1
|
Schäufele TJ, Kolbinger A, Friedel J, Gurke R, Geisslinger G, Weigert A, Pierre S, Scholich K. Meloxicam treatment disrupts the regional structure of innate inflammation sites by targeting the pro-inflammatory effects of prostanoids. Br J Pharmacol 2024; 181:1051-1067. [PMID: 37823675 DOI: 10.1111/bph.16261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/10/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Non-steroidal anti-inflammatory drugs (NSAIDs) are the most widely prescribed drugs in the world due to their analgesic, antipyretic and anti-inflammatory effects. However, NSAIDs inhibit prostanoid synthesis, interfering with their pro-inflammatory and anti-inflammatory functions and potentially prolonging acute inflammation. EXPERIMENTAL APPROACH We used high-content immunohistochemistry to define the impact of meloxicam treatment on spatially separated pro-inflammatory and anti-inflammatory processes during innate inflammation in mice induced by zymosan. This allowed us to determine the effect of meloxicam treatment on the organization of pro-inflammatory and anti-inflammatory microenvironments, thereby identifying relevant changes in immune cell localization, recruitment and activation. KEY RESULTS Meloxicam treatment reduced zymosan-induced thermal hypersensitivity at early time points but delayed its resolution. High-content immunohistochemistry revealed that the pro-inflammatory area was smaller after treatment, diminishing neutrophil recruitment, M1-like macrophage polarization, and especially phagocytosis by neutrophils and macrophages. The polarization of macrophages towards the M2-like anti-inflammatory phenotype was unaffected, and the number of anti-inflammatory eosinophils actually increased. CONCLUSION AND IMPLICATIONS High-content immunohistochemistry was able to identify relevant meloxicam-mediated effects on inflammatory processes based on alterations in the regional structure of inflammation sites. Meloxicam delayed the clearance of pathogens by inhibiting pro-inflammatory processes, causing prolonged inflammation. Our data suggest that the prescription of NSAIDs as a treatment during an acute pathogen-driven inflammation should be reconsidered in patients with compromised immune systems.
Collapse
Affiliation(s)
- Tim J Schäufele
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
| | - Anja Kolbinger
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
| | - Joschua Friedel
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Sandra Pierre
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
| | - Klaus Scholich
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Frankfurt, Germany
| |
Collapse
|
2
|
Dorochow E, Kraus N, Chenaux-Repond N, Pierre S, Kolbinger A, Geisslinger G, Ortiz C, Welsch C, Trebicka J, Gurke R, Hahnefeld L, Klein S, Scholich K. Differential Lipidomics, Metabolomics and Immunological Analysis of Alcoholic and Non-Alcoholic Steatohepatitis in Mice. Int J Mol Sci 2023; 24:10351. [PMID: 37373497 DOI: 10.3390/ijms241210351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) and alcoholic steatohepatitis (ASH) are the leading causes of liver disease worldwide. To identify disease-specific pathomechanisms, we analyzed the lipidome, metabolome and immune cell recruitment in livers in both diseases. Mice harboring ASH or NASH had comparable disease severities regarding mortality rate, neurological behavior, expression of fibrosis marker and albumin levels. Lipid droplet size was higher in NASH than ASH and qualitative differences in the lipidome were mainly based on incorporation of diet-specific fatty acids into triglycerides, phosphatidylcholines and lysophosphatidylcholines. Metabolomic analysis showed downregulated nucleoside levels in both models. Here, the corresponding uremic metabolites were only upregulated in NASH suggesting stronger cellular senescence, which was supported by lower antioxidant levels in NASH as compared to ASH. While altered urea cycle metabolites suggest increased nitric oxide synthesis in both models, in ASH, this depended on increased L-homoarginine levels indicating a cardiovascular response mechanism. Interestingly, only in NASH were the levels of tryptophan and its anti-inflammatory metabolite kynurenine upregulated. Fittingly, high-content immunohistochemistry showed a decreased macrophage recruitment and an increased polarization towards M2-like macrophages in NASH. In conclusion, with comparable disease severity in both models, higher lipid storage, oxidative stress and tryptophan/kynurenine levels were seen in NASH, leading to distinct immune responses.
Collapse
Affiliation(s)
- Erika Dorochow
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Nico Kraus
- Center for Internal Medicine, Hospital of the Goethe University Frankfurt, 60323 Frankfurt, Germany
| | - Nicolas Chenaux-Repond
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Sandra Pierre
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Anja Kolbinger
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, 60590 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, 60596 Frankfurt, Germany
| | - Cristina Ortiz
- Center for Internal Medicine, Hospital of the Goethe University Frankfurt, 60323 Frankfurt, Germany
| | - Christoph Welsch
- Center for Internal Medicine, Hospital of the Goethe University Frankfurt, 60323 Frankfurt, Germany
| | - Jonel Trebicka
- Clinic for Internal Medicine B, Hospital of the University of Münster, 48149 Münster, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, 60590 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, 60596 Frankfurt, Germany
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, 60590 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, 60596 Frankfurt, Germany
| | - Sabine Klein
- Clinic for Internal Medicine B, Hospital of the University of Münster, 48149 Münster, Germany
| | - Klaus Scholich
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, 60590 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, 60596 Frankfurt, Germany
| |
Collapse
|
3
|
Kolbinger A, Schäufele TJ, Steigerwald H, Friedel J, Pierre S, Geisslinger G, Scholich K. Eosinophil-derived IL-4 is necessary to establish the inflammatory structure in innate inflammation. EMBO Mol Med 2023; 15:e16796. [PMID: 36541656 PMCID: PMC9906331 DOI: 10.15252/emmm.202216796] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Pathogen-induced inflammation comprises pro- and anti-inflammatory processes, which ensure pathogen removal and containment of the proinflammatory activities. Here, we aimed to identify the development of inflammatory microenvironments and their maintenance throughout the course of a toll-like receptor 2-mediated paw inflammation. Within 24 h after pathogen-injection, the immune cells were organized in three zones, which comprised a pathogen-containing "core-region", a bordering proinflammatory (PI)-region and an outer anti-inflammatory (AI)-region. Eosinophils were present in all three inflammatory regions and adapted their cytokine profile according to their localization. Eosinophil depletion reduced IL-4 levels and increased edema formation as well as mechanical and thermal hypersensitivities during resolution of inflammation. Also, in the absence of eosinophils PI- and AI-regions could not be determined anymore, neutrophil numbers increased, and efferocytosis as well as M2-macrophage polarization were reduced. IL-4 administration restored in eosinophil-depleted mice PI- and AI-regions, normalized neutrophil numbers, efferocytosis, M2-macrophage polarization as well as resolution of zymosan-induced hypersensitivity. In conclusion, IL-4-expressing eosinophils support the resolution of inflammation by enabling the development of an anti-inflammatory framework, which encloses proinflammatory regions.
Collapse
Affiliation(s)
- Anja Kolbinger
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Tim J Schäufele
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Hanna Steigerwald
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Joschua Friedel
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Sandra Pierre
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Frankfurt, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany.,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Frankfurt, Germany
| | - Klaus Scholich
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Frankfurt, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany.,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Frankfurt, Germany
| |
Collapse
|
4
|
Zhang J, Pan Z, Zhou J, Zhang L, Tang J, Gong S, Li F, Yu B, Zhang Y, Kou J. The myosin II inhibitor, blebbistatin, ameliorates pulmonary endothelial barrier dysfunction in acute lung injury inducedB19 by LPS via NMMHC IIA/Wnt5a/β-catenin pathway. Toxicol Appl Pharmacol 2022; 450:116132. [PMID: 35716767 PMCID: PMC9527152 DOI: 10.1016/j.taap.2022.116132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Acute lung injury (ALI) or its most advanced form, acute respiratory distress syndrome (ARDS), is a severe inflammatory pulmonary process triggered by varieties of pathophysiological factors, among which endothelial barrier disruption plays a critical role in the progression of ALI/ARDS. As an inhibitor of myosin II, blebbistatin inhibits endothelial barrier damage. This study aimed to investigate the effect of blebbistatin on lung endothelial barrier dysfunction in LPS induced acute lung injury and its potential mechanism. Mice were challenged with LPS (5 mg/kg) by intratracheal instillation for 6 h to disrupt the pulmonary endothelial barrier in the model group. Blebbistatin (5 mg/kg, ip) was administrated 1 h before LPS challenge. The results showed that blebbistatin could significantly attenuate LPS-induced lung injury and pulmonary endothelial barrier dysfunction. And we observed that blebbistatin inhibited the activation of NMMHC IIA/Wnt5a/β-catenin pathway in pulmonary endothelium after LPS treatment. In murine lung vascular endothelial cells (MLECs) and human umbilical vein endothelial cells (HUVECs), we further confirmed that Blebbistatin (1 μmol/L) markedly ameliorated endothelial barrier dysfunction in MLECs and HUVECs by modulating NMMHC IIA/Wnt5a/β-catenin pathway. Our data demonstrated that blebbistatin could inhibit the development of pulmonary endothelial barrier dysfunction and ALI via NMMHC IIA/Wnt5a/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jiazhi Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ziqian Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jianhao Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ling Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiahui Tang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Shuaishuai Gong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Fang Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Boyang Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuanyuan Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Junping Kou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
5
|
Kolbinger A, Kestner RI, Jencio L, Schäufele TJ, Vutukuri R, Pfeilschifter W, Scholich K. Behind the Wall-Compartment-Specific Neovascularisation during Post-Stroke Recovery in Mice. Cells 2022; 11:1659. [PMID: 35626695 PMCID: PMC9139871 DOI: 10.3390/cells11101659] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke is a highly prevalent vascular disease leading to oxygen- and glucose deprivation in the brain. In response, ischemia-induced neovascularization occurs, which is supported by circulating CD34+ endothelial progenitor cells. Here, we used the transient middle cerebral artery occlusion (tMCAO) mouse model to characterize the spatio-temporal alterations within the ischemic core from the acute to the chronic phase using multiple-epitope-ligand cartography (MELC) for sequential immunohistochemistry. We found that around 14 days post-stroke, significant angiogenesis occurs in the ischemic core, as determined by the presence of CD31+/CD34+ double-positive endothelial cells. This neovascularization was accompanied by the recruitment of CD4+ T-cells and dendritic cells as well as IBA1+ and IBA1- microglia. Neighborhood analysis identified, besides pericytes only for T-cells and dendritic cells, a statistically significant distribution as direct neighbors of CD31+/CD34+ endothelial cells, suggesting a role for these cells in aiding angiogenesis. This process was distinct from neovascularization of the peri-infarct area as it was separated by a broad astroglial scar. At day 28 post-stroke, the scar had emerged towards the cortical periphery, which seems to give rise to a neuronal regeneration within the peri-infarct area. Meanwhile, the ischemic core has condensed to a highly vascularized subpial region adjacent to the leptomeningeal compartment. In conclusion, in the course of chronic post-stroke regeneration, the astroglial scar serves as a seal between two immunologically active compartments-the peri-infarct area and the ischemic core-which exhibit distinct processes of neovascularization as a central feature of post-stroke tissue remodeling. Based on our findings, we propose that neovascularization of the ischemic core comprises arteriogenesis as well as angiogenesis originating from the leptomenigeal vasculature.
Collapse
Affiliation(s)
- Anja Kolbinger
- Institute of Clinical Pharmacology, pharmazentrum frankfurt Goethe-University, D-60590 Frankfurt am Main, Germany; (A.K.); (T.J.S.)
| | - Roxane Isabelle Kestner
- Department of Neurology, Hospital of the Goethe University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany; (R.I.K.); (L.J.)
- Institute of Pharmacology and Toxicology, pharmazentrum frankfurt Goethe-University, D-60590 Frankfurt am Main, Germany; (R.V.); (W.P.)
| | - Lara Jencio
- Department of Neurology, Hospital of the Goethe University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany; (R.I.K.); (L.J.)
| | - Tim J. Schäufele
- Institute of Clinical Pharmacology, pharmazentrum frankfurt Goethe-University, D-60590 Frankfurt am Main, Germany; (A.K.); (T.J.S.)
| | - Rajkumar Vutukuri
- Institute of Pharmacology and Toxicology, pharmazentrum frankfurt Goethe-University, D-60590 Frankfurt am Main, Germany; (R.V.); (W.P.)
| | - Waltraud Pfeilschifter
- Institute of Pharmacology and Toxicology, pharmazentrum frankfurt Goethe-University, D-60590 Frankfurt am Main, Germany; (R.V.); (W.P.)
- Department of Neurology and Clinical Neurophysiology, Municipal Hospital Lüneburg, D-21339 Lüneburg, Germany
| | - Klaus Scholich
- Institute of Clinical Pharmacology, pharmazentrum frankfurt Goethe-University, D-60590 Frankfurt am Main, Germany; (A.K.); (T.J.S.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, D-60596 Frankfurt am Main, Germany
| |
Collapse
|
6
|
Kornstädt L, Pierre S, Weigert A, Ebersberger S, Schäufele TJ, Kolbinger A, Schmid T, Cohnen J, Thomas D, Ferreirós N, Brüne B, Ebersberger I, Scholich K. Bacterial and Fungal Toll-Like Receptor Activation Elicits Type I IFN Responses in Mast Cells. Front Immunol 2021; 11:607048. [PMID: 33643293 PMCID: PMC7907501 DOI: 10.3389/fimmu.2020.607048] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/29/2020] [Indexed: 01/18/2023] Open
Abstract
Next to their role in IgE-mediated allergic diseases and in promoting inflammation, mast cells also have antiinflammatory functions. They release pro- as well as antiinflammatory mediators, depending on the biological setting. Here we aimed to better understand the role of mast cells during the resolution phase of a local inflammation induced with the Toll-like receptor (TLR)-2 agonist zymosan. Multiple sequential immunohistology combined with a statistical neighborhood analysis showed that mast cells are located in a predominantly antiinflammatory microenvironment during resolution of inflammation and that mast cell-deficiency causes decreased efferocytosis in the resolution phase. Accordingly, FACS analysis showed decreased phagocytosis of zymosan and neutrophils by macrophages in mast cell-deficient mice. mRNA sequencing using zymosan-induced bone marrow-derived mast cells (BMMC) revealed a strong type I interferon (IFN) response, which is known to enhance phagocytosis by macrophages. Both, zymosan and lipopolysaccharides (LPS) induced IFN-β synthesis in BMMCs in similar amounts as in bone marrow derived macrophages. IFN-β was expressed by mast cells in paws from naïve mice and during zymosan-induced inflammation. As described for macrophages the release of type I IFNs from mast cells depended on TLR internalization and endosome acidification. In conclusion, mast cells are able to produce several mediators including IFN-β, which are alone or in combination with each other able to regulate the phagocytotic activity of macrophages during resolution of inflammation.
Collapse
Affiliation(s)
- Lisa Kornstädt
- Institute of Clinical Pharmacology, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Sandra Pierre
- Institute of Clinical Pharmacology, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | | | - Tim J. Schäufele
- Institute of Clinical Pharmacology, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Anja Kolbinger
- Institute of Clinical Pharmacology, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Tobias Schmid
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Jennifer Cohnen
- Institute of Clinical Pharmacology, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Nerea Ferreirós
- Institute of Clinical Pharmacology, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
- Project Group Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt am Main, Germany
| | - Ingo Ebersberger
- Department for Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe-University Frankfurt, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre (S-BIKF), Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| | - Klaus Scholich
- Institute of Clinical Pharmacology, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
- Project Group Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
| |
Collapse
|
7
|
Phelps DS, Chinchilli VM, Weisz J, Shearer D, Zhang X, Floros J. Using toponomics to characterize phenotypic diversity in alveolar macrophages from male mice treated with exogenous SP-A1. Biomark Res 2020; 8:5. [PMID: 32082572 PMCID: PMC7020580 DOI: 10.1186/s40364-019-0181-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/30/2019] [Indexed: 01/12/2023] Open
Abstract
Background We used the Toponome Imaging System (TIS) to identify “patterns of marker expression”, referred to here as combinatorial molecular phenotypes (CMPs) in alveolar macrophages (AM) in response to the innate immune molecule, SP-A1. Methods We compared 114 AM from male SP-A deficient mice. One group (n = 3) was treated with exogenous human surfactant protein A1 (hSP-A1) and the other with vehicle (n = 3). AM obtained by bronchoalveolar lavage were plated onto slides and analyzed using TIS to study the AM toponome, the spatial network of proteins within intact cells. With TIS, each slide is sequentially immunostained with multiple FITC-conjugated antibodies. Images are analyzed pixel-by-pixel identifying all of the proteins within each pixel, which are then designated as CMPs. CMPs represent organized protein clusters postulated to contribute to specific functions. Results 1) We compared identical CMPs in KO and SP-A1 cells and found them to differ significantly (p = 0.0007). Similarities between pairs of markers in the two populations also differed significantly (p < 0.0001). 2) Focusing on the 20 most abundant CMPs for each cell, we developed a method to generate CMP “signatures” that characterized various groups of cells. Phenotypes were defined as cells exhibiting similar signatures of CMPs. i) AM were extremely diverse and each group contained cells with multiple phenotypes. ii) Among the 114 AM analyzed, no two cells were identical. iii) However, CMP signatures could distinguish among cell subpopulations within and between groups. iv) Some cell populations were enriched with SP-A1 treatment, some were more common without SP-A1, and some seemed not to be influenced by the presence of SP-A1. v) We also found that AM were more diverse in mice treated with SP-A1 compared to those treated with vehicle. Conclusions AM diversity is far more extensive than originally thought. The increased diversity of SP-A1-treated mice points to the possibility that SP-A1 enhances or activates several pathways in the AM to better prepare it for its innate immune functions and other functions shown previously to be affected by SP-A treatment. Future studies may identify key protein(s) responsible for CMP integrity and consequently for a given function, and target it for therapeutic purposes.
Collapse
Affiliation(s)
- David S Phelps
- 1Penn State Center for Host defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Vernon M Chinchilli
- 2Public Health Sciences; and Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Judith Weisz
- 3Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Debra Shearer
- 3Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Xuesheng Zhang
- 1Penn State Center for Host defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Joanna Floros
- 1Penn State Center for Host defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA.,3Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| |
Collapse
|
8
|
Martin LM, Möller M, Weiss U, Russe OQ, Scholich K, Pierre S, Geisslinger G, Niederberger E. 5-Amino-1-β-D-Ribofuranosyl-Imidazole-4-Carboxamide (AICAR) Reduces Peripheral Inflammation by Macrophage Phenotype Shift. Int J Mol Sci 2019; 20:ijms20133255. [PMID: 31269729 PMCID: PMC6651813 DOI: 10.3390/ijms20133255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/18/2022] Open
Abstract
The stimulation of the AMP-activated kinase (AMPK) by 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR) has been associated with antihyperalgesia and the inhibition of nociceptive signaling in the spinal cord in models of paw inflammation. The attenuated nociception comes along with a strongly reduced paw edema, indicating that peripheral antiinflammatory mechanisms contribute to antinociception. In this study, we investigated the impact of AICAR on the immune cell composition in inflamed paws, as well as the regulation of inflammatory and resolving markers in macrophages. By using fluorescence-activated cell sorting (FACS) analysis and immunofluorescence, we found a significantly increased fraction of proresolving M2 macrophages and anti-inflammatory interleukin (IL)-10 in inflamed tissue, while M1 macrophages and proinflammatory cytokines such as IL-1 were decreased by AICAR in wild type mice. In AMPKα2 knock-out mice, the M2 polarization of macrophages in the paw was missing. The results were supported by experiments in primary macrophage cultures which also showed a shift to a proresolving phenotype with decreased levels of proinflammatory mediators and increased levels of antiinflammatory mediators. However, in the cell cultures, we did not observe differences between the AMPKα2+/+ and -/- cells, thus indicating that the AICAR-induced effects are at least partially AMPK-independent. In summary, our results indicate that AICAR has potent antiinflammatory and proresolving properties in inflammation which are contributing to a reduction of inflammatory edema and antinociception.
Collapse
Affiliation(s)
- Lisa Maria Martin
- pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Moritz Möller
- pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Ulrike Weiss
- pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Otto Quintus Russe
- pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Klaus Scholich
- pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Sandra Pierre
- pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Gerd Geisslinger
- pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Ellen Niederberger
- pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
9
|
Vasopressin regulates hypothalamic GnRH synthesis: Histomorphological evidence in hypothalamus and biological effects in GT1-7 cells. Life Sci 2019; 227:166-174. [PMID: 31026452 DOI: 10.1016/j.lfs.2019.04.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 01/03/2023]
Abstract
AIMS To investigate the direct histomorphological clues and observe the biological effects of VP acting on gonadotropin-releasing hormone (GnRH) secretion. MAIN METHODS Immunofluorescence was conducted to investigate the expressions of GnRH and VP in experimental left varicocele (ELV) rats and ELV repair rats. The colocalization of GnRH and VP was observed by electron microscopy immunohistochemistry. The protein-protein interaction between GnRH and VP was tested by co-immunoprecipitation (co-IP) and the proximity ligation assay (PLA). The effects of intracellular and extracellular VP on GnRH and relative transcription factors (Oct-1, Otx2, Pbx1b and DREAM) were respectively evaluated in VP overexpressed and VP treated GT1-7 cells. KEY FINDINGS Both hypothalamic GnRH and VP decreased in ELV rats and recovered by ELV repair. The overlapped immunolocalizations of GnRH and VP mainly distributed in the lateral part of the arcuate nucleus (ArcL) and median eminence (ME) with a Manders' overlap coefficient of 0.743 ± 0.117. Immunoreactive substances of GnRH and VP existed in the same and adjacent terminals. VP overexpression did not cause any significant effects on the expressions of GnRH and Oct-1, as well as GnRH promoter activity. While 50-200 pg/ml VP treatments increased GnRH mRNA levels in a dose- and time-dependent manner in GT1-7 cells. Additionally, 200 pg/ml VP triggered a marked promotion of expressions of GnRH, Oct-1, Oxt2 Pbx1b and DREAM, as well as GnRH promoter activity (P < 0.05). SIGNIFICANCE The results reveal the colocalization and interaction of VP and GnRH, which will be conducive to explain the effects and mechanisms of VP acting on reproduction.
Collapse
|
10
|
Olesen CW, Vogensen J, Axholm I, Severin M, Schnipper J, Pedersen IS, von Stemann JH, Schrøder JM, Christensen DP, Pedersen SF. Trafficking, localization and degradation of the Na +,HCO 3- co-transporter NBCn1 in kidney and breast epithelial cells. Sci Rep 2018; 8:7435. [PMID: 29743600 PMCID: PMC5943355 DOI: 10.1038/s41598-018-25059-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 04/13/2018] [Indexed: 01/28/2023] Open
Abstract
The Na+;HCO3− co-transporter NBCn1 (SLC4A7) is a major regulator of intracellular pH yet its trafficking and turnover are essentially unstudied. Here, we used MDCK-II and MCF-7 cells to investigate these processes in epithelial cells. GFP-NBCn1 membrane localization was abolished by truncation of the full NBCn1 C-terminal tail (C-tail) yet did not require the C-terminal PDZ-binding motif (ETSL). Glutathione-S-Transferase-pulldown of the C-tail followed by mass spectrometry analysis revealed putative interactions with multiple sorting-, degradation- and retention factors, including the scaffolding protein RACK1. Pulldown of FLAG-tagged deletion constructs mapped the RACK1 interaction to the proximal NBCn1 C-tail. Proximity Ligation Assay and co-immunoprecipitation confirmed that native NBCn1 interacts with RACK1 in a cellular context. Consistent with a functional role of this complex, RACK1 knockdown reduced NBCn1 membrane localization without affecting total NBCn1 expression. Notably, only non-confluent cells exhibited detectable NBCn1-RACK1 plasma membrane co-localization, suggesting that RACK1 regulates the trafficking of NBCn1 to the membrane. Whereas total NBCn1 degradation was slow, with a half-life of more than 24 h, one-third of surface NBCn1 was constitutively endocytosed from the basolateral membrane within 60 min. This suggests that a fraction of NBCn1 exhibits recycling between the basolateral membrane and intracellular compartment(s). Our findings have important implications for understanding NBCn1 regulation as well as its dysregulation in disease.
Collapse
Affiliation(s)
- Christina Wilkens Olesen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Jens Vogensen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Ida Axholm
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Marc Severin
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Julie Schnipper
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Isabella Skandorff Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Jakob Hjorth von Stemann
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Jacob Morville Schrøder
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Dan Ploug Christensen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark.
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark.
| |
Collapse
|
11
|
Oertel S, Scholich K, Weigert A, Thomas D, Schmetzer J, Trautmann S, Wegner MS, Radeke HH, Filmann N, Brüne B, Geisslinger G, Tegeder I, Grösch S. Ceramide synthase 2 deficiency aggravates AOM-DSS-induced colitis in mice: role of colon barrier integrity. Cell Mol Life Sci 2017; 74:3039-3055. [PMID: 28405720 PMCID: PMC11107765 DOI: 10.1007/s00018-017-2518-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 02/07/2023]
Abstract
Loss of intestinal barrier functions is a hallmark of inflammatory bowel disease like ulcerative colitis. The molecular mechanisms are not well understood, but likely involve dysregulation of membrane composition, fluidity, and permeability, which are all essentially regulated by sphingolipids, including ceramides of different chain length and saturation. Here, we used a loss-of-function model (CerS2+/+ and CerS2-/- mice) to investigate the impact of ceramide synthase 2, a key enzyme in the generation of very long-chain ceramides, in the dextran sodium salt (DSS) evoked model of UC. CerS2-/- mice developed more severe disease than CerS2+/+ mice in acute DSS and chronic AOM/DSS colitis. Deletion of CerS2 strongly reduced very long-chain ceramides (Cer24:0, 24:1) but concomitantly increased long-chain ceramides and sphinganine in plasma and colon tissue. In naive CerS2-/- mice, the expression of tight junction proteins including ZO-1 was almost completely lost in the colon epithelium, leading to increased membrane permeability. This could also be observed in vitro in CerS2 depleted Caco-2 cells. The increase in membrane permeability in CerS2-/- mice did not manifest with apparent clinical symptoms in naive mice, but with slight inflammatory signs such as an increase in monocytes and IL-10. AOM/DSS and DSS treatment alone led to a further deterioration of membrane integrity and to severe clinical symptoms of the disease. This was associated with stronger upregulation of cytokines in CerS2-/- mice and increased infiltration of the colon wall by immune cells, particularly monocytes, CD4+ and Th17+ T-cells, and an increase in tumor burden. In conclusion, CerS2 is crucial for the maintenance of colon barrier function and epithelial integrity. CerS2 knockdown, and associated changes in several sphingolipids such as a drop in very long-chain ceramides/(dh)-ceramides, an increase in long-chain ceramides/(dh)-ceramides, and sphinganine in the colon, may weaken endogenous defense against the endogenous microbiome.
Collapse
Affiliation(s)
- Stephanie Oertel
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Klaus Scholich
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Andreas Weigert
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Julia Schmetzer
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Sandra Trautmann
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Marthe-Susanna Wegner
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Heinfried H Radeke
- Institute of General Pharmacology and Toxicology, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Natalie Filmann
- Institute of Biostatistics and Mathematical Modeling Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Frankfurt am Main, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Sabine Grösch
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
12
|
Multiplexed imaging of intracellular protein networks. Cytometry A 2016; 89:761-75. [DOI: 10.1002/cyto.a.22876] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 12/19/2022]
|
13
|
Gillio-Meina C, Zielke HR, Fraser DD. Translational Research in Pediatrics IV: Solid Tissue Collection and Processing. Pediatrics 2016; 137:peds.2015-0490. [PMID: 26659457 DOI: 10.1542/peds.2015-0490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/05/2015] [Indexed: 11/24/2022] Open
Abstract
Solid tissues are critical for child-health research. Specimens are commonly obtained at the time of biopsy/surgery or postmortem. Research tissues can also be obtained at the time of organ retrieval for donation or from tissue that would otherwise have been discarded. Navigating the ethics of solid tissue collection from children is challenging, and optimal handling practices are imperative to maximize tissue quality. Fresh biopsy/surgical specimens can be affected by a variety of factors, including age, gender, BMI, relative humidity, freeze/thaw steps, and tissue fixation solutions. Postmortem tissues are also vulnerable to agonal factors, body storage temperature, and postmortem intervals. Nonoptimal tissue handling practices result in nucleotide degradation, decreased protein stability, artificial posttranslational protein modifications, and altered lipid concentrations. Tissue pH and tryptophan levels are 2 methods to judge the quality of solid tissue collected for research purposes; however, the RNA integrity number, together with analyses of housekeeping genes, is the new standard. A comprehensive clinical data set accompanying all tissue samples is imperative. In this review, we examined: the ethical standards relating to solid tissue procurement from children; potential sources of solid tissues; optimal practices for solid tissue processing, handling, and storage; and reliable markers of solid tissue quality.
Collapse
Affiliation(s)
- Carolina Gillio-Meina
- Translational Research Centre, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada
| | | | - Douglas D Fraser
- Translational Research Centre, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada; Centre for Critical Illness Research, Critical Care Medicine and Pediatrics, Clinical Neurologic Sciences, and Physiology and Pharmacology, Western University, London, Ontario, Canada
| |
Collapse
|
14
|
Theophilou G, Paraskevaidi M, Lima KMG, Kyrgiou M, Martin-Hirsch PL, Martin FL. Extracting biomarkers of commitment to cancer development: potential role of vibrational spectroscopy in systems biology. Expert Rev Mol Diagn 2015; 15:693-713. [DOI: 10.1586/14737159.2015.1028372] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Ding DW, Xu J, Li L, Xie JM, Sun X. Identifying the potential extracellular electron transfer pathways from a c-type cytochrome network. MOLECULAR BIOSYSTEMS 2014; 10:3138-46. [PMID: 25227320 DOI: 10.1039/c4mb00386a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Extracellular electron transfer (EET) is the key feature of some bacteria, such as Geobacter sulfurreducens and Shewanella oneidensis. Via EET processes, these bacteria can grow on electrode surfaces and make current output of microbial fuel cells. c-Type cytochromes can be used as carriers to transfer electrons, which play an important role in EET processes. Typically, from the inner (cytoplasmic) membrane through the periplasm to the outer membrane, they could form EET pathways. Recent studies suggest that a group of c-type cytochromes could form a network which extended the well-known EET pathways. We obtained the protein interaction information for all 41 c-type cytochromes in Shewanella oneidensis MR-1, constructed a large-scale protein interaction network, and studied its structural characteristics and functional significance. Centrality analysis has identified the top 10 key proteins of the network, and 7 of them are associated with electricity production in the bacteria, which suggests that the ability of Shewanella oneidensis MR-1 to produce electricity might be derived from the unique structure of the c-type cytochrome network. By modularity analysis, we obtained 5 modules from the network. The subcellular localization study has shown that the proteins in these modules all have diversiform cellular compartments, which reflects their potential to form EET pathways. In particular, combination of protein subcellular localization and operon analysis, the well-known and new candidate EET pathways are obtained from the Mtr-like module, indicating that potential EET pathways could be obtained from such a c-type cytochrome network.
Collapse
Affiliation(s)
- De-Wu Ding
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P.R. China.
| | | | | | | | | |
Collapse
|
16
|
Fernández R, Lage S, Abad-García B, Barceló-Coblijn G, Terés S, López DH, Guardiola-Serrano F, Martín ML, Escribá PV, Fernández JA. Analysis of the lipidome of xenografts using MALDI-IMS and UHPLC-ESI-QTOF. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1237-1246. [PMID: 24760294 DOI: 10.1007/s13361-014-0882-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/10/2014] [Accepted: 03/10/2014] [Indexed: 06/03/2023]
Abstract
Human tumor xenografts in immunodeficient mice are a very popular model to study the development of cancer and to test new drug candidates. Among the parameters analyzed are the variations in the lipid composition, as they are good indicators of changes in the cellular metabolism. Here, we present a study on the distribution of lipids in xenografts of NCI-H1975 human lung cancer cells, using MALDI imaging mass spectrometry and UHPLC-ESI-QTOF. The identification of lipids directly from the tissue by MALDI was aided by the comparison with identification using ESI ionization in lipid extracts from the same xenografts. Lipids belonging to PCs, PIs, SMs, DAG, TAG, PS, PA, and PG classes were identified and their distribution over the xenograft was determined. Three areas were identified in the xenograft, corresponding to cells in different metabolic stages and to a layer of adipose tissue that covers the xenograft.
Collapse
Affiliation(s)
- Roberto Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fadhal E, Mwambene EC, Gamieldien J. Modelling human protein interaction networks as metric spaces has potential in disease research and drug target discovery. BMC SYSTEMS BIOLOGY 2014; 8:68. [PMID: 24929653 PMCID: PMC4088370 DOI: 10.1186/1752-0509-8-68] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/04/2014] [Indexed: 01/06/2023]
Abstract
Background We have recently shown by formally modelling human protein interaction networks (PINs) as metric spaces and classified proteins into zones based on their distance from the topological centre that hub proteins are primarily centrally located. We also showed that zones closest to the network centre are enriched for critically important proteins and are also functionally very specialised for specific ‘house keeping’ functions. We proposed that proteins closest to the network centre may present good therapeutic targets. Here, we present multiple pieces of novel functional evidence that provides strong support for this hypothesis. Results We found that the human PINs has a highly connected signalling core, with the majority of proteins involved in signalling located in the two zones closest to the topological centre. The majority of essential, disease related, tumour suppressor, oncogenic and approved drug target proteins were found to be centrally located. Similarly, the majority of proteins consistently expressed in 13 types of cancer are also predominantly located in zones closest to the centre. Proteins from zones 1 and 2 were also found to comprise the majority of proteins in key KEGG pathways such as MAPK-signalling, the cell cycle, apoptosis and also pathways in cancer, with very similar patterns seen in pathways that lead to cancers such as melanoma and glioma, and non-neoplastic diseases such as measles, inflammatory bowel disease and Alzheimer’s disease. Conclusions Based on the diversity of evidence uncovered, we propose that when considered holistically, proteins located centrally in the human PINs that also have similar functions to existing drug targets are good candidate targets for novel therapeutics. Similarly, since disease pathways are dominated by centrally located proteins, candidates shortlisted in genome scale disease studies can be further prioritized and contextualised based on whether they occupy central positions in the human PINs.
Collapse
Affiliation(s)
| | | | - Junaid Gamieldien
- South African National Bioinformatics Institute/ MRC Unit for Bioinformatics Capacity Development, University of the Western Cape, Bellville 7530, South Africa.
| |
Collapse
|
18
|
Prostacyclin regulates spinal nociceptive processing through cyclic adenosine monophosphate-induced translocation of glutamate receptors. Anesthesiology 2014; 120:447-58. [PMID: 23969560 DOI: 10.1097/aln.0b013e3182a76f74] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Prostacyclin (PGI2) is known to be an important mediator of peripheral pain sensation (nociception) whereas little is known about its role in central sensitization. METHODS The levels of the stable PGI2-metabolite 6-keto-prostaglandin F1α (6-keto-PGF1α) and of prostaglandin E2 (PGE2) were measured in the dorsal horn with the use of mass spectrometry after peripheral inflammation. Expression of the prostanoid receptors was determined by immunohistology. Effects of prostacyclin receptor (IP) activation on spinal neurons were investigated with biochemical assays (cyclic adenosine monophosphate-, glutamate release-measurement, Western blot analysis) in embryonic cultures and adult spinal cord. The specific IP antagonist Cay10441 was applied intrathecally after zymosan-induced mechanical hyperalgesia in vivo. RESULTS Peripheral inflammation caused a significant increase of the stable PGI2 metabolite 6-keto-PGF1α in the dorsal horn of wild-type mice (n = 5). IP was located on spinal neurons and did not colocalize with the prostaglandin E2 receptors EP2 or EP4. The selective IP-agonist cicaprost increased cyclic adenosine monophosphate synthesis in spinal cultures from wild-type but not from IP-deficient mice (n = 5-10). The combination of fluorescence-resonance-energy transfer-based cyclic adenosine monophosphate imaging and calcium imaging showed a cicaprost-induced cyclic adenosine monophosphate synthesis in spinal cord neurons (n = 5-6). Fittingly, IP activation increased glutamate release from acute spinal cord sections of adult mice (n = 13-58). Cicaprost, but not agonists for EP2 and EP4, induced protein kinase A-dependent phosphorylation of the GluR1 subunit and its translocation to the membrane. Accordingly, intrathecal administration of the IP receptor antagonist Cay10441 had an antinociceptive effect (n = 8-11). CONCLUSION Spinal prostacyclin synthesis during early inflammation causes the recruitment of GluR1 receptors to membrane fractions, thereby augmenting the onset of central sensitization.
Collapse
|
19
|
Schuh CD, Pierre S, Weigert A, Weichand B, Altenrath K, Schreiber Y, Ferreiros N, Zhang DD, Suo J, Treutlein EM, Henke M, Kunkel H, Grez M, Nüsing R, Brüne B, Geisslinger G, Scholich K. Prostacyclin mediates neuropathic pain through interleukin 1β-expressing resident macrophages. Pain 2013; 155:545-555. [PMID: 24333781 DOI: 10.1016/j.pain.2013.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
Abstract
Prostacyclin is an important mediator of peripheral pain sensation. Here, we investigated its potential participation in mediating neuropathic pain and found that prostacyclin receptor (IP) knockout mice exhibited markedly decreased pain behavior. Application of an IP antagonist to the injury site or selective IP deficiency in myeloid cells mimicked the antinociceptive effect observed in IP knockout mice. At the site of nerve injury, IP was expressed in interleukin (IL) 1β-containing resident macrophages, which were less common in IP knockout mice. Local administration of the IP agonist cicaprost inhibited macrophage migration in vitro and promoted accumulation of IP- and IL1β-expressing cells as well as an increase of IL1β concentrations at the application site in vivo. Fittingly, the IL1-receptor antagonist anakinra (IL-1ra) decreased neuropathic pain behavior in wild-type mice but not in IP knockout mice. Finally, continuous, but not single administration, of the cyclooxygenase inhibitor meloxicam early after nerve injury decreased pain behavior and the number of resident macrophages. Thus, early synthesis of prostacyclin at the site of injury causes accumulation of IL1β-expressing macrophages as a key step in neuropathic pain after traumatic injury.
Collapse
Affiliation(s)
- Claus Dieter Schuh
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, Hospital of the Goethe-University, Frankfurt, Germany Institute of Biochemistry I, Goethe-University, Frankfurt, Germany Institute of Biomedical Research, Georg-Speyer-Haus, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Clarke GM, Zubovits JT, Shaikh KA, Wang D, Dinn SR, Corwin AD, Santamaria-Pang A, Li Q, Nofech-Mozes S, Liu K, Pang Z, Filkins RJ, Yaffe MJ. A novel, automated technology for multiplex biomarker imaging and application to breast cancer. Histopathology 2013; 64:242-55. [PMID: 24330149 DOI: 10.1111/his.12240] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 12/16/2022]
Abstract
AIMS Multiplexed immunofluorescence is a powerful tool for validating multigene assays and understanding the complex interplay of proteins implicated in breast cancer within a morphological context. We describe a novel technology for imaging an extended panel of biomarkers on a single, formalin-fixed paraffin-embedded breast sample and evaluating biomarker interaction at a single-cell level, and demonstrate proof-of-concept on a small set of breast tumours, including those which co-express hormone receptors with Her2/neu and Ki-67. METHODS AND RESULTS Using a microfluidic flow cell, reagent exchange was automated and consisted of serial rounds of staining with dye-conjugated antibodies, imaging and chemical deactivation. A two-step antigen retrieval process was developed to satisfy all epitopes simultaneously, and key parameters were optimized. The imaging sequence was applied to seven breast tumours, and compared with conventional immunohistochemistry. Single-cell correlation analysis was performed with automated image processing. CONCLUSIONS We have described a novel platform for evaluating biomarker co-localization. Expression in multiplexed images is consistent with conventional immunohistochemistry. Automation reduces inconsistencies in staining and positional shifts, while the fluorescent dye cycling approach dramatically expands the number of biomarkers which can be visualized and quantified on a single tissue section.
Collapse
|
21
|
Shi SR, Taylor CR, Fowler CB, Mason JT. Complete solubilization of formalin-fixed, paraffin-embedded tissue may improve proteomic studies. Proteomics Clin Appl 2013; 7:264-72. [PMID: 23339100 DOI: 10.1002/prca.201200031] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 10/12/2012] [Accepted: 11/06/2012] [Indexed: 02/01/2023]
Abstract
Tissue-based proteomic approaches (tissue proteomics) are essential for discovering and evaluating biomarkers for personalized medicine. In any proteomics study, the most critical issue is sample extraction and preparation. This problem is especially difficult when recovering proteins from formalin-fixed, paraffin-embedded (FFPE) tissue sections. However, improving and standardizing protein extraction from FFPE tissue is a critical need because of the millions of archival FFPE tissues available in tissue banks worldwide. Recent progress in the application of heat-induced antigen retrieval principles for protein extraction from FFPE tissue has resulted in a number of published FFPE tissue proteomics studies. However, there is currently no consensus on the optimal protocol for protein extraction from FFPE tissue or accepted standards for quantitative evaluation of the extracts. Standardization is critical to ensure the accurate evaluation of FFPE protein extracts by proteomic methods such as reverse phase protein arrays, which is now in clinical use. In our view, complete solubilization of FFPE tissue samples is the best way to achieve the goal of standardizing the recovery of proteins from FFPE tissues. However, further studies are recommended to develop standardized protein extraction methods to ensure quantitative and qualitative reproducibility in the recovery of proteins from FFPE tissues.
Collapse
Affiliation(s)
- Shan-Rong Shi
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | |
Collapse
|
22
|
Yu X, Wallqvist A, Reifman J. Inferring high-confidence human protein-protein interactions. BMC Bioinformatics 2012; 13:79. [PMID: 22558947 PMCID: PMC3416704 DOI: 10.1186/1471-2105-13-79] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 05/04/2012] [Indexed: 01/09/2023] Open
Abstract
Background As numerous experimental factors drive the acquisition, identification, and interpretation of protein-protein interactions (PPIs), aggregated assemblies of human PPI data invariably contain experiment-dependent noise. Ascertaining the reliability of PPIs collected from these diverse studies and scoring them to infer high-confidence networks is a non-trivial task. Moreover, a large number of PPIs share the same number of reported occurrences, making it impossible to distinguish the reliability of these PPIs and rank-order them. For example, for the data analyzed here, we found that the majority (>83%) of currently available human PPIs have been reported only once. Results In this work, we proposed an unsupervised statistical approach to score a set of diverse, experimentally identified PPIs from nine primary databases to create subsets of high-confidence human PPI networks. We evaluated this ranking method by comparing it with other methods and assessing their ability to retrieve protein associations from a number of diverse and independent reference sets. These reference sets contain known biological data that are either directly or indirectly linked to interactions between proteins. We quantified the average effect of using ranked protein interaction data to retrieve this information and showed that, when compared to randomly ranked interaction data sets, the proposed method created a larger enrichment (~134%) than either ranking based on the hypergeometric test (~109%) or occurrence ranking (~46%). Conclusions From our evaluations, it was clear that ranked interactions were always of value because higher-ranked PPIs had a higher likelihood of retrieving high-confidence experimental data. Reducing the noise inherent in aggregated experimental PPIs via our ranking scheme further increased the accuracy and enrichment of PPIs derived from a number of biologically relevant data sets. These results suggest that using our high-confidence protein interactions at different levels of confidence will help clarify the topological and biological properties associated with human protein networks.
Collapse
Affiliation(s)
- Xueping Yu
- Biotechnology High-Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Ft. Detrick, MD 21702, USA
| | | | | |
Collapse
|
23
|
Nedosekin DA, Shashkov EV, Galanzha EI, Hennings L, Zharov VP. Photothermal multispectral image cytometry for quantitative histology of nanoparticles and micrometastasis in intact, stained and selectively burned tissues. Cytometry A 2010; 77:1049-58. [PMID: 20949577 PMCID: PMC3339495 DOI: 10.1002/cyto.a.20977] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
There is a rapidly growing interest in the advanced analysis of histological data and the development of appropriate detection technologies in particular for mapping of nanoparticle distributions in tissue in nanomedicine applications. We evaluated photothermal (PT) scanning cytometry for color-coded imaging, spectral identification, and quantitative detection of individual nanoparticles and abnormal cells in histological samples with and without staining. Using this tool, individual carbon nanotubes, gold nanorods, and melanoma cells with intrinsic melanin markers were identified in unstained (e.g. sentinel lymph nodes) and conventionally-stained tissues. In addition, we introduced a spectral burning technique for histology through selective laser bleaching areas with nondesired absorption background and nanobubble-based PT signal amplification. The obtained data demonstrated the promise of PT cytometry in the analysis of low-absorption samples and mapping of various individual nanoparticles' distribution that would be impossible with existing assays. Comparison of PT cytometry and photoacoustic (PA) cytometry previously developed by us, revealed that these methods supplement each other with a sensitivity advantage (up to 10-fold) of contactless PT technique in assessment of thin (≤100 μm) histological samples, while PA imaging provides characterization of thicker samples which, however, requires an acoustic contact with transducers. A potential of high-speed integrated PT-PA cytometry for express histology and immunohistochemistry of both intact and stained heterogeneous tissues with high sensitivity at the zepromolar concentration level is further highlighted.
Collapse
Affiliation(s)
- Dmitry A. Nedosekin
- Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Evgeny V. Shashkov
- Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Prokhorov General Physics Institute, Moscow, Russia
| | - Ekaterina I. Galanzha
- Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Leah Hennings
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Vladimir P. Zharov
- Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
24
|
Roederer M, Tárnok A. OMIPs-Orchestrating multiplexity in polychromatic science. Cytometry A 2010; 77:811-2. [DOI: 10.1002/cyto.a.20959] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|