrobial photoinactivation. Here we investigate the correlation between DNA damage and photoinactivation by evaluating the level of RecA-based DNA repair system in Staphylococcus aureus. By using exogenous photosensitizers (new methylene blue (NMB), toluidine blue O (TBO), 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin tetra(p-toluenesulfonate) (TMPyP), zinc phthalocyanine (ZnPc), Rose Bengal (RB)) and ALA-induced endogenous porphyrin-dependent blue light (405 nm), several outcomes were observed: (i) an increase of DNA damage (from gel electrophoresis in DNA damage assay), (ii) an increase of recA expression (luminescence assay in recA-lux strain), and (iii) an increase of RecA protein level (Western blotting). When recA expression was repressed by novobiocin, or abolished by deleting the gene, S. aureus susceptibility towards photoinactivation was increased at approximately a hundred-fold. The absence of RecA increases DNA damage to yield bactericidal effect. In novobiocin-resistant mutant (gyrB), as opposed to wild type, neither RecA protein level nor cell’s susceptibility was affected by photoinactivation (when novobiocin is present). This is to suggest that GyrB-dependent inhibition mediated recA repression. Therefore, we have established the role of RecA in DNA damage during photoinactivation. With the use of rifampicin mutation frequency and Ames tests, we demonstrated that photoinactivation did not increase S. aureus mutagenesis and potentially is not mutagenic toward eukaryotic cells. The results suggest that the treatment is considered safe. In conclusion, we provide an evidence that recA inhibitor may serve as therapeutic adjuvant for antimicrobial photoinactivation. Clinical relevance of our findings warrants further investigations.
Collapse
Affiliation(s)
- Mariusz Grinholc
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822, Gdansk, Poland.
| | - Aleksandra Rodziewicz
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822, Gdansk, Poland
| | - Katarzyna Forys
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822, Gdansk, Poland
| | - Aleksandra Rapacka-Zdonczyk
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822, Gdansk, Poland
| | - Anna Kawiak
- Department of Biotechnology, Division of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822, Gdansk, Poland.,Laboratory of Human Physiology, Medical University of Gdansk, Tuwima 15, 80-210, Gdansk, Poland
| | - Anna Domachowska
- Department of Biotechnology, Division of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822, Gdansk, Poland
| | - Grzegorz Golunski
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822, Gdansk, Poland
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tubingen, Wlfriede-Aulhorn-Strasse 6, 72076, Tubingen, Germany
| | - Lili Mesak
- Outreach, Research Training and Minority Science Program, Ayala School of Biological Sciences, University of California, 333 Steinhaus Hall, Irvine, CA, 92697-2525, USA
| | - Karsten Becker
- Institute of Medical Microbiology, University Hospital Münster, Domagkstr. 10, 48149, Münster, Germany
| | - Krzysztof P Bielawski
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822, Gdansk, Poland
| |
Collapse
|
34
|
Photodynamic inactivation of bacteria: finding the effective targets. Future Med Chem 2015; 7:1221-4. [DOI: 10.4155/fmc.15.59] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
35
|
Viana OS, Ribeiro MS, Rodas ACD, Rebouças JS, Fontes A, Santos BS. Comparative Study on the Efficiency of the Photodynamic Inactivation of Candida albicans Using CdTe Quantum Dots, Zn(II) Porphyrin and Their Conjugates as Photosensitizers. Molecules 2015; 20:8893-912. [PMID: 25993419 PMCID: PMC6272384 DOI: 10.3390/molecules20058893] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 12/17/2022] Open
Abstract
The application of fluorescent II-VI semiconductor quantum dots (QDs) as active photosensitizers in photodymanic inactivation (PDI) is still being evaluated. In the present study, we prepared 3 nm size CdTe QDs coated with mercaptosuccinic acid and conjugated them electrostatically with Zn(II) meso-tetrakis (N-ethyl-2-pyridinium-2-yl) porphyrin (ZnTE-2-PyP or ZnP), thus producing QDs-ZnP conjugates. We evaluated the capability of the systems, bare QDs and conjugates, to produce reactive oxygen species (ROS) and applied them in photodynamic inactivation in cultures of Candida albicans by irradiating the QDs and testing the hypothesis of a possible combined contribution of the PDI action. Tests of in vitro cytotoxicity and phototoxicity in fibroblasts were also performed in the presence and absence of light irradiation. The overall results showed an efficient ROS production for all tested systems and a low cytotoxicity (cell viability >90%) in the absence of radiation. Fibroblasts incubated with the QDs-ZnP and subjected to irradiation showed a higher cytotoxicity (cell viability <90%) depending on QD concentration compared to the bare groups. The PDI effects of bare CdTe QD on Candida albicans demonstrated a lower reduction of the cell viability (~1 log10) compared to bare ZnP which showed a high microbicidal activity (~3 log10) when photoactivated. The QD-ZnP conjugates also showed reduced photodynamic activity against C. albicans compared to bare ZnP and we suggest that the conjugation with QDs prevents the transmembrane cellular uptake of the ZnP molecules, reducing their photoactivity.
Collapse
Affiliation(s)
- Osnir S Viana
- Pharmaceutical Sciences Department, Pernambuco Federal University, Recife 50670-901, Brazil.
| | - Martha S Ribeiro
- Center for Lasers and Applications, IPEN-CNEN-SP, São Paulo 05508-000, Brazil.
| | - Andréa C D Rodas
- Center for Lasers and Applications, IPEN-CNEN-SP, São Paulo 05508-000, Brazil.
| | - Júlio S Rebouças
- Chemistry Department, CCEN Universidade Federal da Paraiba, João Pessoa 58051-900, Brazil.
| | - Adriana Fontes
- Biophysics and Radiobiology Department, Pernambuco Federal University, Recife 50670-901, Brazil.
| | - Beate S Santos
- Pharmaceutical Sciences Department, Pernambuco Federal University, Recife 50670-901, Brazil.
| |
Collapse
|
36
|
Li K, Zhang YY, Jiang GY, Hou YJ, Zhang BW, Zhou QX, Wang XS. A bivalent cationic dye enabling selective photo-inactivation against Gram-negative bacteria. Chem Commun (Camb) 2015; 51:7923-6. [DOI: 10.1039/c5cc00174a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Selective photoinactivation against Gram-negative bacteria over Gram-positive bacteria was successfully realized by a bivalent triarylmethane dye.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Yang-Yang Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Guo-Yu Jiang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Yuan-Jun Hou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Bao-Wen Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Qian-Xiong Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Xue-Song Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| |
Collapse
|
37
|
Mthethwa T, Nyokong T. Photoinactivation of Candida albicans and Escherichia coli using aluminium phthalocyanine on gold nanoparticles. Photochem Photobiol Sci 2015; 14:1346-56. [DOI: 10.1039/c4pp00315b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugates of aluminium phthalocyanine with gold nanorods (AlPc–AuNRs) and nanohexagons (AlPc–AuNHs) show improved photoinactivation of fungi (C. albicans) and bacteria cells (E. coli) compared to Pc alone.
Collapse
|
38
|
Soman R, Raghav D, Sujatha S, Rathinasamy K, Arunkumar C. Axial ligand modified high valent tin(iv) porphyrins: synthesis, structure, photophysical studies and photodynamic antimicrobial activities on Candida albicans. RSC Adv 2015. [DOI: 10.1039/c5ra09343k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Photophysical studies, fluorescence imaging, single crystal X-ray structure analysis and DFT calculations revealed that compounds2and3show enhanced phototoxicity towardsCandida albicanscompared to compound1.
Collapse
Affiliation(s)
- Rahul Soman
- Bioinorganic Materials Research Laboratory
- Department of Chemistry
- National Institute of Technology Calicut
- Kozhikode
- India-673 601
| | - Darpan Raghav
- School of Biotechnology
- National Institute of Technology Calicut
- Kozhikode
- India-673 601
| | - Subramaniam Sujatha
- Bioinorganic Materials Research Laboratory
- Department of Chemistry
- National Institute of Technology Calicut
- Kozhikode
- India-673 601
| | - Krishnan Rathinasamy
- School of Biotechnology
- National Institute of Technology Calicut
- Kozhikode
- India-673 601
| | - Chellaiah Arunkumar
- Bioinorganic Materials Research Laboratory
- Department of Chemistry
- National Institute of Technology Calicut
- Kozhikode
- India-673 601
| |
Collapse
|
39
|
Mechanistic Aspects of the Photodynamic Inactivation of Vancomycin-Resistant Enterococci Mediated by 5-Aminolevulinic Acid and 5-Aminolevulinic Acid Methyl Ester. Curr Microbiol 2014; 70:528-35. [DOI: 10.1007/s00284-014-0757-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 11/05/2014] [Indexed: 10/24/2022]
|
40
|
Wang Y, Zhou Q, Wang Y, Ren J, Zhao H, Wu S, Yang J, Zhen J, Luo Y, Wang X, Gu Y. In vitro photodynamic inactivation effects of Ru(II) complexes on clinical methicillin-resistant Staphylococcus aureus planktonic and biofilm cultures. Photochem Photobiol 2014; 91:124-33. [PMID: 25354324 DOI: 10.1111/php.12378] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 10/20/2014] [Indexed: 01/03/2023]
Abstract
Photosensitizers (PSs) combined with light are able to generate antimicrobial effects. Ru(II) complexes have been recognized as a novel class of PSs. In this study, we investigated the effectiveness of photodynamic inactivation (PDI) mediated by three Ru(II) polypyridine complexes, 1-3, against four isolates of clinical methicillin-resistant Staphylococcus aureus (MRSA-1, MRSA-2, MRSA-3 and MRSA-4). In PDI of a planktonic culture of MRSA-1, compound 3 showed the highest efficacy, likely owing to its advantageous light absorption, (1) O2 quantum yield and bacterial cellular binding. The PDI efficacy of 3 was further evaluated against all other strains and MRSA-1 biofilms. At appropriate PS concentrations, viability reduction of 100% or 96.83% was observed in planktonic or biofilm forms of MRSA, respectively. The mechanisms of action were investigated using negative staining transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). It was demonstrated that PDI of planktonic bacteria was achieved primarily through damage to the cell envelope. Biofilms were eliminated through both the destruction of their structure and inactivation of the individual bacterial cells. In conclusion, Ru(II) complexes, especially 3, are potential candidates for the effective photodynamic control of MRSA infections.
Collapse
Affiliation(s)
- Yucheng Wang
- Department of Laser Medicine, Chinese PLA General Hospital, Beijing, China; College of Medicine, Nankai University, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The emergence of microbial resistance is becoming a global problem in clinical and environmental areas. As such, the development of drugs with novel modes of action will be vital to meet the threats created by the rise in microbial resistance. Microbial photodynamic inactivation is receiving considerable attention for its potentialities as a new antimicrobial treatment. This review addresses the interactions between photosensitizers and bacterial cells (binding site and cellular localization), the ultrastructural, morphological and functional changes observed at initial stages and during the course of photodynamic inactivation, the oxidative alterations in specific molecular targets, and a possible development of resistance.
Collapse
|
42
|
Orlandi VT, Rybtke M, Caruso E, Banfi S, Tolker-Nielsen T, Barbieri P. Antimicrobial and anti-biofilm effect of a novel BODIPY photosensitizer against Pseudomonas aeruginosa PAO1. BIOFOULING 2014; 30:883-891. [PMID: 25184429 DOI: 10.1080/08927014.2014.940921] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Photodynamic therapy (PDT) combines the use of organic dyes (photosensitizers, PSs) and visible light in order to elicit a photo-oxidative stress which causes bacterial death. GD11, a recently synthesized PS belonging to the boron-dipyrromethene (BODIPY) class, was demonstrated to be efficient against planktonic cultures of Pseudomonas aeruginosa, causing a 7 log unit reduction of viable cells when administered at 2.5 μM. The effectiveness of GD11 against P. aeruginosa biofilms grown in flow-cells and microtiter trays was also demonstrated. Confocal laser scanning microscopy of flow-cell-grown biofilms suggests that the treatment has a biocidal effect against bacterial biofilm cells.
Collapse
Affiliation(s)
- Viviana Teresa Orlandi
- a Department of Theoretical and Applied Sciences , University of Insubria , Varese , Italy
| | | | | | | | | | | |
Collapse
|
43
|
Mesquita MQ, Menezes JCJMDS, Neves MGPMS, Tomé AC, Cavaleiro JAS, Cunha Â, Almeida A, Hackbarth S, Röder B, Faustino MAF. Photodynamic inactivation of bioluminescent Escherichia coli by neutral and cationic pyrrolidine-fused chlorins and isobacteriochlorins. Bioorg Med Chem Lett 2014; 24:808-12. [PMID: 24424133 DOI: 10.1016/j.bmcl.2013.12.097] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 12/22/2013] [Accepted: 12/23/2013] [Indexed: 01/22/2023]
Abstract
Photodynamic inactivation of bioluminescent Escherichia coli in the presence of cationic chlorin and isobacteriochlorin photosensitizers (PSs) obtained from 5,10,15,20-tetrakis(pentafluorophenyl)-porphyrin is described. The spectroscopic data for the neutral and cationic derivatives and their photophysical characterizations, especially fluorescence and singlet oxygen generation capacity are also reported. The results show that there is a direct relation between the inactivation efficiency and the increasing number of charges on the molecules. The combined effect of higher wavelength absorption and number of positive charges on the PS shows a 6.1 log reduction during the inactivation process. Overall this study shows that the cationic isobacteriochlorin has high potential to be used as PS for the inactivation of Gram (-) bacteria.
Collapse
Affiliation(s)
- Mariana Q Mesquita
- Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Maria G P M S Neves
- Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Augusto C Tomé
- Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José A S Cavaleiro
- Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ângela Cunha
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Adelaide Almeida
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Steffen Hackbarth
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstrasse 15, 12489 Berlin, Germany
| | - Beate Röder
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstrasse 15, 12489 Berlin, Germany
| | - M Amparo F Faustino
- Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
44
|
Giuliani F. Photodynamic therapy as a novel antimicrobial strategy against biofilm-based nosocomial infections: study protocols. Methods Mol Biol 2014; 1147:287-298. [PMID: 24664842 DOI: 10.1007/978-1-4939-0467-9_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Hospital-acquired infections (HAIs), also known as nosocomial infections, are one of the most serious health-care issues currently influencing health-care costs. Among them, those sustained by microbial biofilm represent a major public health concern. Here, we describe the experimental protocols for microbial biofilm inactivation relying on antimicrobial photodynamic therapy (APDT) as a new strategy for the control of these kinds of infections.
Collapse
Affiliation(s)
- Francesco Giuliani
- Molteni Therapeutics srl, Via Barontini 8, 50018, Scandicci (Fi), Italy,
| |
Collapse
|
45
|
Alves E, Santos N, Melo T, Maciel E, Dória ML, Faustino MAF, Tomé JPC, Neves MGPMS, Cavaleiro JAS, Cunha Â, Helguero LA, Domingues P, Almeida A, Domingues MRM. Photodynamic oxidation of Escherichia coli membrane phospholipids: new insights based on lipidomics. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:2717-28. [PMID: 24591033 DOI: 10.1002/rcm.6739] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 09/12/2013] [Accepted: 09/16/2013] [Indexed: 05/22/2023]
Abstract
RATIONALE The irreversible oxidation of biological molecules, such as lipids, can be achieved with a photosensitizing agent and subsequent exposure to light, in the presence of molecular oxygen. Although lipid peroxidation is an important toxicity mechanism in bacteria, the alterations caused by the photodynamic therapy on bacterial phospholipids are still unknown. In this work, we studied the photodynamic oxidation of Escherichia coli membrane phospholipids using a lipidomic approach. METHODS E. coli ATCC 25922 were irradiated for 90 min with white light (4 mW cm(-2), 21.6 J cm(-2)) in the presence of a tricationic porphyrin [(5,10,15-tris(1-methylpyridinium-4-yl)-20-(pentafluorophenyl)porphyrin triiodide, Tri-Py(+)-Me-PF]. Lipids were extracted and separated by thin-layer chromatography. Phospholipid classes were quantified by phosphorus assay and analyzed by electrospray ionization tandem mass spectrometry. Fatty acids were analyzed by gas chromatography. Quantification of lipid hydroperoxides was performed by FOX2 assay. Analysis of the photodynamic oxidation of a phospholipid standard was also performed. RESULTS Our approach allowed us to see that the photodynamic treatment induced the formation of a high amount of lipid hydroperoxides in the E. coli lipid extract. Quantification of fatty acids revealed a decrease in the unsaturated C16:1 and C18:1 species suggesting that oxidative modifications were responsible for their variation. It was also observed that photosensitization induced the oxidation of phosphatidylethanolamines with C16:1, C18:1 and C18:2 fatty acyl chains, with formation of hydroxy and hydroperoxy derivatives. CONCLUSIONS Membrane phospholipids of E. coli are molecular targets of the photodynamic effect induced by Tri-Py(+) -Me-PF. The overall change in the relative amount of unsaturated fatty acids and the formation of PE hydroxides and hydroperoxides evidence the damages in bacterial phospholipids caused by this lethal treatment.
Collapse
Affiliation(s)
- Eliana Alves
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Melo T, Santos N, Lopes D, Alves E, Maciel E, Faustino MAF, Tomé JPC, Neves MGPMS, Almeida A, Domingues P, Segundo MA, Domingues MRM. Photosensitized oxidation of phosphatidylethanolamines monitored by electrospray tandem mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:1357-1365. [PMID: 24338891 DOI: 10.1002/jms.3301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 06/03/2023]
Abstract
Photodynamic therapy combines visible light and a photosensitizer (PS) in the presence of molecular oxygen to generate reactive oxygen species able to modify biological structures such as phospholipids. Phosphatidylethanolamines (PEs), being major phospholipid constituents of mammalian cells and membranes of Gram-negative bacteria, are potential targets of photosensitization. In this work, the oxidative modifications induced by white light in combination with cationic porphyrins (Tri-Py(+)-Me-PF and Tetra-Py(+)-Me) were evaluated on PE standards. Electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (ESI-MS/MS) were used to identify and characterize the oxidative modifications induced in PEs (POPE: PE 16:0/18:1, PLPE: PE 16:0/18:2, PAPE: PE 16:0/20:4). Photo-oxidation products of POPE, PLPE and PAPE as hydroxy, hydroperoxy and keteno derivatives and products due to oxidation in ethanolamine polar head were identified. Hydroperoxy-PEs were found to be the major photo-oxidation products. Quantification of hydroperoxides (PE-OOH) allowed differentiating the potential effect in photodamage of the two porphyrins. The highest amounts of PE-OOH were notorious in the presence of Tri-Py(+)-Me-PF, a highly efficient PS against bacteria. The identification of these modifications in PEs is an important key point in the understanding cell damage processes underlying photodynamic therapy approaches.
Collapse
Affiliation(s)
- Tânia Melo
- Mass Spectrometry Centre, UI QOPNA, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Spectroscopic and photodynamic properties of 5,10,15,20-tetrakis[4-(3-N,N-dimethylaminopropoxy)phenyl]porphyrin and its tetracationic derivative in different media. J Photochem Photobiol A Chem 2013. [DOI: 10.1016/j.jphotochem.2013.07.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Orlandi VT, Caruso E, Tettamanti G, Banfi S, Barbieri P. Photoinduced antibacterial activity of two dicationic 5,15-diarylporphyrins. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 127:123-32. [PMID: 24041850 DOI: 10.1016/j.jphotobiol.2013.08.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/12/2013] [Accepted: 08/19/2013] [Indexed: 11/29/2022]
Abstract
Antimicrobial photodynamic treatment combines the use of photosensitizers (PSs) and visible light to kill bacterial cells. Cationic porphyrins are PSs largely used against bacteria and, among them, those featuring one positive charge on each of the 5,10,15,20-tetraaryl substituent (tetracationic) are the most used. The aim of this study was to synthesize two dicationic 5,15-di(N-alkyl-4-pyridyl)porphyrins, bearing methyl (PS 3) and benzyl (PS 4) N-alkylating groups, and to compare the efficiency in antibacterial photodynamic treatment, upon irradiation with a halogen-tungsten white lamp. The killing efficiency of the PS 4 was constantly found higher than that of the PS 3 against both pure and mixed cultures of laboratory model microorganisms as well as against wild wastewater microflora. The two PSs are comparable as regards singlet oxygen generation, but show a different repartition coefficient; the more lipophilic benzylated PS 4 shows a better interaction with the bacterial cells than the methylated one (PS 3). The data support the hypothesis that an efficient PS-cell binding is required to obtain significant effects. A correlation among cell binding, photoinactivation and PS lipophilicity is suggested.
Collapse
Affiliation(s)
- Viviana T Orlandi
- Department of Theoretical and Applied Sciences, University of Insubria, Via J.H. Dunant, 3, 21100 Varese, Italy.
| | | | | | | | | |
Collapse
|
49
|
Alves E, Faustino MA, Tomé JP, Neves MG, Tomé AC, Cavaleiro JA, Cunha Â, Gomes NC, Almeida A. Nucleic acid changes during photodynamic inactivation of bacteria by cationic porphyrins. Bioorg Med Chem 2013; 21:4311-8. [DOI: 10.1016/j.bmc.2013.04.065] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
|
50
|
Parakh P, Gokulakrishnan S, Prakash H. Visible light water disinfection using [Ru(bpy)2(phendione)](PF6)2·2H2O and [Ru(phendione)3]Cl2·2H2O complexes and their effective adsorption onto activated carbon. Sep Purif Technol 2013. [DOI: 10.1016/j.seppur.2013.02.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|