1
|
Yang L, Pijuan-Galito S, Rho HS, Vasilevich AS, Eren AD, Ge L, Habibović P, Alexander MR, de Boer J, Carlier A, van Rijn P, Zhou Q. High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology. Chem Rev 2021; 121:4561-4677. [PMID: 33705116 PMCID: PMC8154331 DOI: 10.1021/acs.chemrev.0c00752] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 02/07/2023]
Abstract
The complex interaction of cells with biomaterials (i.e., materiobiology) plays an increasingly pivotal role in the development of novel implants, biomedical devices, and tissue engineering scaffolds to treat diseases, aid in the restoration of bodily functions, construct healthy tissues, or regenerate diseased ones. However, the conventional approaches are incapable of screening the huge amount of potential material parameter combinations to identify the optimal cell responses and involve a combination of serendipity and many series of trial-and-error experiments. For advanced tissue engineering and regenerative medicine, highly efficient and complex bioanalysis platforms are expected to explore the complex interaction of cells with biomaterials using combinatorial approaches that offer desired complex microenvironments during healing, development, and homeostasis. In this review, we first introduce materiobiology and its high-throughput screening (HTS). Then we present an in-depth of the recent progress of 2D/3D HTS platforms (i.e., gradient and microarray) in the principle, preparation, screening for materiobiology, and combination with other advanced technologies. The Compendium for Biomaterial Transcriptomics and high content imaging, computational simulations, and their translation toward commercial and clinical uses are highlighted. In the final section, current challenges and future perspectives are discussed. High-throughput experimentation within the field of materiobiology enables the elucidation of the relationships between biomaterial properties and biological behavior and thereby serves as a potential tool for accelerating the development of high-performance biomaterials.
Collapse
Affiliation(s)
- Liangliang Yang
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Sara Pijuan-Galito
- School
of Pharmacy, Biodiscovery Institute, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Hoon Suk Rho
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Aliaksei S. Vasilevich
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aysegul Dede Eren
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Lu Ge
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Pamela Habibović
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Morgan R. Alexander
- School
of Pharmacy, Boots Science Building, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Jan de Boer
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aurélie Carlier
- Department
of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Patrick van Rijn
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Qihui Zhou
- Institute
for Translational Medicine, Department of Stomatology, The Affiliated
Hospital of Qingdao University, Qingdao
University, Qingdao 266003, China
| |
Collapse
|
2
|
Han X, Su Y, White H, O'Neill KM, Morgan NY, Christensen R, Potarazu D, Vishwasrao HD, Xu S, Sun Y, Huang SY, Moyle MW, Dai Q, Pommier Y, Giniger E, Albrecht DR, Probst R, Shroff H. A polymer index-matched to water enables diverse applications in fluorescence microscopy. LAB ON A CHIP 2021; 21:1549-1562. [PMID: 33629685 PMCID: PMC8058278 DOI: 10.1039/d0lc01233e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We demonstrate diffraction-limited and super-resolution imaging through thick layers (tens-hundreds of microns) of BIO-133, a biocompatible, UV-curable, commercially available polymer with a refractive index (RI) matched to water. We show that cells can be directly grown on BIO-133 substrates without the need for surface passivation and use this capability to perform extended time-lapse volumetric imaging of cellular dynamics 1) at isotropic resolution using dual-view light-sheet microscopy, and 2) at super-resolution using instant structured illumination microscopy. BIO-133 also enables immobilization of 1) Drosophila tissue, allowing us to track membrane puncta in pioneer neurons, and 2) Caenorhabditis elegans, which allows us to image and inspect fine neural structure and to track pan-neuronal calcium activity over hundreds of volumes. Finally, BIO-133 is compatible with other microfluidic materials, enabling optical and chemical perturbation of immobilized samples, as we demonstrate by performing drug and optogenetic stimulation on cells and C. elegans.
Collapse
Affiliation(s)
- Xiaofei Han
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA. and Department of Automation, Tsinghua University, Beijing, 100084, China.
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA. and Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hamilton White
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA. and Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Kate M O'Neill
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA and Institute for Physical Science and Technology, University of Maryland College Park, College Park, MD 20742, USA
| | - Nicole Y Morgan
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan Christensen
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Deepika Potarazu
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Harshad D Vishwasrao
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen Xu
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Yilun Sun
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shar-Yin Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark W Moyle
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing, 100084, China.
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dirk R Albrecht
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA. and Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Roland Probst
- ACUITYnano, Innovation in Biomedical Imaging, North Bethesda, MD 20850, USA
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA. and Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD 20892, USA and Marine Biological Laboratory Fellows Program, Woods Hole, MA 02543, USA
| |
Collapse
|
3
|
Laing AF, Tirumala V, Hegarty E, Mondal S, Zhao P, Hamilton WB, Brickman JM, Ben-Yakar A. An automated microfluidic device for time-lapse imaging of mouse embryonic stem cells. BIOMICROFLUIDICS 2019; 13:054102. [PMID: 31558920 PMCID: PMC6748857 DOI: 10.1063/1.5124057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
Long-term, time-lapse imaging studies of embryonic stem cells (ESCs) require a controlled and stable culturing environment for high-resolution imaging. Microfluidics is well-suited for such studies, especially when the media composition needs to be rapidly and accurately altered without disrupting the imaging. Current studies in plates, which can only add molecules at the start of an experiment without any information on the levels of endogenous signaling before the exposure, are incompatible with continuous high-resolution imaging and cell-tracking. Here, we present a custom designed, fully automated microfluidic chip to overcome these challenges. A unique feature of our chip includes three-dimensional ports that can connect completely sealed on-chip valves for fluid control to individually addressable cell culture chambers with thin glass bottoms for high-resolution imaging. We developed a robust protocol for on-chip culturing of mouse ESCs for minimum of 3 days, to carry out experiments reliably and repeatedly. The on-chip ESC growth rate was similar to that on standard culture plates with same initial cell density. We tested the chips for high-resolution, time-lapse imaging of a sensitive reporter of ESC lineage priming, Nanog-GFP, and HHex-Venus with an H2B-mCherry nuclear marker for cell-tracking. Two color imaging of cells was possible over a 24-hr period while maintaining cell viability. Importantly, changing the media did not affect our ability to track individual cells. This system now enables long-term fluorescence imaging studies in a reliable and automated manner in a fully controlled microenvironment.
Collapse
Affiliation(s)
- Adam F. Laing
- Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton St., Austin, Texas 78712, USA
| | - Venkat Tirumala
- Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St., Austin, Texas 78712, USA
| | - Evan Hegarty
- Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton St., Austin, Texas 78712, USA
| | - Sudip Mondal
- Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton St., Austin, Texas 78712, USA
| | - Peisen Zhao
- Department of Electrical and Computer Engineering, The University of Texas at Austin, 2501 Speedway, Austin, Texas 78712, USA
| | - William B. Hamilton
- The Novo Nordisk Foundation Center for Stem Cell Biology—DanStem, University of Copenhagen, 3B Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | - Joshua M. Brickman
- The Novo Nordisk Foundation Center for Stem Cell Biology—DanStem, University of Copenhagen, 3B Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | | |
Collapse
|
4
|
Xu J, Kawano H, Liu W, Hanada Y, Lu P, Miyawaki A, Midorikawa K, Sugioka K. Controllable alignment of elongated microorganisms in 3D microspace using electrofluidic devices manufactured by hybrid femtosecond laser microfabrication. MICROSYSTEMS & NANOENGINEERING 2017; 3:16078. [PMID: 31057849 PMCID: PMC6444996 DOI: 10.1038/micronano.2016.78] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/22/2016] [Accepted: 10/20/2016] [Indexed: 05/08/2023]
Abstract
This paper presents a simple technique to fabricate new electrofluidic devices for the three-dimensional (3D) manipulation of microorganisms by hybrid subtractive and additive femtosecond (fs) laser microfabrication (fs laser-assisted wet etching of glass followed by water-assisted fs laser modification combined with electroless metal plating). The technique enables the formation of patterned metal electrodes in arbitrary regions in closed glass microfluidic channels, which can spatially and temporally control the direction of electric fields in 3D microfluidic environments. The fabricated electrofluidic devices were applied to nanoaquariums to demonstrate the 3D electro-orientation of Euglena gracilis (an elongated unicellular microorganism) in microfluidics with high controllability and reliability. In particular, swimming Euglena cells can be oriented along the z-direction (perpendicular to the device surface) using electrodes with square outlines formed at the top and bottom of the channel, which is quite useful for observing the motions of cells parallel to their swimming directions. Specifically, z-directional electric field control ensured efficient observation of manipulated cells on the front side (45 cells were captured in a minute in an imaging area of ~160×120 μm), resulting in a reduction of the average time required to capture the images of five Euglena cells swimming continuously along the z-direction by a factor of ~43 compared with the case of no electric field. In addition, the combination of the electrofluidic devices and dynamic imaging enabled observation of the flagella of Euglena cells, revealing that the swimming direction of each Euglena cell under the electric field application was determined by the initial body angle.
Collapse
Affiliation(s)
- Jian Xu
- RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- ()
| | - Hiroyuki Kawano
- Laboratory for Cell Function Dynamics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Weiwei Liu
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yasutaka Hanada
- RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Peixiang Lu
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
- Laboratory of Optical Information and Technology, School of Science, Wuhan Institute of Technology, Wuhan 430073, China
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Katsumi Midorikawa
- RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Koji Sugioka
- RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- ()
| |
Collapse
|
5
|
Sikorski DJ, Caron NJ, VanInsberghe M, Zahn H, Eaves CJ, Piret JM, Hansen CL. Clonal analysis of individual human embryonic stem cell differentiation patterns in microfluidic cultures. Biotechnol J 2015; 10:1546-54. [PMID: 26059045 DOI: 10.1002/biot.201500035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/04/2015] [Accepted: 06/05/2015] [Indexed: 01/23/2023]
Abstract
Heterogeneity in the clonal outputs of individual human embryonic stem cells (hESCs) confounds analysis of their properties in studies of bulk populations and how to manipulate them for clinical applications. To circumvent this problem we developed a microfluidic device that supports the robust generation of colonies derived from single ESCs. This microfluidic system contains 160 individually addressable chambers equipped for perfusion culture of individual hESCs that could be shown to match the growth rates, marker expression and colony morphologies obtained in conventional cultures. Use of this microfluidic device to analyze the clonal growth kinetics of multiple individual hESCs induced to differentiation revealed variable shifts in the growth rate, area per cell and expression of OCT4 in the progeny of individual hESCs. Interestingly, low OCT4 expression, a slower growth rate and low nuclear to cytoplasmic ratios were found to be correlated responses. This study demonstrates how microfluidic systems can be used to enable large scale live-cell imaging of isolated hESCs exposed to changing culture conditions, to examine how different aspects of their variable responses are correlated.
Collapse
Affiliation(s)
- Darek J Sikorski
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Nicolas J Caron
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Michael VanInsberghe
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - Hans Zahn
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - James M Piret
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Carl L Hansen
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada. .,Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Wu TF, Yen TM, Han Y, Chiu YJ, Lin EYS, Lo YH. A light-sheet microscope compatible with mobile devices for label-free intracellular imaging and biosensing. LAB ON A CHIP 2014; 14:3341-8. [PMID: 24989638 DOI: 10.1039/c4lc00257a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The inner structure, especially the nuclear structure, of cells carries valuable information about disease and health conditions of a person. Here we demonstrate a label-free technique to enable direct observations and measurements of the size, shape and morphology of the cell nucleus. With a microfabricated lens and a commercial CMOS imager, we form a scanning light-sheet microscope to produce a dark-field optical scattering image of the cell nucleus that overlays with the bright-field image produced in a separate regime of the same CMOS sensor. We have used the device to detect nuclear features that characterize the life cycle of cells and have used the nucleus volume as a new parameter for cell classification. The device can be developed into a portable, low-cost, point-of-care device leveraging the capabilities of the CMOS imagers to be pervasive in mobile electronics.
Collapse
Affiliation(s)
- Tsung-Feng Wu
- Materials Science Program, University of California at San Diego, La Jolla, California 92093-0418, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Silva BA, Stambaugh JR, Yokomori K, Shah JV, Berns MW. DNA damage to a single chromosome end delays anaphase onset. J Biol Chem 2014; 289:22771-22784. [PMID: 24982423 DOI: 10.1074/jbc.m113.535955] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Chromosome ends contain nucleoprotein structures known as telomeres. Damage to chromosome ends during interphase elicits a DNA damage response (DDR) resulting in cell cycle arrest. However, little is known regarding the signaling from damaged chromosome ends (designated here as "TIPs") during mitosis. In the present study, we investigated the consequences of DNA damage induced at a single TIP in mitosis. We used laser microirradiation to damage mitotic TIPs or chromosome arms (non-TIPs) in PtK2 kidney epithelial cells. We found that damage to a single TIP, but not a non-TIP, delays anaphase onset. This TIP-specific checkpoint response is accompanied by differential recruitment of DDR proteins. Although phosphorylation of H2AX and the recruitment of several repair factors, such as Ku70-Ku80, occur in a comparable manner at both TIP and non-TIP damage sites, DDR factors such as ataxia telangiectasia mutated (ATM), MDC1, WRN, and FANCD2 are specifically recruited to TIPs but not to non-TIPs. In addition, Nbs1, BRCA1, and ubiquitin accumulate at damaged TIPs more rapidly than at damaged non-TIPs. ATR and 53BP1 are not detected at either TIPs or non-TIPs in mitosis. The observed delay in anaphase onset is dependent on the activity of DDR kinases ATM and Chk1, and the spindle assembly checkpoint kinase Mps1. Cells damaged at a single TIP or non-TIP eventually exit mitosis with unrepaired lesions. Damaged TIPs are segregated into micronuclei at a significantly higher frequency than damaged non-TIPs. Together, these findings reveal a mitosis-specific DDR uniquely associated with chromosome ends.
Collapse
Affiliation(s)
- Bárbara Alcaraz Silva
- Beckman Laser Institute and Medical Clinic, Irvine, California 92612,; Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, California 92617
| | | | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California 92697-1700, and.
| | - Jagesh V Shah
- Department of Systems Biology, Harvard Medical School and Renal Division, Brigham and Women's Hospital, Boston, Massachusetts 02115.
| | - Michael W Berns
- Beckman Laser Institute and Medical Clinic, Irvine, California 92612,; Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, California 92617,; Department of Biomedical Engineering, University of California, Irvine, California 92617,.
| |
Collapse
|
8
|
Adutler-Lieber S, Zaretsky I, Platzman I, Deeg J, Friedman N, Spatz JP, Geiger B. Engineering of synthetic cellular microenvironments: implications for immunity. J Autoimmun 2014; 54:100-11. [PMID: 24951031 DOI: 10.1016/j.jaut.2014.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 05/19/2014] [Indexed: 01/01/2023]
Abstract
In this article, we discuss novel synthetic approaches for studying the interactions of cells with their microenvironment. Notably, critical cellular processes such as growth, differentiation, migration, and fate determination, are tightly regulated by interactions with neighboring cells, and the surrounding extracellular matrix. Given the huge complexity of natural cellular environments, and their rich molecular and physical diversity, the mission of understanding "environmental signaling" at a molecular-mechanistic level appears to be extremely challenging. To meet these challenges, attempts have been made in recent years to design synthetic matrices with defined chemical and physical properties, which, artificial though they may be, could reveal basic "design principles" underlying the physiological processes. Here, we summarize recent developments in the characterization of the chemical and physical properties of cell sensing and adhesion, as well as the design and use of engineered, micro- to nanoscale patterned and confined environments, for systematic, comprehensive modulation of the cells' environment. The power of these biomimetic surfaces to highlight environmental signaling events in cells, and in immune cells in particular, will be discussed.
Collapse
Affiliation(s)
- Shimrit Adutler-Lieber
- Department of Molecular Cell Biology, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel.
| | - Irina Zaretsky
- Department of Immunology, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel.
| | - Ilia Platzman
- Max Planck Institute for Intelligent Systems & University of Heidelberg, Heisenbergstr. 3, 70569 Stuttgart, Germany.
| | - Janosch Deeg
- Max Planck Institute for Intelligent Systems & University of Heidelberg, Heisenbergstr. 3, 70569 Stuttgart, Germany.
| | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel.
| | - Joachim P Spatz
- Max Planck Institute for Intelligent Systems & University of Heidelberg, Heisenbergstr. 3, 70569 Stuttgart, Germany.
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel.
| |
Collapse
|
9
|
Chen Y, Li P, Huang PH, Xie Y, Mai JD, Wang L, Nguyen NT, Huang TJ. Rare cell isolation and analysis in microfluidics. LAB ON A CHIP 2014; 14:626-45. [PMID: 24406985 PMCID: PMC3991782 DOI: 10.1039/c3lc90136j] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Rare cells are low-abundance cells in a much larger population of background cells. Conventional benchtop techniques have limited capabilities to isolate and analyze rare cells because of their generally low selectivity and significant sample loss. Recent rapid advances in microfluidics have been providing robust solutions to the challenges in the isolation and analysis of rare cells. In addition to the apparent performance enhancements resulting in higher efficiencies and sensitivity levels, microfluidics provides other advanced features such as simpler handling of small sample volumes and multiplexing capabilities for high-throughput processing. All of these advantages make microfluidics an excellent platform to deal with the transport, isolation, and analysis of rare cells. Various cellular biomarkers, including physical properties, dielectric properties, as well as immunoaffinities, have been explored for isolating rare cells. In this Focus article, we discuss the design considerations of representative microfluidic devices for rare cell isolation and analysis. Examples from recently published works are discussed to highlight the advantages and limitations of the different techniques. Various applications of these techniques are then introduced. Finally, a perspective on the development trends and promising research directions in this field are proposed.
Collapse
Affiliation(s)
- Yuchao Chen
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Peng Li
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Po-Hsun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yuliang Xie
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - John D. Mai
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, PR China
| | - Lin Wang
- Ascent Bio-Nano Technologies Inc., State College, PA 16801, USA
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Brisbane 4111, Australia
| | - Tony Jun Huang
- Fax: 814-865-9974; Tel: 814-863-4209; Fax: 61-(0)7-3735-8021; Tel: 61-(0)7-3735-3921;
| |
Collapse
|
10
|
Reichen M, Veraitch FS, Szita N. Development of a multiplexed microfluidic platform for the automated cultivation of embryonic stem cells. JOURNAL OF LABORATORY AUTOMATION 2013; 18:519-29. [PMID: 23970473 PMCID: PMC4107755 DOI: 10.1177/2211068213499917] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Indexed: 12/28/2022]
Abstract
We present a multiplexed platform for a microfabricated stem cell culture device. The modular platform contains all the components to control stem cell culture conditions in an automated fashion. It does not require an incubator during perfusion culture and can be mounted on the stage of an inverted fluorescence microscope for high-frequency imaging of stem cell cultures. A pressure-driven pump provides control over the medium flow rate and offers switching of the flow rates. Flow rates of the pump are characterized for different pressure settings, and a linear correlation between the applied pressure and the flow rate in the cell culture devices is shown. In addition, the pump operates with two culture medium reservoirs, thus enabling the switching of the culture medium on-the-fly during a cell culture experiment. Also, with our platform, the culture medium reservoirs are cooled to prevent medium degradation during long-term experiments. Media temperature is then adjusted to a higher controlled temperature before entering the microfabricated cell culture device. Furthermore, the temperature is regulated in the microfabricated culture devices themselves. Preliminary culture experiments are demonstrated using mouse embryonic stem cells.
Collapse
Affiliation(s)
- Marcel Reichen
- Department of Biochemical Engineering, University College London, London,
UK
- Current affiliation: Department of Haematology, University of Cambridge,
Cambridge, UK
| | | | - Nicolas Szita
- Department of Biochemical Engineering, University College London, London,
UK
| |
Collapse
|
11
|
Kamei KI. Cutting-Edge Microfabricated Biomedical Tools for Human Pluripotent Stem Cell Research. ACTA ACUST UNITED AC 2013; 18:469-81. [DOI: 10.1177/2211068213495394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Keenan TM, Grinager JR, Procak AA, Svendsen CN. In vitro localization of human neural stem cell neurogenesis by engineered FGF-2 gradients. Integr Biol (Camb) 2013; 4:1522-31. [PMID: 23147909 DOI: 10.1039/c2ib20074k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The development of effective stem cell-based therapies for treating brain disorders is keenly dependent upon an understanding of how to generate specific neural cell types and organize them into functional, higher-order tissues analogous to those of the cerebral cortex. Studies of cortical development have revealed that the proper formation of the human cerebral cortex results from specific intercellular interactions and soluble signaling between the highly-proliferative region occupied by dividing neural stem cells and an adjacent region of active neurogenesis and neural migration. However, the factors responsible for establishing this key asymmetrical proliferative-neurogenic architecture are not entirely known. Fibroblast growth factor 2 (FGF-2) is observed in a ventricular-pial gradient during in vivo development and has been previously shown to have effects on both human neural stem cell (hNSC) proliferation and neurogenesis. Here we have adapted a microfluidic approach for creating stable concentration gradients in 3D hydrogels to explore whether FGF-2 gradients can establish defined regions of proliferation and neurogenesis in hNSC cultures. Exponential but not linear FGF-2 gradients between 0-2 ng mL(-1) were able to preferentially boost the percentage of TuJ1(+) neurons in the low concentration regions of the gradient and at levels significantly higher than in non-gradient controls. However, no gradient-dependent localization was observed for dividing hNSCs or hNSC-derived intermediate progenitors. These data suggest that exponential FGF2 gradients are useful for generating asymmetric neuron cultures, but require contributions from other factors to recapitulate the highly-proliferative ventricular zone niche. The relevance of the findings of this study to in vivo cortical development must be more cautiously stated given the artifactual nature of hNSCs and the inability of any in vitro system to fully recapitulate the chemical complexity of the developing cortex. However, it is quite possible that exponential FGF2 gradients are employed in vivo to establish or maintain an asymmetric distribution of neurons in the ventricular-pial axis of the developing cerebral cortex.
Collapse
Affiliation(s)
- T M Keenan
- Stem Cell and Regenerative Medicine Center, University of Wisconsin, 1111 Highland Ave., Madison, WI 53705, USA.
| | | | | | | |
Collapse
|
13
|
Dånmark S, Gladnikoff M, Frisk T, Zelenina M, Mustafa K, Russom A, Finne-Wistrand A. Development of a novel microfluidic device for long-term in situ monitoring of live cells in 3-dimensional matrices. Biomed Microdevices 2013; 14:885-93. [PMID: 22714394 DOI: 10.1007/s10544-012-9668-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Using the latest innovations in microfabrication technology, 3-dimensional microfluidic cell culture systems have been developed as an attractive alternative to traditional 2-dimensional culturing systems as a model for long-term microscale cell-based research. Most microfluidic systems are based on the embedding of cells in hydrogels. However, physiologically realistic conditions based on hydrogels are difficult to obtain and the systems are often too complicated. We have developed a microfluidic cell culture device that incorporates a biodegradable rigid 3D polymer scaffold using standard soft lithography methods. The device permits repeated high-resolution fluorescent imaging of live cell populations within the matrix over a 4 week period. It was also possible to track cell development at the same spatial location throughout this time. In addition, human primary periodontal ligament cells were induced to produce quantifiable calcium deposits within the system. This simple and versatile device should be readily applicable for cell-based studies that require long-term culture and high-resolution bioimaging.
Collapse
Affiliation(s)
- Staffan Dånmark
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, KTH Royal Institute of Technology, Teknikringen 56-58, 10044 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
14
|
Qasaimeh MA, Ricoult SG, Juncker D. Microfluidic probes for use in life sciences and medicine. LAB ON A CHIP 2013; 13:40-50. [PMID: 23042577 DOI: 10.1039/c2lc40898h] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Microfluidic probes (MFPs) combine the concepts of microfluidics and of scanning probes and constitute a contact-free and channel-free microfluidic system. Whereas classically the sample is introduced into the microfluidic device, with a MFP, the microfluidic stream is applied to the sample. MFPs use hydrodynamic flow confinement instead of walls to constrain a microfluidic stream between the MFP tip and a substrate. Because MFPs are free to move, they can be used to process large areas and samples in a selective manner. The development of MFP technology is recent and has numerous potential applications in several fields, most notably in the life sciences. In this review, we discuss the concept of MFPs and highlight their application in surface biopatterning, controlling the cellular microenvironments, local processing of tissue slices, and generating concentration gradients of biochemicals. We hope that this manuscript will serve as an interdisciplinary guide for both engineers as they further develop novel MFPs and applications and for life scientists who may identify novel uses of the MFP for their research.
Collapse
Affiliation(s)
- Mohammad A Qasaimeh
- Biomedical Engineering Department and Genome Quebec Innovation Centre, McGill University, Montreal, Canada
| | | | | |
Collapse
|
15
|
Underhill GH, Peter G, Chen CS, Bhatia SN. Bioengineering Methods for Analysis of Cells In Vitro. Annu Rev Cell Dev Biol 2012; 28:385-410. [DOI: 10.1146/annurev-cellbio-101011-155709] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Galie Peter
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Christopher S. Chen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Sangeeta N. Bhatia
- Division of Health Sciences and Technology,
- Department of Electrical Engineering and Computer Science,
- The Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;
- Division of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115
| |
Collapse
|
16
|
Lecault V, White AK, Singhal A, Hansen CL. Microfluidic single cell analysis: from promise to practice. Curr Opin Chem Biol 2012; 16:381-90. [PMID: 22525493 DOI: 10.1016/j.cbpa.2012.03.022] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 03/23/2012] [Indexed: 11/28/2022]
Abstract
Methods for single-cell analysis are critical to revealing cell-to-cell variability in biological systems, especially in cases where relevant minority cell populations can be obscured by population-averaged measurements. However, to date single cell studies have been limited by the cost and throughput required to examine large numbers of cells and the difficulties associated with analyzing small amounts of starting material. Microfluidic approaches are well suited to resolving these issues by providing increased senstitivity, economy of scale, and automation. After many years of development microfluidic systems are now finding traction in a variety of single-cell analytics including gene expression measurements, protein analysis, signaling response, and growth dynamics. With newly developed tools now being applied in fields ranging from human haplotyping and drug discovery to stem cell and cancer research, the long-heralded promise of microfluidic single cell analysis is now finally being realized.
Collapse
Affiliation(s)
- Véronique Lecault
- Centre for High-Throughput Biology, University of British Columbia, 2185 East Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| | | | | | | |
Collapse
|
17
|
Analytical technologies for integrated single-cell analysis of human immune responses. Methods Mol Biol 2012; 853:211-35. [PMID: 22323150 DOI: 10.1007/978-1-61779-567-1_16] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The immune system is a network of cells in which the constitutive members interact through dense and sometimes overlapping connections. The extreme complexity of this network poses a significant challenge for monitoring pathological conditions (e.g., food allergies, autoimmunity, and other chronic inflammatory diseases) and for discovering robust signatures of immunological responses that correlate with or predict the efficacy of interventions. The diversity among immune cells found in clinical samples (variations in cellular functions, lineages, and clonotypic breadth) requires approaches for monitoring immune responses with single-cell resolution.In this chapter, we present an engineering approach for integrated single-cell analysis that uses interchangeable modular operations to provide a comprehensive characterization of the phenotypic, functional, and genetic variations for individual cells. We focus on the use of microfabricated devices to isolate and interrogate single cells, and on the analytical components that enable subsequent detection, correlation, and interpretation of multidimensional sets of data. We discuss specific challenges and opportunities in the realization of this concept, and review two examples where it has been implemented. The presented approach should provide a basis for the design and implementation of nonconventional bioanalytical processes for studying specific responses of an immune system.
Collapse
|
18
|
Choi WS, Kim M, Park S, Lee SK, Kim T. Patterning and transferring hydrogel-encapsulated bacterial cells for quantitative analysis of synthetically engineered genetic circuits. Biomaterials 2012; 33:624-33. [DOI: 10.1016/j.biomaterials.2011.09.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 09/26/2011] [Indexed: 01/24/2023]
|
19
|
Prot JM, Leclerc E. The Current Status of Alternatives to Animal Testing and Predictive Toxicology Methods Using Liver Microfluidic Biochips. Ann Biomed Eng 2011; 40:1228-43. [DOI: 10.1007/s10439-011-0480-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/23/2011] [Indexed: 01/17/2023]
|