1
|
Tarn MD, Shaw KJ, Foster PB, West JS, Johnston ID, McCluskey DK, Peyman SA, Murray BJ. Microfluidics for the biological analysis of atmospheric ice-nucleating particles: Perspectives and challenges. BIOMICROFLUIDICS 2025; 19:011502. [PMID: 40041008 PMCID: PMC11878220 DOI: 10.1063/5.0236911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/14/2024] [Indexed: 03/06/2025]
Abstract
Atmospheric ice-nucleating particles (INPs) make up a vanishingly small proportion of atmospheric aerosol but are key to triggering the freezing of supercooled liquid water droplets, altering the lifetime and radiative properties of clouds and having a substantial impact on weather and climate. However, INPs are notoriously difficult to model due to a lack of information on their global sources, sinks, concentrations, and activity, necessitating the development of new instrumentation for quantifying and characterizing INPs in a rapid and automated manner. Microfluidic technology has been increasingly adopted by ice nucleation research groups in recent years as a means of performing droplet freezing analysis of INPs, enabling the measurement of hundreds or thousands of droplets per experiment at temperatures down to the homogeneous freezing of water. The potential for microfluidics extends far beyond this, with an entire toolbox of bioanalytical separation and detection techniques developed over 30 years for medical applications. Such methods could easily be adapted to biological and biogenic INP analysis to revolutionize the field, for example, in the identification and quantification of ice-nucleating bacteria and fungi. Combined with miniaturized sampling techniques, we can envisage the development and deployment of microfluidic sample-to-answer platforms for automated, user-friendly sampling and analysis of biological INPs in the field that would enable a greater understanding of their global and seasonal activity. Here, we review the various components that such a platform would incorporate to highlight the feasibility, and the challenges, of such an endeavor, from sampling and droplet freezing assays to separations and bioanalysis.
Collapse
Affiliation(s)
- Mark D. Tarn
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Kirsty J. Shaw
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom
| | | | - Jon S. West
- Protecting Crops and Environment Department, Rothamsted Research, Harpenden AL5 2JQ, United Kingdom
| | - Ian D. Johnston
- School of Physics, Engineering and Computer Science, University of Hertfordshire, College Lane, Hatfield AL10 9AB, United Kingdom
| | - Daniel K. McCluskey
- School of Physics, Engineering and Computer Science, University of Hertfordshire, College Lane, Hatfield AL10 9AB, United Kingdom
| | | | - Benjamin J. Murray
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
2
|
Yang S, Wang D, Zhao Z, Wang N, Yu M, Zhang K, Luo Y, Zhao J. A Novel DNA Synthesis Platform Design with High-Throughput Paralleled Addressability and High-Density Static Droplet Confinement. BIOSENSORS 2024; 14:177. [PMID: 38667170 PMCID: PMC11047993 DOI: 10.3390/bios14040177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Using DNA as the next-generation medium for data storage offers unparalleled advantages in terms of data density, storage duration, and power consumption as compared to existing data storage technologies. To meet the high-speed data writing requirements in DNA data storage, this paper proposes a novel design for an ultra-high-density and high-throughput DNA synthesis platform. The presented design mainly leverages two functional modules: a dynamic random-access memory (DRAM)-like integrated circuit (IC) responsible for electrode addressing and voltage supply, and the static droplet array (SDA)-based microfluidic structure to eliminate any reaction species diffusion concern in electrochemical DNA synthesis. Through theoretical analysis and simulation studies, we validate the effective addressing of 10 million electrodes and stable, adjustable voltage supply by the integrated circuit. We also demonstrate a reaction unit size down to 3.16 × 3.16 μm2, equivalent to 10 million/cm2, that can rapidly and stably generate static droplets at each site, effectively constraining proton diffusion. Finally, we conducted a synthesis cycle experiment by incorporating fluorescent beacons on a microfabricated electrode array to examine the feasibility of our design.
Collapse
Affiliation(s)
- Shijia Yang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (S.Y.); (D.W.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dayin Wang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (S.Y.); (D.W.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zequan Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (S.Y.); (D.W.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Wang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (S.Y.); (D.W.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Meng Yu
- School of Microelectronics, Shanghai University, Shanghai 200444, China
| | - Kaihuan Zhang
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
| | - Yuan Luo
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (S.Y.); (D.W.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (S.Y.); (D.W.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Verma A, Mateo T, Quintero Botero J, Mohankumar N, Fraccia TP. Microfluidics-Based Drying-Wetting Cycles to Investigate Phase Transitions of Small Molecules Solutions. Life (Basel) 2024; 14:472. [PMID: 38672743 PMCID: PMC11050796 DOI: 10.3390/life14040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Drying-wetting cycles play a crucial role in the investigation of the origin of life as processes that both concentrate and induce the supramolecular assembly and polymerization of biomolecular building blocks, such as nucleotides and amino acids. Here, we test different microfluidic devices to study the dehydration-hydration cycles of the aqueous solutions of small molecules, and to observe, by optical microscopy, the insurgence of phase transitions driven by self-assembly, exploiting water pervaporation through polydimethylsiloxane (PDMS). As a testbed, we investigate solutions of the chromonic dye Sunset Yellow (SSY), which self-assembles into face-to-face columnar aggregates and produces nematic and columnar liquid crystal (LC) phases as a function of concentration. We show that the LC temperature-concentration phase diagram of SSY can be obtained with a fair agreement with previous reports, that droplet hydration-dehydration can be reversibly controlled and automated, and that the simultaneous incubation of samples with different final water contents, corresponding to different phases, can be implemented. These methods can be further extended to study the assembly of diverse prebiotically relevant small molecules and to characterize their phase transitions.
Collapse
Affiliation(s)
- Ajay Verma
- IPGG, CBI UMR 8231—CNRS—ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Tiphaine Mateo
- IPGG, CBI UMR 8231—CNRS—ESPCI Paris, PSL Research University, 75005 Paris, France
| | | | - Nishanth Mohankumar
- IPGG, CBI UMR 8231—CNRS—ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Tommaso P. Fraccia
- IPGG, CBI UMR 8231—CNRS—ESPCI Paris, PSL Research University, 75005 Paris, France
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
4
|
Jiang L, Guo K, Chen Y, Xiang N. Droplet Microfluidics for Current Cancer Research: From Single-Cell Analysis to 3D Cell Culture. ACS Biomater Sci Eng 2024; 10:1335-1354. [PMID: 38420753 DOI: 10.1021/acsbiomaterials.3c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Cancer is the second leading cause of death worldwide. Differences in drug resistance and treatment response caused by the heterogeneity of cancer cells are the primary reasons for poor cancer therapy outcomes in patients. In addition, current in vitro anticancer drug-screening methods rely on two-dimensional monolayer-cultured cancer cells, which cannot accurately predict drug behavior in vivo. Therefore, a powerful tool to study the heterogeneity of cancer cells and produce effective in vitro tumor models is warranted to leverage cancer research. Droplet microfluidics has become a powerful platform for the single-cell analysis of cancer cells and three-dimensional cell culture of in vitro tumor spheroids. In this review, we discuss the use of droplet microfluidics in cancer research. Droplet microfluidic technologies, including single- or double-emulsion droplet generation and passive- or active-droplet manipulation, are concisely discussed. Recent advances in droplet microfluidics for single-cell analysis of cancer cells, circulating tumor cells, and scaffold-free/based 3D cell culture of tumor spheroids have been systematically introduced. Finally, the challenges that must be overcome for the further application of droplet microfluidics in cancer research are discussed.
Collapse
Affiliation(s)
- Lin Jiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Kefan Guo
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Yao Chen
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| |
Collapse
|
5
|
Wang Z, Yu SX, Shao X, Liu YJ, Wang J, Xie W, Zhao Z, Li X. Droplet-Based Preparation of ZnO-nanostructure Array for Microfluidic Fluorescence Biodetection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5401-5411. [PMID: 38271201 DOI: 10.1021/acsami.3c14319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Nanostructure-enhanced biodetection is widely used for early diagnosis and treatment, which plays an essential role in improving the cure rates of cancer patients. ZnO nanostructure-based fluorescence immunoassay has been demonstrated to enable effective and sensitive detection of cancer biomarkers for their excellent biocompatibility, high electrical point, and unique fluorescence enhancement properties. Further optimization of such fluorescence detection technology is still in demand to meet the requirements of highly sensitive, multiplex detection, and user-friendly devices. Droplet microfluidics is a promising platform for high-throughput analysis of biological assays, and they have been intensively used in analytical chemistry and synthesis of nanoparticles. Here, we propose a simple droplet chip, where a static droplet array was successfully obtained for in situ growth of ZnO nanostructures with varied diameters by changing the entire growth time and replenishment interval. This device provides a novel and alternative approach for patterned growth of ZnO nanostructures and understanding the growth condition of ZnO nanostructures in static droplet, which offers some guidance toward the design of multiple fluorescence amplification platforms potentially for biosensing. As a demonstration, we used the patterned grown ZnO nanostructures for multiple detection of cancer biomarkers, achieving a low limit of detection as low as 138 fg/mL in the human α-fetoprotein assay and 218 fg/mL in the carcinoembryonic antigen assay with a large dynamic range of 8 orders. These results suggest that such multifunctional microfluidic devices may be useful tools for efficient fluorescence diagnostic assays.
Collapse
Affiliation(s)
- Zhenlong Wang
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Sai-Xi Yu
- Shanghai Institute of Cardiovascular Diseases, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xuan Shao
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Yan-Jun Liu
- Shanghai Institute of Cardiovascular Diseases, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiangtao Wang
- National Trusted Embedded Software Engineering Technology Research Center, East China Normal University, Shanghai 200062, China
| | - Wenhui Xie
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Zhenjie Zhao
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Xin Li
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| |
Collapse
|
6
|
Harriot J, Yeh M, Pabba M, DeVoe DL. Programmable Control of Nanoliter Droplet Arrays using Membrane Displacement Traps. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2300963. [PMID: 38495529 PMCID: PMC10939115 DOI: 10.1002/admt.202300963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 03/19/2024]
Abstract
A unique droplet microfluidic technology enabling programmable deterministic control over complex droplet operations is presented. The platform provides software control over user-defined combinations of droplet generation, capture, ejection, sorting, splitting, and merging sequences to enable the design of flexible assays employing nanoliter-scale fluid volumes. The system integrates a computer vision system with an array of membrane displacement traps capable of performing selected unit operations with automated feedback control. Sequences of individual droplet handling steps are defined through a robust Python-based scripting language. Bidirectional flow control within the microfluidic chips is provided using an H-bridge channel topology, allowing droplets to be transported to arbitrary trap locations within the array for increased operational flexibility. By enabling automated software control over all droplet operations, the system significantly expands the potential of droplet microfluidics for diverse biological and biochemical applications by combining the functionality of robotic liquid handling with the advantages of droplet-based fluid manipulation.
Collapse
Affiliation(s)
- Jason Harriot
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742
- Fishell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742
| | - Michael Yeh
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742
- Fishell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742
| | - Mani Pabba
- Department of Computer Science, University of Maryland, College Park, MD 20742
| | - Don L. DeVoe
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742
- Fishell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742
| |
Collapse
|
7
|
Zhu L, Tao J, Li P, Sun W, Li J, Fan K, Lv J, Qin Y, Zheng K, Zhao B, Zhao Y, Chen Y, Tang Y, Wang W, Liang J. Microfluidic static droplet generated quantum dot arrays as color conversion layers for full-color micro-LED displays. NANOSCALE ADVANCES 2023; 5:2743-2747. [PMID: 37205280 PMCID: PMC10186985 DOI: 10.1039/d2na00765g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/21/2023] [Indexed: 05/21/2023]
Abstract
This paper presents an easy and intact process based on microfluidics static droplet array (SDA) technology to fabricate quantum dot (QD) arrays for full-color micro-LED displays. A minimal sub-pixel size of 20 μm was achieved, and the fluorescence-converted red and green arrays provide good light uniformity of 98.58% and 98.72%, respectively.
Collapse
Affiliation(s)
- Licai Zhu
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun Jilin 130033 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jin Tao
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun Jilin 130033 China
| | - Panyuan Li
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun Jilin 130033 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wenchao Sun
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun Jilin 130033 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiwei Li
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun Jilin 130033 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - KaiLi Fan
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun Jilin 130033 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jinguang Lv
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun Jilin 130033 China
| | - Yuxin Qin
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun Jilin 130033 China
| | - Kaifeng Zheng
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun Jilin 130033 China
| | - Baixuan Zhao
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun Jilin 130033 China
| | - Yingze Zhao
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun Jilin 130033 China
| | - Yupeng Chen
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun Jilin 130033 China
| | - Yingwen Tang
- College of Physics and Information Engineering, Minnan Normal University Zhangzhou 363000 China
| | - Weibiao Wang
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun Jilin 130033 China
| | - Jingqiu Liang
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun Jilin 130033 China
| |
Collapse
|
8
|
Yang H, Jiang L, Guo K, Xiang N. Static droplet array for the synthesis of nonspherical microparticles. Electrophoresis 2023; 44:563-572. [PMID: 36593724 DOI: 10.1002/elps.202200271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
We reported a manually operated static droplet array (SDA)-based device for the synthesis of nonspherical microparticles with different shapes. The improved SDA structure and reversible bonding between poly(dimethylsiloxane) (PDMS) were used in the device for the large-scale synthesis and rapid extraction of nonspherical microparticles. To understand the device physics, the effects of flow rate, SDA well size, and shape on droplet generation performances were explored. The results indicated that droplet generation in SDA structures was insensitive to the flow rate, and monodisperse droplets were generated by the SDA-based device through manually pushing the syringe. Finally, we integrated four kinds of SDA structures in one device and successfully realized the synthesis and extraction of nonspherical microparticles with different shapes and materials. Our SDA-based device offers numerous advantages, such as simple manual operation, low equipment cost, controllable microparticle shapes and sizes, and large-scale production. Thus, it holds the potential to be used as a flexible tool for the production of nonspherical microparticles.
Collapse
Affiliation(s)
- Hang Yang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Lin Jiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Kefan Guo
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| |
Collapse
|
9
|
Rapid metabolomic screening of cancer cells via high-throughput static droplet microfluidics. Biosens Bioelectron 2023; 223:114966. [PMID: 36580816 DOI: 10.1016/j.bios.2022.114966] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022]
Abstract
Effective isolation and in-depth analysis of Circulating Tumour Cells (CTCs) are greatly needed in diagnosis, prognosis and monitoring of the therapeutic response of cancer patients but have not been completely fulfilled by conventional approaches. The rarity of CTCs and the lack of reliable biomarkers to distinguish them from peripheral blood cells have remained outstanding challenges for their clinical implementation. Herein, we developed a high throughput Static Droplet Microfluidic (SDM) device with 38,400 chambers, capable of isolating and classifying the number of metabolically active CTCs in peripheral blood at single-cell resolution. Owing to the miniaturisation and compartmentalisation capability of our device, we first demonstrated the ability to precisely measure the lactate production of different types of cancer cells inside 125 pL droplets at single-cell resolution. Furthermore, we compared the metabolomic activity of leukocytes from healthy donors to cancer cells and showed the ability to differentiate them. To further prove the clinical relevance, we spiked cancer cell lines in human healthy blood and showed the possibility to detect the cancer cells from leukocytes. Lastly, we tested the workflow on 8 preclinical mammary mouse models including syngeneic 67NR (non-metastatic) and 4T1.2 (metastatic) models with Triple-Negative Breast Cancer (TNBC) as well as transgenic mouses (12-week-old MMTV-PyMT). The results have shown the ability to precisely distinguish metabolically active CTCs from the blood using the proposed SDM device. The workflow is simple and robust which can eliminate the need for specialised equipment and expertise required for single-cell analysis of CTCs and facilitate on-site metabolic screening of cancer cells.
Collapse
|
10
|
Jiang L, Yang H, Cheng W, Ni Z, Xiang N. Droplet microfluidics for CTC-based liquid biopsy: a review. Analyst 2023; 148:203-221. [PMID: 36508171 DOI: 10.1039/d2an01747d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Circulating tumor cells (CTCs) are important biomarkers of liquid biopsy. The number and heterogeneity of CTCs play an important role in cancer diagnosis and personalized medicine. However, owing to the low-abundance biomarkers of CTCs, conventional assays are only able to detect CTCs at the population level. Therefore, there is a pressing need for a highly sensitive method to analyze CTCs at the single-cell level. As an important branch of microfluidics, droplet microfluidics is a high-throughput and sensitive single-cell analysis platform for the quantitative detection and heterogeneity analysis of CTCs. In this review, we focus on the quantitative detection and heterogeneity analysis of CTCs using droplet microfluidics. Technologies that enable droplet microfluidics, particularly high-throughput droplet generation and high-efficiency droplet manipulation, are first discussed. Then, recent advances in detecting and analyzing CTCs using droplet microfluidics from the different aspects of nucleic acids, proteins, and metabolites are introduced. The purpose of this review is to provide guidance for the continued study of droplet microfluidics for CTC-based liquid biopsy.
Collapse
Affiliation(s)
- Lin Jiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Hang Yang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Weiqi Cheng
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
11
|
Wolf FG, Siebert DN, Carreño MNP, Lopes AT, Zabot AM, Surmas R. Dual-porosity micromodels for studying multiphase fluid flow in carbonate rocks. LAB ON A CHIP 2022; 22:4680-4692. [PMID: 36346381 DOI: 10.1039/d2lc00445c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Carbonate rocks usually present a wide variation in pore size within a sample and may contain macroscopic pores ranging from a few millimeters to microscopic pores smaller than one micrometer. Therefore, studying the fluid flow inside carbonates presents a challenging problem. This study proposes a methodology to create dual-porosity micromodels for studying single and two-phase fluid flow in multiscale, carbonate-like, rocks. For this purpose, a design technique for Rock-on-a-Chip (ROC) devices based on the Voronoi tessellation was extended to take into account bimodal pore size distributions, allowing the creation of a macroporous system made up of larger channels and vugs that can be filled with distinct microporosity types. The porous media thus generated were then employed to fabricate polymer micromodels by applying the soft lithography technique. Experimental and numerical results show that the microporosity can increase or reduce the permeability, depending on whether it is added to the grains and/or to the large channels. Even when the microporous matrix completely filled the large channels, the addition of vugs did not increase the permeability. Regarding two-phase fluid flow, the location of the steady-state fluids after drainage clearly depends on the proportion and spatial distribution of microporosity, as well as its type. For the micromodel with microporous grains, no significant amount of wetting fluid was displaced from the micropores. In contrast, when microporosities fill the large channels, the injected fluid forces the displacement of the wetting liquid from the micropores, although far from effectively. The novel approach presented in this work represents a step forward in the artificial generation of more representative micromodels for studying fluid flow at the pore scale.
Collapse
Affiliation(s)
- Fabiano G Wolf
- Porous Media Research Group (PORO), Microfluidics Laboratory, Federal University of Santa Catarina, 89219-600 Joinville, SC, Brazil.
| | - Diogo N Siebert
- Porous Media Research Group (PORO), Scientific Computational Laboratory, Federal University of Santa Catarina, 89219-600 Joinville, SC, Brazil
| | - Marcelo N P Carreño
- University of São Paulo (USP), Av. Prof. Luciano Gualberto 158, 05424-970, São Paulo, SP, Brazil
| | - Alexandre T Lopes
- University of São Paulo (USP), Av. Prof. Luciano Gualberto 158, 05424-970, São Paulo, SP, Brazil
| | - Alexandre M Zabot
- Porous Media Research Group (PORO), Scientific Computational Laboratory, Federal University of Santa Catarina, 89219-600 Joinville, SC, Brazil
| | - Rodrigo Surmas
- Leopoldo Américo Miguez de Mello Research and Development Center (CENPES/Petrobras), 21941-598 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
12
|
Bacchin P, Leng J, Salmon JB. Microfluidic Evaporation, Pervaporation, and Osmosis: From Passive Pumping to Solute Concentration. Chem Rev 2021; 122:6938-6985. [PMID: 34882390 DOI: 10.1021/acs.chemrev.1c00459] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Evaporation, pervaporation, and forward osmosis are processes leading to a mass transfer of solvent across an interface: gas/liquid for evaporation and solid/liquid (membrane) for pervaporation and osmosis. This Review provides comprehensive insight into the use of these processes at the microfluidic scales for applications ranging from passive pumping to the screening of phase diagrams and micromaterials engineering. Indeed, for a fixed interface relative to the microfluidic chip, these processes passively induce flows driven only by gradients of chemical potential. As a consequence, these passive-transport phenomena lead to an accumulation of solutes that cannot cross the interface and thus concentrate solutions in the microfluidic chip up to high concentration regimes, possibly up to solidification. The purpose of this Review is to provide a unified description of these processes and associated microfluidic applications to highlight the differences and similarities between these three passive-transport phenomena.
Collapse
Affiliation(s)
- Patrice Bacchin
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - Jacques Leng
- CNRS, Solvay, LOF, UMR 5258, Université de Bordeaux, 33600 Pessac, France
| | | |
Collapse
|
13
|
Babahosseini H, Wangsa D, Pabba M, Ried T, Misteli T, DeVoe DL. Deterministic assembly of chromosome ensembles in a programmable membrane trap array. Biofabrication 2021; 13:10.1088/1758-5090/ac1258. [PMID: 34233304 PMCID: PMC9974010 DOI: 10.1088/1758-5090/ac1258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/07/2021] [Indexed: 11/12/2022]
Abstract
Selective spatial isolation and manipulation of single chromosomes and the controlled formation of defined chromosome ensembles in a droplet-based microfluidic system is presented. The multifunctional microfluidic technology employs elastomer valves and membrane displacement traps to support deterministic manipulation of individual droplets. Picoliter droplets are formed in the 2D array of microscale traps by self-discretization of a nanoliter sample plug, with membranes positioned over each trap allowing controllable metering or full release of selected droplets. By combining discretization, optical interrogation, and selective droplet release for sequential delivery to a downstream merging zone, the system enables efficient manipulation of multiple chromosomes into a defined ensemble with single macromolecule resolution. Key design and operational parameters are explored, and co-compartmentalization of three chromosome pairs is demonstrated as a first step toward formation of precisely defined chromosome ensembles for applications in genetic engineering and synthetic biology.
Collapse
Affiliation(s)
- Hesam Babahosseini
- National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America,Department of Mechanical Engineering, University of Maryland, College Park, MD, United States of America
| | - Darawalee Wangsa
- National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Mani Pabba
- Department of Mechanical Engineering, University of Maryland, College Park, MD, United States of America
| | - Thomas Ried
- National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Don L DeVoe
- Department of Mechanical Engineering, University of Maryland, College Park, MD, United States of America
| |
Collapse
|
14
|
An easy-to-operate method for single-cell isolation and retrieval using a microfluidic static droplet array. Mikrochim Acta 2021; 188:242. [PMID: 34226955 DOI: 10.1007/s00604-021-04897-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/12/2021] [Indexed: 10/20/2022]
Abstract
In-depth study of cellular heterogeneity of rare cells (e.g. circulating tumour cells (CTCs) and circulating foetal cells (CFCs)) is greatly needed in disease management but has never been completely explored due to the current technological limitations. We have developed a retrieval method for single-cell detection using a static droplet array (SDA) device through liquid segmentation with almost no sample loss. We explored the potential of using SDA for low sample input and retrieving the cells of interest using everyday laboratory equipment for downstream molecular analysis. This single-cell isolation and retrieval method is low-cost, rapid and provides a solution to the remaining challenge for single rare cell detection. The entire process takes less than 15 min, is easy to fabricate and allows for on-chip analysis of cells in nanolitre droplets and retrieval of desired droplets. To validate the applicability of our device and method, we mimicked detection of single CTCs by isolating and retrieving single cells and perform real-time PCR on their mRNA contents.
Collapse
|
15
|
Tarn MD, Sikora SNF, Porter GCE, Shim JU, Murray BJ. Homogeneous Freezing of Water Using Microfluidics. MICROMACHINES 2021; 12:223. [PMID: 33672200 PMCID: PMC7926757 DOI: 10.3390/mi12020223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 01/17/2023]
Abstract
The homogeneous freezing of water is important in the formation of ice in clouds, but there remains a great deal of variability in the representation of the homogeneous freezing of water in the literature. The development of new instrumentation, such as droplet microfluidic platforms, may help to constrain our understanding of the kinetics of homogeneous freezing via the analysis of monodisperse, size-selected water droplets in temporally and spatially controlled environments. Here, we evaluate droplet freezing data obtained using the Lab-on-a-Chip Nucleation by Immersed Particle Instrument (LOC-NIPI), in which droplets are generated and frozen in continuous flow. This high-throughput method was used to analyse over 16,000 water droplets (86 μm diameter) across three experimental runs, generating data with high precision and reproducibility that has largely been unrepresented in the microfluidic literature. Using this data, a new LOC-NIPI parameterisation of the volume nucleation rate coefficient (JV(T)) was determined in the temperature region of -35.1 to -36.9 °C, covering a greater JV(T) compared to most other microfluidic techniques thanks to the number of droplets analysed. Comparison to recent theory suggests inconsistencies in the theoretical representation, further implying that microfluidics could be used to inform on changes to parameterisations. By applying classical nucleation theory (CNT) to our JV(T) data, we have gone a step further than other microfluidic homogeneous freezing examples by calculating the stacking-disordered ice-supercooled water interfacial energy, estimated to be 22.5 ± 0.7 mJ m-2, again finding inconsistencies when compared to theoretical predictions. Further, we briefly review and compile all available microfluidic homogeneous freezing data in the literature, finding that the LOC-NIPI and other microfluidically generated data compare well with commonly used non-microfluidic datasets, but have generally been obtained with greater ease and with higher numbers of monodisperse droplets.
Collapse
Affiliation(s)
- Mark D. Tarn
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK; (S.N.F.S.); (G.C.E.P.)
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK;
| | - Sebastien N. F. Sikora
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK; (S.N.F.S.); (G.C.E.P.)
| | - Grace C. E. Porter
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK; (S.N.F.S.); (G.C.E.P.)
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK;
| | - Jung-uk Shim
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK;
| | - Benjamin J. Murray
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK; (S.N.F.S.); (G.C.E.P.)
| |
Collapse
|
16
|
Roy P, Liu S, Dutcher CS. Droplet Interfacial Tensions and Phase Transitions Measured in Microfluidic Channels. Annu Rev Phys Chem 2021; 72:73-97. [PMID: 33607917 DOI: 10.1146/annurev-physchem-090419-105522] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Measurements of droplet phase and interfacial tension (IFT) are important in the fields of atmospheric aerosols and emulsion science. Bulk macroscale property measurements with similar constituents cannot capture the effect of microscopic length scales and highly curved surfaces on the transport characteristics and heterogeneous chemistry typical in these applications. Instead, microscale droplet measurements ensure properties are measured at the relevant length scale. With recent advances in microfluidics, customized multiphase fluid flows can be created in channels for the manipulation and observation of microscale droplets in an enclosed setting without the need for large and expensive control systems. In this review, we discuss the applications of different physical principles at the microscale and corresponding microfluidic approaches for the measurement of droplet phase state, viscosity, and IFT.
Collapse
Affiliation(s)
- Priyatanu Roy
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, USA;
| | - Shihao Liu
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, USA;
| | - Cari S Dutcher
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, USA; .,Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
17
|
Zhao Z, Su S, Zhou H, Qiu W, Qiu P, Kan Q. "Fast" Plasmons Propagating in Graphene Plasmonic Waveguides with Negative Index Metamaterial Claddings. NANOMATERIALS 2020; 10:nano10091637. [PMID: 32825372 PMCID: PMC7557730 DOI: 10.3390/nano10091637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/18/2020] [Indexed: 12/02/2022]
Abstract
We propose the monolayer graphene plasmonic waveguide (MGPW), which is composed of graphene core sandwiched by two graphene metamaterial (GMM) claddings and investigate the properties of plasmonic modes propagating in the waveguide. The effective refraction index of the GMMs claddings takes negative (or positive) at the vicinity of the Dirac-like point in the band structure. We show that when the effective refraction index of the GMMs is positive, the plasmons travel forward in the MGPW with a positive group velocity (vg > 0, vp > 0). In contrast—for the negative refraction index GMM claddings—a negative group velocity of the fundamental mode (vg < 0, vp > 0) appears in the proposed waveguide structure when the core is sufficiently narrow. A forbidden band appears between the negative and positive group velocity regions, which is enhanced gradually as the width of the core increases. On the other hand, one can overcome this limitation and even make the forbidden band disappear by increasing the chemical potential difference between the nanodisks and the ambient graphene of the GMM claddings. The proposed structure offers a novel scheme of on-chip electromagnetic field and may find significant applications in the future high density plasmonic integrated circuit technique.
Collapse
Affiliation(s)
- Zeyang Zhao
- College of Information, Science and Engineering, Huaqiao University, Xiamen 361021, China; (Z.Z.); (H.Z.)
| | - Shaojian Su
- College of Information, Science and Engineering, Huaqiao University, Xiamen 361021, China; (Z.Z.); (H.Z.)
- Correspondence: (S.S.); (W.Q.)
| | - Hengjie Zhou
- College of Information, Science and Engineering, Huaqiao University, Xiamen 361021, China; (Z.Z.); (H.Z.)
| | - Weibin Qiu
- College of Information, Science and Engineering, Huaqiao University, Xiamen 361021, China; (Z.Z.); (H.Z.)
- Fujian Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, China
- Correspondence: (S.S.); (W.Q.)
| | - Pingping Qiu
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100086, China; (P.Q.); (Q.K.)
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100086, China
| | - Qiang Kan
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100086, China; (P.Q.); (Q.K.)
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100086, China
| |
Collapse
|
18
|
Han C, He X, Wang J, Gao L, Yang G, Li D, Wang S, Chen X, Peng Z. A low-cost smartphone controlled portable system with accurately confined on-chip 3D electrodes for flow-through cell electroporation. Bioelectrochemistry 2020; 134:107486. [DOI: 10.1016/j.bioelechem.2020.107486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 11/16/2022]
|
19
|
Asghari E, Moosavi A, Hannani SK. Non-Newtonian droplet-based microfluidics logic gates. Sci Rep 2020; 10:9293. [PMID: 32518389 PMCID: PMC7283233 DOI: 10.1038/s41598-020-66337-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 03/06/2020] [Indexed: 11/09/2022] Open
Abstract
Droplet-based microfluidic logic gates have many applications in diagnostic assays and biosciences due to their automation and the ability to be cascaded. In spite of many bio-fluids, such as blood exhibit non-Newtonian characteristics, all the previous studies have been concerned with the Newtonian fluids. Moreover, none of the previous studies has investigated the operating regions of the logic gates. In this research, we consider a typical AND/OR logic gate with a power-law fluid. We study the effects of important parameters such as the power-law index, the droplet length, the capillary number, and the geometrical parameters of the microfluidic system on the operating regions of the system. The results indicate that AND/OR states mechanism function in opposite directions. By increasing the droplet length, the capillary number and the power-law index, the operating region of AND state increases while the operating region of OR state reduces. Increasing the channel width will decrease the operating region of AND state while it increases the operating region of OR state. For proper operation of the logic gate, it should work in both AND/OR states appropriately. By combining the operating regions of these two states, the overall operating region of the logic gate is achieved.
Collapse
Affiliation(s)
- Elmira Asghari
- Center of Excellence in Energy Conversion (CEEC), School of Mechanical Engineering, Sharif University of Technology, Azadi Avenue, P. O. Box 11365-9567, Tehran, Iran
| | - Ali Moosavi
- Center of Excellence in Energy Conversion (CEEC), School of Mechanical Engineering, Sharif University of Technology, Azadi Avenue, P. O. Box 11365-9567, Tehran, Iran.
| | - Siamak Kazemzadeh Hannani
- Center of Excellence in Energy Conversion (CEEC), School of Mechanical Engineering, Sharif University of Technology, Azadi Avenue, P. O. Box 11365-9567, Tehran, Iran
| |
Collapse
|
20
|
Babahosseini H, Padmanabhan S, Misteli T, DeVoe DL. A programmable microfluidic platform for multisample injection, discretization, and droplet manipulation. BIOMICROFLUIDICS 2020; 14:014112. [PMID: 32038741 PMCID: PMC7002170 DOI: 10.1063/1.5143434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 01/26/2020] [Indexed: 05/03/2023]
Abstract
A programmable microfluidic platform enabling on-demand sampling, compartmentalization, and manipulation of multiple aqueous volumes is presented. The system provides random-access actuation of a microtrap array supporting selective discretization of picoliter volumes from multiple sample inputs. The platform comprises two interconnected chips, with parallel T-junctions and multiplexed microvalves within one chip enabling programmable injection of aqueous sample plugs, and nanoliter volumes transferred to a second microtrap array chip in which the plugs are actively discretized into picoliter droplets within a static array of membrane displacement actuators. The system employs two different multiplexer designs that reduce the number of input signals required for both sample injection and discretization. This versatile droplet-based technology offers flexible sample workflows and functionalities for the formation and manipulation of heterogeneous picoliter droplets, with particular utility for applications in biochemical synthesis and cell-based assays requiring flexible and programmable operation of parallel and multistep droplet processes. The platform is used here for the selective encapsulation of differentially labeled cells within a discrete droplet array.
Collapse
Affiliation(s)
| | - Supriya Padmanabhan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Don L. DeVoe
- Author to whom correspondence should be addressed:. Tel.: +1-301-405-8125
| |
Collapse
|
21
|
Complete inclusion of bioactive molecules and particles in polydimethylsiloxane: a straightforward process under mild conditions. Sci Rep 2019; 9:17575. [PMID: 31772250 PMCID: PMC6879495 DOI: 10.1038/s41598-019-54155-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/17/2019] [Indexed: 11/18/2022] Open
Abstract
By applying a slow curing process, we show that biomolecules can be incorporated via a simple process as liquid stable phases inside a polydimethylsiloxane (PDMS) matrix. The process is carried out under mild conditions with regards to temperature, pH and relative humidity, and is thus suitable for application to biological entities. Fluorescence and enzymatic activity measurements show that the biochemical properties of the proteins and enzyme tested are preserved, without loss due to adsorption at the liquid-polymer interface. Protected from external stimuli by the PDMS matrix, these soft liquid composite materials are new tools of interest for robotics, microfluidics, diagnostics and chemical microreactors.
Collapse
|
22
|
Berry SB, Lee JJ, Berthier J, Berthier E, Theberge AB. Droplet Incubation and Splitting in Open Microfluidic Channels. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2019; 11:4528-4536. [PMID: 32528558 PMCID: PMC7289158 DOI: 10.1039/c9ay00758j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Droplet-based microfluidics enables compartmentalization and controlled manipulation of small volumes. Open microfluidics provides increased accessibility, adaptability, and ease of manufacturing compared to closed microfluidic platforms. Here, we begin to build a toolbox for the emerging field of open channel droplet-based microfluidics, combining the ease of use associated with open microfluidic platforms with the benefits of compartmentalization afforded by droplet-based microfluidics. We develop fundamental microfluidic features to control droplets flowing in an immiscible carrier fluid within open microfluidic systems. Our systems use capillary flow to move droplets and carrier fluid through open channels and are easily fabricated through 3D printing, micromilling, or injection molding; further, droplet generation can be accomplished by simply pipetting an aqueous droplet into an empty open channel. We demonstrate on-chip incubation of multiple droplets within an open channel and subsequent transport (using an immiscible carrier phase) for downstream experimentation. We also present a method for tunable droplet splitting in open channels driven by capillary flow. Additional future applications of our toolbox for droplet manipulation in open channels include cell culture and analysis, on-chip microscale reactions, and reagent delivery.
Collapse
Affiliation(s)
- Samuel B. Berry
- Department of Chemistry, University of Washington, Box
351700, Seattle, Washington 98195, USA
| | - Jing J. Lee
- Department of Chemistry, University of Washington, Box
351700, Seattle, Washington 98195, USA
| | - Jean Berthier
- Department of Chemistry, University of Washington, Box
351700, Seattle, Washington 98195, USA
| | - Erwin Berthier
- Department of Chemistry, University of Washington, Box
351700, Seattle, Washington 98195, USA
| | - Ashleigh B. Theberge
- Department of Chemistry, University of Washington, Box
351700, Seattle, Washington 98195, USA
- Department of Urology, University of Washington School of
Medicine, Seattle, Washington 98105, USA
- Corresponding author: Dr. Ashleigh
Theberge,
| |
Collapse
|
23
|
O’Keefe CM, Kaushik AM, Wang TH. Highly Efficient Real-Time Droplet Analysis Platform for High-Throughput Interrogation of DNA Sequences by Melt. Anal Chem 2019; 91:11275-11282. [DOI: 10.1021/acs.analchem.9b02346] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Christine M. O’Keefe
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Aniruddha M. Kaushik
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
24
|
Babahosseini H, Padmanabhan S, Misteli T, DeVoe DL. A Scalable Random Access Micro-traps Array for Formation, Selective Retrieval and Capturing of Individual Droplets. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2019:1054-1057. [PMID: 31946075 PMCID: PMC8320702 DOI: 10.1109/embc.2019.8857768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Formation, selective retrieval and capturing of individual droplets are key operational capabilities needed for a broad range of droplet microfluidic applications. The membrane displacement trap (MDT) element gives a robust method for uniform discretization and controllable manipulation of aqueous droplets using an enclosed micro-well covered by an elastomer membrane. This capability can be scaled up by combining the modular elements with a system design that requires a minimal number of signal inputs. Incorporation of MDT elements with a pneumatically-controllable multiplexer system can lead to a scalable random access MDT array platform for liquid discretization and selective manipulation. Herein, we report the design and development of a programmable droplet microfluidic platform for liquid sampling and selectively handling up to 32 individual droplets using 10 pneumatic signal inputs. The multiplexer system can logarithmically scale up capacity of the MDT array platform, making it possible to manipulate hundreds droplets.
Collapse
|
25
|
Fanalista F, Birnie A, Maan R, Burla F, Charles K, Pawlik G, Deshpande S, Koenderink GH, Dogterom M, Dekker C. Shape and Size Control of Artificial Cells for Bottom-Up Biology. ACS NANO 2019; 13:5439-5450. [PMID: 31074603 PMCID: PMC6543616 DOI: 10.1021/acsnano.9b00220] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/10/2019] [Indexed: 05/27/2023]
Abstract
Bottom-up biology is an expanding research field that aims to understand the mechanisms underlying biological processes via in vitro assembly of their essential components in synthetic cells. As encapsulation and controlled manipulation of these elements is a crucial step in the recreation of such cell-like objects, microfluidics is increasingly used for the production of minimal artificial containers such as single-emulsion droplets, double-emulsion droplets, and liposomes. Despite the importance of cell morphology on cellular dynamics, current synthetic-cell studies mainly use spherical containers, and methods to actively shape manipulate these have been lacking. In this paper, we describe a microfluidic platform to deform the shape of artificial cells into a variety of shapes (rods and discs) with adjustable cell-like dimensions below 5 μm, thereby mimicking realistic cell morphologies. To illustrate the potential of our method, we reconstitute three biologically relevant protein systems (FtsZ, microtubules, collagen) inside rod-shaped containers and study the arrangement of the protein networks inside these synthetic containers with physiologically relevant morphologies resembling those found in living cells.
Collapse
Affiliation(s)
- Federico Fanalista
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Anthony Birnie
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Renu Maan
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Federica Burla
- Department
of Living Matter, Biological Soft Matter Group, AMOLF, Science Park
104, 1098 XG Amsterdam, The Netherlands
| | - Kevin Charles
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Grzegorz Pawlik
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Siddharth Deshpande
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Gijsje H. Koenderink
- Department
of Living Matter, Biological Soft Matter Group, AMOLF, Science Park
104, 1098 XG Amsterdam, The Netherlands
| | - Marileen Dogterom
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Cees Dekker
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
26
|
Babahosseini H, Misteli T, DeVoe DL. Microfluidic on-demand droplet generation, storage, retrieval, and merging for single-cell pairing. LAB ON A CHIP 2019; 19:493-502. [PMID: 30623951 PMCID: PMC6692136 DOI: 10.1039/c8lc01178h] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A multifunctional microfluidic platform combining on-demand aqueous-phase droplet generation, multi-droplet storage, and controlled merging of droplets selected from a storage library in a single integrated microfluidic device is described. A unique aspect of the technology is a microfluidic trap design comprising a droplet trap chamber and lateral bypass channels integrated with a microvalve that supports the capture and merger of multiple droplets over a wide range of individual droplet sizes. A storage unit comprising an array of microfluidic traps operates in a first-in first-out manner, allowing droplets stored within the library to be analyzed before sequentially delivering selected droplets to a downstream merging zone, while shunting other droplets to waste. Performance of the microfluidic trap is investigated for variations in bypass/chamber hydrodynamic resistance ratio, micro-chamber geometry, trapped droplet volume, and overall flow rate. The integrated microfluidic platform is then utilized to demonstrate the operational steps necessary for cell-based assays requiring the isolation of defined cell populations with single cell resolution, including encapsulation of individual cells within an aqueous-phase droplet carrier, screening or incubation of the immobilized cell-encapsulated droplets, and generation of controlled combinations of individual cells through the sequential droplet merging process. Beyond its utility for cell analysis, the presented platform represents a versatile approach to robust droplet generation, storage, and merging for use in a wide range of droplet-based microfluidics applications.
Collapse
Affiliation(s)
- Hesam Babahosseini
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA and Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742 USA.
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Don L DeVoe
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742 USA.
| |
Collapse
|
27
|
Jang MB, Moon T, Choi JH, Chung SH, Ha JW, Lim JM, Lee SK, Yang SM, Youm KH, Shin K, Yi GR. On-demand Microfluidic Manipulation of Thermally Stable Water-in-Perfluorocarbon Emulsions. Macromol Res 2018. [DOI: 10.1007/s13233-018-6144-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Toprakcioglu Z, Challa PK, Levin A, Knowles TPJ. Observation of molecular self-assembly events in massively parallel microdroplet arrays. LAB ON A CHIP 2018; 18:3303-3309. [PMID: 30270398 DOI: 10.1039/c8lc00862k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The self-assembly of peptide and protein molecules into nanoscale filaments is a process associated with both biological function and malfunction. Microfluidic techniques can provide powerful tools in the study of such aggregation phenomena while providing access to exploring the role of molecular interactions in disease development. Yet, a common challenge encountered in the study of protein aggregation is the difficulty in achieving spatial and temporal control of the underlying processes. Here, we present a planar (2-D) device allowing for both the generation and confinement of 10 000 monodisperse water-in-oil droplets in an array of chambers with a trapping efficiency of 99%. Due to the specific geometry of the device, droplets can be formed and immediately trapped on the same chip, without the need for continuous flow of the oil phase. Furthermore, we demonstrate the capability of this device as a platform to study the aggregation kinetics and determine stochastic molecular nanoscale self-assembly events in a highly parallel manner for the aggregation of the dipeptide, diphenylalanine, the core recognition motif of the Aβ-42 peptide associated with Alzheimer's disease. The ability to reproducibly generate and confine monodisperse water-in-oil droplets with an extremely high trapping efficiency while maintaining entrapment under zero-flow conditions, on timescales compatible with observing molecular self-assembly events, renders it promising for numerous potential further applications in the biological and biophysical fields.
Collapse
Affiliation(s)
- Zenon Toprakcioglu
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | | | | | | |
Collapse
|
29
|
Wang X, Liu Z, Pang Y. Droplet breakup in an asymmetric bifurcation with two angled branches. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
30
|
Rambach RW, Biswas P, Yadav A, Garstecki P, Franke T. Fast selective trapping and release of picoliter droplets in a 3D microfluidic PDMS multi-trap system with bubbles. Analyst 2018; 143:843-849. [PMID: 29234760 DOI: 10.1039/c7an01100h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The selective manipulation and incubation of individual picoliter drops in high-throughput droplet based microfluidic devices still remains challenging. We used a surface acoustic wave (SAW) to induce a bubble in a 3D designed multi-trap polydimethylsiloxane (PDMS) device to manipulate multiple droplets and demonstrate the selection, incubation and on-demand release of aqueous droplets from a continuous oil flow. By controlling the position of the acoustic actuation, individual droplets are addressed and selectively released from a droplet stream of 460 drops per s. A complete trapping and releasing cycle can be as short as 70 ms and has no upper limit for incubation time. We characterize the fluidic function of the hybrid device in terms of electric power, pulse duration and acoustic path.
Collapse
Affiliation(s)
- Richard W Rambach
- Soft Matter and Biological Physics Group, Universität Augsburg, Universitätsstr. 1, D-86159 Augsburg, Germany
| | | | | | | | | |
Collapse
|
31
|
Gicquel Y, Schubert R, Kapis S, Bourenkov G, Schneider T, Perbandt M, Betzel C, Chapman HN, Heymann M. Microfluidic Chips for In Situ Crystal X-ray Diffraction and In Situ Dynamic Light Scattering for Serial Crystallography. J Vis Exp 2018. [PMID: 29757285 PMCID: PMC6100780 DOI: 10.3791/57133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
This protocol describes fabricating microfluidic devices with low X-ray background optimized for goniometer based fixed target serial crystallography. The devices are patterned from epoxy glue using soft lithography and are suitable for in situ X-ray diffraction experiments at room temperature. The sample wells are lidded on both sides with polymeric polyimide foil windows that allow diffraction data collection with low X-ray background. This fabrication method is undemanding and inexpensive. After the sourcing of a SU-8 master wafer, all fabrication can be completed outside of a cleanroom in a typical research lab environment. The chip design and fabrication protocol utilize capillary valving to microfluidically split an aqueous reaction into defined nanoliter sized droplets. This loading mechanism avoids the sample loss from channel dead-volume and can easily be performed manually without using pumps or other equipment for fluid actuation. We describe how isolated nanoliter sized drops of protein solution can be monitored in situ by dynamic light scattering to control protein crystal nucleation and growth. After suitable crystals are grown, complete X-ray diffraction datasets can be collected using goniometer based in situ fixed target serial X-ray crystallography at room temperature. The protocol provides custom scripts to process diffraction datasets using a suite of software tools to solve and refine the protein crystal structure. This approach avoids the artefacts possibly induced during cryo-preservation or manual crystal handling in conventional crystallography experiments. We present and compare three protein structures that were solved using small crystals with dimensions of approximately 10-20 µm grown in chip. By crystallizing and diffracting in situ, handling and hence mechanical disturbances of fragile crystals is minimized. The protocol details how to fabricate a custom X-ray transparent microfluidic chip suitable for in situ serial crystallography. As almost every crystal can be used for diffraction data collection, these microfluidic chips are a very efficient crystal delivery method.
Collapse
Affiliation(s)
- Yannig Gicquel
- Center for Free Electron Laser Science, DESY; Department of Physics, University of Hamburg
| | - Robin Schubert
- Institute for Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg; The Hamburg Center for Ultrafast Imaging, University of Hamburg; Integrated Biology Infrastructure Life-Science Facility at the European XFEL (XBI)
| | - Svetlana Kapis
- Institute for Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg
| | | | | | - Markus Perbandt
- Institute for Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg; The Hamburg Center for Ultrafast Imaging, University of Hamburg
| | - Christian Betzel
- Institute for Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg; The Hamburg Center for Ultrafast Imaging, University of Hamburg; Integrated Biology Infrastructure Life-Science Facility at the European XFEL (XBI)
| | - Henry N Chapman
- Center for Free Electron Laser Science, DESY; Department of Physics, University of Hamburg; The Hamburg Center for Ultrafast Imaging, University of Hamburg
| | - Michael Heymann
- Center for Free Electron Laser Science, DESY; Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry;
| |
Collapse
|
32
|
Quan PL, Sauzade M, Brouzes E. dPCR: A Technology Review. SENSORS (BASEL, SWITZERLAND) 2018; 18:E1271. [PMID: 29677144 PMCID: PMC5948698 DOI: 10.3390/s18041271] [Citation(s) in RCA: 379] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/13/2018] [Accepted: 04/15/2018] [Indexed: 12/17/2022]
Abstract
Digital Polymerase Chain Reaction (dPCR) is a novel method for the absolute quantification of target nucleic acids. Quantification by dPCR hinges on the fact that the random distribution of molecules in many partitions follows a Poisson distribution. Each partition acts as an individual PCR microreactor and partitions containing amplified target sequences are detected by fluorescence. The proportion of PCR-positive partitions suffices to determine the concentration of the target sequence without a need for calibration. Advances in microfluidics enabled the current revolution of digital quantification by providing efficient partitioning methods. In this review, we compare the fundamental concepts behind the quantification of nucleic acids by dPCR and quantitative real-time PCR (qPCR). We detail the underlying statistics of dPCR and explain how it defines its precision and performance metrics. We review the different microfluidic digital PCR formats, present their underlying physical principles, and analyze the technological evolution of dPCR platforms. We present the novel multiplexing strategies enabled by dPCR and examine how isothermal amplification could be an alternative to PCR in digital assays. Finally, we determine whether the theoretical advantages of dPCR over qPCR hold true by perusing studies that directly compare assays implemented with both methods.
Collapse
Affiliation(s)
- Phenix-Lan Quan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Martin Sauzade
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Eric Brouzes
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
33
|
Bleier BJ, Anna SL, Walker LM. Microfluidic Droplet-Based Tool To Determine Phase Behavior of a Fluid System with High Composition Resolution. J Phys Chem B 2018; 122:4067-4076. [DOI: 10.1021/acs.jpcb.8b01013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Blake J. Bleier
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Shelley L. Anna
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Lynn M. Walker
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
34
|
Adamo M, Poulos AS, G Lopez C, Martel A, Porcar L, Cabral JT. Droplet microfluidic SANS. SOFT MATTER 2018; 14:1759-1770. [PMID: 29355865 DOI: 10.1039/c7sm02433a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The coupling of droplet microfluidics and Small Angle Neutron Scattering (SANS) is demonstrated with a range of model systems: isotopic solvent (H2O/D2O) mixtures, surfactant (sodium dodecyl sulfate, SDS) solutions and colloidal (silica) suspensions. Several droplet carrier phases are evaluated and fluorinated oil emerges as a suitable fluid with minimal neutron background scattering (commensurate with air), and excellent interfacial properties. The combined effects of flow dispersion and compositional averaging caused by the neutron beam footprint are evaluated in both continuous and droplet flows and an operational window is established. Systematic droplet-SANS dilution measurements of colloidal silica suspensions enable unprecedented quantification of form and structure factors, osmotic compressibility, enhanced by constrained global data fits. Contrast variation measurements with over 100 data points are readily carried out in 10-20 min timescales, and validated for colloidal silica of two sizes, in both continuous and droplet flows. While droplet microfluidics is established as an attractive platform for SANS, the compositional averaging imposed by large (∼1 cm) beam footprints can, under certain circumstances, make single phase, continuous flow a preferable option for low scattering systems. We propose simple guidelines to assess the suitability of either approach based on well-defined system parameters.
Collapse
Affiliation(s)
- Marco Adamo
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.
| | | | | | | | | | | |
Collapse
|
35
|
Zhang L, Liu Z, Pang Y, Wang X, Li M, Ren Y. Trapping a moving droplet train by bubble guidance in microfluidic networks. RSC Adv 2018; 8:8787-8794. [PMID: 35539830 PMCID: PMC9078607 DOI: 10.1039/c7ra13507f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/21/2018] [Indexed: 12/20/2022] Open
Abstract
Trapping a train of moving droplets into preset positions within a microfluidic device facilitates the long-term observation of biochemical reactions inside the droplets. In this paper, a new bubble-guided trapping method, which can remarkably improve the limited narrow two-phase flow rate range of uniform trapping, was proposed by taking advantage of the unique physical property that bubbles do not coalescence with two-phase fluids and the hydrodynamic characteristic of large flow resistance of bubbles. The flow behaviors of bubble-free and bubble-guided droplet trains were compared and analyzed under the same two-phase flow rates. The experimental results show that the droplets trapped by bubble-free guided trapping exhibit the four trapping modes of sequentially uniform trapping, non-uniform trapping induced by break-up and collision, and failed trapping due to squeezing through, and the droplets exhibit the desired uniform trapping in a relatively small two-phase flow rate range. Compared with bubble-free guided droplets, bubble-guided droplets also show four trapping modes. However, the two-phase flow rate range in which uniform trapping occurs is increased significantly and the uniformity of the trapped droplet array is improved. This investigation is beneficial to enhance the applicability of microfluidic chips for storing droplets in a passive way.
Collapse
Affiliation(s)
- Longxiang Zhang
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology Beijing 100124 China
| | - Zhaomiao Liu
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology Beijing 100124 China
| | - Yan Pang
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology Beijing 100124 China
| | - Xiang Wang
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology Beijing 100124 China
| | - Mengqi Li
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology Beijing 100124 China
| | - Yanlin Ren
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology Beijing 100124 China
| |
Collapse
|
36
|
Nandy L, Dutcher CS. Phase Behavior of Ammonium Sulfate with Organic Acid Solutions in Aqueous Aerosol Mimics Using Microfluidic Traps. J Phys Chem B 2018; 122:3480-3490. [DOI: 10.1021/acs.jpcb.7b10655] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lucy Nandy
- Department of Mechanical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Cari S. Dutcher
- Department of Mechanical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
37
|
Suteria NS, Nekouei M, Vanapalli SA. Microfluidic bypass manometry: highly parallelized measurement of flow resistance of complex channel geometries and trapped droplets. LAB ON A CHIP 2018; 18:343-355. [PMID: 29264612 DOI: 10.1039/c7lc00889a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Current lithography methods allow facile fabrication of microfluidic conduits where not only the shape of the bounding walls can be arbitrarily varied but also the internal conduit space can be laden with a variety of microstructures and wetting properties. This virtually infinite design space of microfluidic geometries brings in the challenge of how to quantify fluid resistance in a large number of microfluidic conduits, while maintaining operational simplicity. We report a versatile experimental technique referred to as microfluidic bypass manometry for measurement of pressure drop versus flow rate (ΔP-Q) relations in a parallelized manner. The technique involves introducing co-flowing laminar streams into a microfluidic network that contains a series of loops, where each loop is comprised of a test geometry and a bypass channel as a flow-rate sensing element. We optimize the network geometry and present operational considerations for microfluidic bypass manometry. To demonstrate the power of our technique, we used single-phase fluids and measured ΔP-Q relations simultaneously for forty test geometries ranging from linear to contraction-expansion to serpentine to pillar-laden microchannels. To expand the capabilities of the method, we measured ΔP-Q relations for similar-sized oil droplets trapped in microcavities where the cavity geometry spans from prisms of 3-10 sides to circular disks. We found in all cases, the ΔP-Q relation is nonlinear and the flow resistance of droplets is sensitive to confinement. At high flow rates, the drop resistance depends on the cavity geometry and is higher in a triangular prism compared to a circular disk. We compared the measured flow resistance of single-phase fluids and droplets in different microfluidic geometries to that from computational fluid dynamics simulations and found them to be in excellent agreement. Given the simplicity and versatility of the microfluidic bypass manometry method, we anticipate that it may find broad application in several areas including design of lab-on-chip devices, laminar drag reduction and mechanics of deformable particles.
Collapse
Affiliation(s)
- Naureen S Suteria
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, USA.
| | | | | |
Collapse
|
38
|
Aubry G, Lu H. Droplet array for screening acute behaviour response to chemicals in Caenorhabditis elegans. LAB ON A CHIP 2017; 17:4303-4311. [PMID: 29120477 DOI: 10.1039/c7lc00945c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Caenorhabditis elegans is an excellent model organism for studying chemosensation as a significant part of its nervous system and genome are devoted to the detection of chemical cues. Studies of decision-making, learning, mating behaviour, and intraspecies communication require measuring the acute behavioural response to chemical stimulation. Such assays require precise and repeatable chemical delivery and are often arduous when performed manually. Microfluidic platforms have been developed for chemosensation studies in C. elegans. However, these platforms lack temporal resolution in chemical delivery necessary for screening acute behaviour and cannot selectively recover animals, a necessary feature for genetic screens. Here we present a droplet array for screening acute behavioural responses of C. elegans to chemical stimulation. Using droplets enables isolating the worms and controlling the chemical environment. The chamber design of the static array allows continuous monitoring of animal behaviour. By combining a gradient of confinement and flow restriction features, we demonstrate selective and sequential trapping of multiple droplets as well as their release on demand. These functions enable repeated capture of animals, monitoring of their behaviour upon chemical stimulation and subsequent release. To demonstrate the ability to screen multiple conditions, we measured worm thrashing activity in response to different concentrations of tetramisole. To illustrate the ability to capture acute behavioural responses, we monitored the behavioural response of male to pheromone stimulation. Due to the versatility of the chamber operation and its ultra-low volume uses of reagents, we envision this platform to be highly suited to combinatorial screening and drug discovery.
Collapse
Affiliation(s)
- G Aubry
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, USA.
| | | |
Collapse
|
39
|
Sposito AJ, DeVoe DL. Staggered trap arrays for robust microfluidic sample digitization. LAB ON A CHIP 2017; 17:4105-4112. [PMID: 29090708 DOI: 10.1039/c7lc00846e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A sample digitization method that exploits the controlled pinning of fluid at geometric discontinuities within an array of staggered microfluidic traps is presented. The staggered trap design enables reliable sample filling within high aspect ratio microwells, even when employing substrate materials such as thermoplastics that are not gas permeable. A simple geometric model is developed to predict the impact of device geometry on sample filling and discretization, and validated experimentally using fabricated cyclic olefin polymer devices. Using the developed design guidelines, a 768-element staggered trap array is demonstrated, with reliable passive loading and discretization achieved within 5 min. The resulting discretization platform offers a simplified workflow with flexible trap design, reliable discretization, and repeatable operation using low-cost thermoplastic substrates.
Collapse
Affiliation(s)
- A J Sposito
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA.
| | | |
Collapse
|
40
|
Rambach RW, Linder K, Heymann M, Franke T. Droplet trapping and fast acoustic release in a multi-height device with steady-state flow. LAB ON A CHIP 2017; 17:3422-3430. [PMID: 28792054 DOI: 10.1039/c7lc00378a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We demonstrate a novel multilayer polydimethylsiloxane (PDMS) device for selective storage and release of single emulsion droplets. Drops are captured in a microchannel cavity and can be released on-demand through a triggered surface acoustic wave pulse. The surface acoustic wave (SAW) is excited by a tapered interdigital transducer (TIDT) deposited on a piezoelectric lithium niobate (LiNbO3) substrate and inverts the pressure difference across the cavity trap to push a drop out of the trap and back into the main flow channel. Droplet capture and release does not require a flow rate change, flow interruption, flow inversion or valve action and can be achieved in as fast as 20 ms. This allows both on-demand droplet capture for analysis and monitoring over arbitrary time scales, and continuous device operation with a high droplet rate of 620 drops per s. We hence decouple long-term droplet interrogation from other operations on the chip. This will ease integration with other microfluidic droplet operations and functional components.
Collapse
Affiliation(s)
- Richard W Rambach
- Soft Matter and Biological Physics Group, Universität Augsburg, Universitätsstr. 1, D-86159 Augsburg, Germany
| | | | | | | |
Collapse
|
41
|
Wong AHH, Li H, Jia Y, Mak PI, Martins RPDS, Liu Y, Vong CM, Wong HC, Wong PK, Wang H, Sun H, Deng CX. Drug screening of cancer cell lines and human primary tumors using droplet microfluidics. Sci Rep 2017; 7:9109. [PMID: 28831060 PMCID: PMC5567315 DOI: 10.1038/s41598-017-08831-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/19/2017] [Indexed: 01/23/2023] Open
Abstract
Precision Medicine in Oncology requires tailoring of therapeutic strategies to individual cancer patients. Due to the limited quantity of tumor samples, this proves to be difficult, especially for early stage cancer patients whose tumors are small. In this study, we exploited a 2.4 × 2.4 centimeters polydimethylsiloxane (PDMS) based microfluidic chip which employed droplet microfluidics to conduct drug screens against suspended and adherent cancer cell lines, as well as cells dissociated from primary tumor of human patients. Single cells were dispersed in aqueous droplets and imaged within 24 hours of drug treatment to assess cell viability by ethidium homodimer 1 staining. Our results showed that 5 conditions could be screened for every 80,000 cells in one channel on our chip under current circumstances. Additionally, screening conditions have been adapted to both suspended and adherent cancer cells, giving versatility to potentially all types of cancers. Hence, this study provides a powerful tool for rapid, low-input drug screening of primary cancers within 24 hours after tumor resection from cancer patients. This paves the way for further technological advancement to cutting down sample size and increasing drug screening throughput in advent to personalized cancer therapy.
Collapse
Affiliation(s)
- Ada Hang-Heng Wong
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China
| | - Haoran Li
- State-Key Laboratory of Analog and Mixed-Signal VLSI (AMSV), University of Macau, Macau, China
| | - Yanwei Jia
- State-Key Laboratory of Analog and Mixed-Signal VLSI (AMSV), University of Macau, Macau, China
| | - Pui-In Mak
- State-Key Laboratory of Analog and Mixed-Signal VLSI (AMSV), University of Macau, Macau, China
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Rui Paulo da Silva Martins
- State-Key Laboratory of Analog and Mixed-Signal VLSI (AMSV), University of Macau, Macau, China
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China
- Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Yan Liu
- Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Macau, China
| | - Chi Man Vong
- Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Macau, China
| | - Hang Cheong Wong
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Pak Kin Wong
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Haitao Wang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China
| | - Heng Sun
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China
| | - Chu-Xia Deng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China.
| |
Collapse
|
42
|
Huang H, Yu Y, Hu Y, He X, Usta OB, Yarmush ML. Generation and manipulation of hydrogel microcapsules by droplet-based microfluidics for mammalian cell culture. LAB ON A CHIP 2017; 17:1913-1932. [PMID: 28509918 PMCID: PMC5548188 DOI: 10.1039/c7lc00262a] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Hydrogel microcapsules provide miniaturized and biocompatible niches for three-dimensional (3D) in vitro cell culture. They can be easily generated by droplet-based microfluidics with tunable size, morphology, and biochemical properties. Therefore, microfluidic generation and manipulation of cell-laden microcapsules can be used for 3D cell culture to mimic the in vivo environment towards applications in tissue engineering and high throughput drug screening. In this review of recent advances mainly since 2010, we will first introduce general characteristics of droplet-based microfluidic devices for cell encapsulation with an emphasis on the fluid dynamics of droplet breakup and internal mixing as they directly influence microcapsule's size and structure. We will then discuss two on-chip manipulation strategies: sorting and extraction from oil into aqueous phase, which can be integrated into droplet-based microfluidics and significantly improve the qualities of cell-laden hydrogel microcapsules. Finally, we will review various applications of hydrogel microencapsulation for 3D in vitro culture on cell growth and proliferation, stem cell differentiation, tissue development, and co-culture of different types of cells.
Collapse
Affiliation(s)
- Haishui Huang
- Center for Engineering in Medicine, Massachusetts General Hospital,
Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts
02114, United States
| | - Yin Yu
- Center for Engineering in Medicine, Massachusetts General Hospital,
Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts
02114, United States
| | - Yong Hu
- Center for Engineering in Medicine, Massachusetts General Hospital,
Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts
02114, United States
| | - Xiaoming He
- Department of Biomedical Engineering, The Ohio State University,
Columbus, USA
| | - O. Berk Usta
- Center for Engineering in Medicine, Massachusetts General Hospital,
Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts
02114, United States
| | - Martin L. Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital,
Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts
02114, United States
- Department of Biomedical Engineering, Rutgers University,
Piscataway, New Jersey 08854, United States
| |
Collapse
|
43
|
Kim M, Leong CM, Pan M, Blauch LR, Tang SKY. High-Efficiency and High-Throughput On-Chip Exchange of the Continuous Phase in Droplet Microfluidic Systems. SLAS Technol 2017; 22:529-535. [PMID: 28402212 DOI: 10.1177/2472630317692558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This article describes an integrated platform for the on-chip exchange of the continuous phase in droplet microfluidic systems. The drops used in this work are stabilized by amphiphilic nanoparticles. For some characterizations and applications of these nanoparticle-stabilized drops, including the measurement of adsorption dynamics of nanoparticles to the droplet surface, it is necessary to change the composition of the continuous phase from that used during the droplet generation process. Thus far, no work has reported the exchange of the continuous phase for a large number (>1 million) of drops in a microfluidic system. This article describes the design and characterization of a high-efficiency and high-throughput on-chip exchanger of the continuous phase in a continuous-flow droplet microfluidic system. The efficiency of exchange was higher than 97%. The throughput was greater than 1 million drops/min, and this can be increased further by increasing the number of parallel exchangers used. Because drops are injected into the exchanger in a continuous-flow manner, the method is directly compatible with automation to further increase its reliability and potential scale-up.
Collapse
Affiliation(s)
- Minkyu Kim
- 1 Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Chia Min Leong
- 1 Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Ming Pan
- 2 Department of Material Science and Engineering, Stanford University, Stanford, CA, USA
| | - Lucas R Blauch
- 1 Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Sindy K Y Tang
- 1 Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
44
|
Courtney M, Chen X, Chan S, Mohamed T, Rao PPN, Ren CL. Droplet Microfluidic System with On-Demand Trapping and Releasing of Droplet for Drug Screening Applications. Anal Chem 2016; 89:910-915. [PMID: 27959505 DOI: 10.1021/acs.analchem.6b04039] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Matthew Courtney
- Department
of Nanotechnology Engineering, University of Waterloo, 200 University
Avenue West, Waterloo, Canada
| | - Xiaoming Chen
- Department
of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Canada
| | - Sarah Chan
- Department
of Nanotechnology Engineering, University of Waterloo, 200 University
Avenue West, Waterloo, Canada
| | - Tarek Mohamed
- School
of Pharmacy, Health Sciences Campus, University of Waterloo, 200 University
Avenue West, Waterloo, Canada
| | - Praveen P. N. Rao
- School
of Pharmacy, Health Sciences Campus, University of Waterloo, 200 University
Avenue West, Waterloo, Canada
| | - Carolyn L. Ren
- Department
of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Canada
| |
Collapse
|
45
|
McMillan KS, Boyd M, Zagnoni M. Transitioning from multi-phase to single-phase microfluidics for long-term culture and treatment of multicellular spheroids. LAB ON A CHIP 2016; 16:3548-3557. [PMID: 27477673 DOI: 10.1039/c6lc00884d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
When compared to methodologies based on low adhesion or hanging drop plates, droplet microfluidics offers several advantages for the formation and culture of multicellular spheroids, such as the potential for higher throughput screening and the use of reduced cell numbers, whilst providing increased stability for plate handling. However, a drawback of the technology is its characteristic compartmentalisation which limits the nutrients available to cells within an emulsion and poses challenges to the exchange of the encapsulated solution, often resulting in short-term cell culture and/or viability issues. The aim of this study was to develop a multi-purpose microfluidic platform that combines the high-throughput characteristics of multi-phase flows with that of ease of perfusion typical of single-phase microfluidics. We developed a versatile system to upscale the formation and long-term culture of multicellular spheroids for testing anticancer treatments, creating an array of fluidically addressable, compact spheroids that could be cultured in either medium or within a gel scaffold. The work provides proof-of-concept results for using this system to test both chemo- and radio-therapeutic protocols using in vitro 3D cancer models.
Collapse
Affiliation(s)
- Kay S McMillan
- Centre for Microsystems and Photonics, Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, UK.
| | | | | |
Collapse
|
46
|
Vleugel M, Roth S, Groenendijk CF, Dogterom M. Reconstitution of Basic Mitotic Spindles in Spherical Emulsion Droplets. J Vis Exp 2016. [PMID: 27584979 DOI: 10.3791/54278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mitotic spindle assembly, positioning and orientation depend on the combined forces generated by microtubule dynamics, microtubule motor proteins and cross-linkers. Growing microtubules can generate pushing forces, while depolymerizing microtubules can convert the energy from microtubule shrinkage into pulling forces, when attached, for example, to cortical dynein or chromosomes. In addition, motor proteins and diffusible cross-linkers within the spindle contribute to spindle architecture by connecting and sliding anti-parallel microtubules. In vivo, it has proven difficult to unravel the relative contribution of individual players to the overall balance of forces. Here we present the methods that we recently developed in our efforts to reconstitute basic mitotic spindles bottom-up in vitro. Using microfluidic techniques, centrosomes and tubulin are encapsulated in water-in-oil emulsion droplets, leading to the formation of geometrically confined (double) microtubule asters. By additionally introducing cortically anchored dynein, plus-end directed microtubule motors and diffusible cross-linkers, this system is used to reconstitute spindle-like structures. The methods presented here provide a starting point for reconstitution of more complete mitotic spindles, allowing for a detailed study of the contribution of each individual component, and for obtaining an integrated quantitative view of the force-balance within the mitotic spindle.
Collapse
Affiliation(s)
- Mathijs Vleugel
- Department of Bionanoscience, Delft University of Technology
| | - Sophie Roth
- Department of Bionanoscience, Delft University of Technology
| | | | | |
Collapse
|
47
|
Koppula KS, Fan R, Veerapalli KR, Wan J. Integrated microfluidic system with simultaneous emulsion generation and concentration. J Colloid Interface Sci 2016; 466:162-7. [PMID: 26722797 DOI: 10.1016/j.jcis.2015.12.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/11/2015] [Accepted: 12/17/2015] [Indexed: 11/24/2022]
Abstract
Because the size, size distribution, and concentration of emulsions play an important role in most of the applications, controlled emulsion generation and effective concentration are of great interest in fundamental and applied studies. While microfluidics has been demonstrated to be able to produce emulsion drops with controlled size, size distribution, and hierarchical structures, progress of controlled generation of concentrated emulsions is limited. Here, we present an effective microfluidic emulsion generation system integrated with an orifice structure to separate aqueous droplets from the continuous oil phase, resulting in concentrated emulsion drops in situ. Both experimental and simulation results show that the efficiency of separation is determined by a balance between pressure drop and droplet accumulation near the orifice. By manipulating this balance via changing flow rates and microfluidic geometry, we can achieve monodisperse droplets on chip that have a concentration as high as 80,000 drops per microliter (volume fraction of 66%). The present approach thus provides insights to the design of microfluidic device that can be used to concentrate emulsions (drops and bubbles), colloidal particles (drug delivery polymer particles), and biological particles (cells and bacteria) when volume fractions as high as 66% are necessary.
Collapse
|
48
|
Konry T, Sarkar S, Sabhachandani P, Cohen N. Innovative Tools and Technology for Analysis of Single Cells and Cell-Cell Interaction. Annu Rev Biomed Eng 2016; 18:259-84. [PMID: 26928209 DOI: 10.1146/annurev-bioeng-090215-112735] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heterogeneity in single-cell responses and intercellular interactions results from complex regulation of cell-intrinsic and environmental factors. Single-cell analysis allows not only detection of individual cellular characteristics but also correlation of genetic content with phenotypic traits in the same cell. Technological advances in micro- and nanofabrication have benefited single-cell analysis by allowing precise control of the localized microenvironment, cell manipulation, and sensitive detection capabilities. Additionally, microscale techniques permit rapid, high-throughput, multiparametric screening that has become essential for -omics research. This review highlights innovative applications of microscale platforms in genetic, proteomic, and metabolic detection in single cells; cell sorting strategies; and heterotypic cell-cell interaction. We discuss key design aspects of single-cell localization and isolation in microfluidic systems, dynamic and endpoint analyses, and approaches that integrate highly multiplexed detection of various intracellular species.
Collapse
Affiliation(s)
- Tania Konry
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115; , , ,
| | - Saheli Sarkar
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115; , , ,
| | - Pooja Sabhachandani
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115; , , ,
| | - Noa Cohen
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115; , , ,
| |
Collapse
|
49
|
Kasule JS, Maddala J, Mobed P, Rengaswamy R. Very large scale droplet microfluidic integration (VLDMI) using genetic algorithm. Comput Chem Eng 2016. [DOI: 10.1016/j.compchemeng.2015.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Cybulski O, Jakiela S, Garstecki P. Between giant oscillations and uniform distribution of droplets: The role of varying lumen of channels in microfluidic networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:063008. [PMID: 26764805 DOI: 10.1103/physreve.92.063008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Indexed: 06/05/2023]
Abstract
The simplest microfluidic network (a loop) comprises two parallel channels with a common inlet and a common outlet. Recent studies that assumed a constant cross section of the channels along their length have shown that the sequence of droplets entering the left (L) or right (R) arm of the loop can present either a uniform distribution of choices (e.g., RLRLRL...) or long sequences of repeated choices (RRR...LLL), with all the intermediate permutations being dynamically equivalent and virtually equally probable to be observed. We use experiments and computer simulations to show that even small variation of the cross section along channels completely shifts the dynamics either into the strong preference for highly grouped patterns (RRR...LLL) that generate system-size oscillations in flow or just the opposite-to patterns that distribute the droplets homogeneously between the arms of the loop. We also show the importance of noise in the process of self-organization of the spatiotemporal patterns of droplets. Our results provide guidelines for rational design of systems that reproducibly produce either grouped or homogeneous sequences of droplets flowing in microfluidic networks.
Collapse
Affiliation(s)
- Olgierd Cybulski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Slawomir Jakiela
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Department of Biophysics, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Piotr Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|