1
|
Ratanpara A, Kim M, Kim YJ, Hidrovo CH. Spectral Characteristics of Water-Soluble Rhodamine Derivatives for Laser-Induced Fluorescence. J Fluoresc 2024:10.1007/s10895-024-03819-1. [PMID: 38954086 DOI: 10.1007/s10895-024-03819-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
We present a comprehensive fluorescence characterization of seven water-soluble rhodamine derivatives for applications in laser-induced fluorescence (LIF) techniques. Absorption and emission spectra for these dyes are presented over the visible spectrum of wavelengths (400 to 700 nm). Their fluorescence properties were also investigated as a function of temperature for LIF thermometry applications. Rhodamine 110 depicted the least fluorescence emission sensitivity to temperature at -0.11%/°C, while rhodamine B depicted the most with a -1.55%/°C. We found that the absorption spectra of these molecules are independent of temperature, supporting the notion that the temperature sensitivity of their emission only comes from changes in quantum yield with temperature. Conversely, these rhodamine fluorophores showed no change in emission intensities with pH variations and are, therefore, not suitable tracers for pH measurements. Similarly, fluorescent lifetime, which is also a property sensitive to local environmental changes in temperature, pH, and ion concentration, measurements were conducted for these fluorophores. It was found that rhodamine B and kiton red 620 have shorter fluorescence timescales compared to those of the other five rhodamine dyes, making them least suitable for applications where temporal changes in emission are monitored. Lastly, we conducted experiments to assess the physicochemical absorption characteristics of these dyes' molecules into polydimethylsiloxane (PDMS), the most common material for microfluidic devices. Rhodamine B showed the highest diffusion into PDMS substrates as compared to the other derivative dyes.
Collapse
Affiliation(s)
- Abhishek Ratanpara
- Ocean and Mechanical Engineering, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA
| | - Myeongsub Kim
- Ocean and Mechanical Engineering, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA.
| | - Yeo Jun Kim
- Multiscale Thermal Fluids Laboratory, Mechanical Engineering Department, The University of Texas at Austin, 204 E. Dean Keeton, Austin, TX, 78712, USA
| | - Carlos H Hidrovo
- Multiscale Thermal Fluids Laboratory, Mechanical and Industrial Engineering Department, Northeastern University, 360 Huntington Ave, Boston, MA, 02114, USA
| |
Collapse
|
2
|
Seo SW, Song Y, Mustakim N. Hydrogel Micropillar Array for Temperature Sensing in Fluid. IEEE SENSORS JOURNAL 2023; 23:19021-19027. [PMID: 37664783 PMCID: PMC10471143 DOI: 10.1109/jsen.2023.3293433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Localized temperature sensing and control on a micron-scale have diverse applications in biological systems. We present a micron-sized hydrogel pillar array as potential temperature probes and actuators by exploiting sensitive temperature dependence of their volume change. Soft lithography-based molding processes were presented to fabricate poly N-isopropyl acrylamide (p-NIPAAm)-based hydrogel pillar array on a glass substrate. Au nanorods as light-induced heating elements were embedded within the hydrogel pillars, and near-infrared (NIR) light was used to modulate temperature in a local area. First, static responses of the micro-pillar array were characterized as a function of its temperature. It was shown that the hydrogel had a sensitive volume transition near its low critical solution temperature (LCST). Furthermore, we showed that LCST could be readily adjusted by utilizing copolymerizing with acrylamide (AAM). To demonstrate the feasibility of spatiotemporal temperature mapping and modulation using the presented pillar array, pulsed NIR light was illuminated on a local area of the hydrogel pillar array, and its responses were recorded. Dynamic temperature change in water was mapped based on the abrupt volume change characteristics of the hydrogel pillar, and its potential actuation using NIR light was successfully demonstrated. Considering that the structure can be arrayed in a two-dimensional pixel format with high spatial resolution and high sensitive temperature characteristics, the presented method and the device structure can have diverse applications to change and sense local temperatures in liquid. This is particularly useful in biological systems, where their physiological temperature can be modulated and mapped with high spatial resolution.
Collapse
Affiliation(s)
- Sang-Woo Seo
- Department of Electrical Engineering, City College of City University of New York, New York, NY 10031 USA
| | - Youngsik Song
- Department of Electrical Engineering, City College of City University of New York, New York, NY 10031 USA
| | - Nafis Mustakim
- Department of Electrical Engineering, City College of City University of New York, New York, NY 10031 USA
| |
Collapse
|
3
|
Brites CDS, Marin R, Suta M, Carneiro Neto AN, Ximendes E, Jaque D, Carlos LD. Spotlight on Luminescence Thermometry: Basics, Challenges, and Cutting-Edge Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302749. [PMID: 37480170 DOI: 10.1002/adma.202302749] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Indexed: 07/23/2023]
Abstract
Luminescence (nano)thermometry is a remote sensing technique that relies on the temperature dependency of the luminescence features (e.g., bandshape, peak energy or intensity, and excited state lifetimes and risetimes) of a phosphor to measure temperature. This technique provides precise thermal readouts with superior spatial resolution in short acquisition times. Although luminescence thermometry is just starting to become a more mature subject, it exhibits enormous potential in several areas, e.g., optoelectronics, photonics, micro- and nanofluidics, and nanomedicine. This work reviews the latest trends in the field, including the establishment of a comprehensive theoretical background and standardized practices. The reliability, repeatability, and reproducibility of the technique are also discussed, along with the use of multiparametric analysis and artificial-intelligence algorithms to enhance thermal readouts. In addition, examples are provided to underscore the challenges that luminescence thermometry faces, alongside the need for a continuous search and design of new materials, experimental techniques, and analysis procedures to improve the competitiveness, accessibility, and popularity of the technology.
Collapse
Affiliation(s)
- Carlos D S Brites
- Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro, 3810-193, Portugal
| | - Riccardo Marin
- Departamento de Física de Materiales, Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Markus Suta
- Inorganic Photoactive Materials, Institute of Inorganic Chemistry and Structural Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Albano N Carneiro Neto
- Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro, 3810-193, Portugal
| | - Erving Ximendes
- Departamento de Física de Materiales, Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, 28034, Spain
| | - Daniel Jaque
- Departamento de Física de Materiales, Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, 28034, Spain
| | - Luís D Carlos
- Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
4
|
Salerno EV, Carneiro Neto AN, Eliseeva SV, Hernández-Rodríguez MA, Lutter JC, Lathion T, Kampf JW, Petoud S, Carlos LD, Pecoraro VL. Tunable Optical Molecular Thermometers Based on Metallacrowns. J Am Chem Soc 2022; 144:18259-18271. [PMID: 36173924 DOI: 10.1021/jacs.2c04821] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The effect of ligands' energy levels on thermal dependence of lanthanide emission was examined to create new molecular nanothermometers. A series of Ln2Ga8L8'L8″ metallacrowns (shorthand Ln2L8'), where Ln = Gd3+, Tb3+, or Sm3+ (H3L' = salicylhydroxamic acid (H3shi), 5-methylsalicylhydroxamic acid (H3mshi), 5-methoxysalicylhydroxamic acid (H3moshi), and 3-hydroxy-2-naphthohydroxamic acid (H3nha)) and H2L″ = isophthalic acid (H2iph), was synthesized and characterized. Within the series, ligand-centered singlet state (S1) energy levels ranged from 23,300 to 27,800 cm-1, while triplet (T1) energy levels ranged from 18,150 to 21,980 cm-1. We demonstrated that the difference between T1 levels and relevant energies of the excited 4G5/2 level of Sm3+ (17,800 cm-1) and 5D4 level of Tb3+ (20,400 cm-1) is the major parameter controlling thermal dependence of the emission intensity via the back energy transfer mechanism. However, when the energy difference between S1 and T1 levels is small (below 3760 cm-1), the S1 → T1 intersystem crossing (and its reverse, S1 ← T1) mechanism contributes to the thermal behavior of metallacrowns. Both mechanisms affect Ln3+-centered room-temperature quantum yields with values ranging from 2.07(6)% to 31.2(2)% for Tb2L8' and from 0.0267(7)% to 2.27(5)% for Sm2L8'. The maximal thermal dependence varies over a wide thermal range (ca. 150-350 K) based on energy gaps between relevant ligand-based and lanthanide-based electronic states. By mixing Tb2moshi8' with Sm2moshi8' in a 1:1 ratio, an optical thermometer with a relative thermal sensitivity larger than 3%/K at 225 K was created. Other temperature ranges are also accessible with this approach.
Collapse
Affiliation(s)
- Elvin V Salerno
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Albano N Carneiro Neto
- Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro Campus de Santiago, Aveiro 3810-193, Portugal
| | - Svetlana V Eliseeva
- Centre de Biophysique Moléculaire CNRS UPR 4301, 45071 Orléans Cedex 2, France
| | - Miguel A Hernández-Rodríguez
- Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro Campus de Santiago, Aveiro 3810-193, Portugal
| | - Jacob C Lutter
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Timothée Lathion
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeff W Kampf
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Stéphane Petoud
- Centre de Biophysique Moléculaire CNRS UPR 4301, 45071 Orléans Cedex 2, France
| | - Luis D Carlos
- Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro Campus de Santiago, Aveiro 3810-193, Portugal
| | - Vincent L Pecoraro
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Li X, Chen Y, Yang T, Zhu Y, Mao Q, Zhong J, Li S. Dual-phase glass ceramics for dual-modal optical thermometry through a spatial isolation strategy. Dalton Trans 2021; 50:16223-16232. [PMID: 34730153 DOI: 10.1039/d1dt03154f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glass ceramics (GCs) can be an ideal medium for dopant spatial isolation, avoiding the adverse energy transfer process. Herein, a spatial isolation strategy is proposed and fulfilled by dual-phase GCs. Structural characterization performed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED), verified the successful dual-phase precipitation of tetragonal LiYF4 and cubic ZnAl2O4 nanocrystals (NCs) among aluminosilicate glasses. Impressively, it is evidenced that intense blue upconversion (UC) emission of Tm3+ and deep red DS emission can be attained simultaneously upon 980 nm NIR and 400 nm violet light excitation, respectively, owing to the extremely suppressed adverse energy transfer process between physically separated Tm3+ and Cr3+. This also suggests the partition of Yb3+ and Tm3+ into LiYF4 and Cr3+ into ZnAl2O4 respectively. In particular, optical thermometry based on the fluorescence intensity ratio (FIR) of Tm3+ and fluorescence lifetime of Cr3+ of dual-phase GCs were also performed in detail, with the maximum relative sensitivity of 1.87% K-1 at 396 K and 0.81% K-1 at 503 K, respectively. As a consequence, such a spatial isolation strategy would provide a convenient route for application in optical thermometry and extend the practical application of GC materials.
Collapse
Affiliation(s)
- Xinyue Li
- Center for Advanced Optoelectronic Materials, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China. .,Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Youli Chen
- Center for Advanced Optoelectronic Materials, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China.
| | - Tao Yang
- Center for Advanced Optoelectronic Materials, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China.
| | - Yiwen Zhu
- Center for Advanced Optoelectronic Materials, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China.
| | - Qinan Mao
- Center for Advanced Optoelectronic Materials, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China.
| | - Jiasong Zhong
- Center for Advanced Optoelectronic Materials, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China.
| | - Shichen Li
- School of Materials Science and Engineering, Key Laboratory for Nonferrous Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China.
| |
Collapse
|
6
|
Liu X, Skripka A, Lai Y, Jiang C, Liu J, Vetrone F, Liang J. Fast wide-field upconversion luminescence lifetime thermometry enabled by single-shot compressed ultrahigh-speed imaging. Nat Commun 2021; 12:6401. [PMID: 34737314 PMCID: PMC8568918 DOI: 10.1038/s41467-021-26701-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Photoluminescence lifetime imaging of upconverting nanoparticles is increasingly featured in recent progress in optical thermometry. Despite remarkable advances in photoluminescent temperature indicators, existing optical instruments lack the ability of wide-field photoluminescence lifetime imaging in real time, thus falling short in dynamic temperature mapping. Here, we report video-rate upconversion temperature sensing in wide field using single-shot photoluminescence lifetime imaging thermometry (SPLIT). Developed from a compressed-sensing ultrahigh-speed imaging paradigm, SPLIT first records wide-field luminescence intensity decay compressively in two views in a single exposure. Then, an algorithm, built upon the plug-and-play alternating direction method of multipliers, is used to reconstruct the video, from which the extracted lifetime distribution is converted to a temperature map. Using the core/shell NaGdF4:Er3+,Yb3+/NaGdF4 upconverting nanoparticles as the lifetime-based temperature indicators, we apply SPLIT in longitudinal wide-field temperature monitoring beneath a thin scattering medium. SPLIT also enables video-rate temperature mapping of a moving biological sample at single-cell resolution.
Collapse
Affiliation(s)
- Xianglei Liu
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes, Québec, J3X1S2, Canada
| | - Artiom Skripka
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes, Québec, J3X1S2, Canada
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain and The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yingming Lai
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes, Québec, J3X1S2, Canada
| | - Cheng Jiang
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes, Québec, J3X1S2, Canada
| | - Jingdan Liu
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes, Québec, J3X1S2, Canada
| | - Fiorenzo Vetrone
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes, Québec, J3X1S2, Canada.
| | - Jinyang Liang
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes, Québec, J3X1S2, Canada.
| |
Collapse
|
7
|
West MES, Yao CY, Melaugh G, Kawamoto K, Uchiyama S, de Silva AP. Fluorescent Molecular Logic Gates Driven by Temperature and by Protons in Solution and on Solid. Chemistry 2021; 27:13268-13274. [PMID: 34233035 DOI: 10.1002/chem.202101892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Indexed: 12/22/2022]
Abstract
Temperature-driven fluorescent NOT logic is demonstrated by exploiting predissociation in a 1,3,5-trisubstituted Δ2 -pyrazoline on its own and when grafted onto silica microparticles. Related Δ2 -pyrazolines become proton-driven YES and NOT logic gates on the basis of fluorescent photoinduced electron transfer (PET) switches. Additional PASS 1 and YES+PASS 1 logic gates on silica are also demonstrated within the same family. Beside these small-molecule systems, a polymeric molecular thermometer based on a benzofurazan-derivatized N-isopropylacrylamide copolymer is attached to silica to produce temperature-driven fluorescent YES logic.
Collapse
Affiliation(s)
- Matthew E S West
- School of Chemistry and Chemical Engineering, Queen's University, Belfast, BT9 5AG, UK
| | - Chao-Yi Yao
- School of Chemistry and Chemical Engineering, Queen's University, Belfast, BT9 5AG, UK
| | - Gavin Melaugh
- School of Chemistry and Chemical Engineering, Queen's University, Belfast, BT9 5AG, UK
- School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - Kyoko Kawamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Seiichi Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| | - A Prasanna de Silva
- School of Chemistry and Chemical Engineering, Queen's University, Belfast, BT9 5AG, UK
| |
Collapse
|
8
|
Shu T, Hu L, Shen Q, Jiang L, Zhang Q, Serpe MJ. Stimuli-responsive polymer-based systems for diagnostic applications. J Mater Chem B 2021; 8:7042-7061. [PMID: 32743631 DOI: 10.1039/d0tb00570c] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stimuli-responsive polymers exhibit properties that make them ideal candidates for biosensing and molecular diagnostics. Through rational design of polymer composition combined with new polymer functionalization and synthetic strategies, polymers with myriad responsivities, e.g., responses to temperature, pH, biomolecules, CO2, light, and electricity can be achieved. When these polymers are specifically designed to respond to biomarkers, stimuli-responsive devices/probes, capable of recognizing and transducing analyte signals, can be used to diagnose and treat disease. In this review, we highlight recent state-of-the-art examples of stimuli-responsive polymer-based systems for biosensing and bioimaging.
Collapse
Affiliation(s)
- Tong Shu
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China
| | - Liang Hu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Qiming Shen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| | - Li Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.
| | - Michael J Serpe
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| |
Collapse
|
9
|
Morad V, Yakunin S, Benin BM, Shynkarenko Y, Grotevent MJ, Shorubalko I, Boehme SC, Kovalenko MV. Hybrid 0D Antimony Halides as Air-Stable Luminophores for High-Spatial-Resolution Remote Thermography. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007355. [PMID: 33480450 PMCID: PMC11481058 DOI: 10.1002/adma.202007355] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Luminescent organic-inorganic low-dimensional ns2 metal halides are of rising interest as thermographic phosphors. The intrinsic nature of the excitonic self-trapping provides for reliable temperature sensing due to the existence of a temperature range, typically 50-100 K wide, in which the luminescence lifetimes (and quantum yields) are steeply temperature-dependent. This sensitivity range can be adjusted from cryogenic temperatures to above room temperature by structural engineering, thus enabling diverse thermometric and thermographic applications ranging from protein crystallography to diagnostics in microelectronics. Owing to the stable oxidation state of Sb3+ , Sb(III)-based halides are far more attractive than all major non-heavy-metal alternatives (Sn-, Ge-, Bi-based halides). In this work, the relationship between the luminescence characteristics and crystal structure and microstructure of TPP2 SbBr5 (TPP = tetraphenylphosphonium) is established, and then its potential is showcased as environmentally stable and robust phosphor for remote thermography. The material is easily processable into thin films, which is highly beneficial for high-spatial-resolution remote thermography. In particular, a compelling combination of high spatial resolution (1 µm) and high thermometric precision (high specific sensitivities of 0.03-0.04 K-1 ) is demonstrated by fluorescence-lifetime imaging of a heated resistive pattern on a flat substrate, covered with a solution-spun film of TPP2 SbBr5 .
Collapse
Affiliation(s)
- Viktoriia Morad
- Laboratory of Inorganic ChemistryDepartment of Chemistry and Applied BioscienceETH ZürichVladimir Prelog Weg 1ZürichCH‐8093Switzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa – Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129DübendorfCH‐8600Switzerland
| | - Sergii Yakunin
- Laboratory of Inorganic ChemistryDepartment of Chemistry and Applied BioscienceETH ZürichVladimir Prelog Weg 1ZürichCH‐8093Switzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa – Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129DübendorfCH‐8600Switzerland
| | - Bogdan M. Benin
- Laboratory of Inorganic ChemistryDepartment of Chemistry and Applied BioscienceETH ZürichVladimir Prelog Weg 1ZürichCH‐8093Switzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa – Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129DübendorfCH‐8600Switzerland
| | - Yevhen Shynkarenko
- Laboratory of Inorganic ChemistryDepartment of Chemistry and Applied BioscienceETH ZürichVladimir Prelog Weg 1ZürichCH‐8093Switzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa – Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129DübendorfCH‐8600Switzerland
| | - Matthias J. Grotevent
- Laboratory of Inorganic ChemistryDepartment of Chemistry and Applied BioscienceETH ZürichVladimir Prelog Weg 1ZürichCH‐8093Switzerland
- Laboratory for Transport at Nanoscale InterfacesEmpa – Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129DübendorfCH‐8600Switzerland
| | - Ivan Shorubalko
- Laboratory for Transport at Nanoscale InterfacesEmpa – Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129DübendorfCH‐8600Switzerland
| | - Simon C. Boehme
- Laboratory of Inorganic ChemistryDepartment of Chemistry and Applied BioscienceETH ZürichVladimir Prelog Weg 1ZürichCH‐8093Switzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa – Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129DübendorfCH‐8600Switzerland
| | - Maksym V. Kovalenko
- Laboratory of Inorganic ChemistryDepartment of Chemistry and Applied BioscienceETH ZürichVladimir Prelog Weg 1ZürichCH‐8093Switzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa – Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129DübendorfCH‐8600Switzerland
| |
Collapse
|
10
|
Salerno EV, Zeler J, Eliseeva SV, Hernández-Rodríguez MA, Carneiro Neto AN, Petoud S, Pecoraro VL, Carlos LD. [Ga 3+ 8 Sm 3+ 2 , Ga 3+ 8 Tb 3+ 2 ] Metallacrowns are Highly Promising Ratiometric Luminescent Molecular Nanothermometers Operating at Physiologically Relevant Temperatures. Chemistry 2020; 26:13792-13796. [PMID: 32663350 DOI: 10.1002/chem.202003239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 12/13/2022]
Abstract
Nanothermometry is the study of temperature at the submicron scale with a broad range of potential applications, such as cellular studies or electronics. Molecular luminescent-based nanothermometers offer a non-contact means to record these temperatures with high spatial resolution and thermal sensitivity. A luminescent-based molecular thermometer comprised of visible-emitting Ga3+ /Tb3+ and Ga3+ /Sm3+ metallacrowns (MCs) achieved remarkable relative thermal sensitivity associated with very low temperature uncertainty of Sr =1.9 % K-1 and δT<0.045 K, respectively, at 328 K, as an aqueous suspension of polystyrene nanobeads loaded with the corresponding MCs. To date, they are the ratiometric molecular nanothermometers offering the highest level of sensitivity in the physiologically relevant temperature range.
Collapse
Affiliation(s)
- Elvin V Salerno
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48108, USA
| | - Justyna Zeler
- Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, Aveiro, Portugal.,Faculty of Chemistry, University of Wroclaw, Wroclaw, Poland
| | - Svetlana V Eliseeva
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, 45071, Orléans Cedex 2, France
| | - Miguel A Hernández-Rodríguez
- Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Albano N Carneiro Neto
- Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Stéphane Petoud
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, 45071, Orléans Cedex 2, France
| | - Vincent L Pecoraro
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48108, USA
| | - Luís D Carlos
- Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, Aveiro, Portugal
| |
Collapse
|
11
|
Steinegger A, Borisov SM. Zn(II) Schiff Bases: Bright TADF Emitters for Self-referenced Decay Time-Based Optical Temperature Sensing. ACS OMEGA 2020; 5:7729-7737. [PMID: 32280917 PMCID: PMC7144147 DOI: 10.1021/acsomega.0c01062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 05/07/2023]
Abstract
Thermally activated delayed fluorescence (TADF) is a highly temperature-dependent process and can be used in optical thermometry. TADF-based optical thermometers reported so far show fairly high-temperature sensitivity but have poor brightness and significant oxygen cross-talk. A new class of TADF emitters, Zn(II) Schiff base complexes, possess excellent brightness and high temperature sensitivity of the decay time at ambient temperature (4.1%/K change of TADF lifetime at 25 °C), enabling a resolution better than 0.03 °C. Oxygen cross-sensitivity is eliminated by covering the sensing layer (luminophore in polystyrene) with an off-stoichiometry thiol-ene polymer as an oxygen-consuming layer, and a poly(vinylidene chloride-co-acrylonitrile) layer as an oxygen barrier. The material is stable after more than 2 months of storage at ambient air, which enables long-term temperature monitoring.
Collapse
Affiliation(s)
- Andreas Steinegger
- Graz University of Technology, Institute of Analytical Chemistry and Food Chemistry, Stremayrgasse 9, 8010 Graz, Austria
| | - Sergey M. Borisov
- Graz University of Technology, Institute of Analytical Chemistry and Food Chemistry, Stremayrgasse 9, 8010 Graz, Austria
| |
Collapse
|
12
|
Uchiyama S. Fluorescent Sensors Based on a Novel Functional Design: Combination of an Environment-sensitive Fluorophore with Polymeric and Self-assembled Architectures. J SYN ORG CHEM JPN 2019. [DOI: 10.5059/yukigoseikyokaishi.77.1116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Seiichi Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
13
|
Yao CY, Uchiyama S, de Silva AP. A Personal Journey across Fluorescent Sensing and Logic Associated with Polymers of Various Kinds. Polymers (Basel) 2019; 11:E1351. [PMID: 31416199 PMCID: PMC6723954 DOI: 10.3390/polym11081351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 01/05/2023] Open
Abstract
Our experiences concerning fluorescent molecular sensing and logic devices and their intersections with polymer science are the foci of this brief review. Proton-, metal ion- and polarity-responsive cases of these devices are placed in polymeric micro- or nano-environments, some of which involve phase separation. This leads to mapping of chemical species on the nanoscale. These devices also take advantage of thermal properties of some polymers in water in order to reincarnate themselves as thermometers. When the phase separation leads to particles, the latter can be labelled with identification tags based on molecular logic. Such particles also give rise to reusable sensors, although molecular-scale resolution is sacrificed in the process. Polymeric nano-environments also help to organize rather complex molecular logic systems from their simple components. Overall, our little experiences suggest that researchers in sensing and logic would benefit if they assimilate polymer concepts.
Collapse
Affiliation(s)
- Chao-Yi Yao
- School of Chemistry and Chemical Engineering, Queen's University, BT9 5AG Belfast, Northern Ireland.
| | - Seiichi Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan.
| | - A Prasanna de Silva
- School of Chemistry and Chemical Engineering, Queen's University, BT9 5AG Belfast, Northern Ireland.
| |
Collapse
|
14
|
Hayashi T, Kawamoto K, Inada N, Uchiyama S. Cationic Fluorescent Nanogel Thermometers based on Thermoresponsive Poly( N-isopropylacrylamide) and Environment-Sensitive Benzofurazan. Polymers (Basel) 2019; 11:E1305. [PMID: 31382693 PMCID: PMC6723757 DOI: 10.3390/polym11081305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 01/23/2023] Open
Abstract
Cationic nanogels of N-isopropylacrylamide (NIPAM), including NIPAM-based cationic fluorescent nanogel thermometers, were synthesized with a cationic radical initiator previously developed in our laboratory. These cationic nanogels were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential measurements and fluorescence spectroscopy, as summarized in the temperature-dependent fluorescence response based on the structural change in polyNIPAM units in aqueous solutions. Cellular experiments using HeLa (human epithelial carcinoma) cells demonstrated that NIPAM-based cationic fluorescent nanogel thermometers can spontaneously enter the cells under mild conditions (at 25 °C for 20 min) and can show significant fluorescence enhancement without cytotoxicity with increasing culture medium temperature. The combination of the ability to enter cells and non-cytotoxicity is the most important advantage of cationic fluorescent nanogel thermometers compared with other types of fluorescent polymeric thermometers, i.e., anionic nanogel thermometers and cationic/anionic linear polymeric thermometers.
Collapse
Affiliation(s)
| | - Kyoko Kawamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Noriko Inada
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Seiichi Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
15
|
Savchuk OA, Carvajal JJ, Cesteros Y, Salagre P, Nguyen HD, Rodenas A, Massons J, Aguiló M, Díaz F. Mapping Temperature Distribution Generated by Photothermal Conversion in Graphene Film Using Er,Yb:NaYF 4 Nanoparticles Prepared by Microwave-Assisted Solvothermal Method. Front Chem 2019; 7:88. [PMID: 30859096 PMCID: PMC6397865 DOI: 10.3389/fchem.2019.00088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/01/2019] [Indexed: 12/31/2022] Open
Abstract
This study analyzes the mapping of temperature distribution generated by graphene in a glass slide cover after illumination at 808 nm with a good thermal resolution. For this purpose, Er,Yb:NaYF4 nanoparticles prepared by a microwave-assisted solvothermal method were used as upconversion luminescent nanothermometers. By tuning the basic parameters of the synthesis procedure, such as the time and temperature of reaction and the concentration of ethanol and water, we were able to control the size and the crystalline phase of the nanoparticles, and to have the right conditions to obtain 100% of the β hexagonal phase, the most efficient spectroscopically. We observed that the thermal sensitivity that can be achieved with these particles is a function of the size of the nanoparticles and the crystalline phase in which they crystallize. We believe that, with suitable changes, these nanoparticles might be used in the future to map temperature gradients in living cells while maintaining a good thermal resolution.
Collapse
Affiliation(s)
- Oleksandr A Savchuk
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, Física i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA) and EMaS, Tarragona, Spain.,Ultrafast Bio- and Nanophotonics Group, INL - International Iberian Nanotechnology Laboratory, Nanophotonics Department, Braga, Portugal
| | - Joan J Carvajal
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, Física i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA) and EMaS, Tarragona, Spain
| | - Yolanda Cesteros
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, Catalytic Materials in Green Chemistry (GreenCat), Tarragona, Spain
| | - Pilar Salagre
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, Catalytic Materials in Green Chemistry (GreenCat), Tarragona, Spain
| | - Huu Dat Nguyen
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, Física i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA) and EMaS, Tarragona, Spain
| | - Airan Rodenas
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, Física i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA) and EMaS, Tarragona, Spain
| | - Jaume Massons
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, Física i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA) and EMaS, Tarragona, Spain
| | - Magdalena Aguiló
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, Física i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA) and EMaS, Tarragona, Spain
| | - Franscesc Díaz
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, Física i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA) and EMaS, Tarragona, Spain
| |
Collapse
|
16
|
Ji Z, Cheng Y, Cui X, Lin H, Xu J, Wang Y. Heating-induced abnormal increase in Yb3+ excited state lifetime and its potential application in lifetime luminescence nanothermometry. Inorg Chem Front 2019. [DOI: 10.1039/c8qi01052h] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Heating-induced abnormal increase in Yb3+ excited state lifetime is demonstrated with potential application in lifetime luminescence nanothermometry.
Collapse
Affiliation(s)
- Zeliang Ji
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- and Fujian Provincial Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
| | - Yao Cheng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- and Fujian Provincial Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
| | - Xiangshui Cui
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- and Fujian Provincial Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
| | - Hang Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- and Fujian Provincial Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
| | - Ju Xu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- and Fujian Provincial Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
| | - Yuansheng Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- and Fujian Provincial Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
| |
Collapse
|
17
|
Ripken RM, Schlautmann S, Sanders RGP, Gardeniers JGE, Le Gac S. Monitoring phase transition of aqueous biomass model substrates by high-pressure and high-temperature microfluidics. Electrophoresis 2018; 40:563-570. [PMID: 30580450 PMCID: PMC6590653 DOI: 10.1002/elps.201800431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 11/24/2022]
Abstract
Aqueous‐Phase Reforming (APR) is a promising hydrogen production method, where biomass is catalytically reformed under high pressure and high temperature reaction conditions. To eventually study APR, in this paper, we report a high‐pressure and high‐temperature microfluidic platform that can withstand temperatures up to 200°C and pressures up to 30 bar. As a first step, we studied the phase transition of four typical APR biomass model solutions, consisting of 10 wt% of ethylene glycol, glycerol, xylose or xylitol in MilliQ water. After calibration of the set‐up using pure MilliQ water, a small increase in boiling point was observed for the ethylene glycol, xylitol and xylose solutions compared to pure water. Phase transition occurred through either explosive or nucleate boiling mechanisms, which was monitored in real‐time in our microfluidic device. In case of nucleate boiling, the nucleation site could be controlled by exploiting the pressure drop along the microfluidic channel. Depending on the void fraction, various multiphase flow patterns were observed simultaneously. Altogether, this study will not only help to distinguish between bubbles resulting from a phase transition and/or APR product formation, but is also important from a heat and mass transport perspective.
Collapse
Affiliation(s)
- Renée M Ripken
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology and TechMed Centre, University of Twente, Enschede, The Netherlands.,Mesoscale Chemical Systems, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Stefan Schlautmann
- Mesoscale Chemical Systems, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Remco G P Sanders
- Mesoscale Chemical Systems, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Johannes G E Gardeniers
- Mesoscale Chemical Systems, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Séverine Le Gac
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology and TechMed Centre, University of Twente, Enschede, The Netherlands
| |
Collapse
|
18
|
|
19
|
Bednarkiewicz A, Trejgis K, Drabik J, Kowalczyk A, Marciniak L. Phosphor-Assisted Temperature Sensing and Imaging Using Resonant and Nonresonant Photoexcitation Scheme. ACS APPLIED MATERIALS & INTERFACES 2017; 9:43081-43089. [PMID: 29165982 DOI: 10.1021/acsami.7b13649] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Phosphor-assisted luminescent thermometry relies on studying, often subtle, temperature-dependent spectral properties, such as luminescence spectra, bands shifts, or luminescence lifetimes. Although this is feasible with high-resolution spectrometers or time-resolved detectors, technical implementation of such temperature mapping or wide-field imaging is complex and cumbersome. Therefore, a new approach for noncontact ratiometric temperature detection has been proposed based on comparison of emission properties of bright Cr3+-doped phosphors at single emission band upon two, resonant and nonresonant, optical excitation bands. The proposed method of temperature readout was examined for three different host materials: YAlO3, Y3Al5O12, and LiLaP4O12 nanocrystals. The highest relative sensitivity in physiological temperature range was found for YAlO3 nanocrystals reaching 0.35%/K, which is related to the highest crystal field found for this phosphor. The proposed methodology and the obtained materials enabled to not only reliably measure temperature in the range of -150 to 300 °C but also significantly simplify the technical detection scheme. In consequence, lamp-photoexcited, wide-field, micron-resolution microscopy imaging became possible, which is of special interest for many remote temperature studies in technology and biomedical applications.
Collapse
Affiliation(s)
- Artur Bednarkiewicz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences , Okólna 2, 50-422 Wroclaw, Poland
- Wroclaw Research Centre EIT+ , Stabłowicka 147, 54-066 Wrocław, Poland
| | - Karolina Trejgis
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences , Okólna 2, 50-422 Wroclaw, Poland
| | - Joanna Drabik
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences , Okólna 2, 50-422 Wroclaw, Poland
| | | | - Lukasz Marciniak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences , Okólna 2, 50-422 Wroclaw, Poland
| |
Collapse
|
20
|
Santos HDA, Ruiz D, Lifante G, Jacinto C, Juarez BH, Jaque D. Time resolved spectroscopy of infrared emitting Ag 2S nanocrystals for subcutaneous thermometry. NANOSCALE 2017; 9:2505-2513. [PMID: 28150830 DOI: 10.1039/c6nr08534b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report a systematic investigation on the temperature dependence of fluorescence decay dynamics of infrared emitting colloidal Ag2S nanocrystals (NCs) with different surface coatings. The drastic lifetime reduction in the biological temperature range (20-50 °C) makes Ag2S NCs outstanding candidates for high sensitivity subcutaneous lifetime-based thermal sensing in the second biological window (1000-1400 nm). Indeed, the lifetime thermal sensitivity of Ag2S NCs has been found to be as large as 3-4% °C-1 at an operating wavelength of 1250 nm. Their application for lifetime-based luminescence nanothermometry has been demonstrated through simple ex vivo experiments specially designed to elucidate the magnitude of subcutaneous thermal gradients. Experimental data were found to be in excellent agreement with numerical simulations.
Collapse
Affiliation(s)
- H D A Santos
- Grupo de Fotônica e Fluidos Complexos, Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, Alagoas, Brazil.
| | - D Ruiz
- IMDEA Nanoscience, Faraday 9, Campus Cantoblanco, 28049, Madrid, Spain
| | - G Lifante
- Fluorescence Imaging Group, Departamento de Fisica de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain.
| | - C Jacinto
- Grupo de Fotônica e Fluidos Complexos, Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, Alagoas, Brazil.
| | - B H Juarez
- IMDEA Nanoscience, Faraday 9, Campus Cantoblanco, 28049, Madrid, Spain and Applied Physical-Chemistry Department, Faculty of Science, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - D Jaque
- Fluorescence Imaging Group, Departamento de Fisica de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain.
| |
Collapse
|
21
|
Uchiyama S, Gota C, Tsuji T, Inada N. Intracellular temperature measurements with fluorescent polymeric thermometers. Chem Commun (Camb) 2017; 53:10976-10992. [DOI: 10.1039/c7cc06203f] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Intracellular temperature can be measured using fluorescent polymeric thermometersviatheir temperature-dependent fluorescence signals.
Collapse
Affiliation(s)
- Seiichi Uchiyama
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - Chie Gota
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - Toshikazu Tsuji
- Central Laboratories for Key Technologies
- KIRIN Company Limited
- 236-0004 Kanagawa
- Japan
| | - Noriko Inada
- The Graduate School of Biological Sciences
- Nara Institute of Science and Technology
- Nara 630-0192
- Japan
| |
Collapse
|
22
|
Alaulamie AA, Baral S, Johnson SC, Richardson HH. Targeted Nanoparticle Thermometry: A Method to Measure Local Temperature at the Nanoscale Point Where Water Vapor Nucleation Occurs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1601989. [PMID: 27699975 DOI: 10.1002/smll.201601989] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/29/2016] [Indexed: 05/24/2023]
Abstract
An optical nanothermometer technique based on laser trapping, moving and targeted attaching an erbium oxide nanoparticle cluster is developed to measure the local temperature. The authors apply this new nanoscale temperature measuring technique (limited by the size of the nanoparticles) to measure the temperature of vapor nucleation in water. Vapor nucleation is observed after superheating water above the boiling point for degassed and nondegassed water. The average nucleation temperature for water without gas is 560 K but this temperature is lowered by 100 K when gas is introduced into the water. The authors are able to measure the temperature inside the bubble during bubble formation and find that the temperature inside the bubble spikes to over 1000 K because the heat source (optically-heated nanorods) is no longer connected to liquid water and heat dissipation is greatly reduced.
Collapse
Affiliation(s)
- Arwa A Alaulamie
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Susil Baral
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Samuel C Johnson
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Hugh H Richardson
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
23
|
Sasaki S, Konishi GI. Thermo-responsive fluorescence of AIE-active poly(N-isopropylacrylamides) labeled with highly twisted bis(N,N-dialkylamino)arenes. RSC Adv 2017. [DOI: 10.1039/c7ra01212h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A thermo-responsive fluorescent polymer materials were synthesized fromN-isopropylacrylamides with AIE-active 9,10-bis(N,N-dialkylamino)arene monomers.
Collapse
Affiliation(s)
- Shunsuke Sasaki
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Tokyo
- Japan
| | - Gen-ichi Konishi
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Tokyo
- Japan
| |
Collapse
|
24
|
Huo X, Xu J, Wang Z, Yang F, Xu S. Performance of Nano-Submicron-Stripe Pd Thin-Film Temperature Sensors. NANOSCALE RESEARCH LETTERS 2016; 11:351. [PMID: 27465601 PMCID: PMC4963350 DOI: 10.1186/s11671-016-1565-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/22/2016] [Indexed: 05/04/2023]
Abstract
Dozens of small dual-beam thin-film temperature sensors with a total width down to 430 nm were fabricated and tested. The sensors were all made from 90-nm-thick Pd thin films, where the width of the narrow stripes was 70-100 nm and that of the wide ones was 210-800 nm. Two different calibration methods showed consistent and repeatable sensitivities of 0.7-1.2 μV/K for the sensors, confirming that the sensitivity mainly depended on the width configuration of each sensor. By integrating arrays of such sensors on a practical testing platform using hybrid e-beam lithography and photolithography techniques, we demonstrated that these sensors were capable of detecting a weak surface temperature difference of 0.1-0.2 K at microscale, and they could be scaled up as built-in temperature sensors in many practical devices.
Collapse
Affiliation(s)
- Xiaoye Huo
- Key Laboratory for Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing, 100871, People's Republic of China
| | - Jingjing Xu
- Key Laboratory for Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing, 100871, People's Republic of China
| | - Zhenhai Wang
- Key Laboratory for Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing, 100871, People's Republic of China
| | - Fan Yang
- Key Laboratory for Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing, 100871, People's Republic of China
| | - Shengyong Xu
- Key Laboratory for Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing, 100871, People's Republic of China.
| |
Collapse
|
25
|
Qiao J, Mu X, Qi L. Construction of fluorescent polymeric nano-thermometers for intracellular temperature imaging: A review. Biosens Bioelectron 2016; 85:403-413. [DOI: 10.1016/j.bios.2016.04.070] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/14/2016] [Accepted: 04/21/2016] [Indexed: 12/15/2022]
|
26
|
Inomata N, Toda M, Ono T. Highly sensitive thermometer using a vacuum-packed Si resonator in a microfluidic chip for the thermal measurement of single cells. LAB ON A CHIP 2016; 16:3597-603. [PMID: 27526966 DOI: 10.1039/c6lc00949b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A highly sensitive thermometer system for a living cell is proposed, fabricated, and evaluated. The system possesses a resonant thermal sensor surrounded by vacuum in a microfluidic chip. The measurement principle relies on resonant frequency tracking of the resonator in temperature variations due to the heat from a sample cell; the heat is conducted from the sample cell in the microfluidic channel via a heat guide connecting the resonator to a sample stage. This configuration can reduce heat loss from the resonator to the surroundings and damping in water. Two types of resonators are prepared, i.e., a cantilevered resonator and a double-supported resonator. The resonator sizes as a sensor are 30 × 50 × 1.5 μm in the cantilevered resonator, 30 × 75 × 0.40 μm in the double-supported one, respectively. The temperature and thermal resolutions of 79 μK and 1.90 nW, respectively, are achieved using the double-supported resonator. Two types of heat emissions from single brown fat cells are detected; one is continuous heat generation in the presence of chemical stimulation by a norepinephrine solution, and the other is pulsed without any stimulation.
Collapse
Affiliation(s)
- Naoki Inomata
- Department of Mechanical Systems and Design, Tohoku University, 6-6-01, aza-Aoba, Aramaki, Aoba, Sendai, Japan.
| | | | | |
Collapse
|
27
|
Zhou H, Sharma M, Berezin O, Zuckerman D, Berezin MY. Nanothermometry: From Microscopy to Thermal Treatments. Chemphyschem 2016; 17:27-36. [PMID: 26443335 PMCID: PMC7396319 DOI: 10.1002/cphc.201500753] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Indexed: 01/01/2023]
Abstract
Measuring temperature in cells and tissues remotely, with sufficient sensitivity, and in real time presents a new paradigm in engineering, chemistry and biology. Traditional sensors, such as contact thermometers, thermocouples, and electrodes, are too large to measure the temperature with subcellular resolution and are too invasive to measure the temperature in deep tissue. The new challenge requires novel approaches in designing biocompatible temperature sensors-nanothermometers-and innovative techniques for their measurements. In the last two decades, a variety of nanothermometers whose response reflected the thermal environment within a physiological temperature range have been identified as potential sensors. This review covers the principles and aspects of nanothermometer design driven by two emerging areas: single-cell thermogenesis and image guided thermal treatments. The review highlights the current trends in nanothermometry illustrated with recent representative examples.
Collapse
Affiliation(s)
- Haiying Zhou
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway, St. Louis, MO, 63110, USA
| | - Monica Sharma
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway, St. Louis, MO, 63110, USA
| | | | - Darryl Zuckerman
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway, St. Louis, MO, 63110, USA
| | - Mikhail Y Berezin
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway, St. Louis, MO, 63110, USA.
- Institute for Materials Science and Engineering, Washington University, 1 Brookings Dr, St. Louis, MO, 63130, USA.
| |
Collapse
|
28
|
|
29
|
Zhao H, Vomiero A, Rosei F. Ultrasensitive, Biocompatible, Self-Calibrating, Multiparametric Temperature Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5741-6. [PMID: 26467511 DOI: 10.1002/smll.201502249] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/31/2015] [Indexed: 05/20/2023]
Abstract
Core-shell quantum dots serve as self-calibrating, ultrasensitive, multiparametric, near-infrared, and biocompatible temperature sensors. They allow temperature measurement with nanometer accuracy in the range 150-373 K, the broadest ever recorded for a nanothermometer, with sensitivities among the highest ever reported, which makes them essentially unique in the panorama of biocompatible nanothermometers with potential for in vivo biological thermal imaging and/or thermoablative therapy.
Collapse
Affiliation(s)
- Haiguang Zhao
- CNR INO SENSOR Lab, Via Branze 45, Brescia, 25123, Italy
- Centre for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X 1S2, Canada
| | - Alberto Vomiero
- CNR INO SENSOR Lab, Via Branze 45, Brescia, 25123, Italy
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, 971 98, Sweden
| | - Federico Rosei
- Centre for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X 1S2, Canada
- Institute for Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- Center for Self-Assembled Chemical Structures, McGill University, Montreal, Quebec, H3A 2K6, Canada
| |
Collapse
|
30
|
Vyšniauskas A, Qurashi M, Gallop N, Balaz M, Anderson HL, Kuimova MK. Unravelling the effect of temperature on viscosity-sensitive fluorescent molecular rotors. Chem Sci 2015; 6:5773-5778. [PMID: 28791085 PMCID: PMC5520772 DOI: 10.1039/c5sc02248g] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 07/04/2015] [Indexed: 12/22/2022] Open
Abstract
We examine the effect of temperature on three viscosity-sensitive fluorophores termed ‘molecular rotors’. In the case of the conjugated porphyrin dimer, it can be used for measuring both viscosity and temperature concurrently.
Viscosity and temperature variations in the microscopic world are of paramount importance for diffusion and reactions. Consequently, a plethora of fluorescent probes have evolved over the years to enable fluorescent imaging of both parameters in biological cells. However, the simultaneous effect of both temperature and viscosity on the photophysical behavior of fluorophores is rarely considered, yet unavoidable variations in temperature can lead to significant errors in the readout of viscosity and vice versa. Here we examine the effect of temperature on the photophysical behavior of three classes of viscosity-sensitive fluorophores termed ‘molecular rotors’. For each of the fluorophores we decouple the effect of temperature from the effect of viscosity. In the case of the conjugated porphyrin dimer, we demonstrate that, uniquely, simultaneous dual-mode lifetime and intensity measurements of this fluorophore can be used for measuring both viscosity and temperature concurrently.
Collapse
Affiliation(s)
- Aurimas Vyšniauskas
- Chemistry Department , Imperial College London , Exhibition Road , SW7 2AZ , UK .
| | - Maryam Qurashi
- Chemistry Department , Imperial College London , Exhibition Road , SW7 2AZ , UK .
| | - Nathaniel Gallop
- Chemistry Department , Imperial College London , Exhibition Road , SW7 2AZ , UK .
| | - Milan Balaz
- Chemistry Department , University of Oxford , Chemistry Research Laboratory , Oxford , OX1 3TA , UK
| | - Harry L Anderson
- Chemistry Department , University of Oxford , Chemistry Research Laboratory , Oxford , OX1 3TA , UK
| | - Marina K Kuimova
- Chemistry Department , Imperial College London , Exhibition Road , SW7 2AZ , UK .
| |
Collapse
|
31
|
|
32
|
Chen J, Wu Y, Wang X, Yu Z, Tian H, Yao J, Fu H. A soluble cryogenic thermometer with high sensitivity based on excited-state configuration transformations. Phys Chem Chem Phys 2015; 17:27658-64. [DOI: 10.1039/c5cp04400f] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism for the dual emission of FIPAC was investigated in detail and the dual emission character of the FIPAC solution system was further applied as a cryogenic thermometer.
Collapse
Affiliation(s)
- Jianwei Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| | - Yishi Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| | - Xuedong Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| | - Zhenyi Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| | - He Tian
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science & Technology
- Shanghai
- China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| | - Hongbing Fu
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| |
Collapse
|
33
|
Preparation of a magnetofluorescent nano-thermometer and its targeted temperature sensing applications in living cells. Talanta 2015; 131:259-65. [DOI: 10.1016/j.talanta.2014.07.088] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/25/2014] [Accepted: 07/30/2014] [Indexed: 11/19/2022]
|
34
|
Ragab SS, Swaminathan S, Garcia-Amorós J, Captain B, Raymo FM. Bimolecular photoactivation of NBD fluorescence. NEW J CHEM 2015. [DOI: 10.1039/c4nj01983k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photoinduced deprotection of a nucleophilic species converts a nonemissive NBD chromophore into an emissive product and allows fluorescence activation under optical control.
Collapse
Affiliation(s)
- Sherif Shaban Ragab
- Laboratory for Molecular Photonics
- Department of Chemistry
- University of Miami
- Coral Gables
- USA
| | - Subramani Swaminathan
- Laboratory for Molecular Photonics
- Department of Chemistry
- University of Miami
- Coral Gables
- USA
| | - Jaume Garcia-Amorós
- Laboratory for Molecular Photonics
- Department of Chemistry
- University of Miami
- Coral Gables
- USA
| | - Burjor Captain
- Laboratory for Molecular Photonics
- Department of Chemistry
- University of Miami
- Coral Gables
- USA
| | - Françisco M. Raymo
- Laboratory for Molecular Photonics
- Department of Chemistry
- University of Miami
- Coral Gables
- USA
| |
Collapse
|
35
|
de la Rosa VR, Hoogenboom R. Solution Polymeric Optical Temperature Sensors with Long-Term Memory Function Powered by Supramolecular Chemistry. Chemistry 2014; 21:1302-11. [DOI: 10.1002/chem.201405161] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Indexed: 12/12/2022]
|
36
|
Savchuk OA, Haro-González P, Carvajal JJ, Jaque D, Massons J, Aguiló M, Díaz F. Er:Yb:NaY2F5O up-converting nanoparticles for sub-tissue fluorescence lifetime thermal sensing. NANOSCALE 2014; 6:9727-9733. [PMID: 24995540 DOI: 10.1039/c4nr02305f] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Non-contact thermometry is essential in biomedical studies requiring thermal sensing and imaging with high thermal and spatial resolutions. In this work, we report the potential use of Er:Yb:NaYF4 and Er:Yb:NaY2F5O up-conversion nanoparticles as thermal sensors by means of lifetime based luminescent thermometry. We demonstrate how Er:Yb:NaY2F5O nanocrystals present a higher thermal sensitivity than the Er:Yb:NaYF4 ones and that their lifetime thermal coefficient is comparable to those corresponding to other nano-sized luminescent systems already used for high resolution lifetime fluorescence thermal sensing. We evaluate the potential use of Er:Yb:NaY2F5O nanoparticles as lifetime based thermal probes by providing the first experimental evidence on sub-tissue lifetime fluorescence thermal sensing by using up-conversion nanoparticles in an ex vivo experiment.
Collapse
Affiliation(s)
- Ol A Savchuk
- Física i Cristal.lografia de Materials i Nanomaterials (FiCMA-FiCNA)- EMaS, Universitat Rovira i Virgili (URV), Campus Sescelades, C/ Marcel.li Domingo s/n, E-43007, Tarragona, Spain.
| | | | | | | | | | | | | |
Collapse
|
37
|
Chauhan VM, Hopper RH, Ali SZ, King EM, Udrea F, Oxley CH, Aylott JW. Thermo-optical characterization of fluorescent rhodamine B based temperature-sensitive nanosensors using a CMOS MEMS micro-hotplate. SENSORS AND ACTUATORS. B, CHEMICAL 2014; 192:126-133. [PMID: 25844025 PMCID: PMC4376176 DOI: 10.1016/j.snb.2013.10.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/07/2013] [Accepted: 10/10/2013] [Indexed: 05/05/2023]
Abstract
A custom designed microelectromechanical systems (MEMS) micro-hotplate, capable of operating at high temperatures (up to 700 °C), was used to thermo-optically characterize fluorescent temperature-sensitive nanosensors. The nanosensors, 550 nm in diameter, are composed of temperature-sensitive rhodamine B (RhB) fluorophore which was conjugated to an inert silica sol-gel matrix. Temperature-sensitive nanosensors were dispersed and dried across the surface of the MEMS micro-hotplate, which was mounted in the slide holder of a fluorescence confocal microscope. Through electrical control of the MEMS micro-hotplate, temperature induced changes in fluorescence intensity of the nanosensors was measured over a wide temperature range. The fluorescence response of all nanosensors dispersed across the surface of the MEMS device was found to decrease in an exponential manner by 94%, when the temperature was increased from 25 °C to 145 °C. The fluorescence response of all dispersed nanosensors across the whole surface of the MEMS device and individual nanosensors, using line profile analysis, were not statistically different (p < 0.05). The MEMS device used for this study could prove to be a reliable, low cost, low power and high temperature micro-hotplate for the thermo-optical characterisation of sub-micron sized particles. The temperature-sensitive nanosensors could find potential application in the measurement of temperature in biological and micro-electrical systems.
Collapse
Affiliation(s)
- Veeren M. Chauhan
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Boots Science Building, University Park, Nottingham NG7 2RD, UK
| | - Richard H. Hopper
- Cambridge CMOS Sensors, Suite 820, 2nd Floor, St Andrews House, 59 St Andrews Street, Cambridge CB2 3BZ, UK
| | - Syed Z. Ali
- Cambridge CMOS Sensors, Suite 820, 2nd Floor, St Andrews House, 59 St Andrews Street, Cambridge CB2 3BZ, UK
| | - Emma M. King
- Advanced Microscopy Unit, School of Biomedical Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Florin Udrea
- Cambridge CMOS Sensors, Suite 820, 2nd Floor, St Andrews House, 59 St Andrews Street, Cambridge CB2 3BZ, UK
- Electrical Engineering Division, Engineering Department, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Chris H. Oxley
- Engineering, Faculty of Technology, De Montfort University, Queens Building, The Gateway, Leicester LE1 9BH, UK
| | - Jonathan W. Aylott
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Boots Science Building, University Park, Nottingham NG7 2RD, UK
- Corresponding author. Tel.: +44 115 9516229; fax: +44 115 9515102.
| |
Collapse
|
38
|
Hall EW, Faris GW. Microdroplet temperature calibration via thermal dissociation of quenched DNA oligomers. BIOMEDICAL OPTICS EXPRESS 2014; 5:737-751. [PMID: 24688810 PMCID: PMC3959839 DOI: 10.1364/boe.5.000737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/04/2014] [Accepted: 02/07/2014] [Indexed: 06/03/2023]
Abstract
The development of microscale analytical techniques has created an increasing demand for reliable and accurate heating at the microscale. Here, we present a novel method for calibrating the temperature of microdroplets using quenched, fluorescently labeled DNA oligomers. Upon melting, the 3' fluorophore of the reporter oligomer separates from the 5' quencher of its reverse complement, creating a fluorescent signal recorded as a melting curve. The melting temperature for a given oligomer is determined with a conventional quantitative polymerase chain reaction (qPCR) instrument and used to calibrate the temperature within a microdroplet, with identical buffer concentrations, heated with an infrared laser. Since significant premelt fluorescence prevents the use of a conventional (single-term) sigmoid or logistic function to describe the melting curve, we present a three-term sigmoid model that provides a very good match to the asymmetric fluorescence melting curve with premelting. Using mixtures of three oligomers of different lengths, we fit multiple three-term sigmoids to obtain precise comparison of the microscale and macroscale fluorescence melting curves using "extrapolated two-state" melting temperatures.
Collapse
|
39
|
Abstract
Thermal sensitive photoluminescence of CdTe quantum dots was used for micro-electromechanical systems temperature measurements in the high temperature range.
Collapse
Affiliation(s)
- Yangyang Li
- State Key Laboratory for Manufacturing Systems Engineering
- School of Mechanical Engineering
- Xi'an Jiaotong University
- 710049 Xi'an, China
| | - Ben Q. Li
- Department of Mechanical Engineering
- College of Engineering and Computer Science
- University of Michigan-Dearborn
- , USA
| |
Collapse
|
40
|
Brites CDS, Lima PP, Silva NJO, Millán A, Amaral VS, Palacio F, Carlos LD. Ratiometric highly sensitive luminescent nanothermometers working in the room temperature range. Applications to heat propagation in nanofluids. NANOSCALE 2013; 5:7572-7580. [PMID: 23835484 DOI: 10.1039/c3nr02335d] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
There is an increasing demand for accurate, non-invasive and self-reference temperature measurements as technology progresses into the nanoscale. This is particularly so in micro- and nanofluidics where the comprehension of heat transfer and thermal conductivity mechanisms can play a crucial role in areas as diverse as energy transfer and cell physiology. Here we present two luminescent ratiometric nanothermometers based on a magnetic core coated with an organosilica shell co-doped with Eu(3+) and Tb(3+) chelates. The design of the hybrid host and chelate ligands permits the working of the nanothermometers in a nanofluid at 293-320 K with an emission quantum yield of 0.38 ± 0.04, a maximum relative sensitivity of 1.5% K(-1) at 293 K and a spatio-temporal resolution (constrained by the experimental setup) of 64 × 10(-6) m/150 × 10(-3) s (to move out of 0.4 K--the temperature uncertainty). The heat propagation velocity in the nanofluid, (2.2 ± 0.1) × 10(-3) m s(-1), was determined at 294 K using the nanothermometers' Eu(3+)/Tb(3+) steady-state spectra. There is no precedent of such an experimental measurement in a thermographic nanofluid, where the propagation velocity is measured from the same nanoparticles used to measure the temperature.
Collapse
Affiliation(s)
- Carlos D S Brites
- Departamento de Física and CICECO, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | | | | | | | | | | | | |
Collapse
|
41
|
Park Y, Koo C, Chen HY, Han A, Son DH. Ratiometric temperature imaging using environment-insensitive luminescence of Mn-doped core-shell nanocrystals. NANOSCALE 2013; 5:4944-50. [PMID: 23629731 PMCID: PMC3661212 DOI: 10.1039/c3nr00290j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We report a ratiometric temperature imaging method based on Mn luminescence from Mn-doped CdS-ZnS nanocrystals (NCs) with controlled doping location, which is designed to exhibit strong temperature dependence of the spectral lineshape while being insensitive to the surrounding chemical environment. Ratiometric thermometry on the Mn luminescence spectrum was performed by using Mn-doped CdS-ZnS core-shell NCs that have a large local lattice strain on the Mn site, which results in the enhanced temperature dependence of the bandwidth and peak position. The Mn luminescence spectral lineshape is highly robust with respect to the change in the polarity, phase and pH of the surrounding medium and aggregation of the NCs, showing great potential in temperature imaging under chemically heterogeneous environment. The temperature sensitivity (ΔIR/IR = 0.5%/K at 293 K, IR = intensity ratio at two different wavelengths) is highly linear in a wide range of temperatures from cryogenic to above-ambient temperatures. We demonstrate the surface temperature imaging of a cryo-cooling device showing a temperature variation of >200 K by imaging the luminescence of the NC film formed by simple spin coating, taking advantage of the environment-insensitive luminescence.
Collapse
Affiliation(s)
- Yerok Park
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Chiwan Koo
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Hsiang-Yun Chen
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Arum Han
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Dong Hee Son
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|
42
|
Gan Z, Wu X, Zhang J, Zhu X, Chu PK. In situ thermal imaging and absolute temperature monitoring by luminescent diphenylalanine nanotubes. Biomacromolecules 2013; 14:2112-6. [PMID: 23679829 DOI: 10.1021/bm400562c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The temperature sensing capability of diphenylalanine nanotubes is investigated. The materials can detect local rapid temperature changes and measure the absolute temperature in situ with a precision of 1 °C by monitoring the temperature-dependent photoluminescence (PL) intensity and lifetime, respectively. The PL lifetime is independent of ion concentrations in the medium as well as pH in the physiological range. This biocompatible thermal sensing platform has immense potential in the in situ mapping of microenvironmental temperature fluctuations in biological systems for disease diagnosis and therapeutics.
Collapse
Affiliation(s)
- Zhixing Gan
- Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics and National Laboratory of Solid State Microstructures, Nanjing University , Nanjing, 210093, PR China
| | | | | | | | | |
Collapse
|
43
|
Paviolo C, Clayton AHA, McArthur SL, Stoddart PR. Temperature measurement in the microscopic regime: a comparison between fluorescence lifetime- and intensity-based methods. J Microsc 2013; 250:179-88. [PMID: 23521067 DOI: 10.1111/jmi.12033] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 02/26/2013] [Indexed: 11/26/2022]
Abstract
Thermally sensitive fluorescent indicators have been proposed to monitor temperature changes in microfluidic systems, mainly based on fluorescence intensity or lifetime. However, measuring temperature in a structured environment, such as biological tissue, presents additional challenges due to the chemical and structural complexity. Here, we investigate the potential for resolving temperature distributions within the volume of a single cell. Rhodamine B (RhB) dye was employed as a temperature indicator to compare fluorescence intensity- and lifetime-based techniques. The relationship between the fluorescence lifetime and temperature was found to be highly dependent on the biological environment. The intensity-based method allowed the temperature distribution to be mapped with partial success within the volume of a single cell. Under ideal circumstances, the temperature can be mapped pixel by pixel with a resolution better than ±0.3°C within the cell cytoplasm, but this accuracy was reduced to ±1.8°C by environmental variations. These results suggest that the fluorophore should be encapsulated and immobilized in the biological tissue in order to reduce the influence of environmental factors on temperature measurements at the cellular level.
Collapse
Affiliation(s)
- C Paviolo
- Industrial Research Institute Swinburne, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | | | | | | |
Collapse
|
44
|
Qiao J, Mu X, Qi L. A versatile method for the preparation of poly-acrylamide derivative functionalized thermo-responsive gold nanoparticles. J Mater Chem B 2013; 1:5756-5761. [DOI: 10.1039/c3tb21169j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Wang XD, Wolfbeis OS, Meier RJ. Luminescent probes and sensors for temperature. Chem Soc Rev 2013; 42:7834-69. [DOI: 10.1039/c3cs60102a] [Citation(s) in RCA: 1170] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Haro-González P, Martínez-Maestro L, Martín IR, García-Solé J, Jaque D. High-sensitivity fluorescence lifetime thermal sensing based on CdTe quantum dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:2652-8. [PMID: 22700354 DOI: 10.1002/smll.201102736] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 04/16/2012] [Indexed: 05/23/2023]
Abstract
The potential use of CdTe quantum dots as luminescence nano-probes for lifetime fluorescence nano-thermometry is demonstrated. The maximum thermal sensitivity achievable is strongly dependent on the quantum dot size. For the smallest sizes (close to 1 nm) the lifetime thermal sensitivity overcomes those of conventional nano-probes used in fluorescence lifetime thermometry.
Collapse
Affiliation(s)
- P Haro-González
- Departamento de Física Fundamental y Experimental, Electrónica y Sistemas, Universidad de La Laguna, Tenerife, Spain
| | | | | | | | | |
Collapse
|
47
|
Brites CDS, Lima PP, Silva NJO, Millán A, Amaral VS, Palacio F, Carlos LD. Thermometry at the nanoscale. NANOSCALE 2012; 4:4799-829. [PMID: 22763389 DOI: 10.1039/c2nr30663h] [Citation(s) in RCA: 631] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Non-invasive precise thermometers working at the nanoscale with high spatial resolution, where the conventional methods are ineffective, have emerged over the last couple of years as a very active field of research. This has been strongly stimulated by the numerous challenging requests arising from nanotechnology and biomedicine. This critical review offers a general overview of recent examples of luminescent and non-luminescent thermometers working at nanometric scale. Luminescent thermometers encompass organic dyes, QDs and Ln(3+)ions as thermal probes, as well as more complex thermometric systems formed by polymer and organic-inorganic hybrid matrices encapsulating these emitting centres. Non-luminescent thermometers comprise of scanning thermal microscopy, nanolithography thermometry, carbon nanotube thermometry and biomaterials thermometry. Emphasis has been put on ratiometric examples reporting spatial resolution lower than 1 micron, as, for instance, intracellular thermometers based on organic dyes, thermoresponsive polymers, mesoporous silica NPs, QDs, and Ln(3+)-based up-converting NPs and β-diketonate complexes. Finally, we discuss the challenges and opportunities in the development for highly sensitive ratiometric thermometers operating at the physiological temperature range with submicron spatial resolution.
Collapse
Affiliation(s)
- Carlos D S Brites
- Department of Physics, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The current status of luminescence nanothermometry is reviewed in detail. Based on the main parameters of luminescence including intensity, bandwidth, bandshape, polarization, spectral shift and lifetime, we initially describe and compare the different classes of luminescence nanothermometry. Subsequently, the various luminescent materials used in each case are discussed and the mechanisms at the root of the luminescence thermal sensitivity are described. The most important results obtained in each case are summarized and the advantages and disadvantages of these approaches are discussed.
Collapse
Affiliation(s)
- Daniel Jaque
- Fluorescence Imaging Group, Departamento de Física de Materiales C-04, Insitituto Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain.
| | | |
Collapse
|
49
|
Choudhury D, Jaque D, Rodenas A, Ramsay WT, Paterson L, Kar AK. Quantum dot enabled thermal imaging of optofluidic devices. LAB ON A CHIP 2012; 12:2414-2420. [PMID: 22538525 DOI: 10.1039/c2lc40181a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Quantum dot thermal imaging has been used to analyse the chromatic dependence of laser-induced thermal effects inside optofluidic devices with monolithically integrated near-infrared waveguides. We demonstrate how microchannel optical local heating plays an important role, which cannot be disregarded within the context of on-chip optical cell manipulation. We also report on the thermal imaging of locally illuminated microchannels when filled with nano-heating particles such as carbon nanotubes.
Collapse
Affiliation(s)
- Debaditya Choudhury
- SUPA, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, UK.
| | | | | | | | | | | |
Collapse
|
50
|
Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat Commun 2012; 3:705. [PMID: 22426226 PMCID: PMC3293419 DOI: 10.1038/ncomms1714] [Citation(s) in RCA: 680] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 01/31/2012] [Indexed: 02/07/2023] Open
Abstract
Cellular functions are fundamentally regulated by intracellular temperature, which influences biochemical reactions inside a cell. Despite the important contributions to biological and medical applications that it would offer, intracellular temperature mapping has not been achieved. Here we demonstrate the first intracellular temperature mapping based on a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. The spatial and temperature resolutions of our thermometry were at the diffraction limited level (200 nm) and 0.18–0.58 °C. The intracellular temperature distribution we observed indicated that the nucleus and centrosome of a COS7 cell, both showed a significantly higher temperature than the cytoplasm and that the temperature gap between the nucleus and the cytoplasm differed depending on the cell cycle. The heat production from mitochondria was also observed as a proximal local temperature increase. These results showed that our new intracellular thermometry could determine an intrinsic relationship between the temperature and organelle function. Intracellular temperature mapping has not previously been achieved. Now, a fluorescent polymeric thermometer has been developed that can be used in combination with fluorescence-lifetime imaging microscopy to allow thermometry with spatial and temperature resolutions of 200 nm and 0.18–0.58 ° C.
Collapse
|