1
|
Al-Karmalawy AA, Zeidan MA, Elmaaty AA, Sharaky M, Yassen ASA, Khaleel EF, Eldehna WM, Ashour HF. Design and synthesis of new 1,2,3-triazole derivatives as VEGFR-2/telomerase downregulatory candidates endowed with apoptotic potential for cancer treatment. Bioorg Chem 2025; 156:108159. [PMID: 39823817 DOI: 10.1016/j.bioorg.2025.108159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/15/2024] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
In this current work, we dedicated efforts to designing and synthesizing new 1,2,3-triazole-analogues (5a-d), (6a-d), and (7a-c) to act as dual VEGFR-2 and telomerase inhibitors with promising apoptotic potential. The synthesized analogues were examined against eleven diverse types of cancer cells and two normal cells to assess their ability to inhibit cell growth (GI%). Obviously, compound 7b showed the best average GI% (75.69 %) surpassing the average GI% of Dox (65.79 %). Compound 5d showed the lowest IC50 values (25.86 and 51.91 µM) against HNO-97 and FaDu cancer cells, respectively. Besides, compound 5a exhibited the lowest IC50 value (15.46 µM) against HCT116, whereas compound 6b revealed the lowest IC50 value (31.14 µM) against HuH7. Besides, candidates 5a, 5b, 5d, and 7a showed prominent inhibitory results towards VEGFR-2 protein with decreasing its expression by 0.33, 0.42, 0.38 and 0.26-fold change, respectively. However, compounds 5a, 5b, 5d, and 7a showed promising inhibitory results towards telomerase protein and decreased its expression by 0.60, 0.50, 0.52, and 0.44-fold change, respectively. Additionally, it was clear that compound 5a was able to upregulate the expression of Caspases 3, 8, and 9 proteins by 2.19, 1.83, and 1.62-fold change, respectively. Besides, 5a was able to downregulate the expression of CDK-2, CDK-4, and CDK-6 proteins by 0.50, 0.43, and 0.13-fold change, respectively. Obviously, compound 5a halted the cell cycle at the G1, S, and G2-M phases in HCT116 cells. Subsequently, the synthesized 1,2,3-triazole analogues can be treated as lead VEGFR-2 and telomerase inhibitors with potential apoptotic activity for future optimization and cancer treatment.
Collapse
Affiliation(s)
- Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, The University of Mashreq, Baghdad 10023, Iraq; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt.
| | - Mohamed A Zeidan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt; Medicinal Chemistry Department, Clinical Pharmacy Program, East Port Said National University, Port Said 42526, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
| | - Asmaa S A Yassen
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt
| | - Eman F Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt
| | - Heba F Ashour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt
| |
Collapse
|
2
|
Zeidan MA, Ashour HF, Yassen ASA, Abo Elmaaty A, Farag AB, Sharaky M, Abdullah Alzahrani AY, Mughram MHA, Al-Karmalawy AA. Dual EGFR and telomerase inhibitory potential of new triazole tethered Schiff bases endowed with apoptosis: design, synthesis, and biological assessments. RSC Med Chem 2024:d4md00750f. [PMID: 39790121 PMCID: PMC11708207 DOI: 10.1039/d4md00750f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
Many cancers have displayed resistance to chemotherapeutic drugs over the past few decades. EGFR has emerged as a leading target for cancer therapy via inhibiting tumor angiogenesis. Besides, studies strongly suggest that blocking telomerase activity could be an effective way to control the growth of certain cancer cells. Based on the fact that multi-target design rationale can afford candidates with greater treatment effectiveness. Besides, it was evidenced that inhibition of human telomerase enhances the effect of some tyrosine kinase inhibitors. So, in the current work, we aimed to design and synthesize novel 1,2,3-triazole-tethered Schiff bases (5a-l) to act as dual EGFR and telomerase inhibitors. Growth inhibition (GI)% was conducted for the synthesized compounds using a panel of eleven cancer cell lines as well as two normal cell lines. Interestingly, compound 5e displayed the highest mean GI% (76.78%) among the investigated compounds surpassing the mean GI% of the reference drug doxorubicin (65.79%). In addition, compound 5g displayed notably the lowest IC50 values (13.31, 13.31, 12.62, and 31.19 μM) for the four utilized cancer cell lines HNO97, HCT116, A375, and HEPG2, respectively. Interestingly, the investigated compounds exhibited significant inhibitory potential to EGFR and telomerase protein expression; in particular, compound 5g recorded inhibitory potentials of 3.45 and 1.31 ng mL-1, respectively. Hence, protein expression of the apoptosis-related proteins was carried out for compound 5g. Pro-apoptotic proteins (caspases 3, 8, and 9) were upregulated by 1.35, 1.55, and 1.51-fold change, respectively. Meanwhile, the anti-apoptotic proteins (CDK-2, CDK-4, and CDK-6) were downregulated by 2.91, 2.01, and 9.15-fold change, respectively, ensuring the apoptotic potential of compound 5g. Accordingly, compound 5g was selected for further investigation of its effects on cell cycle progression in A375 cancer cells. Obviously, compound 5g prompted cell cycle arrest at the G0-G1 phase. Additionally, the investigated compounds showed eligible pharmacokinetic profiles with feasible oral bioavailability. Consequently, the synthesized compounds can be treated as lead multi-target anticancer ligands for future optimization.
Collapse
Affiliation(s)
- Mohamed A Zeidan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt New Damietta 34518 Egypt
| | - Heba F Ashour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University New Galala New Galala 43713 Egypt
| | - Asmaa S A Yassen
- Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University New Galala New Galala 43713 Egypt
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University Port Said 42526 Egypt
- Medicinal Chemistry Department, Clinical Pharmacy Program, East Port said National University Port Said 42526 Egypt
| | - Ayman B Farag
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University 6th of October City Giza 12566 Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University Cairo Egypt
| | | | - Mohammed H Al Mughram
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University Abha 61421 Saudi Arabia
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, The University of Mashreq Baghdad 10023 Iraq
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt New Damietta 34518 Egypt
| |
Collapse
|
3
|
Luo W, Xu F, Wang Z, Pang J, Wang Z, Sun Z, Peng A, Cao X, Li L. Chemodivergent Staudinger Reactions of Secondary Phosphine Oxides and Application to the Total Synthesis of LL-D05139β Potassium Salt. Angew Chem Int Ed Engl 2023; 62:e202310118. [PMID: 37594845 DOI: 10.1002/anie.202310118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023]
Abstract
Unprecedented Staudinger reaction modes of secondary phosphine oxides (SPO) and organic azides are herein disclosed. By the application of various additives, selective nitrogen atom exclusion from the azide group has been achieved. Chlorotrimethylsilane mediates a stereoretentive Staudinger reaction with a 2-N exclusion which provides a valuable method for the synthesis of phosphinic amides and can be considered complementary to the stereoinvertive Atherton-Todd reaction. Alternatively, a 1-N exclusion pathway is promoted by acetic acid to provide the corresponding diazo compound. The effectiveness of this protocol has been further demonstrated by the total synthesis of the diazo-containing natural product LL-D05139β, which was prepared as a potassium salt for the first time in 6 steps and 26.5 % overall yield.
Collapse
Affiliation(s)
- Wenjun Luo
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Fang Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of P. R. China, College of Pharmacy, Jinan University, 510632, Guangzhou, Guangdong, P. R. China
| | - Zhenguo Wang
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Jiyan Pang
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Zixu Wang
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Zhixiu Sun
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Aiyun Peng
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Xiaohui Cao
- School of Pharmacy, Guangdong Pharmaceutical University, 510006, Guangzhou, P. R. China
| | - Le Li
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| |
Collapse
|
4
|
Qiu X, Brückel J, Zippel C, Nieger M, Biedermann F, Bräse S. Tris(4-azidophenyl)methanol - a novel and multifunctional thiol protecting group. RSC Adv 2023; 13:2483-2486. [PMID: 36741178 PMCID: PMC9844210 DOI: 10.1039/d2ra05997e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023] Open
Abstract
The novel tris(4-azidophenyl)methanol, a multifunctionalisable aryl azide, is reported. The aryl azide can be used as a protecting group for thiols in peptoid synthesis and can be cleaved under mild reaction conditions via a Staudinger reduction. Moreover, the easily accessible aryl azide can be functionalised via copper-catalysed cycloaddition reactions, providing additional opportunities for materials chemistry applications.
Collapse
Affiliation(s)
- Xujun Qiu
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131 KarlsruheGermany(+49)-721-6084-2903
| | - Julian Brückel
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131 KarlsruheGermany(+49)-721-6084-2903
| | - Christoph Zippel
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131 KarlsruheGermany(+49)-721-6084-2903
| | - Martin Nieger
- Department of Chemistry, University of HelsinkiP. O. Box 55 (A. I. Virtasen aukio 1)00014Finland
| | - Frank Biedermann
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT)Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-LeopoldshafenGermany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131 KarlsruheGermany(+49)-721-6084-2903,Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-LeopoldshafenGermany
| |
Collapse
|
5
|
Manjunathan T, Guru A, Haridevamuthu B, Dandela R, Arokiaraj J, Gopinath P. 6-Gingerol-derived semisynthetic analogs mitigate oxidative stress, and reverse acrylamide induced neurotoxicity in zebrafish. NEW J CHEM 2023; 47:10488-10492. [DOI: 10.1039/d3nj01004j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Abstract
A semisynthetic strategy has been developed for the synthesis of novel 6-gingerol based analogs using simple and robust chemistries.
Collapse
Affiliation(s)
- Tamilvelan Manjunathan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chengalpattu District, Tamil Nadu, India
| | - Ajay Guru
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, SIMATS, Chennai 600 077, Tamil Nadu, India
| | - B. Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chengalpattu District, Tamil Nadu, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India
| | - Jesu Arokiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chengalpattu District, Tamil Nadu, India
| | - Pushparathinam Gopinath
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chengalpattu District, Tamil Nadu, India
| |
Collapse
|
6
|
Alam MI, Quasimi H, Kumar A, Alam A, Bhagat S, Alam MS, Khan GA, Dhulap A, Ahmad Ansari M. Protective effects of novel diazepinone derivatives in snake venom induced sterile inflammation in experimental animals. Eur J Pharmacol 2022; 928:175095. [PMID: 35728626 DOI: 10.1016/j.ejphar.2022.175095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
Snake envenomation leads to the formation of damage-associated molecular patterns (DAMPs), which are mediated by endogenous intracellular molecules. These are recognized by pattern-recognition receptors (PRRs) and can induce sterile inflammation. AIMS In the present study, we aim at understanding the mechanisms involved in DAMPs induced sterile inflammation to unravel the novel therapeutic strategies for treating snake bites. The potential of benzodiazepinone derivatives to act against snake venom induced inflammation has been explored in the present investigation. MAIN METHODS Three compounds VA 17, VA 43 and PA 03 were taken from our library of synthetic compounds. Oxidative stress markers such as lipid peroxidation, superoxide and nitric oxide were measured along with the analysis of DAMPs (IL6, HMGB1, vWF, S100b and HSP70). These compounds have been docked using molecular docking against the snake venom PLA2 structure (PDB code: 1OXL). KEY FINDINGS The compounds have been found to effectively neutralize viper and cobra venoms induced lethal activity both ex vivo and in vivo. The compounds have also neutralized the viper venom induced hemorrhagic, coagulant, anticoagulant reactions as well as inflammation. The fold of protection have always been found to be higher in case of ex vivo than in in vivo. These compounds have neutralized the venom induced DAMPs as exhibited by IL6, HMGB1, vWF, S100b and HSP70. The fold of neutralization is found to be higher in VA 43. SIGNIFICANCE The identified compounds could be used as potential candidates for developing treatment of snakebites in areas where antiserums are not yet available.
Collapse
Affiliation(s)
- M I Alam
- Department of Physiology, Hamdard Institute of Medical Sciences & Research, Jamia Hamdard (Deemed University), New Delhi, India.
| | - Huma Quasimi
- Department of Physiology, Hamdard Institute of Medical Sciences & Research, Jamia Hamdard (Deemed University), New Delhi, India
| | - Amit Kumar
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Aftab Alam
- Department of Clinical Neurosciences, Cambridge University Hospital, Cambridge, United Kingdom
| | - Saumya Bhagat
- Department of Physiology, Hamdard Institute of Medical Sciences & Research, Jamia Hamdard (Deemed University), New Delhi, India
| | - M Sarwar Alam
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India.
| | - G A Khan
- Department of Clinical Nutrition, College of Applied Medical Sciences, King Faisal University, Alhasa, Saudi Arabia
| | - Abhijeet Dhulap
- CSIR Unit for Research and Development of Information Products, Pune, India
| | | |
Collapse
|
7
|
Avello MG, Moreno-Latorre M, de la Torre MC, Casarrubios L, Gornitzka H, Hemmert C, Sierra MA. β-Lactam and penicillin substituted mesoionic metal carbene complexes. Org Biomol Chem 2022; 20:2651-2660. [PMID: 35293422 DOI: 10.1039/d2ob00216g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,2,3-Triazolylidene MIC M-complexes (M = Au, Pd, Pt) having 2-azetidinones and penicillin G substituents at the triazole ring were prepared by CuAAC on 2-azetidinones having a terminal alkyne tethered at N1, followed by alkylation of the 1,2,3-triazole ring and transmetallation [Au(I), Pd(II) and Pt(II)]. The Au-MIC complexes efficiently catalyze the regioselective cycloisomerization of enynes, while the Pt-MIC complexes were efficient catalysts in hydrosilylation reactions.
Collapse
Affiliation(s)
- Marta G Avello
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain. .,Departamento de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain. .,Centro de Investigación en Química Avanzada (ORFEO-CINQA), Universidad Complutense, 28040 Madrid, Spain
| | - María Moreno-Latorre
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain. .,Centro de Investigación en Química Avanzada (ORFEO-CINQA), Universidad Complutense, 28040 Madrid, Spain
| | - María C de la Torre
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain. .,Centro de Investigación en Química Avanzada (ORFEO-CINQA), Universidad Complutense, 28040 Madrid, Spain
| | - Luis Casarrubios
- Departamento de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain. .,Centro de Investigación en Química Avanzada (ORFEO-CINQA), Universidad Complutense, 28040 Madrid, Spain
| | - Heinz Gornitzka
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Miguel A Sierra
- Departamento de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain. .,Centro de Investigación en Química Avanzada (ORFEO-CINQA), Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
8
|
Adinarayana M, Siddhant K, Vaddamanu M, Sathyanarayana A, Rengan AK, Hisano K, Tsutsumi O, Prabu Sankar G. A Simple and Efficient Approach for the Clickability of
Super‐Bulky
Aryl Azides. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mannem Adinarayana
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi Telangana INDIA
| | - Kumar Siddhant
- Department of Applied Chemistry Ritsumeikan University Kusatsu JAPAN
| | - Moulali Vaddamanu
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi Telangana INDIA
| | | | - Aravind Kumar Rengan
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad INDIA
| | - Kyohei Hisano
- Department of Applied Chemistry Ritsumeikan University Kusatsu JAPAN
| | - Osamu Tsutsumi
- Department of Applied Chemistry Ritsumeikan University Kusatsu JAPAN
| | - Ganesan Prabu Sankar
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi Telangana INDIA
| |
Collapse
|
9
|
Varga B, Vincze D, Pető H, Buna L, Pauló J, Holczbauer T, Mátravölgyi B, Hegedűs L, Fogassy E, Keglevich G, Bagi P. Resolution of aryl- H-phosphinates applied in the synthesis of P-stereogenic compounds including a Brønsted acid NMR solvating agent. Org Chem Front 2022. [DOI: 10.1039/d2qo00241h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An enantioseparation method for the preparation of P-stereogenic H-phosphinates was elaborated. In stereoselective reactions, various chiral P-stereogenic compounds were prepared and their applications as chiral NMR solvating agents were assessed.
Collapse
Affiliation(s)
- Bence Varga
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Daniella Vincze
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Hajnalka Pető
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Levente Buna
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - János Pauló
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Tamás Holczbauer
- Center for Structural Science, Chemical Crystallography Research Laboratory and Institute for Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1519 Budapest, Hungary
| | - Béla Mátravölgyi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - László Hegedűs
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Elemér Fogassy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Péter Bagi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| |
Collapse
|
10
|
Kocaarslan A, Eroglu Z, Metin Ö, Yagci Y. Exfoliated black phosphorous-mediated CuAAC chemistry for organic and macromolecular synthesis under white LED and near-IR irradiation. Beilstein J Org Chem 2021; 17:2477-2487. [PMID: 34630727 PMCID: PMC8474068 DOI: 10.3762/bjoc.17.164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/20/2021] [Indexed: 11/23/2022] Open
Abstract
The development of long-wavelength photoinduced copper-catalyzed azide-alkyne click (CuAAC) reaction routes is attractive for organic and polymer chemistry. In this study, we present a novel synthetic methodology for the photoinduced CuAAC reaction utilizing exfoliated two-dimensional (2D) few-layer black phosphorus nanosheets (BPNs) as photocatalysts under white LED and near-IR (NIR) light irradiation. Upon irradiation, BPNs generated excited electrons and holes on its conduction (CB) and valence band (VB), respectively. The excited electrons thus formed were then transferred to the CuII ions to produce active CuI catalysts. The ability of BPNs to initiate the CuAAC reaction was investigated by studying the reaction between various low molar mass alkyne and azide derivatives under both white LED and NIR light irradiation. Due to its deeper penetration of NIR light, the possibility of synthesizing different macromolecular structures such as functional polymers, cross-linked networks and block copolymer has also been demonstrated. The structural and molecular properties of the intermediates and final products were evaluated by spectral and chromatographic analyses.
Collapse
Affiliation(s)
- Azra Kocaarslan
- Department of Chemistry, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Zafer Eroglu
- Department of Chemistry, Koç University, Sarıyer, 34450, Istanbul, Turkey
- Department of Nanoscience and Nanoengineering, Atatürk University, 25240 Erzurum, Turkey
| | - Önder Metin
- Department of Chemistry, Koç University, Sarıyer, 34450, Istanbul, Turkey
| | - Yusuf Yagci
- Department of Chemistry, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
- King Abdulaziz University, Faculty of Science, Chemistry Department, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Heiss TK, Dorn RS, Prescher JA. Bioorthogonal Reactions of Triarylphosphines and Related Analogues. Chem Rev 2021; 121:6802-6849. [PMID: 34101453 PMCID: PMC10064493 DOI: 10.1021/acs.chemrev.1c00014] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioorthogonal phosphines were introduced in the context of the Staudinger ligation over 20 years ago. Since that time, phosphine probes have been used in myriad applications to tag azide-functionalized biomolecules. The Staudinger ligation also paved the way for the development of other phosphorus-based chemistries, many of which are widely employed in biological experiments. Several reviews have highlighted early achievements in the design and application of bioorthogonal phosphines. This review summarizes more recent advances in the field. We discuss innovations in classic Staudinger-like transformations that have enabled new biological pursuits. We also highlight relative newcomers to the bioorthogonal stage, including the cyclopropenone-phosphine ligation and the phospha-Michael reaction. The review concludes with chemoselective reactions involving phosphite and phosphonite ligations. For each transformation, we describe the overall mechanism and scope. We also showcase efforts to fine-tune the reagents for specific functions. We further describe recent applications of the chemistries in biological settings. Collectively, these examples underscore the versatility and breadth of bioorthogonal phosphine reagents.
Collapse
|
12
|
Corrosion inhibition performance of a structurally well-defined 1,2,3-triazole derivative on mild steel-hydrochloric acid interface. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129895] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Li B, Hildebrandt S, Hagenbach A, Abram U. Tricarbonylrhenium(I) and ‐technetium(I) Complexes with Tris(1,2,3‐triazolyl)phosphine Oxides. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bo Li
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| | - Sarah Hildebrandt
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| | - Adelheid Hagenbach
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| | - Ulrich Abram
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| |
Collapse
|
14
|
Kumar R, Yadav N, Leekha A, Bawa R, Gahlyan P, Bhandari M, Arora R, Kamra Verma A, Kakkar R. Novel 1‐Triazolylpyranopyrazoles as Highly Potent Anticancer Agents Obtained
via
MW‐Assisted Synthesis. ChemistrySelect 2021. [DOI: 10.1002/slct.202003680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rakesh Kumar
- Bioorganic Laboratory, Department of Chemistry University of Delhi Delhi 110007 India
| | - Neha Yadav
- Bioorganic Laboratory, Department of Chemistry University of Delhi Delhi 110007 India
| | - Ankita Leekha
- Nano Biotech Laboratory Department of Zoology Kirori Mal College, University of Delhi Delhi 110007 India
| | - Rashim Bawa
- Bioorganic Laboratory, Department of Chemistry University of Delhi Delhi 110007 India
| | - Parveen Gahlyan
- Bioorganic Laboratory, Department of Chemistry University of Delhi Delhi 110007 India
| | - Mamta Bhandari
- Computational Chemistry Laboratory Department of Chemistry University of Delhi Delhi 110007 India
| | - Ritu Arora
- Computational Chemistry Laboratory Department of Chemistry University of Delhi Delhi 110007 India
| | - Anita Kamra Verma
- Nano Biotech Laboratory Department of Zoology Kirori Mal College, University of Delhi Delhi 110007 India
| | - Rita Kakkar
- Computational Chemistry Laboratory Department of Chemistry University of Delhi Delhi 110007 India
| |
Collapse
|
15
|
Viegas DJ, da Silva VD, Buarque CD, Bloom DC, Abreu PA. Antiviral activity of 1,4-disubstituted-1,2,3-triazoles against HSV-1 in vitro. Antivir Ther 2021; 25:399-410. [PMID: 33705354 DOI: 10.3851/imp3387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2020] [Indexed: 10/21/2022]
Abstract
BACKGROUND Herpes simplex virus 1 (HSV-1) affects a large part of the adult population. Anti-HSV-1 drugs, such as acyclovir, target thymidine kinase and viral DNA polymerase. However, the emerging of resistance of HSV-1 alerts for the urgency in developing new antivirals with other therapeutic targets. Thus, this study evaluated a series of 1,4-disubstituted-1,2,3-triazole derivatives against HSV-1 acute infection and provided deeper insights into the possible mechanisms of action. METHODS Human fibroblast cells (HFL-1) were infected with HSV-1 17syn+ and treated with the triazole compounds at 50 μM for 24 h. The 50% effective drug concentration (EC50) was determined for the active compounds. Their cytotoxicity was also evaluated in HFL-1 with the 50% cytotoxic concentration (CC50) determined using CellTiter-Glo® solution. The most promising compounds were evaluated by virucidal activity and influence on virus egress, DNA replication and transcription, and effect on an acyclovir-resistant HSV-1 strain. RESULTS Compounds 3 ((E)-4-methyl-N'-(2-(4-(phenoxymethyl)-1H-1,2,3-triazol1yl)benzylidene)benzenesulfonohydrazide) and 4 (2,2'-(4,4'-((1,3-phenylenebis(oxy))bis(methylene))bis(1H-1,2,3-triazole-4,1 diyl)) dibenzaldehyde) were the most promising, with an EC50 of 16 and 21 μM and CC50 of 285 and 2,593 μM, respectively. Compound 3 was able to inhibit acyclovir-resistant strain replication and to interfere with virus egress. Both compounds did not affect viral DNA replication, but inhibited significantly the expression of ICP0, ICP4 and gC. Compound 4 also affected the transcription of UL30 and ICP34.5. CONCLUSIONS Our findings demonstrated that these compounds are promising antiviral candidates with different mechanisms of action from acyclovir and further studies are merited.
Collapse
Affiliation(s)
- Daiane J Viegas
- LAMCIFAR, Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Verônica D da Silva
- Laboratório de Síntese Orgânica, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camilla D Buarque
- Laboratório de Síntese Orgânica, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - David C Bloom
- College of Medicine, Department of Microbiology and Molecular Genetics, University of Florida, Gainesville, FL, USA
| | - Paula A Abreu
- LAMCIFAR, Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Chen X, Luo W, Wang Y, Li Z, Ma X, Peng AY. Efficient Synthesis of Phosphonamidates through One-Pot Sequential Reactions of Phosphonites with Iodine and Amines. Chemistry 2020; 26:14474-14480. [PMID: 32776399 DOI: 10.1002/chem.202002934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 11/10/2022]
Abstract
A one-pot sequential strategy to construct phosphonamidates has been developed by generating phosphonites in situ from arylmagnesium bromides and triethyl phosphite followed by treatment with iodine and amines. A variety of phosphonamidates were obtained with good to excellent yields at room temperature from easily available materials.
Collapse
Affiliation(s)
- Xunwei Chen
- School of Chemistry, Sun Yat-sen University, 135 Xingangxi Lu, Guangzhou, China
| | - Wenjun Luo
- School of Chemistry, Sun Yat-sen University, 135 Xingangxi Lu, Guangzhou, China
| | - Yanlin Wang
- School of Chemistry, Sun Yat-sen University, 135 Xingangxi Lu, Guangzhou, China
| | - Zikang Li
- School of Chemistry, Sun Yat-sen University, 135 Xingangxi Lu, Guangzhou, China
| | - Xiaorui Ma
- School of Chemistry, Sun Yat-sen University, 135 Xingangxi Lu, Guangzhou, China
| | - Ai-Yun Peng
- School of Chemistry, Sun Yat-sen University, 135 Xingangxi Lu, Guangzhou, China
| |
Collapse
|
17
|
Walters CM, Adair KR, Hamad WY, MacLachlan MJ. Synthesis of Chiral Nematic Mesoporous Metal and Metal Oxide Nanocomposites and their Use as Heterogeneous Catalysts. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christopher M. Walters
- Department of Chemistry University of British 2036 Main Mall BC V6T 1Z1 Vancouver Columbia Canada
| | - Keegan R. Adair
- Department of Chemistry University of British 2036 Main Mall BC V6T 1Z1 Vancouver Columbia Canada
| | - Wadood Y. Hamad
- Transformation and Interfaces Group Bioproducts Innovation Centre of Excellence FPInnovations 2665 East Mall BC V6T 1Z4 Vancouver Canada
| | - Mark J. MacLachlan
- Department of Chemistry University of British 2036 Main Mall BC V6T 1Z1 Vancouver Columbia Canada
- Stewart Blusson Quantum Matter Institute University of British Columbia 2355 East Mall BC V6T 1Z4 Vancouver Canada
- WPI Nano Life Science Institute Kanazawa University 9201192 Kanazawa Japan
| |
Collapse
|
18
|
Elzahhar PA, Abd El Wahab SM, Elagawany M, Daabees H, Belal AS, EL-Yazbi AF, Eid AH, Alaaeddine R, Hegazy RR, Allam RM, Helmy MW, Bahaa Elgendy, Angeli A, El-Hawash SA, Supuran CT. Expanding the anticancer potential of 1,2,3-triazoles via simultaneously targeting Cyclooxygenase-2, 15-lipoxygenase and tumor-associated carbonic anhydrases. Eur J Med Chem 2020; 200:112439. [DOI: 10.1016/j.ejmech.2020.112439] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022]
|
19
|
Synthesis, antibacterial evaluation and molecular docking studies of novel series of acridone- 1,2,3-triazole derivatives. Struct Chem 2020. [DOI: 10.1007/s11224-020-01512-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Djemoui A, Naouri A, Ouahrani MR, Djemoui D, Lahcene S, Lahrech MB, Boukenna L, Albuquerque HM, Saher L, Rocha DH, Monteiro FL, Helguero LA, Bachari K, Talhi O, Silva AM. A step-by-step synthesis of triazole-benzimidazole-chalcone hybrids: Anticancer activity in human cells+. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127487] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Ashour HF, Abou-Zeid LA, El-Sayed MAA, Selim KB. 1,2,3-Triazole-Chalcone hybrids: Synthesis, in vitro cytotoxic activity and mechanistic investigation of apoptosis induction in multiple myeloma RPMI-8226. Eur J Med Chem 2020; 189:112062. [PMID: 31986406 DOI: 10.1016/j.ejmech.2020.112062] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/23/2022]
Abstract
A new series of 1,2,3-triazole-chalcone hybrids has been synthesized and screened in vitro against a panel of 60 human cancer cell lines according to NCI (USA) protocol. Compound 4d having 3, 4-dimethoxyphenyl chalcone moiety, the most potent derivative, inhibited the growth of RPMI-8226 and SR leukemia cell lines by 99.73% and 94.95% at 10 μM, respectively. Also, it inhibited the growth of M14 melanoma, K-562 leukemia, and MCF7 breast cancer cell lines by more than 80% at the same test concentration. 4d showed IC50 values less than 1 μM on six types of tumor cells and high selectivity index reached to 104 fold on MCF7. Compound 4d showed superior activity than methotrexate and gefitinib against the most sensitive leukemia cell lines in addition to higher or comparable activity against the rest sensitive cell lines. Flow cytometry analysis in RPMI-8226 cells revealed that compound 4d caused cell cycle arrest at G2/M phase and induced apoptosis in a dose dependant manner. Mechanistic evaluation referred this apoptosis induction to triggering mitochondrial apoptotic pathway through inducing ROS accumulation, increasing Bax/Bcl-2 ratio and activation of caspases 3, 7 and 9.
Collapse
Affiliation(s)
- Heba F Ashour
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Dammeitta, Egypt
| | - Laila A Abou-Zeid
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University, Gamsaa, Egypt
| | - Magda A-A El-Sayed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Dammeitta, Egypt.
| | - Khalid B Selim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
22
|
Li B, Hagenbach A, Abram U. The Formation of Rhenium(V) Complexes with Dihydroxyphosphoranes and Diarylphosphinic Acid Derivatives Generated from Tris(1,2,3-triazolyl)phosphine Oxides. Inorg Chem 2019; 58:7925-7930. [DOI: 10.1021/acs.inorgchem.9b00635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bo Li
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstr. 34/36, D-14195 Berlin, Germany
| | - Adelheid Hagenbach
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstr. 34/36, D-14195 Berlin, Germany
| | - Ulrich Abram
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstr. 34/36, D-14195 Berlin, Germany
| |
Collapse
|
23
|
Elzahhar PA, Alaaeddine R, Ibrahim TM, Nassra R, Ismail A, Chua BS, Frkic RL, Bruning JB, Wallner N, Knape T, von Knethen A, Labib H, El-Yazbi AF, Belal AS. Shooting three inflammatory targets with a single bullet: Novel multi-targeting anti-inflammatory glitazones. Eur J Med Chem 2019; 167:562-582. [PMID: 30818268 DOI: 10.1016/j.ejmech.2019.02.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/04/2019] [Accepted: 02/10/2019] [Indexed: 12/29/2022]
|
24
|
Aleksanyan DV, Churusova SG, Klemenkova ZS, Aysin RR, Rybalkina EY, Nelyubina YV, Artyushin OI, Peregudov AS, Kozlov VA. Extending the Application Scope of Organophosphorus(V) Compounds in Palladium(II) Pincer Chemistry. Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00867] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Diana V. Aleksanyan
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia
| | - Svetlana G. Churusova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia
| | - Zinaida S. Klemenkova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia
| | - Rinat R. Aysin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia
| | - Ekaterina Yu. Rybalkina
- Institute of Carcinogenesis, Blokhin Russian Cancer Research Center, Kashirskoe shosse 24, Moscow, 115478 Russia
| | - Yulia V. Nelyubina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow, 117901 Russia
| | - Oleg I. Artyushin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia
| | - Alexander S. Peregudov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia
| | - Vladimir A. Kozlov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia
| |
Collapse
|
25
|
Zhao Z, Liu X, Hou A, Lian Y. Copper-Catalyzed (Di)Arylmethylation of Phosphorylamides Under Oxidative Conditions. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zijian Zhao
- School of Chemistry and Materials Science; Huaihua University; Huaidong Rd. 180 418000 Huaihua Hunan P. R. China
| | - Xiaobo Liu
- School of Chemistry and Materials Science; Huaihua University; Huaidong Rd. 180 418000 Huaihua Hunan P. R. China
| | - Anguo Hou
- School of Chinese Traditional Medicine; Yunnan University of Traditional Chinese Medicine; Yuhua Rd. 1076 650500 Kunming Yunnan P. R. China
| | - Yan Lian
- School of Chemistry and Materials Science; Huaihua University; Huaidong Rd. 180 418000 Huaihua Hunan P. R. China
| |
Collapse
|
26
|
da Silva VD, de Faria BM, Colombo E, Ascari L, Freitas GPA, Flores LS, Cordeiro Y, Romão L, Buarque CD. Design, synthesis, structural characterization and in vitro evaluation of new 1,4-disubstituted-1,2,3-triazole derivatives against glioblastoma cells. Bioorg Chem 2018; 83:87-97. [PMID: 30343205 DOI: 10.1016/j.bioorg.2018.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/25/2018] [Accepted: 10/04/2018] [Indexed: 12/21/2022]
Abstract
A new series of 1,4-disubstituted-1,2,3-triazole derivatives were synthesized through the copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (Click chemistry) and their inhibitory activities were evaluated against different human glioblastoma (GBM) cell lines, including highly drug-resistant human cell lines GBM02, GBM95. The most effective compounds were 9d, containing the methylenoxy moiety linked to triazole and the tosyl-hydrazone group, and the symmetrical bis-triazole 10a, also containing methylenoxy moiety linked to triazole. Single crystal X-ray diffraction analysis was employed for structural elucidation of compound 9d. In silico analyses of physicochemical, pharmacokinetic, and toxicological properties suggest that compounds 8a, 8b, 8c, 9d, and 10a are potential candidates for central nervous system-acting drugs.
Collapse
Affiliation(s)
- Veronica D da Silva
- Laboratório de Síntese orgânica, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900 Rio de Janeiro, RJ, Brazil
| | - Bruna M de Faria
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Eduardo Colombo
- Laboratório de Síntese orgânica, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900 Rio de Janeiro, RJ, Brazil
| | - Lucas Ascari
- Faculdade de Farmácia, UFRJ, RJ 21941-902, Brazil
| | - Gabriella P A Freitas
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Leonã S Flores
- Laboratório de Difração de raios X, UFJF, MG 36036-900, Brazil
| | | | - Luciana Romão
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Camilla D Buarque
- Laboratório de Síntese orgânica, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
27
|
Yoshida S. Controlled Reactive Intermediates Enabling Facile Molecular Conjugation. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180104] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
28
|
Xiao J, Li P, Zhang Y, Xie D, Peng Z, An D, Dong W. Cobalt-catalyzed oxidative arylmethylation of phosphorylamides. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Conventional and microwave-assisted synthesis of new indole-tethered benzimidazole-based 1,2,3-triazoles and evaluation of their antimycobacterial, antioxidant and antimicrobial activities. Mol Divers 2018; 22:769-778. [DOI: 10.1007/s11030-018-9828-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/08/2018] [Indexed: 10/17/2022]
|
30
|
Meguro T, Terashima N, Ito H, Koike Y, Kii I, Yoshida S, Hosoya T. Staudinger reaction using 2,6-dichlorophenyl azide derivatives for robust aza-ylide formation applicable to bioconjugation in living cells. Chem Commun (Camb) 2018; 54:7904-7907. [DOI: 10.1039/c8cc00179k] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Efficient formation of water- and air-stable aza-ylides has been achieved by the Staudinger reaction. The reaction proceeds rapidly and has been successfully applied to chemical modification of proteins in living cells.
Collapse
Affiliation(s)
- Tomohiro Meguro
- Laboratory of Chemical Bioscience
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Chiyoda-ku
- Japan
| | - Norikazu Terashima
- Laboratory of Chemical Bioscience
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Chiyoda-ku
- Japan
| | - Harumi Ito
- Laboratory of Chemical Bioscience
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Chiyoda-ku
- Japan
| | - Yuka Koike
- Common Facilities Unit
- Compass to Healthy Life Research Complex Program
- RIKEN Cluster for Science and Technology Hub
- Chuo-ku
- Japan
| | - Isao Kii
- Pathophysiological and Health Science Team
- Division of Bio-Function Dynamics Imaging
- Imaging Platform and Innovation Group
- RIKEN Center for Life Science Technologies (CLST)
- Chuo-ku
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Chiyoda-ku
- Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Chiyoda-ku
- Japan
| |
Collapse
|
31
|
Novel click modifiable thioquinazolinones as anti-inflammatory agents: Design, synthesis, biological evaluation and docking study. Eur J Med Chem 2018; 144:635-650. [DOI: 10.1016/j.ejmech.2017.12.065] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/02/2017] [Accepted: 12/17/2017] [Indexed: 11/19/2022]
|
32
|
Lopes SMM, Novais JS, Costa DCS, Castro HC, Figueiredo AMS, Ferreira VF, Pinho E Melo TMVD, da Silva FDC. Hetero-Diels-Alder reactions of novel 3-triazolyl-nitrosoalkenes as an approach to functionalized 1,2,3-triazoles with antibacterial profile. Eur J Med Chem 2017; 143:1010-1020. [PMID: 29232578 DOI: 10.1016/j.ejmech.2017.11.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/05/2017] [Accepted: 11/19/2017] [Indexed: 12/20/2022]
Abstract
The generation and reactivity of 3-triazolyl-nitrosoalkenes are reported for the first time. The study showed that hetero-Diels-Alder reaction of these heterodienes is an interesting synthetic strategy to functionalized 1,2,3-triazoles, including 1,2,3-triazolyl-pyrroles, 1,2,3-triazolyl-dipyrromethanes and 1,2,3-triazolyl-indoles. The evaluation of the antibacterial profile against Gram-positive and Gram-negative strains revealed the new 5,5'-diethyldipyrromethane bearing a side chain incorporating a triazole and oxime moieties. The antibacterial profile detected was within the Clinical and Laboratory Standard Institute (CLSI) range and against important Staphylococcus species including Methicillin-resistant strain (S. aureus ATCC 25923, S. epidermidis ATCC 12228 and S. simulans ATCC 27851 and MRSA). Interestingly, this new 1,2,3-triazole presented hemocompatibility and low in silico toxicity profile similar to antibiotics current in use. It also has an usual antibiofilm activity against MRSA, which reinforced its potential as a new antibacterial prototype.
Collapse
Affiliation(s)
- Susana M M Lopes
- CQC and Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Juliana S Novais
- Universidade Federal Fluminense, PPBI, Instituto de Biologia, Campus Valonguinho, 24210130, Niterói, RJ, Brazil
| | - Dora C S Costa
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Helena C Castro
- Universidade Federal Fluminense, PPBI, Instituto de Biologia, Campus Valonguinho, 24210130, Niterói, RJ, Brazil
| | - Agnes Marie S Figueiredo
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Professor Paulo de Góes, Departamento de Microbiologia Médica, Rio de Janeiro, Brazil
| | - Vitor F Ferreira
- Universidade Federal Fluminense, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Niterói, RJ, 24241-002, Brazil
| | | | - Fernando de Carvalho da Silva
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil.
| |
Collapse
|
33
|
Nocentini A, Ferraroni M, Carta F, Ceruso M, Gratteri P, Lanzi C, Masini E, Supuran CT. Benzenesulfonamides Incorporating Flexible Triazole Moieties Are Highly Effective Carbonic Anhydrase Inhibitors: Synthesis and Kinetic, Crystallographic, Computational, and Intraocular Pressure Lowering Investigations. J Med Chem 2016; 59:10692-10704. [PMID: 27933963 DOI: 10.1021/acs.jmedchem.6b01389] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Herein we report the synthesis of two series of benzenesulfonamide containing compounds that incorporate the phenyl-1,2,3-triazole moieties. We explored the insertion of appropriate linkers, such as ether, thioether, and amino type, into the inner section of the molecules with the intent to confer additional flexibility. All obtained compounds were screened in vitro as inhibitors of the physiologically relevant human (h) isoforms of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). Many of them were low nanomolar or subnanomolar hCA II, IX, and XII inhibitors, whereas they did not potently inhibit hCA I. Computational and X-ray crystallographic studies of the enzyme-inhibitor adducts helped us to rationalize the obtained results. Some of the sulfonamides reported here showed significant intraocular pressure lowering activity in an animal model of glaucoma.
Collapse
Affiliation(s)
- Alessio Nocentini
- Università degli Studi di Firenze , Neurofarba Department., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
- Università degli Studi di Firenze , Neurofarba Department., Sezione di Scienze Farmaceutiche, Laboratory of Molecular Modeling Cheminformatics & QSAR, via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Marta Ferraroni
- Università degli Studi di Firenze , Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Fabrizio Carta
- Università degli Studi di Firenze , Neurofarba Department., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Mariangela Ceruso
- Università degli Studi di Firenze , Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Paola Gratteri
- Università degli Studi di Firenze , Neurofarba Department., Sezione di Scienze Farmaceutiche, Laboratory of Molecular Modeling Cheminformatics & QSAR, via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Cecilia Lanzi
- Università degli Studi di Firenze , Neurofarba Department., Sezione di Farmacologia, Viale Pieraccini 6, 50139 Florence, Italy
| | - Emanuela Masini
- Università degli Studi di Firenze , Neurofarba Department., Sezione di Farmacologia, Viale Pieraccini 6, 50139 Florence, Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze , Neurofarba Department., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|
34
|
Dar BA. Catalyst free, one pot synthesis of phosphoramidates under environment friendly conditions. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2016.01.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Kumar S, Prasad S, Kumar B, Gautam HK, Sharma SK. Synthesis of novel triazolyl pyranochromen-2(1H)-ones and their antibacterial activity evaluation. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1549-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Bertran-Vicente J, Schümann M, Schmieder P, Krause E, Hackenberger CPR. Direct access to site-specifically phosphorylated-lysine peptides from a solid-support. Org Biomol Chem 2016; 13:6839-43. [PMID: 26018866 DOI: 10.1039/c5ob00734h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphorylation is a key process for changing the activity and function of proteins. The impact of phospho-serine (pSer), -threonine (pThr) and -tyrosine (pTyr) is certainly understood for some proteins. Recently, peptides and proteins containing N-phosphorylated amino acids such as phosphoarginine (pArg), phosphohistidine (pHis) and phospholysine (pLys) have gained interest because of their different chemical properties and stability profiles. Due to its high intrinsic lability, pLys is the least studied within this latter group. In order to gain insight into the biological role of pLys, chemical and analytical tools, which are compatible with the labile P(=O)-N bond, are highly sought-after. We recently reported an in-solution synthetic approach to incorporate pLys residues in a site-specific manner into peptides by taking advantage of the chemoselectivity of the Staudinger-phosphite reaction. While the in-solution approach allows us to circumvent the critical TFA cleavage, it still requires several transformations and purification steps to finally deliver pLys peptides. Here we report the synthesis of site-specific pLys peptides directly from a solid support by using a base labile resin. This straightforward and highly efficient approach facilitates the synthesis of various site-specific pLys-containing peptides and lays the groundwork for future studies about this elusive protein modification.
Collapse
Affiliation(s)
- Jordi Bertran-Vicente
- Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Roessle Str. 10, Berlin 13125, Germany.
| | | | | | | | | |
Collapse
|
37
|
Zhu R, Pan C, Gu Z. A Catalyst-Free Synthesis of Phosphinic Amides Using O-Benzoylhydroxylamines. Org Lett 2015; 17:5862-5. [PMID: 26587978 DOI: 10.1021/acs.orglett.5b03056] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A practical approach for the synthesis of phosphinic amides via the coupling of secondary phosphine oxides (SPOs) with O-benzoylhydroxylamines has been reported. Simply heating the mixture of SPOs and O-benzoylhydroxylamines in the presence of K(2)CO(3) gave the phosphinic amides in moderate to excellent yields under an open air system. This method provides a practical and catalyst-free method for the synthesis of various synthetically valuable phosphinic amides.
Collapse
Affiliation(s)
- Rui Zhu
- Department of Chemistry, University of Science and Technology of China , 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Chongqing Pan
- Department of Chemistry, University of Science and Technology of China , 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Zhenhua Gu
- Department of Chemistry, University of Science and Technology of China , 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
38
|
Khan A, Prasad S, Parmar VS, Sharma SK. Design and Synthesis of Novel Triazolyl Benzoxazine Derivatives and Evaluation of Their Antiproliferative and Antibacterial Activity. J Heterocycl Chem 2015. [DOI: 10.1002/jhet.2387] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Abdullah Khan
- Department of Chemistry; University of Delhi; Delhi 110007 India
| | - Suchita Prasad
- Department of Chemistry; University of Delhi; Delhi 110007 India
| | | | - Sunil K. Sharma
- Department of Chemistry; University of Delhi; Delhi 110007 India
| |
Collapse
|
39
|
Ariyakumaran R, Pokrovskaya V, Little DJ, Howell PL, Nitz M. Direct Staudinger-Phosphonite Reaction Provides Methylphosphonamidates as Inhibitors of CE4 De-N-acetylases. Chembiochem 2015; 16:1350-6. [PMID: 25864869 DOI: 10.1002/cbic.201500091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Indexed: 11/09/2022]
Abstract
De-N-acetylases of β-(1→6)-D-N-acetylglucosamine polymers (PNAG) and β-(1→4)-D-N-acetylglucosamine residues in peptidoglycan are attractive targets for antimicrobial agents. PNAG de-N-acetylases are necessary for biofilm formation in numerous pathogenic bacteria. Peptidoglycan de-N-acetylation facilitates bacterial evasion of innate immune defenses. To target these enzymes, transition-state analogue inhibitors containing a methylphosphonamidate have been synthesized through a direct Staudinger-phosphonite reaction. The inhibitors were tested on purified PgaB, a PNAG de-N-acetylase from Escherichia coli, and PgdA, a peptidoglycan de-N-acetylase from Streptococcus pneumonia. Herein, we describe the most potent inhibitor of peptidoglycan de-N-acetylases reported to date (Ki =80 μM). The minimal inhibition of PgaB observed provides insight into key structural and functional differences in these enzymes that will need to be considered during the development of future inhibitors.
Collapse
Affiliation(s)
- Rishikesh Ariyakumaran
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6 (Canada)
| | - Varvara Pokrovskaya
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6 (Canada)
| | - Dustin J Little
- Program in Molecular Structure and Function, The Hospital for Sick Children and Department of Biochemistry, University of Toronto, 555 University Avenue, Toronto, Ontario M5G 1X8 (Canada)
| | - P Lynne Howell
- Program in Molecular Structure and Function, The Hospital for Sick Children and Department of Biochemistry, University of Toronto, 555 University Avenue, Toronto, Ontario M5G 1X8 (Canada)
| | - Mark Nitz
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6 (Canada).
| |
Collapse
|
40
|
Fehér K, Gömöry Á, Skoda-Földes R. A modular synthesis of 1,4,5-trisubstituted 1,2,3-triazoles with ferrocene moieties. MONATSHEFTE FUR CHEMIE 2015. [DOI: 10.1007/s00706-015-1490-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
41
|
Ma LY, Zheng YC, Wang SQ, Wang B, Wang ZR, Pang LP, Zhang M, Wang JW, Ding L, Li J, Wang C, Hu B, Liu Y, Zhang XD, Wang JJ, Wang ZJ, Zhao W, Liu HM. Design, synthesis, and structure-activity relationship of novel LSD1 inhibitors based on pyrimidine-thiourea hybrids as potent, orally active antitumor agents. J Med Chem 2015; 58:1705-1716. [PMID: 25610955 DOI: 10.1021/acs.jmedchem.5b00037] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone lysine specific demethylase 1 (LSD1) was reported to be overexpressed in several human cancers and recognized as a promising anticancer drug target. In the current study, we designed and synthesized a novel series of pyrimidine-thiourea hybrids and evaluated their potential LSD1 inhibitory effect. One of the compounds, 6b, containing a terminal alkyne appendage, was shown to be the most potent and selective LSD1 inhibitor in vitro and exhibited strong cytotoxicity against LSD1 overexpressed gastric cancer cells. Compound 6b also showed marked inhibition of cell migration and invasion as well as significant in vivo tumor suppressing and antimetastasis role, without significant side effects by oral administration. Our findings indicate that the pyrimidine-thiourea-based LSD1 inactivator may serve as a leading compound targeting LSD1 overexpressed cancers.
Collapse
Affiliation(s)
- Li-Ying Ma
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University , 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sylilation of poly(alkylene H-phosphonate)s – Rapid and efficient method for obtaining poly(alkylene trisilylmethylphosphite)s. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2014.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Ma LY, Pang LP, Wang B, Zhang M, Hu B, Xue DQ, Shao KP, Zhang BL, Liu Y, Zhang E, Liu HM. Design and synthesis of novel 1,2,3-triazole-pyrimidine hybrids as potential anticancer agents. Eur J Med Chem 2014; 86:368-380. [PMID: 25180925 DOI: 10.1016/j.ejmech.2014.08.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/02/2014] [Accepted: 08/04/2014] [Indexed: 12/19/2022]
Abstract
A series of novel 1,2,3-triazole-pyrimidine hybrids were designed, synthesized and evaluated for their anticancer activity against four selected cancer cell lines (MGC-803, EC-109, MCF-7 and B16-F10). Most of the synthesized compounds exhibited moderate to good activity against all the cancer cell lines selected. Compound 17 showed the most excellent anticancer activity with single-digit micromolar IC50 values ranging from 1.42 to 6.52 μM. Further mechanism studies revealed that compound 17 could obviously inhibit the proliferation of EC-109 cancer cells by inducing apoptosis and arresting the cell cycle at G2/M phase.
Collapse
Affiliation(s)
- Li-Ying Ma
- New Drug Research & Development Center, School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Avenue Kexue, Zhengzhou 450001, PR China
| | - Lu-Ping Pang
- New Drug Research & Development Center, School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Avenue Kexue, Zhengzhou 450001, PR China
| | - Bo Wang
- New Drug Research & Development Center, School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Avenue Kexue, Zhengzhou 450001, PR China
| | - Miao Zhang
- New Drug Research & Development Center, School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Avenue Kexue, Zhengzhou 450001, PR China
| | - Biao Hu
- New Drug Research & Development Center, School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Avenue Kexue, Zhengzhou 450001, PR China
| | - Deng-Qi Xue
- New Drug Research & Development Center, School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Avenue Kexue, Zhengzhou 450001, PR China
| | - Kun-Peng Shao
- New Drug Research & Development Center, School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Avenue Kexue, Zhengzhou 450001, PR China
| | - Bao-Le Zhang
- New Drug Research & Development Center, School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Avenue Kexue, Zhengzhou 450001, PR China
| | - Ying Liu
- New Drug Research & Development Center, School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Avenue Kexue, Zhengzhou 450001, PR China
| | - En Zhang
- New Drug Research & Development Center, School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Avenue Kexue, Zhengzhou 450001, PR China
| | - Hong-Min Liu
- New Drug Research & Development Center, School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Avenue Kexue, Zhengzhou 450001, PR China.
| |
Collapse
|
44
|
Ozgur E, Toren P, Bayindir M. Phosphonate based organosilane modification of a simultaneously protein resistant and bioconjugable silica surface. J Mater Chem B 2014; 2:7118-7122. [DOI: 10.1039/c4tb01283f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Guo YJ, Chen PJ, Wang B, Peng AY. Synthesis of phosphaisocoumarin amidates via DIBAL-H-mediated selective amidation of phosphaisocoumarin esters. Org Biomol Chem 2014; 12:5458-63. [PMID: 24942670 DOI: 10.1039/c4ob00663a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of phosphaisocoumarin amidates were synthesized for the first time via DIBAL-H-mediated direct amidation of phosphaisocoumarin esters under mild conditions in good to excellent yields. The present reaction showed high selectivity. In each case, the phostone ring was intact and only the exocyclic ethoxy group was amidated. A plausible mechanism of the reaction was provided.
Collapse
Affiliation(s)
- Yu-Juan Guo
- School of Chemistry & Chemical Engineering, Sun Yat-sen University, 135 Xingangxi Lu, Guangzhou, 510275, China.
| | | | | | | |
Collapse
|
46
|
Dar BA, Dangroo NA, Gupta A, Wali A, Khuroo MA, Vishwakarma RA, Singh B. Iodine catalyzed solvent-free cross-dehydrogenative coupling of arylamines and H-phosphonates for the synthesis of N-arylphosphoramidates under atmospheric conditions. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.01.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Benkhellat Z, Allali M, Beley M, Wenger E, Bernard M, Parizel N, Selmeczi K, Joly JP. Click synthesis of symmetric bis-triazol ligands and full characterisation of their copper(ii)-complexes. NEW J CHEM 2014. [DOI: 10.1039/c3nj00570d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Duan YC, Zheng YC, Li XC, Wang MM, Ye XW, Guan YY, Liu GZ, Zheng JX, Liu HM. Design, synthesis and antiproliferative activity studies of novel 1,2,3-triazole–dithiocarbamate–urea hybrids. Eur J Med Chem 2013; 64:99-110. [DOI: 10.1016/j.ejmech.2013.03.058] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/23/2013] [Accepted: 03/26/2013] [Indexed: 01/13/2023]
|
49
|
Duan YC, Ma YC, Zhang E, Shi XJ, Wang MM, Ye XW, Liu HM. Design and synthesis of novel 1,2,3-triazole-dithiocarbamate hybrids as potential anticancer agents. Eur J Med Chem 2013; 62:11-9. [PMID: 23353743 DOI: 10.1016/j.ejmech.2012.12.046] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/25/2012] [Accepted: 12/29/2012] [Indexed: 01/07/2023]
Affiliation(s)
- Ying-Chao Duan
- New Drug Research & Development Center, School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Avenue Kexue, Zhengzhou 450001, PR China
| | | | | | | | | | | | | |
Collapse
|
50
|
Ötvös SB, Mándity IM, Kiss L, Fülöp F. Alkyne-azide cycloadditions with copper powder in a high-pressure continuous-flow reactor: high-temperature conditions versus the role of additives. Chem Asian J 2013; 8:800-8. [PMID: 23404792 DOI: 10.1002/asia.201201125] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 12/20/2012] [Indexed: 12/30/2022]
Abstract
A safe and efficient flow-chemistry-based procedure is presented for 1,3-dipolar cycloaddition reactions between organic azides and acetylenes. This simple and inexpensive technique eliminates the need for costly special apparatus and utilizes Cu powder as a plausible Cu(I) source. To maximize the reaction rates, high-pressure/high-temperature conditions are utilized; alternatively, the harsh reaction conditions can be moderated at room temperature by the joint application of basic and acidic additives. A comparison of the performance of these two approaches in a series of model reactions has resulted in the formation of useful 1,4-disubstituted 1,2,3-triazoles in excellent yields. The risks that are associated with the handling of azides are lowered, thanks to the benefits of flow processing, and gram-scale production has been safely implemented. The synthetic capability of this continuous-flow technique is demonstrated by the efficient syntheses of some highly functionalized derivatives of the antifungal cispentacin.
Collapse
Affiliation(s)
- Sándor B Ötvös
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Eötvös u. 6, Hungary
| | | | | | | |
Collapse
|