1
|
Rana SVS. Mechanistic paradigms of immunotoxicity, triggered by nanoparticles - a review. Toxicol Mech Methods 2025; 35:262-278. [PMID: 39585654 DOI: 10.1080/15376516.2024.2431687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/04/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Nanoparticles (NPs) possess the ability to penetrate cells and elicit a rapid and targeted immune response, influenced by their distinct physicochemical properties. These particles can engage with both micro and macromolecules, thereby impacting various downstream signaling pathways that may lead to cell death. This review provides a comprehensive overview of the primary mechanisms contributing to the immunotoxicity of both organic and inorganic nanoparticles. The effects of carbon-based nanomaterials (CNMs), including single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene, and metal oxide nanoparticles, on various immune cell types such as macrophages, neutrophils, monocytes, dendritic cells (DCs), antigen-presenting cells (APCs), and RAW 264.7 cells are examined. The immune responses discussed encompass inflammation, oxidative stress, autophagy, and apoptosis. Additionally, the roles of pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α, and IFN-γ, along with JAK/STAT signaling pathways, are highlighted. The interaction of NPs with oxidative stress pathways, including MAPK signaling and Nrf2/ARE signaling, is also explored. Furthermore, the mechanisms by which nanoparticles induce damage to organelles such as lysosomes, the endoplasmic reticulum, exosomes, and Golgi bodies within the immune system are addressed. The review also emphasizes the genotoxic and epigenetic mechanisms associated with the immunotoxicity of NPs. Recent advancements regarding the immunotherapeutic potential of engineered NPs are reported. The roles of autophagy and apoptosis in the immunotoxicity of NPs merit further investigation. In conclusion, understanding how engineered nanoparticles modulate immune responses may facilitate the prevention and treatment of human diseases, including cancer and autoimmune disorders.
Collapse
Affiliation(s)
- S V S Rana
- Department of Toxicology, Chaudhary Charan Singh University, Meerut, India
| |
Collapse
|
2
|
Ashique S, Kumar S, Sirohi E, Hussain A, Farid A, Faiyazuddin M, Mishra N, Garg A. A Comprehensive Update on Nanotechnology in Functional Food Developments: Recent Updates, Challenges, and Future Perspectives. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:241-256. [PMID: 37904558 DOI: 10.2174/1872210517666230825100347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/25/2023] [Accepted: 07/18/2023] [Indexed: 11/01/2023]
Abstract
The food business makes extensive use of lipophilic bioactive substances derived from plants, such as phytosterols, antimicrobials, antioxidants, ω3 fatty acids, tastes, and countless other constituennts. The preponderance of these bioactive substances, nevertheless, is just about unsolvable in hydric solution and unbalanced at a particular eco-friendly provocation, such as sunlight, temperature, and oxygen, in construction, transference, storage, and employment, for example, icy, chilling, desiccation, warm air dealing out, or machine-driven agitation. According to this standpoint, there are high-tech hitches that must be resolved to inform functionality for the social figure due to the lipophilic bioactive dearth of solubilization, bioavailability, and permanency. This leads to failure in commercialization and quality enhancement. Nanotechnology can generally be used to manufacture nano-kinds of stuff like nano-emulsion, nanoparticles, nanostructured materials, and nanocomposites. The creation of functional foods has attracted a huge interest as our consideration of their affiliation with nourishment and human health has grown. There are still a number of problems that need to be fixed, such as finding useful substances, figuring out ideal intake amounts, and fashioning apt food conveyance systems in addition to product compositions. In several of these areas, new methods and materials developed through nanotechnology have the potential to offer fresh explanations. The present article provides a thorough examination of nanotechnologies employed in the development of functional foods. It outlines the current patterns and forthcoming outlooks of sophisticated nanomaterials in the food industry, with particular emphasis on their applications in processing, packaging, safety, and preservation. The utilization of nanotechnologies in the food industry can improve the "bioavailability, taste, texture, and consistency of food products". This is accomplished by manipulating the particle size, potential cluster formation, and surface charge of food nanomaterials. Furthermore, this paper examines the utilization of nano-delivery systems for administering nutraceuticals, the cooperative effects of nanomaterials in safeguarding food, and the implementation of nano-sensors in intelligent food packaging to monitor the quality of stored food. Additionally, the customary techniques employed for evaluating the influence of nanomaterials on biological systems are also addressed. By examining patents, we aim to gain insights into the trends and innovations driving this field forward and assess its implications on the food industry and society.
Collapse
Affiliation(s)
- Sumel Ashique
- Bharat Institute of Technology (BIT), School of Pharmacy, Meerut, UP 250103, India
| | - Shubneesh Kumar
- Bharat Institute of Technology (BIT), School of Pharmacy, Meerut, UP 250103, India
| | - Ekta Sirohi
- Bharat Institute of Technology (BIT), School of Pharmacy, Meerut, UP 250103, India
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D. I. Khan, KPK, Pakistan
| | - Md Faiyazuddin
- School of Pharmacy, Al-Karim University, Katihar 854106, Bihar, India
- Nano Drug Delivery®, Raleigh-Durham, NC 27705, USA
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, 474005, India
| | - Ashish Garg
- Department of P.G. Studies and Research in Chemistry and Pharmacy, Rani Durgavati University, Jabalpur, MP 482001, India
| |
Collapse
|
3
|
Sycińska-Dziarnowska M, Szyszka-Sommerfeld L, Ziąbka M, Spagnuolo G, Woźniak K. Antimicrobial efficacy and bonding properties of orthodontic bonding systems enhanced with silver nanoparticles: a systematic review with meta-analysis. BMC Oral Health 2024; 24:1342. [PMID: 39501230 PMCID: PMC11536928 DOI: 10.1186/s12903-024-05127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/28/2024] [Indexed: 11/09/2024] Open
Abstract
The aim of this systematic review was to assess the antimicrobial effectiveness of silver nanoparticles (AgNPs) incorporated to different orthodontic bonding systems. Additionally, the review investigated the impact of AgNPs on the bonding properties of these materials. The hypothesis posed that the addition of AgNPs would enhance the antimicrobial efficacy of orthodontic bonding systems while maintaining their bonding properties. The systematic review employed a PICO-based search strategy, targeting in vitro studies focusing on the integration of nano silver particles into orthodontic bonding systems with potential antimicrobial activity. The intervention involved the use of nano silver in orthodontic bonding systems, with a comparison to systems lacking nano silver. The primary outcomes assessed were antimicrobial activity and shear bond strength (SBS). The search process, conducted without publication date restrictions, yielded 551 potential articles: 34 from PubMed, 360 from PubMed Central, 42 from Embase, 54 from Scopus, and 61 from Web of Science. Ultimately, a qualitative synthesis was conducted on 13 papers. The PRISMA diagram, visually represented the search strategy, screening process, and inclusion criteria. The study protocol was registered in PROSPERO CRD42023487656 to enhance transparency and adherence to systematic review guidelines. Quality assessment of the included studies was performed using the Newcastle-Ottawa Scale, revealing that the 13 articles meeting the inclusion criteria demonstrated a high level of evidence. Seven studies were included in the meta-analysis regarding shear bond strength. In summary, the synthesized findings from these studies strongly underscore the promising potential of orthodontic materials modified with AgNPs. These materials exhibit effective resistance against cariogenic bacteria without compromising bonding properties below clinical acceptability. Such innovative materials hold significant implications for advancing oral health within the realm of orthodontics.
Collapse
Affiliation(s)
- Magdalena Sycińska-Dziarnowska
- Department of Maxillofacial Orthopaedics and Orthodontics, Pomeranian Medical University in Szczecin, Al. Powst. Wlkp. 72, Szczecin, 70111, Poland.
| | - Liliana Szyszka-Sommerfeld
- Department of Maxillofacial Orthopaedics and Orthodontics, Pomeranian Medical University in Szczecin, Al. Powst. Wlkp. 72, Szczecin, 70111, Poland
- Laboratory for Propaedeutics of Orthodontics and Facial Congenital Defects, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, Szczecin, 70111, Poland
| | - Magdalena Ziąbka
- Faculty of Materials Science and Ceramics, Department of Ceramics and Refractories, AGH University of Krakow, Krakow, 30059, Poland
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Napoli, 80131, Italy
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Krzysztof Woźniak
- Department of Maxillofacial Orthopaedics and Orthodontics, Pomeranian Medical University in Szczecin, Al. Powst. Wlkp. 72, Szczecin, 70111, Poland
| |
Collapse
|
4
|
Alinezhad V, Ng YK, Mehta S, Konermann L. Uncovering the Pathway of Serine Octamer Magic Number Cluster Formation during Electrospray Ionization: Experiments and Simulations. J Am Chem Soc 2024; 146:26726-26742. [PMID: 39287424 DOI: 10.1021/jacs.4c05760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Electrospray ionization (ESI) of serine (Ser) solution generates Ser8H+ as an abundant magic number cluster. ESI clustering of most other solutes yields nonspecific stoichiometries. It is unclear why Ser8H+ dominates in the case of Ser, and how Ser8H+ forms during ESI. Even the location of Ser8H+ formation is contentious (in solution, in ESI droplets, or elsewhere). Here we unravel key aspects of the l-Ser8H+ formation pathway. Harsh ion sampling conditions promote the collision-induced dissociation (CID) of regular ESI analytes. Unexpectedly, Ser8H+ was seemingly resistant against CID during ion sampling, despite its extremely low tandem mass spectrometry (MS/MS) stability. This unusual behavior reveals that Ser8H+ forms during ion sampling. We propose the following pathway: (1) Nonspecific Ser clusters are released when ESI droplets evaporate to dryness. These initial clusters cover a wide size range, from a few Ser to hundreds or thousands of monomers. (2) The clusters undergo dissociation during ion sampling, mostly via successive loss of neutral monomers. For any source activation voltage, there is a subpopulation of clusters for which this CID cascade tends to terminate at the octamer level, culminating in Ser8H+-dominated product distributions. Mobile proton molecular dynamics simulations were used to model the entire pathway. Ser8H+ structures formed in these simulations were consistent with ion mobility experiments. The most compact structures resembled the model of [Scutelnic, V. J. Am. Chem. Soc. 2018, 140, 7554-7560], with numerous intermolecular salt bridges and H-bonds. Our findings illustrate how the interplay of association and dissociation reactions across phase boundaries can culminate in magic number clusters.
Collapse
Affiliation(s)
- Vida Alinezhad
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Yuen Ki Ng
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Sanvid Mehta
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
5
|
Sree BK, Kumar N, Singh S. Reproductive toxicity perspectives of nanoparticles: an update. Toxicol Res (Camb) 2024; 13:tfae077. [PMID: 38939724 PMCID: PMC11200103 DOI: 10.1093/toxres/tfae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/08/2024] [Accepted: 05/08/2024] [Indexed: 06/29/2024] Open
Abstract
INTRODUCTION The rapid development of nanotechnologies with their widespread prosperities has advanced concerns regarding potential health hazards of the Nanoparticles. RESULTS Nanoparticles are currently present in several consumer products, including medications, food, textiles, sports equipment, and electrical components. Despite the advantages of Nanoparticles, their potential toxicity has negative impact on human health, particularly on reproductive health. CONCLUSIONS The impact of various NPs on reproductive system function is yet to be determined. Additional research is required to study the potential toxicity of various Nanoparticles on reproductive health. The primary objective of this review is to unravel the toxic effects of different Nanoparticles on the human reproductive functions and recent investigations on the reproductive toxicity of Nanoparticles both in vitro and in vivo.
Collapse
Affiliation(s)
- B Kavya Sree
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area Hajipur, Vaishali, Hajipur, Bihar 844102, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area Hajipur, Vaishali, Hajipur, Bihar 844102, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area Hajipur, Vaishali, Hajipur, Bihar 844102, India
| |
Collapse
|
6
|
Kara I. Use of geopolymers as tunable and sustained silver ion release mediums. Sci Rep 2024; 14:8606. [PMID: 38615145 PMCID: PMC11016085 DOI: 10.1038/s41598-024-59310-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024] Open
Abstract
Silver was incorporated up to 3.4% (w/w) into the geopolymer structure via precipitation as Ag2O by dispersing the geopolymer powder in an aqueous solution of AgNO3. The precipitates were mainly located in the fine pores within the nanoparticles of the geopolymer network. The fine pores enabled the formation of very fine precipitates, mainly between 2 and 5 nm. The silver-incorporated geopolymer was found to have a sustained Ag+ release that can be tuned down by a thermal treatment, e.g., calcination. The Ag+ release amount could be reduced by about 30-fold after calcination at 850 °C. Calcination reduces the specific surface area, causes shrinkage, and makes the geopolymer structure less pervious. The size of the precipitates remains stable even up to 1050 °C, despite a large amount of sintering-related shrinkage. These results suggest that geopolymers could be a tunable Ag+ source for various antibacterial applications.
Collapse
Affiliation(s)
- Ilknur Kara
- Department of Elementary Education, Faculty of Education, Anadolu University, Eskisehir, Turkey.
| |
Collapse
|
7
|
Yamashita Y, Tokunaga A, Aoki K, Ishizuka T, Uematsu H, Sakamoto H, Fujita S, Tanoue S. Assessing the Safety of Mechanically Fibrillated Cellulose Nanofibers (fib-CNF) via Toxicity Tests on Mice: Single Intratracheal Administration and 28 Days' Oral Intake. TOXICS 2024; 12:121. [PMID: 38393216 PMCID: PMC10893282 DOI: 10.3390/toxics12020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 02/25/2024]
Abstract
Mechanically fibrillated cellulose nanofibers, known as fib-CNF (fiber length: 500 nm; diameter: 45 nm), are used in composites and as a natural thickener in foods. To evaluate their safety, we conducted a 28-day study in mice with inhalation exposure at 0.2 mg/body and oral administration of 400 mg/kg/day. Inhalation exposure to fib-CNF caused transient weight loss, changes in blood cell counts, and increased lung weights. These changes were attributed to adaptive responses. The oral administration of fib-CNF for 28 days resulted in no apparent toxic effects except for a slight decrease in platelet counts. The fib-CNF administration using the protocols studied appears to be safe in mice.
Collapse
Affiliation(s)
- Yoshihiro Yamashita
- Research Center for Fibers and Materials, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan;
| | - Akinori Tokunaga
- Life Science Research Laboratory, University of Fukui, 23-3, Matsuoka Shimoaizuki, Eiheiji-cho, Fukui 910-1193, Japan;
- Organization for Life Science Advancement Programs, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; (K.A.); (T.I.); (H.U.); (H.S.); (S.F.)
| | - Koji Aoki
- Organization for Life Science Advancement Programs, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; (K.A.); (T.I.); (H.U.); (H.S.); (S.F.)
- Department of Pharmacology, Faculty of Medicine, University of Fukui, 23-3, Matsuoka Shimoaizuki, Eiheiji-cho, Fukui 910-1193, Japan
| | - Tamotsu Ishizuka
- Organization for Life Science Advancement Programs, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; (K.A.); (T.I.); (H.U.); (H.S.); (S.F.)
- Third Department of Internal Medicine, Faculty of Medicine, University of Fukui, 23-3, Matsuoka Shimoaizuki, Eiheiji-cho, Fukui 910-1193, Japan
| | - Hideyuki Uematsu
- Organization for Life Science Advancement Programs, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; (K.A.); (T.I.); (H.U.); (H.S.); (S.F.)
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Hiroaki Sakamoto
- Organization for Life Science Advancement Programs, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; (K.A.); (T.I.); (H.U.); (H.S.); (S.F.)
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Satoshi Fujita
- Organization for Life Science Advancement Programs, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; (K.A.); (T.I.); (H.U.); (H.S.); (S.F.)
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Shuichi Tanoue
- Research Center for Fibers and Materials, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan;
- Organization for Life Science Advancement Programs, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; (K.A.); (T.I.); (H.U.); (H.S.); (S.F.)
| |
Collapse
|
8
|
Hassane Hamadou A, Zhang J, Li H, Chen C, Xu B. Modulating the glycemic response of starch-based foods using organic nanomaterials: strategies and opportunities. Crit Rev Food Sci Nutr 2023; 63:11942-11966. [PMID: 35900010 DOI: 10.1080/10408398.2022.2097638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Traditionally, diverse natural bioactive compounds (polyphenols, proteins, fatty acids, dietary fibers) are used as inhibitors of starch digestive enzymes for lowering glycemic index (GI) and preventing type 2 diabetes mellitus (T2DM). In recent years, organic nanomaterials (ONMs) have drawn a great attention because of their ability to overcome the stability and solubility issues of bioactive. This review aimed to elucidate the implications of ONMs in lowering GI and as encapsulating agents of enzymes inhibitors. The major ONMs are presented. The mechanisms underlying the inhibition of enzymes, the stability within the gastrointestinal tract (GIT) and safety of ONMs are also provided. As a result of encapsulation of bioactive in ONMs, a more pronounced inhibition of enzymes was observed compared to un-encapsulated bioactive. More importantly, the lower the size of ONMs, the higher their inhibitory effects due to facile binding with enzymes. Additionally, in vivo studies exhibited the potentiality of ONMs for protection and sustained release of insulin for GI management. Overall, regulating the GI using ONMs could be a safe, robust and viable alternative compared to synthetic drugs (acarbose and voglibose) and un-encapsulated bioactive. Future researches should prioritize ONMs in real food products and evaluate their safety on a case-by-case basis.
Collapse
Affiliation(s)
| | - Jiyao Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haiteng Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chao Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
9
|
Kah Sem NAD, Abd Gani S, Chong CM, Natrah I, Shamsi S. Management and Mitigation of Vibriosis in Aquaculture: Nanoparticles as Promising Alternatives. Int J Mol Sci 2023; 24:12542. [PMID: 37628723 PMCID: PMC10454253 DOI: 10.3390/ijms241612542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 08/27/2023] Open
Abstract
Vibriosis is one of the most common diseases in marine aquaculture, caused by bacteria belonging to the genus Vibrio, that has been affecting many species of economically significant aquatic organisms around the world. The prevention of vibriosis in aquaculture is difficult, and the various treatments for vibriosis have their limitations. Therefore, there is an imperative need to find new alternatives. This review is based on the studies on vibriosis, specifically on the various treatments and their limitations, as well as the application of nanoparticles in aquaculture. One of the promising nanoparticles is graphene oxide (GO), which has been used in various applications, particularly in biological applications such as biosensors, drug delivery, and potential treatment for infectious diseases. GO has been shown to have anti-bacterial properties against both Gram-positive and Gram-negative bacteria, but no research has been published that emphasizes its impact on Vibrio spp. The review aims to explore the potential use of GO for treatment against vibriosis.
Collapse
Affiliation(s)
- Nuan Anong Densaad Kah Sem
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.A.D.K.S.); (S.A.G.)
| | - Shafinaz Abd Gani
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.A.D.K.S.); (S.A.G.)
| | - Chou Min Chong
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (C.M.C.); (I.N.)
| | - Ikhsan Natrah
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (C.M.C.); (I.N.)
| | - Suhaili Shamsi
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.A.D.K.S.); (S.A.G.)
| |
Collapse
|
10
|
Bi J, Mo C, Li S, Huang M, Lin Y, Yuan P, Liu Z, Jia B, Xu S. Immunotoxicity of metal and metal oxide nanoparticles: from toxic mechanisms to metabolism and outcomes. Biomater Sci 2023. [PMID: 37161951 DOI: 10.1039/d3bm00271c] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The influence of metal and metal oxide nanomaterials on various fields since their discovery has been remarkable. They have unique properties, and therefore, have been employed in specific applications, including biomedicine. However, their potential health risks cannot be ignored. Several studies have shown that exposure to metal and metal oxide nanoparticles can lead to immunotoxicity. Different types of metals and metal oxide nanoparticles may have a negative impact on the immune system through various mechanisms, such as inflammation, oxidative stress, autophagy, and apoptosis. As an essential factor in determining the function and fate of immune cells, immunometabolism may also be an essential target for these nanoparticles to exert immunotoxic effects in vivo. In addition, the biodegradation and metabolic outcomes of metal and metal oxide nanoparticles are also important considerations in assessing their immunotoxic effects. Herein, we focus on the cellular mechanism of the immunotoxic effects and toxic effects of different types of metal and metal oxide nanoparticles, as well as the metabolism and outcomes of these nanoparticles in vivo. Also, we discuss the relationship between the possible regulatory effect of nanoparticles on immunometabolism and their immunotoxic effects. Finally, we present perspectives on the future research and development direction of metal and metal oxide nanomaterials to promote scientific research on the health risks of nanomaterials and reduce their adverse effects on human health.
Collapse
Affiliation(s)
- Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Siwei Li
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Mingshu Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yunhe Lin
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Peiyan Yuan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Zhongjun Liu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
11
|
Alrushaid N, Khan FA, Al-Suhaimi EA, Elaissari A. Nanotechnology in Cancer Diagnosis and Treatment. Pharmaceutics 2023; 15:1025. [PMID: 36986885 PMCID: PMC10052895 DOI: 10.3390/pharmaceutics15031025] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Traditional cancer diagnosis has been aided by the application of nanoparticles (NPs), which have made the process easier and faster. NPs possess exceptional properties such as a larger surface area, higher volume proportion, and better targeting capabilities. Additionally, their low toxic effect on healthy cells enhances their bioavailability and t-half by allowing them to functionally penetrate the fenestration of epithelium and tissues. These particles have attracted attention in multidisciplinary areas, making them the most promising materials in many biomedical applications, especially in the treatment and diagnosis of various diseases. Today, many drugs are presented or coated with nanoparticles for the direct targeting of tumors or diseased organs without harming normal tissues/cells. Many types of nanoparticles, such as metallic, magnetic, polymeric, metal oxide, quantum dots, graphene, fullerene, liposomes, carbon nanotubes, and dendrimers, have potential applications in cancer treatment and diagnosis. In many studies, nanoparticles have been reported to show intrinsic anticancer activity due to their antioxidant action and cause an inhibitory effect on the growth of tumors. Moreover, nanoparticles can facilitate the controlled release of drugs and increase drug release efficiency with fewer side effects. Nanomaterials such as microbubbles are used as molecular imaging agents for ultrasound imaging. This review discusses the various types of nanoparticles that are commonly used in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Noor Alrushaid
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Univ. Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622 Lyon, France
| | - Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ebtesam Abdullah Al-Suhaimi
- Biology Department, College of Science, Institute of Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Abdelhamid Elaissari
- Univ. Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622 Lyon, France
| |
Collapse
|
12
|
Sreedharan S, Zouganelis G, Drake SJ, Tripathi G, Kermanizadeh A. Nanomaterial-induced toxicity in pathophysiological models representative of individuals with pre-existing medical conditions. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:1-27. [PMID: 36474307 DOI: 10.1080/10937404.2022.2153456] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The integration of nanomaterials (NMs) into an ever-expanding number of daily used products has proven to be highly desirable in numerous industries and applications. Unfortunately, the same "nano" specific physicochemical properties, which make these materials attractive, may also contribute to hazards for individuals exposed to these materials. In 2021, it was estimated that 7 out of 10 deaths globally were accredited to chronic diseases, such as chronic liver disease, asthma, and cardiovascular-related illnesses. Crucially, it is also understood that a significant proportion of global populace numbering in the billions are currently living with a range of chronic undiagnosed health conditions. Due to the significant number of individuals affected, it is important that people suffering from chronic disease also be considered and incorporated in NM hazard assessment strategies. This review examined and analyzed the literature that focused on NM-induced adverse health effects in models which are representative of individuals exhibiting pre-existing medical conditions with focus on the pulmonary, cardiovascular, hepatic, gastrointestinal, and central nervous systems. The overall objective of this review was to outline available data, highlighting the important role of pre-existing disease in NM-induced toxicity with the aim of establishing a weight of evidence approach to inform the public on the potential hazards posed by NMs in both healthy and compromised persons in general population.
Collapse
|
13
|
Nanoparticles for Topical Application in the Treatment of Skin Dysfunctions-An Overview of Dermo-Cosmetic and Dermatological Products. Int J Mol Sci 2022; 23:ijms232415980. [PMID: 36555619 PMCID: PMC9780930 DOI: 10.3390/ijms232415980] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Nanomaterials (NM) arouse interest in various fields of science and industry due to their composition-tunable properties and the ease of modification. They appear currently as components of many consumer products such as sunscreen, dressings, sports clothes, surface-cleaning agents, computer devices, paints, as well as pharmaceutical and cosmetics formulations. The use of NPs in products for topical applications improves the permeation/penetration of the bioactive compounds into deeper layers of the skin, providing a depot effect with sustained drug release and specific cellular and subcellular targeting. Nanocarriers provide advances in dermatology and systemic treatments. Examples are a non-invasive method of vaccination, advanced diagnostic techniques, and transdermal drug delivery. The mechanism of action of NPs, efficiency of skin penetration, and potential threat to human health are still open and not fully explained. This review gives a brief outline of the latest nanotechnology achievements in products used in topical applications to prevent and treat skin diseases. We highlighted aspects such as the penetration of NPs through the skin (influence of physical-chemical properties of NPs, the experimental models for skin penetration, methods applied to improve the penetration of NPs through the skin, and methods applied to investigate the skin penetration by NPs). The review summarizes various therapies using NPs to diagnose and treat skin diseases (melanoma, acne, alopecia, vitiligo, psoriasis) and anti-aging and UV-protectant nano-cosmetics.
Collapse
|
14
|
Yin S, Villagrán D. Design of nanomaterials for the removal of per- and poly-fluoroalkyl substances (PFAS) in water: Strategies, mechanisms, challenges, and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154939. [PMID: 35367257 DOI: 10.1016/j.scitotenv.2022.154939] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Due to their persistent and pervasive distribution and their adverse effects on human health, the removal of per- and polyfluoroalkyl substances (PFAS) from the environment has been the focus of current research. Recent studies have shown that engineered nanomaterials provide great opportunities for their removal by chemical, physical and electrochemical adsorption methods, or as photo- or electrocatalysts that promote their degradation. This review summarizes and discusses the performance of recently reported nanomaterials towards PFAS removal in water treatment applications. We discuss the performance, mechanisms, and PFAS removal conditions of a variety of nanomaterials, including carbon-based, non-metal, single-metal, and multi-metal nanomaterials. We show that nanotechnology provides significant opportunities for PFAS remediation and further nanomaterial development can provide solutions for the removal of PFAS from the environment. We also provide an overview of the current challenges.
Collapse
Affiliation(s)
- Sheng Yin
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), USA
| | - Dino Villagrán
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), USA.
| |
Collapse
|
15
|
Aglan HA, Fouad-Elhady EA, Hassan RE, Sabry GM, Ahmed HH. Nanoplatforms for Promoting Osteogenesis in Ovariectomy-Induced
Osteoporosis in the Experimental Model. CURRENT NANOMEDICINE 2022; 12:44-62. [DOI: 10.2174/2468187312666220217104650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/19/2021] [Accepted: 01/12/2022] [Indexed: 01/05/2025]
Abstract
Background:
Osteoporosis is a debilitating bone ailment characterized by the obvious loss of bone mass and bone microarchitecture impairment.
Objective:
This study aimed to illuminate the in vivo usefulness of nanotechnology as a treatment for osteoporosis via analyzing the effectiveness of nano-hydroxyapatite (nHa), nano-hydroxy- apatite/chitosan (nHa/C), and nano-hydroxyapatite/silver (nHa/S) in mitigation of osteoporosis in ovariectomized rats.
Method:
The characterization of the nHa, nHa/C, and nHa/S was carried out using TEM, SEM, FTIR, and Zeta potential measurements. This in vivo study included 48 adult female rats that were randomized into six groups (8 rats/group): (1) Sham-operated control, (2) osteoporotic, (3) nHa, (4) nHa/C, (5) nHa/S, and (6) Fosamax®. Serum osterix level was quantified using ELISA. Femur bone morphogenetic protein 2 and SMAD1 mRNA levels were evaluated by qPCR. The femur bones were scanned by DEXA for measurement of bone mineral density and bone mineral content. In ad-dition, a histopathological examination of femur bones was performed.
Results:
The present approach denoted that the treatment with nHa, nHa/C, or nHa/S yields a signif-icant rise in serum level of osterix and mRNA levels of bone morphogenetic protein 2 and SMAD1 as well as significant enhancements of bone tissue minerals.
Conclusion:
The findings affirmed the potency of nHa, nHa/C, and nHa/S as auspicious nanoplat-forms for repairing bone defects in the osteoporotic rat model. The positive effect of the inspected nanoformulations arose from bone formation indicators in serum and tissue, and additionally, the reinforcement of bone density and content, which were verified by the histopathological description of bone tissue sections.
Collapse
Affiliation(s)
- Hadeer A. Aglan
- Hormones Department, Medicine and Clinical Studies Research Institute, National Research Centre, Giza, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | | | - Rasha E. Hassan
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Gilane M. Sabry
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hanaa H. Ahmed
- Hormones Department, Medicine and Clinical Studies Research Institute, National Research Centre, Giza, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| |
Collapse
|
16
|
Demir E, Demir FT, Marcos R. Drosophila as a Suitable In Vivo Model in the Safety Assessment of Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:275-301. [DOI: 10.1007/978-3-030-88071-2_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Chen FC, Chen YY, Xu WQ, Huang JM, Huang CM, Ding ZX, Xu YJ. Effects of nano-ZnO loaded on eggshell on the growth of Actinobacillus actinomycetemcomitans and Actinomyces viscosus in vitro. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.2006785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Fang-Chuan Chen
- Department of Stomatology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, PR China
| | - Ya-Yu Chen
- Department of Stomatology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, PR China
| | - Wan-Qing Xu
- Department of Stomatology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, PR China
| | - Jia-Ming Huang
- Clinical Microbiology Lab, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, PR China
| | - Cong-Ming Huang
- Department of Stomatology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, PR China
| | - Zhi-Xiong Ding
- Department of Stomatology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, PR China
| | - Yue-Jing Xu
- Department of Stomatology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, PR China
| |
Collapse
|
18
|
Lu N, Chen Z, Song J, Weng Y, Yang G, Liu Q, Yang K, Lu X, Liu Y. Size Effect of TiO2 Nanoparticles as Food Additive and Potential Toxicity. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-021-09695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Wang Z, Wang X, Wang Y, Zhu Y, Liu X, Zhou Q. NanoZnO-modified titanium implants for enhanced anti-bacterial activity, osteogenesis and corrosion resistance. J Nanobiotechnology 2021; 19:353. [PMID: 34717648 PMCID: PMC8557588 DOI: 10.1186/s12951-021-01099-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/20/2021] [Indexed: 02/08/2023] Open
Abstract
Titanium (Ti) implants are widely used in dentistry and orthopedics owing to their excellent corrosion resistance, biocompatibility, and mechanical properties, which have gained increasing attention from the viewpoints of fundamental research and practical applications. Also, numerous studies have been carried out to fine-tune the micro/nanostructures of Ti and/or incorporate chemical elements to improve overall implant performance. Zinc oxide nanoparticles (nano-ZnO) are well-known for their good antibacterial properties and low cytotoxicity along with their ability to synergize with a variety of substances, which have received increasingly widespread attention as biomodification materials for implants. In this review, we summarize recent research progress on nano-ZnO modified Ti-implants. Their preparation methods of nano-ZnO modified Ti-implants are introduced, followed by a further presentation of the antibacterial, osteogenic, and anti-corrosion properties of these implants. Finally, challenges and future opportunities for nano-ZnO modified Ti-implants are proposed.
Collapse
Affiliation(s)
- Zheng Wang
- Institute for Translational Medicine, Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Xiaojing Wang
- School of Stomatology, Qingdao University, Qingdao, 266003, China
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yingruo Wang
- Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yanli Zhu
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Xinqiang Liu
- Institute for Translational Medicine, Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China.
- School of Stomatology, Qingdao University, Qingdao, 266003, China.
| | - Qihui Zhou
- Institute for Translational Medicine, Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China.
- School of Stomatology, Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
20
|
Almutairi B, Ali D, Yaseen KN, Alothman NS, Alyami N, Almukhlafi H, Alakhtani S, Alarifi S. Mechanisms of Apoptotic Cell Death by Stainless Steel Nanoparticle Through Reactive Oxygen Species and Caspase-3 Activities on Human Liver Cells. Front Mol Biosci 2021; 8:729590. [PMID: 34631797 PMCID: PMC8497807 DOI: 10.3389/fmolb.2021.729590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/13/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Nanoparticles are widely used in pharmaceutical, agriculture, and food processing industries and in many other fields. However, the effect of stainless steel nanoparticles (SSNPs) remains unclear. So in this study, we evaluate the effect of SSNPs’ toxicity on human liver (CHANG and HuH-7) cell lines over 24 and 48 h. Methods: We have analyzed the quality, shape, and size of SSNPs using x-ray diffraction (XRD), energy dispersive x-ray (EDX) scanning electron microscope (SEM), and transmission electron microscope (TEM). The cytotoxicity and cell growth were determined by using the MTT and wound healing tests. The oxidative stress parameters were determined by measuring ROS generation and antioxidant enzymes, such as glutathione (GSH) and superoxide dismutase (SOD), due to SSNP exposure on human liver cell lines over 24 and 48 h. The confirmation of the apoptotic effect of SSNPs on livers cells was determined by the Western blot analysis for the expression of apoptotic proteins, such as Bax, bcl2, and p53, and real-time PCR for the expression of apoptotic genes, such as Bax, bcl2, caspase-3, and p53. Results: We have observed the dose- and time-dependent cytotoxicity and apoptosis of SSNPs on both cells. The results showed that SSNPs induced cell toxicity, inhibited cell growth, GSH, and increased generation of intracellular ROS and SOD levels at higher concentrations of exposure in both cells. SSNPs showed an apoptotic activity with upregulation of Bax, caspase-3, and p53 and downregulation of the bcl2 gene expression in CHANG and HuH-7 cell lines. Moreover, the immunoblotting assay confirmed the apoptotic activity of SSNPs in cells. Conclusion: In conclusion, these findings demonstrated that SSNPs showed toxic effects on human liver cells via activating the caspase-3 activity and they induced more toxicity in HuH-7 cells than in CHANG cells.
Collapse
Affiliation(s)
- Bader Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Khadijah N Yaseen
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Norah S Alothman
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nouf Alyami
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hanouf Almukhlafi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saad Alakhtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Deylam M, Alizadeh E, Sarikhani M, Hejazy M, Firouzamandi M. Zinc oxide nanoparticles promote the aging process in a size-dependent manner. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:128. [PMID: 34591206 PMCID: PMC8484102 DOI: 10.1007/s10856-021-06602-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/05/2021] [Indexed: 05/15/2023]
Abstract
Zinc oxide (ZnO) nanoparticles (NPs) are generally utilized in cosmetic goods, sheds, biosensors, and delivery of drug. As in vitro ideal systems, mesenchymal stem cells (MSCs) are used to test acute toxicity. In the present study, size-dependent cytotoxicity effects of ZnO NPs on MSCs were assessed. Bone marrow and adipose MSCs were treated with ZnO NPs with average sizes of 10-30 and 35-45 nm. The 5 and 10 µg/ml concentrations of ZnO NP were found to be the safe concentrations for the NP sizes of 10-30 and 35-45 nm, respectively. Cell-cycle analysis indicated that the small size of ZnO NPs has more negative effects on the process of cell entry to DNA synthesis when compared to the larger size. The results of the β-galactosidase test showed the promotion of the aging process in the cells treated with the smaller size of ZnO NPs. Both sizes of the NP were found to upregulate the aging-related genes NF-kB and p53 and downregulate the anti-aging gene Nanog. To sum up, the smaller size of ZnO NPs can enhance the aging process in the cells.
Collapse
Affiliation(s)
- Mahla Deylam
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manizheh Sarikhani
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Marzie Hejazy
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoumeh Firouzamandi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
22
|
Liu Y, Huang Y, Mou Z, Li R, Hossen MA, Dai J, Qin W, Lee K. Characterization and preliminary safety evaluation of nano-SiO 2 isolated from instant coffee. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112694. [PMID: 34454355 DOI: 10.1016/j.ecoenv.2021.112694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The physiological and toxicological evaluation of nano-silicon dioxide (nano-SiO2) particles in food is important for ensuring food safety. In this study, nano-SiO2 particles isolated from five brands of instant coffee, were structurally characterized using transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, dynamic light scattering, and zeta potential analyses. Their toxicity was assessed by measuring cell viability, membrane integrity, and reactive oxygen species (ROS) levels in model gastrointestinal cells (GES-1 and Caco-2). Additionally, mortality, deformity rate, heart rate and death of whole zebra fish embryos were measured. The five types of nano-SiO2 samples comprised amorphous particles with a purity of approximately 99%, which met the food additive standard. Considering that the original particle size ranged from 10 to 50 nm, the samples were classified as nano-SiO2 food additives. Nano-SiO2 did not significantly impact the activity of GES-1 or Caco-2 cells, and no significant cell membrane damage was observed (Caco-2 cells exhibited mild micro damage); however, a slight increase in intracellular RPS levels was detected. Moreover, nano-SiO2 was found to cause head deformity, pericardial edema, yolk sac edema and tail bending. Collectively, the results show that nano-SiO2 time- and dose-dependently affects GES-1 and Caco-2 cell viability, as well as the mortality, heart rate, and abnormality rate of zebra fish embryos. Specifically, a high concentration (≥ 200 μg/mL) and long exposure time (≥ 48 h) of food additive nano-SiO2 affected GES-1, Caco-2 cells, and the gastrointestinal tract in zebra fish embryos.
Collapse
Affiliation(s)
- Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA.
| | - Ying Huang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhen Mou
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Rui Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Md Alomgir Hossen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jianwu Dai
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - KangJu Lee
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA; Department of Healthcare and Biomedical Engineering, Chonnam National University(,) Yeosu 59626, South Korea.
| |
Collapse
|
23
|
A detailed review on biosynthesis of platinum nanoparticles (PtNPs), their potential antimicrobial and biomedical applications. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101297] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
FEAST of biosensors: Food, environmental and agricultural sensing technologies (FEAST) in North America. Biosens Bioelectron 2021; 178:113011. [PMID: 33517232 DOI: 10.1016/j.bios.2021.113011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/04/2021] [Accepted: 01/16/2021] [Indexed: 02/08/2023]
Abstract
We review the challenges and opportunities for biosensor research in North America aimed to accelerate translational research. We call for platform approaches based on: i) tools that can support interoperability between food, environment and agriculture, ii) open-source tools for analytics, iii) algorithms used for data and information arbitrage, and iv) use-inspired sensor design. We summarize select mobile devices and phone-based biosensors that couple analytical systems with biosensors for improving decision support. Over 100 biosensors developed by labs in North America were analyzed, including lab-based and portable devices. The results of this literature review show that nearly one quarter of the manuscripts focused on fundamental platform development or material characterization. Among the biosensors analyzed for food (post-harvest) or environmental applications, most devices were based on optical transduction (whether a lab assay or portable device). Most biosensors for agricultural applications were based on electrochemical transduction and few utilized a mobile platform. Presently, the FEAST of biosensors has produced a wealth of opportunity but faces a famine of actionable information without a platform for analytics.
Collapse
|
25
|
Yuan B, Wang P, Sang L, Gong J, Pan Y, Hu Y. QNAR modeling of cytotoxicity of mixing nano-TiO 2 and heavy metals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111634. [PMID: 33396154 DOI: 10.1016/j.ecoenv.2020.111634] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
The Quantitative Structure-Activity Relationship (QSAR) has been used to investigate organic mixtures but QSAR in the nanomaterial field (QNAR) is still new. Toxicity is a result of the interaction of many substances. QNAR research focuses on a single nanomaterial in the long-term. It is difficult to find an appropriate descriptor to build a model due to the complexity of the mixture. Here, we attempt to build a QNAR model to predict cell viability for HK-2 cells exposed to a mixture containing nano-TiO2 and heavy metals. HK-2 cells were exposed to four groups of mixtures containing heavy-metals and nanomaterials and CCK8 was added to obtain the number of living cells. At the same time, ROS was investigated to study this mechanism. Each descriptor of the components and mixtures were obtained using the formula Dmix= [Formula: see text] respectively. We used the Multiple Partial Least Squares Regression (PLS) and Random Forest Regression (RF) to build a QNAR model. Both models reliably predict and assess viability of HK-2 cells exposed to the mixture. The RF model showed greater stability and higher precision in toxicity predictability and can be applied to environmental nano-toxicology.
Collapse
Affiliation(s)
- Beilei Yuan
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, China.
| | - Pengfei Wang
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Leqi Sang
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Junhui Gong
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Yong Pan
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Yanhui Hu
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
26
|
Kaur M, Wadhwa A, Kumar V. Pectin-Based Nanomaterials: Synthesis, Toxicity and Applications. ASIAN JOURNAL OF CHEMISTRY 2021; 33:2579-2588. [DOI: 10.14233/ajchem.2021.23382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Nanomaterials of biological origin are very useful for drug delivery applications. The stability,
biodegradability and biocompatibility of pectin nanomaterials in the human body make them an effective
drug carrier. This review focus on different aspect of synthesis, drug encapsulation, drug release and
safety of pectin-based nanomaterials. The nanomaterials can be used for the delivery of different
hydrophilic and hydrophobic drugs to various organs. The release kinetics of drug loaded pectin-based
nanoparticles can be studied in vitro as well as in vivo. The pectin-based nanomaterials have good
pharmaco-kinetics and can ensure controlled drug delivery. However, the toxicity of pectin-based
nanomaterials to human body needs to be evaluated carefully before industrial scale application.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144111, India
| | - Aditya Wadhwa
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144111, India
| | - Vineet Kumar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144111, India
| |
Collapse
|
27
|
Demir E. A review on nanotoxicity and nanogenotoxicity of different shapes of nanomaterials. J Appl Toxicol 2020; 41:118-147. [PMID: 33111384 DOI: 10.1002/jat.4061] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
Nanomaterials (NMs) generally display fascinating physical and chemical properties that are not always present in bulk materials; therefore, any modification to their size, shape, or coating tends to cause significant changes in their chemical/physical and biological characteristics. The dramatic increase in efforts to use NMs renders the risk assessment of their toxicity highly crucial due to the possible health perils of this relatively uncharted territory. The different sizes and shapes of the nanoparticles are known to have an impact on organisms and an important place in clinical applications. The shape of nanoparticles, namely, whether they are rods, wires, or spheres, is a particularly critical parameter to affect cell uptake and site-specific drug delivery, representing a significant factor in determining the potency and magnitude of the effect. This review, therefore, intends to offer a picture of research into the toxicity of different shapes (nanorods, nanowires, and nanospheres) of NMs to in vitro and in vivo models, presenting an in-depth analysis of health risks associated with exposure to such nanostructures and benefits achieved by using certain model organisms in genotoxicity testing. Nanotoxicity experiments use various models and tests, such as cell cultures, cores, shells, and coating materials. This review article also attempts to raise awareness about practical applications of NMs in different shapes in biology, to evaluate their potential genotoxicity, and to suggest approaches to explain underlying mechanisms of their toxicity and genotoxicity depending on nanoparticle shape.
Collapse
Affiliation(s)
- Eşref Demir
- Vocational School of Health Services, Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Antalya Bilim University, Dosemealti, Antalya, Turkey
| |
Collapse
|
28
|
Abstract
Copper oxide nanoparticles (CuO NPs) use has exponentially increased in various applications (such as industrial catalyst, gas sensors, electronic materials, biomedicines, environmental remediation) due to their flexible properties, i.e. large surface area to volume ratio. These broad applications, however, have increased human exposure and thus the potential risk related to their short- and long-term toxicity. Their release in environment has drawn considerable attention which has become an eminent area of research and development. To understand the toxicological impact of CuO NPs, this review summarises the in-vitro and in-vivo toxicity of CuO NPs subjected to species (bacterial, algae, fish, rats, human cell lines) used for toxicological hazard assessment. The key factors that influence the toxicity of CuO NPs such as particle shape, size, surface functionalisation, time-dose interaction and animal and cell models are elaborated. The literature evidences that the CuO NPs exposure to the living systems results in reactive oxygen species generation, oxidative stress, inflammation, cytotoxicity, genotoxicity and immunotoxicity. However, the physio-chemical characteristics of CuO NPs, concentration, mode of exposure, animal model and assessment characteristics are the main perspectives that define toxicology of CuO NPs.
Collapse
Affiliation(s)
- Sania Naz
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ayesha Gul
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
29
|
Shi JH, Axson JL, Bergin IL, Ault AP. Nanoparticle Digestion Simulator Reveals pH-Dependent Aggregation in the Gastrointestinal Tract. Anal Chem 2020; 92:12257-12264. [PMID: 32786449 DOI: 10.1021/acs.analchem.0c01844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Determining the physicochemical properties of ingested nanoparticles within the gastrointestinal tract (GIT) is critical for evaluating the impact of environmental exposure and potential for nanoparticle drug delivery. However, it is challenging to predict nanoparticle physicochemical properties at the point of intestinal absorption due to the changing chemical environments within the GIT. Herein, a dynamic nanoparticle digestion simulator (NDS) was constructed to examine nanoparticle evolution due to changing pH and salt concentrations in the stomach and upper intestine. This multicompartment, flow-through system simulates digestion by transferring gastrointestinal fluids and digestive secretions at physiologically relevant time scales and flow rates. Pronounced differences in aggregation and aggregate stability were observed with silver nanoparticles (citrate-coated) with an initial hydrodynamic diameter (Dh) of 24.6 ± 0.4 nm examined under fasted (pH 2) and fed (pH 5) gastric conditions using nanoparticle tracking analysis (NTA) for size distributions and transmission electron microscopy with energy dispersive X-ray spectroscopy (TEM-EDX) for morphology and elemental composition. Under fasted stomach conditions, particles aggregated to Dh = 130 ± 10 nm and remained as large aggregates in the upper intestinal compartments (duodenum and jejunum) ending with Dh = 110 ± 20 nm and a smaller mode at 59 ± 8 nm. In contrast, under fed conditions, nanoparticles aggregated to 60 ± 10 nm in the stomach, then disaggregated to individual nanoparticles (26 ± 2 nm) in the intestinal compartments. The NDS provides an analytical approach for studying nanoparticle physicochemical modifications within the GIT and the impacts of intentionally and unintentionally ingested nanoparticles.
Collapse
Affiliation(s)
- Jia H Shi
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jessica L Axson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ingrid L Bergin
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Andrew P Ault
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
30
|
Li Y, Yang Y, Qing Y, Li R, Tang X, Guo D, Qin Y. Enhancing ZnO-NP Antibacterial and Osteogenesis Properties in Orthopedic Applications: A Review. Int J Nanomedicine 2020; 15:6247-6262. [PMID: 32903812 PMCID: PMC7445529 DOI: 10.2147/ijn.s262876] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022] Open
Abstract
Prosthesis-associated infections and aseptic loosening are major causes of implant failure. There is an urgent need to improve the antibacterial ability and osseointegration of orthopedic implants. Zinc oxide nanoparticles (ZnO-NPs) are a common type of zinc-containing metal oxide nanoparticles that have been widely studied in many fields, such as food packaging, pollution treatment, and biomedicine. The ZnO-NPs have low toxicity and good biological functions, as well as antibacterial, anticancer, and osteogenic capabilities. Furthermore, ZnO-NPs can be easily obtained through various methods. Among them, green preparation methods can improve the bioactivity of ZnO-NPs and strengthen their potential application in the biological field. This review discusses the antibacterial abilities of ZnO-NPs, including mechanisms and influencing factors. The toxicity and shortcomings of anticancer applications are summarized. Furthermore, osteogenic mechanisms and synergy with other materials are introduced. Green preparation methods are also briefly reviewed.
Collapse
Affiliation(s)
- Yuehong Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yue Yang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yun’an Qing
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Ruiyan Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xiongfeng Tang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Deming Guo
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yanguo Qin
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
31
|
Mustafa F, Andreescu S. Nanotechnology-based approaches for food sensing and packaging applications. RSC Adv 2020; 10:19309-19336. [PMID: 35515480 PMCID: PMC9054203 DOI: 10.1039/d0ra01084g] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
The rapid advancement of nanotechnology has provided opportunities for the development of new sensing and food packaging solutions, addressing long-standing challenges in the food sector to extend shelf-life, reduce waste, assess safety and improve the quality of food. Nanomaterials can be used to reinforce mechanical strength, enhance gas barrier properties, increase water repellence, and provide antimicrobial and scavenging activity to food packaging. They can be incorporated in chemical and biological sensors enabling the design of rapid and sensitive devices to assess freshness, and detect allergens, toxins or pathogenic contaminants. This review summarizes recent studies on the use of nanomaterials in the development of: (1) (bio)sensing technologies for detection of nutritional and non-nutritional components, antioxidants, adulterants and toxicants, (2) methods to improve the barrier and mechanical properties of food packaging, and (3) active functional packaging. The environmental, health and safety implications of nanomaterials in the food sector, along with an overview of regulation and consumer perception is also provided.
Collapse
Affiliation(s)
- Fatima Mustafa
- Department of Chemistry and Biomolecular Science, Clarkson University Potsdam New York 13699-5810 USA
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University Potsdam New York 13699-5810 USA
| |
Collapse
|
32
|
Huang Q, Zhang J, Zhang Y, Timashev P, Ma X, Liang XJ. Adaptive changes induced by noble-metal nanostructures in vitro and in vivo. Theranostics 2020; 10:5649-5670. [PMID: 32483410 PMCID: PMC7254997 DOI: 10.7150/thno.42569] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/01/2020] [Indexed: 12/26/2022] Open
Abstract
The unique features of noble-metal nanostructures (NMNs) are leading to unprecedented expansion of research and exploration of their application in therapeutics, diagnostics and bioimaging fields. With the ever-growing applications of NMNs, both therapeutic and environmental NMNs are likely to be exposed to tissues and organs, requiring careful studies towards their biological effects in vitro and in vivo. Upon NMNs exposure, tissues and cells may undergo a series of adaptive changes both in morphology and function. At the cellular level, the accumulation of NMNs in various subcellular organelles including lysosomes, endoplasmic reticulum, Golgi apparatus, mitochondria, and nucleus may interfere with their functions, causing changes in a variety of cellular functions, such as digestion, protein synthesis and secretion, energy metabolism, mitochondrial respiration, and proliferation. In animals, retention of NMNs in metabolic-, respiratory-, immune-related, and other organs can trigger significant physiological and pathological changes to these organs and influence their functions. Exploring how NMNs interact with tissues and cells and the underlying mechanisms are of vital importance for their future applications. Here, we illustrate the characteristics of NMNs-induced adaptive changes both in vitro and in vivo. Potential strategies in the design of NMNs are also discussed to take advantage of beneficial adaptive changes and avoid unfavorable changes for the proper implementation of these nanoplatforms.
Collapse
Affiliation(s)
- Qianqian Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish Center for Education and Research, Sino-Danish College of University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Xiaowei Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish Center for Education and Research, Sino-Danish College of University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
33
|
Wang X, Fan H, Zhang F, Zhao S, Liu Y, Xu Y, Wu R, Li D, Yang Y, Liao L, Zhu H, Wang X. Antibacterial Properties of Bilayer Biomimetic Nano-ZnO for Dental Implants. ACS Biomater Sci Eng 2020; 6:1880-1886. [PMID: 33455342 DOI: 10.1021/acsbiomaterials.9b01695] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dental implant surgery has a relatively high incidence of peri-implantitis. In this research, ZnO nanorods and ZnO nanospheres were synthesized by a hydrothermal method. ZnO nanorods first covered the surface of Ti or Ti-Zr, and ZnO nanospheres were then modified as the outermost layer. By these means a dual antibacterial effect could be realized by the rapid release of ZnO nanospheres and the sustained release of ZnO nanorods. Subsequent studies implied that this ZnO nanorods-nanospheres hierarchical structure (NRS) could be stably loaded on the surface of roughened Ti and Ti-Zr slices. The modified materials not only showed excellent antibacterial activities against both Escherichia coli and Staphylococcus aureus but also showed low cellular cytotoxicity. This ZnO NRS structure is thus expected to be used as a general antimicrobial coating on the surface of Ti (Ti-Zr) in dental implant surgery.
Collapse
Affiliation(s)
- Xiaheng Wang
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330080, China
| | - Houyou Fan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Feng Zhang
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330080, China
| | - Siyu Zhao
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330080, China
| | - Yuxiao Liu
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330080, China
| | - Yingying Xu
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330080, China
| | - Runfa Wu
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330080, China
| | - Dongfang Li
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330080, China
| | - Yang Yang
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330080, China
| | - Lan Liao
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330080, China
| | - Hongshui Zhu
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330080, China
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, China
| |
Collapse
|
34
|
Nile SH, Baskar V, Selvaraj D, Nile A, Xiao J, Kai G. Nanotechnologies in Food Science: Applications, Recent Trends, and Future Perspectives. NANO-MICRO LETTERS 2020; 12:45. [PMID: 34138283 PMCID: PMC7770847 DOI: 10.1007/s40820-020-0383-9] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/31/2019] [Indexed: 02/05/2023]
Abstract
Nanotechnology is a key advanced technology enabling contribution, development, and sustainable impact on food, medicine, and agriculture sectors. Nanomaterials have potential to lead qualitative and quantitative production of healthier, safer, and high-quality functional foods which are perishable or semi-perishable in nature. Nanotechnologies are superior than conventional food processing technologies with increased shelf life of food products, preventing contamination, and production of enhanced food quality. This comprehensive review on nanotechnologies for functional food development describes the current trends and future perspectives of advanced nanomaterials in food sector considering processing, packaging, security, and storage. Applications of nanotechnologies enhance the food bioavailability, taste, texture, and consistency, achieved through modification of particle size, possible cluster formation, and surface charge of food nanomaterials. In addition, the nanodelivery-mediated nutraceuticals, synergistic action of nanomaterials in food protection, and the application of nanosensors in smart food packaging for monitoring the quality of the stored foods and the common methods employed for assessing the impact of nanomaterials in biological systems are also discussed.
Collapse
Affiliation(s)
- Shivraj Hariram Nile
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Venkidasamy Baskar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Dhivya Selvaraj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Arti Nile
- Department of Bioresources and Food Science, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Macau, Macau SAR, People's Republic of China
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
35
|
Yang L, Ji W, Huang JN, Xu G. An updated review on the influential parameters on thermal conductivity of nano-fluids. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111780] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Singh N, Das MK, Gautam R, Ramteke A, Rajamani P. Assessment of intermittent exposure of zinc oxide nanoparticle (ZNP)-mediated toxicity and biochemical alterations in the splenocytes of male Wistar rat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:33642-33653. [PMID: 31588521 DOI: 10.1007/s11356-019-06225-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Nanoparticles are being used extensively and found in applications to various fields ranging from agriculture to electronic devices, diagnosis to drug delivery, and cosmetics to food packaging. Increasing usage of engineered nanomaterials (ENM) raises potential concern for human health as well as to the environment. The present study aims to explore the effects of intermittent intraperitoneal exposure of ZNP on the spleen of male Wistar rat. Animals were divided into three groups, control and ZNP-treated groups (50 mg/kg and 250 mg/kg body weight), six in each group. Experimental animals were treated with different doses of ZNP once a week for 4 weeks, whereas control groups received water. After 28 days of exposure, animals were sacrificed, spleen tissue was excised, and various parameters such as hematological, genotoxicity, antioxidants, and histopathological were studied for changes in spleen if any. Results showed that ZNP exposure manages to induce alteration in various studied hematological parameters like neutrophils, platelets, and eosinophils which are found to increase significantly after the last treatment compared with the first treatment of ZNP. However, hemoglobin content, PCV, and MCV decrease with increasing dose of ZNP significantly in last treatment, when compared with the first treatment. DNA damage was observed in rats treated with a high dose of ZNPs compared with that in the control when analyzed through comet assay. Flow cytometric study was performed for better understanding of the underlying mechanism of the ZNP-mediated toxicity. From the present investigation, an increase in ROS production, a decrease in MMP, and increased apoptosis were exhibited. Further, altered antioxidant level (SOD, CAT, LDH, CYT P450, and CYT b5 r) has been observed in the studied splenic tissue, also histopathological changes observed in the rats exposed with high doses of ZNP. Therefore, ZNP may have the potential to induce a toxic effect even when exposed intermittently.
Collapse
Affiliation(s)
- Neelu Singh
- School of Environmental Sciences, JNU, New Delhi, India
| | - Monoj Kumar Das
- Cancer Genetics and Chemoprevention Research Group, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Rohit Gautam
- School of Environmental Sciences, JNU, New Delhi, India
| | - Anand Ramteke
- Cancer Genetics and Chemoprevention Research Group, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | | |
Collapse
|
37
|
Afzal MJ, Pervaiz E, Farrukh S, Ahmed T, Bingxue Z, Yang M. Highly integrated nanocomposites of RGO/TiO 2 nanotubes for enhanced removal of microbes from water. ENVIRONMENTAL TECHNOLOGY 2019; 40:2567-2576. [PMID: 29493396 DOI: 10.1080/09593330.2018.1447021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Abstract
Highly integrated nanocomposite of Graphene oxide (GO) and its derivatives with metal oxides is essential for enhanced performance for various applications. Tuning the morphology is an important aspect during nanomaterials synthesis; this has an amplifying influence upon physicochemical properties of advanced functional materials. In this research work, GO/TiO2 nanotube composites have been successfully synthesized via alkaline hydrothermal treatment method by augmenting GO layers with two different phases of TiO2 (anatase and rutile) nanoparticles, followed by the hydrothermal treatment that also have caused reduction of GO to reduced GO (RGO). The morphology of the as-prepared samples appeared to be nanotubes with a large aspect ratio (length to diameter). The synthesized materials have been characterized using various techniques to determine their morphological and functional properties. Large surface area (158 m2/g) nanotube composites found accountable as effective disinfectant for water containing microorganisms. The antimicrobial activity of the synthesized composites was examined by disk diffusion method and optical density for bacterial growth using two different bacterial species; Escherichia Coli (E.coli, Gram-negative) and Staphylococcus Aureus (Methicillin-resistant Staphylococcus aureus, Gram-positive). The antibacterial study revealed that, the anatase phase RGO/TiO2 nanotube composites manifested appreciable effect on both bacteria as compared to rutile phase RGO/TiO2 nanotubecomposite.
Collapse
Affiliation(s)
- Muhammad Junaid Afzal
- a Department of Chemical Engineering, School of Chemical & Materials Engineering (SCME), National University of Sciences & Technology (NUST) , Islamabad , Pakistan
| | - Erum Pervaiz
- a Department of Chemical Engineering, School of Chemical & Materials Engineering (SCME), National University of Sciences & Technology (NUST) , Islamabad , Pakistan
| | - Sarah Farrukh
- a Department of Chemical Engineering, School of Chemical & Materials Engineering (SCME), National University of Sciences & Technology (NUST) , Islamabad , Pakistan
| | - Tahir Ahmed
- b Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST) , Islamabad , Pakistan
| | - Zhang Bingxue
- c Ningbo Institute of Materials Technology & Engineering (NIMTE), Chinese Academy of Sciences (CAS) , Ningbo , People's Republic of China
| | - Minghui Yang
- c Ningbo Institute of Materials Technology & Engineering (NIMTE), Chinese Academy of Sciences (CAS) , Ningbo , People's Republic of China
| |
Collapse
|
38
|
Graphene Composites for Lead Ions Removal from Aqueous Solutions. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9142925] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The indiscriminate disposal of non-biodegradable, heavy metal ionic pollutants from various sources, such as refineries, pulp industries, lead batteries, dyes, and other industrial effluents, into the aquatic environment is highly dangerous to the human health as well as to the environment. Among other heavy metals, lead (Pb(II)) ions are some of the most toxic pollutants generated from both anthropogenic and natural sources in very large amounts. Adsorption is the simplest, efficient and economic water decontamination technology. Hence, nanoadsorbents are a major focus of current research for the effective and selective removal of Pb(II) metal ions from aqueous solution. Nanoadsorbents based on graphene and its derivatives play a major role in the effective removal of toxic Pb(II) metal ions. This paper summarizes the applicability of graphene and functionalized graphene-based composite materials as Pb(II) ions adsorbent from aqueous solutions. In addition, the synthetic routes, adsorption process, conditions, as well as kinetic studies have been reviewed.
Collapse
|
39
|
Gu Q, Cuevas E, Ali SF, Paule MG, Krauthamer V, Jones Y, Zhang Y. An Alternative In Vitro Method for Examining Nanoparticle-Induced Cytotoxicity. Int J Toxicol 2019; 38:385-394. [PMID: 31234669 DOI: 10.1177/1091581819859267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Conventional in vitro assays are often used as initial screens to identify potential toxic effects of nanoparticles (NPs). However, many NPs have shown interference with conventional in vitro assays, resulting in either false-positive or -negative outcomes. Here, we report an alternative method for the in vitro assessment of NP-induced cytotoxicity utilizing Fluoro-Jade C (FJ-C). To provide proof of concept and initial validation data, Ag-NPs and Au-NPs were tested in 3 different cell cultures including rat brain microvessel endothelial cells, mouse neural stem cells, and the human SH-SY5Y cell line. Conventional 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) and lactate dehydrogenase (LDH) assays were run in parallel with the new method and served as references. The results demonstrate for the first time that FJ-C labeling can be a useful tool for assessing NP-induced cytotoxicity in vitro. Using these approaches, it was also demonstrated that removal of Ag-NPs-while keeping the Ag-ions that were released from the Ag-NPs in culture media-abolished the measured cytotoxicity, indicating that Ag-NPs rather than Ag-ions in solution contributed to the observed cytotoxic effects. Further, co-treatment of Ag-NPs with N-acetyl cysteine (NAC) prevented the observed cytotoxicity, suggesting a protective role of NAC in Ag-NP-induced cytotoxicity. Thus, this alternative in vitro assay is well suited for identify potential cytotoxicity associated with exposure to NPs.
Collapse
Affiliation(s)
- Qiang Gu
- Division of Neurotoxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR, USA
| | - Elvis Cuevas
- Division of Neurotoxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR, USA
| | - Syed F Ali
- Division of Neurotoxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR, USA
| | - Merle G Paule
- Division of Neurotoxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR, USA
| | - Victor Krauthamer
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, FDA, Jefferson, AR, USA
| | - Yvonne Jones
- Nanotechnology Core Facility, Office of Scientific Coordination, NCTR, FDA, Jefferson, AR, USA
| | - Yongbin Zhang
- Nanotechnology Core Facility, Office of Scientific Coordination, NCTR, FDA, Jefferson, AR, USA
| |
Collapse
|
40
|
Antimicrobial performance of polyethylene nanocomposite monofilaments reinforced with metal nanoparticles decorated montmorillonite. Colloids Surf B Biointerfaces 2019; 178:87-93. [DOI: 10.1016/j.colsurfb.2019.02.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 02/05/2019] [Accepted: 02/21/2019] [Indexed: 01/17/2023]
|
41
|
Interaction between Persistent Organic Pollutants and ZnO NPs in Synthetic and Natural Waters. NANOMATERIALS 2019; 9:nano9030472. [PMID: 30901850 PMCID: PMC6474098 DOI: 10.3390/nano9030472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 12/23/2022]
Abstract
The use of zinc oxide nanoparticles (ZnO NPs) and polybrominated diphenyl ethers (PBDPEs) in different products and applications leads to the likelihood of their co-occurrence in the aquatic system, making it important to study the effect of PBDPEs on the fate and transport of ZnO NPs. In this study, we determine the influence of PBDPEs (BDPE-47 and BDPE-209) on the colloidal stability and physicochemical properties of ZnO NPs in different aqueous matrices. The results indicated the shift in ζ potential of ZnO NP from positive to negative in the presence of both PBDPEs in all tested waters; however, the effect on the NPs surface potential was specific to each water considered. The lower concentration of the PBDPEs (e.g., 0.5 mg/L) significantly reduced the ζ potential and hydrodynamic diameter (HDD) of ZnO NP, even in the presence of high content of dissolved organic matter (DOM) in both freshwater and industrial wastewater. Moreover, both BDPE-47 and BDPE-209 impede the agglomeration of ZnO NP in simple and natural media, even in the presence of monovalent and polyvalent cations. However, the effect of BDPE-47 on the ζ potential, HDD, and agglomeration of ZnO NP was more pronounced than that of BDPE-209 in all tested waters. The results of Fourier transform infrared (FT-IR) and X-ray Photon Spectroscopy (XPS) further confirm the adsorption of PBDPEs onto ZnO NP surface via aromatic ether groups and Br elements. The findings of this study will facilitate a better understanding of the interaction behavior between the ZnO NPs and PBDPEs, which can reduce the exposure risk of aquatic organisms to both pollutants.
Collapse
|
42
|
Fahmy HM, Mosleh AM, Elghany AA, Shams-Eldin E, Abu Serea ES, Ali SA, Shalan AE. Coated silver nanoparticles: synthesis, cytotoxicity, and optical properties. RSC Adv 2019; 9:20118-20136. [PMID: 35514687 PMCID: PMC9065456 DOI: 10.1039/c9ra02907a] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/08/2019] [Indexed: 11/21/2022] Open
Abstract
Coated silver nanoparticles (AgNPs) have recently become a topic of interest due to the fact that they have several applications such as in electronic, antimicrobial, industrial, optical, and medical fields as biosensors and drug delivery systems. However, the use of AgNPs in medical fields remains somewhat limited due to their probable cytotoxic effect. Researchers have succeeded in reducing the toxicity of silver particles by coating them with different substances. Generally, the coating of AgNPs leads to change in their properties depending on the type of the coating material as well as the layer thickness. This review covers the state-of-the-art technologies behind (a) the synthesis of coated AgNPs including coating methods and coating materials, (b) the cytotoxicity of coated AgNPs and (c) the optical properties of coated AgNPs. Coated silver nanoparticles (AgNPs) have recently become a topic of interest due to the fact that they have several applications such as in electronic, antimicrobial, industrial, optical, and medical fields as biosensors and drug delivery systems.![]()
Collapse
Affiliation(s)
| | | | - Aya Abd Elghany
- Biochemistry Department
- Faculty of Science
- Cairo University
- Egypt
| | - Engy Shams-Eldin
- Food Technology Research Institute
- Agriculture Research Center
- Giza
- Egypt
| | | | | | | |
Collapse
|
43
|
Sood R, Chopra DS. Metal-plant frameworks in nanotechnology: An overview. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:148-156. [PMID: 30466973 DOI: 10.1016/j.phymed.2017.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/20/2017] [Accepted: 08/29/2017] [Indexed: 06/09/2023]
Abstract
BACKGROUND Since ancient times, potential of plants in research and medicine have found pronounced applications, due to better therapeutic value. To meet the mounting demands for commercial nanoparticles, novel eco-friendly methods of synthesis has led to a remarkable progress via unfolding a green synthesis protocol towards metallic nanoparticles synthesis. HYPOTHESIS/PURPOSE This review highlights the biological synthesis of various metallic nanoparticles as safe, cost effective process, where the phytochemicals present in extract such as flavonoid, phenols, terpenoids act as capping, reducing and stabilizing agents. Moreover, due to their nano size, the nanoparticles directly bind to bacterial strains leading to higher antimicrobial activity. CONCLUSION Nano-sized dosage systems have a potential for enhancing the activity and overcoming problems associated with phyto medicines. Hence, synthesis of metallic nanoparticles using various plant extracts, emerge as safe alternative to conventional methods for biomedical applications.
Collapse
Affiliation(s)
- Richa Sood
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India.
| | - Dimple Sethi Chopra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India.
| |
Collapse
|
44
|
Enhanced aqueous stability of silver oxynitrate through surface modification with alkanethiols. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.08.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Ansar S, Abudawood M, Alaraj ASA, Hamed SS. Hesperidin alleviates zinc oxide nanoparticle induced hepatotoxicity and oxidative stress. BMC Pharmacol Toxicol 2018; 19:65. [PMID: 30340509 PMCID: PMC6195725 DOI: 10.1186/s40360-018-0256-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/03/2018] [Indexed: 01/23/2023] Open
Abstract
Background Nanoparticles are widely utilized in many products such as cosmetics and sunscreens. The present study was undertaken to evaluate the effect of hesperidin (HSP) on nano zinc oxide particles (nZnO) induced oxidative stress in rat livers. Methods Rats were randomly divided into 4 groups of 6 rats each and exposed to single administration of nZnO intraperitoneally (600 mg/kg bwt) and HSP (100 mg/kg bwt) by gavage. Group I served as the control; group II was given nZnO only; groups III received HSP only and group IV received nZnO 1 h after pretreatment with HSP for 7 days. Results Compared to the controls, nZnO administration enhanced alanine aminotransferase (AST) and aspartate aminotransferase (ALT) levels (p < 0.05) with reduction in the levels of glutathione (GSH), catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD) and increase in levels of malondialdehyde (MDA) while HSP attenuated nZnO-induced hepatotoxicity for above mentioned parameters. Conclusions The induced toxicity in the liver was corrected by pretreatment with HSP. The findings of this study suggest that HSP pretreatment can potentially be used to prevent nZnO-induced biochemical alterations toxicity. Further, protection by HSP on biochemical results was confirmed by histopathological changes. The present study suggests that HSP can protect against nZnO-induced oxidative damage in the rat livers.
Collapse
Affiliation(s)
- Sabah Ansar
- Clinical Laboratory Sciences, Applied Medical Science, King Saud University, Riyadh, Saudi Arabia.
| | - Manal Abudawood
- Clinical Laboratory Sciences, Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Amal S A Alaraj
- Clinical Laboratory Sciences, Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Sherifa S Hamed
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.,Zoology Department, Faculty of Science, University of Alexandria, Moharram Bey, Alexandria, 21511, Egypt
| |
Collapse
|
46
|
Binelli A, Magni S, La Porta C, Bini L, Della Torre C, Ascagni M, Maggioni D, Ghilardi A, Armini A, Landi C, Santo N, Madaschi L, Coccè V, Mutti F, Lionetti MC, Ciusani E, Del Giacco L. Cellular pathways affected by carbon nanopowder-benzo(α)pyrene complex in human skin fibroblasts identified by proteomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 160:144-153. [PMID: 29803189 DOI: 10.1016/j.ecoenv.2018.05.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
One of the crucial and unsolved problems of the airborne carbon nanoparticles is the role played by the adsorbed environmental pollutants on their toxicological effect. Indeed, in the urban areas, the carbon nanoparticles usually adsorb some atmospheric contaminants, whose one of the leading representatives is the benzo(α)pyrene. Herein, we used the proteomics to investigate the alteration of toxicological pathways due to the carbon nanopowder-benzo(α)pyrene complex in comparison with the two contaminants administered alone on human skin-derived fibroblasts (hSDFs) exposed for 8 days in semi-static conditions. The preliminary confocal microscopy observations highlighted that carbon-nanopowder was able to pass through the cell membranes and accumulate into the cytoplasm both when administered alone and with the adsorbed benzo(α)pyrene. Proteomics revealed that the effect of carbon nanopowder-benzo(α)pyrene complex seems to be related to a new toxicological behavior instead of simple additive or synergistic effects. In detail, the cellular pathways modulated by the complex were mainly related to energy shift (glycolysis and pentose phosphate pathway), apoptosis, stress response and cellular trafficking.
Collapse
Affiliation(s)
- A Binelli
- Department of Biosciences, University of Milan, Italy.
| | - S Magni
- Department of Biosciences, University of Milan, Italy.
| | - C La Porta
- Department of Environmental Science and Policy, University of Milan, Italy; Center for Complexity & Biosystem, University of Milan, Italy
| | - L Bini
- Department of Life Science, University of Siena, Italy
| | - C Della Torre
- Department of Biosciences, University of Milan, Italy
| | - M Ascagni
- Department of Biosciences, University of Milan, Italy; UNITECH-NOLIMITS Platform, University of Milan, Italy
| | - D Maggioni
- Department of Chemistry, University of Milan, Italy
| | - A Ghilardi
- Department of Biosciences, University of Milan, Italy
| | - A Armini
- Department of Life Science, University of Siena, Italy
| | - C Landi
- Department of Life Science, University of Siena, Italy
| | - N Santo
- Department of Biosciences, University of Milan, Italy; UNITECH-NOLIMITS Platform, University of Milan, Italy
| | - L Madaschi
- Department of Biosciences, University of Milan, Italy; UNITECH-NOLIMITS Platform, University of Milan, Italy
| | - V Coccè
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy
| | - F Mutti
- Department of Environmental Science and Policy, University of Milan, Italy; Center for Complexity & Biosystem, University of Milan, Italy
| | - M C Lionetti
- Department of Environmental Science and Policy, University of Milan, Italy; Center for Complexity & Biosystem, University of Milan, Italy
| | - E Ciusani
- Department of Diagnostics and Applied Technology, Istituto Neurologico Carlo Besta, Milan, Italy
| | - L Del Giacco
- Department of Biosciences, University of Milan, Italy
| |
Collapse
|
47
|
Review of potential health risks associated with nanoscopic calcium phosphate. Acta Biomater 2018; 77:1-14. [PMID: 30031162 DOI: 10.1016/j.actbio.2018.07.036] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/15/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023]
Abstract
Calcium phosphate is applied in many products in biomedicine, but also in toothpastes and cosmetics. In some cases, it is present in nanoparticulate form, either on purpose or after degradation or mechanical abrasion. Possible concerns are related to the biological effect of such nanoparticles. A thorough literature review shows that calcium phosphate nanoparticles as such have no inherent toxicity but can lead to an increase of the intracellular calcium concentration after endosomal uptake and lysosomal degradation. However, cells are able to clear the calcium from the cytoplasm within a few hours, unless very high doses of calcium phosphate are applied. The observed cytotoxicity in some cell culture studies, mainly for unfunctionalized particles, is probably due to particle agglomeration and subsequent sedimentation onto the cell layer, leading to a very high local particle concentration, a high particle uptake, and subsequent cell death. There is no risk from an oral uptake of calcium phosphate nanoparticles due to their rapid dissolution in the stomach. The risk from dermal or mucosal uptake is very low. Calcium phosphate nanoparticles can enter the bloodstream by inhalation, but no adverse effects have been observed, except for a prolonged exposition to high particle doses. Calcium phosphate nanoparticles inside the body (e.g. after implantation or due to abrasion) do not pose a risk as they are typically resorbed and dissolved by osteoclasts and macrophages. There is no indication for a significant influence of the calcium phosphate phase or the particle shape (e.g. spherical or rod-like) on the biological response. In summary, the risk associated with an exposition to nanoparticulate calcium phosphate in doses that are usually applied in biomedicine, health care products, and cosmetics is very low and most likely not present at all. STATEMENT OF SIGNIFICANCE Calcium phosphate is a well-established biomaterial. However, there are occasions when it occurs in a nanoparticulate form (e.g. as nanoparticle or as nanoparticulate bone substitution material) or after abrasion from a calcium phosphate-coated metal implant. In the light of the current discussion on the safety of nanoparticles, there have been concerns about potential adverse effects of nano-calcium phosphate, e.g. in a statement of a EU study group from 2016 about possible dangers associated with non-spherical nano-hydroxyapatite in cosmetics. In the US, there was a discussion in 2016 about the dangers of nano-calcium phosphate in babyfood. In this review, the potential exposition routes for nano-calcium phosphate are reviewed, with special emphasis on its application as biomaterial.
Collapse
|
48
|
Loza K, Epple M. Silver nanoparticles in complex media: an easy procedure to discriminate between metallic silver nanoparticles, reprecipitated silver chloride, and dissolved silver species. RSC Adv 2018; 8:24386-24391. [PMID: 35539215 PMCID: PMC9082037 DOI: 10.1039/c8ra04500c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/01/2018] [Indexed: 02/05/2023] Open
Abstract
Silver nanoparticles undergo oxidative dissolution in water upon storage. This occurs in pure water as well as in more complex media, including natural environments, biological tissues, and cell culture media. However, the dissolution leads to the reprecipitation of silver chloride as chloride is present in almost all relevant environments. The discrimination between dissolved silver species (ions and silver complexes) and dispersed (solid) species does not take this into account because all solid species (metallic silver and silver chloride) are isolated together. By applying a chemical separation procedure, we show that it is possible to quantify silver, silver chloride, and dissolved silver species after immersion into a typical cell culture medium (DMEM + 10% FCS). During the dissolution of metallic silver nanoparticles, about half of the dissolved silver is reprecipitated as solid silver chloride, i.e. the mere analysis of the soluble silver species does not reflect the true situation. The separation protocol is suitable for all chloride-containing media in the presence or in the absence of biomolecules.
Collapse
Affiliation(s)
- Kateryna Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen Universitaetsstr. 5-7 45117 Essen Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen Universitaetsstr. 5-7 45117 Essen Germany
| |
Collapse
|
49
|
A new multifunctionalized material against multi-drug resistant bacteria and abnormal osteoclast activity. Eur J Pharm Biopharm 2018; 127:120-129. [DOI: 10.1016/j.ejpb.2018.02.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/02/2018] [Accepted: 02/14/2018] [Indexed: 11/19/2022]
|
50
|
Liu KK, Li XM, Cheng SB, Zhou R, Liang YC, Dong L, Shan CX, Zeng HB, Shen DZ. Carbon-ZnO alternating quantum dot chains: electrostatic adsorption assembly and white light-emitting device application. NANOSCALE 2018; 10:7155-7162. [PMID: 29620110 DOI: 10.1039/c8nr01209a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Aggregation-induced quenching (ACQ) in carbon nanodots (CNDs) impede their applications in solid devices. Herein, the concept of alternating quantum dot (QD) chains was proposed to overcome the common issue of fluorescence quenching in CNDs; in this study, CNDs and ZnO QDs were interlinked to form carbon-ZnO alternating quantum dot chains (CZA-QDCs), which overcame the ACQ of CNDs and hence ensured efficient full-spectrum fluorescence for white light-emitting devices (WLEDs) without excessive blue emission. Under the excitation of 365 nm lines, white emission resulting from the combination of blue emission from the CNDs and yellow emission from the ZnO QDs has been achieved from these powders. The quantum efficiency of the CZA-QDC powders can reach 49% and remain stable for two months. By coating the powders onto an ultraviolet chip as phosphors, WLEDs with a luminous efficiency of 20.1 lm W-1, color coordinate of (0.30, 0.35), correlated color temperature of 5205 K, and a color rendering index of 84 have been fabricated. Due to the relatively high abundance and eco-friendly characteristics of both carbon and ZnO, the results reported herein may provide a promising alternative to fluorescent phosphors that are widely used in WLEDs.
Collapse
Affiliation(s)
- Kai-Kai Liu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.
| | | | | | | | | | | | | | | | | |
Collapse
|