1
|
Khan NM, Scott V, Ghasemzadeh-Hasankolaei M, Padmanabhan V, Vyas A, Evans NP, Bellingham M. Sexually dimorphic cardiovascular impacts of prenatal exposure to a real-life environmental chemical mixture in adult offspring. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 115:104669. [PMID: 40049306 DOI: 10.1016/j.etap.2025.104669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 04/07/2025]
Abstract
Cardiovascular disease (CVD) is a leading cause of death that is sexually dimorphic. This study used an ovine model to investigate whether maternal exposure to an environmental chemical (EC) mixture (biosolids) prior to and throughout pregnancy, affected offspring cardiovascular (CV) structure and function in adulthood. CV function of male and female offspring from ewes grazed on either conventionally fertilised (control, C) or biosolids-treated pasture (B) was assessed. Males exhibited higher blood pressure compared to females with no significant effect of EC exposure. Heart rate variability in females suggested reduced autonomic regulation in the B group. EC-exposed males, but not females, showed significantly increased left ventricular dimensions, end-diastolic and systolic volumes, and cardiac output. The findings indicate sexually dimorphic effects of maternal EC mixture exposure on adult CV structure and function. Further studies are needed to explore the mechanisms and long-term implications of prenatal exposure to ECs on CV health.
Collapse
Affiliation(s)
- Noor Muhammad Khan
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Victoria Scott
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | | | | | - Arpita Vyas
- Department of Pediatrics, Division of Endocrinology, Washington University School of Medicine, St Louis, USA
| | - Neil P Evans
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Michelle Bellingham
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| |
Collapse
|
2
|
Halloran KM, Zhou Y, Bellingham M, Lea RG, Evans NP, Sinclair KD, Smith P, Padmanabhan V. Developmental programming: preconceptional and gestational exposure of sheep to biosolids on offspring ovarian dynamics†. Biol Reprod 2025; 112:331-345. [PMID: 39561106 PMCID: PMC11833488 DOI: 10.1093/biolre/ioae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/16/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
Developmental exposure to environmental chemicals perturbs establishment and maintenance of the ovarian reserve across the reproductive lifetime, leading to premature follicle depletion and ovarian aging. Considering humans are exposed to a complex mixture of environmental chemicals, real-life models assessing their cumulative impact on the ovarian reserve are needed. Biosolids are a source of a real-life mixture of environmental chemicals. While earlier studies demonstrated that grazing pregnant sheep on biosolids-treated pastures did not influence establishment of the ovarian reserve in fetal life, its impact on subsequent depletion of ovarian reserve during reproductive life of offspring is unknown. We hypothesized that developmental exposure to biosolids accelerates depletion of ovarian reserve. Ovaries were collected from F1 juveniles (9.5 weeks) and adults (2.5 years) born to F0 ewes grazed on control inorganic fertilizer pastures or biosolids-treated pastures from before conception and throughout gestation. The impact on follicular density, activation rate, and anti-Müllerian hormone (mediator of activation) expression by immunohistochemistry was determined. Activation rate was increased in F1 biosolids-treated pastures juveniles with a corresponding reduction in primordial follicle density. In contrast, activation rate and ovarian reserve were similar between control and F1 biosolids-treated pastures adults. The density of anti-Müllerian hormone-positive antral follicles was lower in biosolids-treated pastures juveniles, whereas anti-Müllerian hormone expression tended to be higher in antral follicles of biosolids-treated pastures adults, consistent with the changes in the ovarian reserve. These findings of detrimental effects of developmental exposure to biosolids during juvenile life that normalizes in adults is supportive of a shift in activation rate likely related to peripubertal hormonal changes.
Collapse
Affiliation(s)
| | - Yiran Zhou
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Michelle Bellingham
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Richard G Lea
- Schools of Biomedicines and Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Neil P Evans
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Kevin D Sinclair
- Schools of Biomedicines and Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Peter Smith
- Agricultural Systems and Reproduction, Animal Science, Invermay Agricultural Centre, AgResearch Ltd, Puddle Alley, Mosgiel, New Zealand
| | | |
Collapse
|
3
|
Rannaud-Bartaire P, Demeneix BA, Fini JB. Pressures of the urban environment on the endocrine system: Adverse effects and adaptation. Mol Cell Endocrinol 2024; 583:112125. [PMID: 38147952 DOI: 10.1016/j.mce.2023.112125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
With an increasing collective awareness of the rapid environmental changes, questions and theories regarding the adaptability of organisms are emerging. Global warming as well as chemical and non-chemical pollution have been identified as triggers of these adaptative changes, but can we link different kinds of stressors to certain phenotypic traits? The physiological adaptation, and particularly endocrine system adaptation, of living beings to urban environments is a fascinating way of studying urban endocrinology, which has emerged as a research field in 2007. In this paper, we stress how endocrine disruption in humans and environment can be studied in the urban environment by measuring the levels of pollution, endocrine activities or adversity. We broaden the focus to include not only exposure to the chemicals that have invaded our private spheres and their effects on wild and domestic species but also non-chemical effectors such as light, noise and climate change. We argue that taking into account the various urban stress factors and their effects on the endocrine system would enable the adoption of new approaches to protect living organisms.
Collapse
Affiliation(s)
- Patricia Rannaud-Bartaire
- PhyMa Unit, CNRS UMR 7221, Muséum National d'Histoire Naturelle, F-75005, Paris, France; Université Catholique de Lille, l'hôpital Saint-Vincent-De-Paul, Boulevard de Belfort, 59000, Lille, France
| | - Barbara A Demeneix
- PhyMa Unit, CNRS UMR 7221, Muséum National d'Histoire Naturelle, F-75005, Paris, France
| | - Jean-Baptiste Fini
- PhyMa Unit, CNRS UMR 7221, Muséum National d'Histoire Naturelle, F-75005, Paris, France.
| |
Collapse
|
4
|
Robles-Matos N, Radaelli E, Simmons RA, Bartolomei MS. Preconception and developmental DEHP exposure alter liver metabolism in a sex-dependent manner in adult mouse offspring. Toxicology 2023; 499:153640. [PMID: 37806616 PMCID: PMC10842112 DOI: 10.1016/j.tox.2023.153640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Environmental exposure to endocrine disrupting chemicals (EDCs) during critical periods of development is associated with an increased risk of metabolic diseases, including hepatic steatosis and obesity. Di-2-ethylhexyl-phthalate (DEHP) is an EDC strongly associated with these metabolic abnormalities. DEHP developmental windows of susceptibility are unknown yet have important public health implications. The purpose of this study was to identify these windows of susceptibility and determine whether developmental DEHP exposure alters hepatic metabolism later in life. Dams were exposed to control or feed containing human exposure relevant doses of DEHP (50 μg/kg BW/d) and high dose DEHP (10 mg/kg BW/d) from preconception until weaning or only exposed to DEHP during preconception. Post-weaning, all offspring were fed a control diet throughout adulthood. Using the Metabolon Untargeted Metabolomics platform, we identified 148 significant metabolites in female adult livers that were altered by preconception-gestation-lactation DEHP exposure. We found a significant increase in the levels of acylcarnitines, diacylglycerols, sphingolipids, glutathione, purines, and pyrimidines in DEHP-exposed female livers compared to controls. These changes in fatty acid oxidation and oxidative stress-related metabolites were correlated with hepatic changes including microvesicular steatosis, hepatocyte swelling, inflammation. In contrast to females, we observed fewer metabolic alterations in male offspring, which were uniquely found in preconception-only low dose DEHP exposure group. Although we found that preconception-gestational-lactation exposure causes the most liver pathology, we surprisingly found preconception exposure linked to an abnormal liver metabolome. We also found that two doses exhibited non-monotonic DEHP-induced changes in the liver. Collectively, these findings suggest that metabolic changes in the adult liver of offspring exposed periconceptionally to DHEP depends on the timing of exposure, dose, and sex.
Collapse
Affiliation(s)
- Nicole Robles-Matos
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Enrico Radaelli
- Comparative Pathology Core, Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rebecca A Simmons
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Evans NP, Bellingham M, Elcombe CS, Ghasemzadeh-Hasankolaei M, Lea RG, Sinclair KD, Padmanabhan V. Sexually dimorphic impact of preconceptional and gestational exposure to a real-life environmental chemical mixture (biosolids) on offspring growth dynamics and puberty in sheep. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104257. [PMID: 37659607 DOI: 10.1016/j.etap.2023.104257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
Humans are ubiquitously exposed to complex mixtures of environmental chemicals (ECs). This study characterised changes in post-natal and peripubertal growth, and the activation of the reproductive axis, in male and female offspring of sheep exposed to a translationally relevant EC mixture (in biosolids), during pregnancy. Birthweight in both sexes was unaffected by gestational biosolids exposure. In contrast to females (unaffected), bodyweight in biosolids males was significantly lower than controls across the peripubertal period, however, they exhibited catch-up growth eventually surpassing controls. Despite weighing less, testosterone concentrations were elevated earlier, indicative of early puberty in the biosolids males. This contrasted with females in which the mean date of puberty (first progesterone cycle) was delayed. These results demonstrate that developmental EC-mixture exposure has sexually dimorphic effects on growth, puberty and the relationship between body size and puberty. Such programmed metabolic/reproductive effects could have significant impacts on human health and wellbeing.
Collapse
Affiliation(s)
- Neil P Evans
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Michelle Bellingham
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Christopher S Elcombe
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Mohammad Ghasemzadeh-Hasankolaei
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Richard G Lea
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Kevin D Sinclair
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | |
Collapse
|
6
|
Elcombe CS, Monteiro A, Ghasemzadeh-Hasankolaei M, Padmanabhan V, Lea R, Sinclair KD, Evans NP, Bellingham M. Developmental exposure to a real-life environmental chemical mixture alters testicular transcription factor expression in neonatal and pre-pubertal rams, with morphological changes persisting into adulthood. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104152. [PMID: 37209889 PMCID: PMC10457458 DOI: 10.1016/j.etap.2023.104152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Environmental chemical (EC) exposure may be impacting male reproductive health. The translationally relevant biosolids treated pasture (BTP) sheep model was used to investigate gestational low-level EC mixture exposure on the testes of F1 male offspring. Adult rams from ewes exposed to BTP 1 month before and throughout pregnancy had more seminiferous tubules with degeneration and depletion of elongating spermatids, indicating possible "recovery" from previously reported testicular dysgenesis syndrome-like phenotype in neonatal and pre-pubertal BTP lambs. Expression of transcription factors CREB1 (neonatal) and BCL11A and FOXP2 (pre-pubertal) were significantly higher in the BTP exposed testes, with no changes seen in adults. Increased CREB1, which is crucial for testes development and regulation of steroidogenic enzymes, could be an adaptive response to gestational EC exposure to facilitate the phenotypic recovery. Overall, this demonstrates that testicular effects from gestational exposure to low-level mixtures of ECs can last into adulthood, potentially impacting fertility and fecundity.
Collapse
Affiliation(s)
- Chris S Elcombe
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Ana Monteiro
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Mohammad Ghasemzadeh-Hasankolaei
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | | | - Richard Lea
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Kevin D Sinclair
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Neil P Evans
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Michelle Bellingham
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| |
Collapse
|
7
|
Thangaraj SV, Kachman M, Halloran KM, Sinclair KD, Lea R, Bellingham M, Evans NP, Padmanabhan V. Developmental programming: Preconceptional and gestational exposure of sheep to a real-life environmental chemical mixture alters maternal metabolome in a fetal sex-specific manner. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161054. [PMID: 36565874 PMCID: PMC10322214 DOI: 10.1016/j.scitotenv.2022.161054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 05/21/2023]
Abstract
BACKGROUND Everyday, humans are exposed to a mixture of environmental chemicals some of which have endocrine and/or metabolism disrupting actions which may contribute to non-communicable diseases. The adverse health impacts of real-world chemical exposure, characterized by chronic low doses of a mixture of chemicals, are only recently emerging. Biosolids derived from human waste represent the environmental chemical mixtures humans are exposed to in real life. Prior studies in sheep have shown aberrant reproductive and metabolic phenotypes in offspring after maternal biosolids exposure. OBJECTIVE To determine if exposure to biosolids perturbs the maternal metabolic milieu of pregnant ewes, in a fetal sex-specific manner. METHODS Ewes were grazed on inorganic fertilizer (Control) or biosolids-treated pastures (BTP) from before mating and throughout gestation. Plasma from pregnant ewes (Control n = 15, BTP n = 15) obtained mid-gestation were analyzed by untargeted metabolomics. Metabolites were identified using Agilent MassHunter. Multivariate analyses were done using MetaboAnalyst 5.0 and confirmed using SIMCA. RESULTS Univariate and multivariate analysis of 2301 annotated metabolites identified 193 differentially abundant metabolites (DM) between control and BTP sheep. The DM primarily belonged to the super-class of lipids and organic acids. 15-HeTrE, oleamide, methionine, CAR(3:0(OH)) and pyroglutamic acid were the top DM and have been implicated in the regulation of fetal growth and development. Fetal sex further exacerbated differences in metabolite profiles in the BTP group. The organic acids class of metabolites was abundant in animals with male fetuses. Prenol lipid, sphingolipid, glycerolipid, alkaloid, polyketide and benzenoid classes showed fetal sex-specific responses to biosolids. DISCUSSION Our study illustrates that exposure to biosolids significantly alters the maternal metabolome in a fetal sex-specific manner. The altered metabolite profile indicates perturbations to fatty acid, arginine, branched chain amino acid and one‑carbon metabolism. These factors are consistent with, and likely contribute to, the adverse phenotypic outcomes reported in the offspring.
Collapse
Affiliation(s)
- S V Thangaraj
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - M Kachman
- MM BRCF Metabolomics Core, University of Michigan, Ann Arbor, MI, USA
| | - K M Halloran
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - K D Sinclair
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - R Lea
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - M Bellingham
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - N P Evans
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - V Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Elcombe CS, Monteiro A, Elcombe MR, Ghasemzadeh-Hasankolaei M, Sinclair KD, Lea R, Padmanabhan V, Evans NP, Bellingham M. Developmental exposure to real-life environmental chemical mixture programs a testicular dysgenesis syndrome-like phenotype in prepubertal lambs. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103913. [PMID: 35738462 PMCID: PMC9554787 DOI: 10.1016/j.etap.2022.103913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 05/30/2023]
Abstract
Current declines in male reproductive health may, in part, be driven by anthropogenic environmental chemical (EC) exposure. Using a biosolids treated pasture (BTP) sheep model, this study examined the effects of gestational exposure to a translationally relevant EC mixture. Testes of 8-week-old ram lambs from mothers exposed to BTP during pregnancy contained fewer germ cells and had a greater proportion of Sertoli-cell-only seminiferous tubules. This concurs with previous published data from fetuses and neonatal lambs from mothers exposed to BTP. Comparison between the testicular transcriptome of biosolids lambs and human testicular dysgenesis syndrome (TDS) patients indicated common changes in genes involved in apoptotic and mTOR signalling. Gene expression data and immunohistochemistry indicated increased HIF1α activation and nuclear localisation in Leydig cells of BTP exposed animals. As HIF1α is reported to disrupt testosterone synthesis, these results provide a potential mechanism for the pathogenesis of this testicular phenotype, and TDS in humans.
Collapse
Affiliation(s)
- Chris S Elcombe
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Ana Monteiro
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Matthew R Elcombe
- MicroMatrices Associates Ltd, Dundee Technopole, James Lindsay Place, Dundee, UK
| | - Mohammad Ghasemzadeh-Hasankolaei
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Kevin D Sinclair
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Richard Lea
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | | - Neil P Evans
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Michelle Bellingham
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| |
Collapse
|
9
|
Elcombe CS, Evans NP, Bellingham M. Critical review and analysis of literature on low dose exposure to chemical mixtures in mammalian in vivo systems. Crit Rev Toxicol 2022; 52:221-238. [PMID: 35894754 PMCID: PMC9530410 DOI: 10.1080/10408444.2022.2091423] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthropogenic chemicals are ubiquitous throughout the environment. Consequentially, humans are exposed to hundreds of anthropogenic chemicals daily. Current chemical risk assessments are primarily based on testing individual chemicals in rodents at doses that are orders of magnitude higher than that of human exposure. The potential risk from exposure to mixtures of chemicals is calculated using mathematical models of mixture toxicity based on these analyses. These calculations, however, do not account for synergistic or antagonistic interactions between co-exposed chemicals. While proven examples of chemical synergy in mixtures at low doses are rare, there is increasing evidence that, through non-conformance to current mixture toxicity models, suggests synergy. This review examined the published studies that have investigated exposure to mixtures of chemicals at low doses in mammalian in vivo systems. Only seven identified studies were sufficient in design to directly examine the appropriateness of current mixture toxicity models, of which three showed responses significantly greater than additivity model predictions. While the remaining identified studies were unable to provide evidence of synergistic toxicity, it became apparent that many results of such studies were not always explicable by current mixture toxicity models. Additionally, two data gaps were identified. Firstly, there is a lack of studies where individual chemical components of a complex mixture (>10 components) are tested in parallel to the chemical mixture. Secondly, there is a lack of dose-response data for mixtures of chemicals at low doses. Such data is essential to address the appropriateness and validity of future chemical mixture toxicity models.
Collapse
Affiliation(s)
- Chris S Elcombe
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Neil P Evans
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Michelle Bellingham
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
10
|
Elcombe CS, Monteiro A, Ghasemzadeh-Hasankolaei M, Evans NP, Bellingham M. Morphological and transcriptomic alterations in neonatal lamb testes following developmental exposure to low-level environmental chemical mixture. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103670. [PMID: 33964400 PMCID: PMC8316325 DOI: 10.1016/j.etap.2021.103670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 05/29/2023]
Abstract
Exposure to anthropogenic environmental chemical mixtures could be contributing to the decline in male reproductive health. This study used the biosolid treated pasture (BTP) sheep model to assess the effects of exposure to low-dose chemical mixtures. Maternal BTP exposure was associated with lower plasma testosterone concentrations, a greater proportion of Sertoli cell-only seminiferous tubules, and fewer gonocytes in the testes of neonatal offspring. Transcriptome analysis highlighted changes in testicular mTOR signalling, including lower expression of two mTOR complex components. Transcriptomic hierarchical analysis relative to the phenotypic severity demonstrated distinct differential responses to maternal BTP exposure during pregnancy. Transcriptome analysis between phenotypically normal and abnormal BTP lambs demonstrated separate responses within the cAMP and PI3K signalling pathways towards CREB. Together, the results provide a potential mechanistic explanation for adverse effects. Exposure could lower gonocyte numbers through mTOR mediated autophagy, but CREB mediated survival factors may act to increase germ cell survival.
Collapse
Affiliation(s)
- Chris S Elcombe
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Ana Monteiro
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Mohammad Ghasemzadeh-Hasankolaei
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Neil P Evans
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Michelle Bellingham
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| |
Collapse
|
11
|
Juengel JL, Cushman RA, Dupont J, Fabre S, Lea RG, Martin GB, Mossa F, Pitman JL, Price CA, Smith P. The ovarian follicle of ruminants: the path from conceptus to adult. Reprod Fertil Dev 2021; 33:621-642. [PMID: 34210385 DOI: 10.1071/rd21086] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/06/2021] [Indexed: 11/23/2022] Open
Abstract
This review resulted from an international workshop and presents a consensus view of critical advances over the past decade in our understanding of follicle function in ruminants. The major concepts covered include: (1) the value of major genes; (2) the dynamics of fetal ovarian development and its sensitivity to nutritional and environmental influences; (3) the concept of an ovarian follicle reserve, aligned with the rise of anti-Müllerian hormone as a controller of ovarian processes; (4) renewed recognition of the diverse and important roles of theca cells; (5) the importance of follicular fluid as a microenvironment that determines oocyte quality; (6) the 'adipokinome' as a key concept linking metabolic inputs with follicle development; and (7) the contribution of follicle development to the success of conception. These concepts are important because, in sheep and cattle, ovulation rate is tightly regulated and, as the primary determinant of litter size, it is a major component of reproductive efficiency and therefore productivity. Nowadays, reproductive efficiency is also a target for improving the 'methane efficiency' of livestock enterprises, increasing the need to understand the processes of ovarian development and folliculogenesis, while avoiding detrimental trade-offs as greater performance is sought.
Collapse
Affiliation(s)
- Jennifer L Juengel
- AgResearch Ltd, Invermay Agricultural Centre, Mosgiel, New Zealand; and Corresponding author
| | - Robert A Cushman
- Livestock Biosystems Research Unit, US Department of Agriculture, Agricultural Research Service, US Meat Animal Research Center, Clay Center, NE, USA
| | - Joëlle Dupont
- INRAE Institute UMR85 Physiologie de la Reproduction et des Comportements, Tours University, France
| | - Stéphane Fabre
- GenPhySE, Université de Toulouse, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Institut national polytechnique de Toulouse, Ecole nationale vétérinaire de Toulouse, Castanet Tolosan, France
| | - Richard G Lea
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Graeme B Martin
- UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Francesca Mossa
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Italy
| | - Janet L Pitman
- School of Biological Sciences, Victoria University of Wellington, New Zealand
| | - Christopher A Price
- Faculty of Veterinary Medicine, Université de Montréal, Montréal, QC, Canada
| | - Peter Smith
- AgResearch Ltd, Invermay Agricultural Centre, Mosgiel, New Zealand
| |
Collapse
|
12
|
Viguié C, Chaillou E, Gayrard V, Picard-Hagen N, Fowler PA. Toward a better understanding of the effects of endocrine disrupting compounds on health: Human-relevant case studies from sheep models. Mol Cell Endocrinol 2020; 505:110711. [PMID: 31954824 DOI: 10.1016/j.mce.2020.110711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 11/25/2022]
Abstract
There are many challenges to overcome in order to properly understand both the exposure to, and effects of, endocrine disruptors (EDs). This is particularly true with respect to fetal life where ED exposures are a major issue requiring toxicokinetic studies of materno-fetal exchange and identification of pathophysiological consequences. The sheep, a large, monotocous, species, is very suitable for in utero fetal catheterization allowing a modelling approach predictive of human fetal exposure. Predicting adverse effects of EDs on human health is frequently impeded by the wide interspecies differences in the regulation of endocrine functions and their effects on biological processes. Because of its similarity to humans as regards gestational and thyroid physiologies and brain ontogeny, the sheep constitutes a highly appropriate model to move one step further on thyroid disruptor hazard assessment. As a grazing animal, the sheep has also proven to be useful in the evaluation of the consequences of chronic environmental exposure to "real-life" complex mixtures at different stages of the reproductive life cycle.
Collapse
Affiliation(s)
- Catherine Viguié
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France.
| | - Elodie Chaillou
- PRC, INRAE Val de Loire, UMR85 Physiologie de la Reproduction et des Comportements, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Véronique Gayrard
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France
| | - Nicole Picard-Hagen
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
13
|
Filis P, Walker N, Robertson L, Eaton-Turner E, Ramona L, Bellingham M, Amezaga MR, Zhang Z, Mandon-Pepin B, Evans NP, Sharpe RM, Cotinot C, Rees WD, O'Shaughnessy P, Fowler PA. Long-term exposure to chemicals in sewage sludge fertilizer alters liver lipid content in females and cancer marker expression in males. ENVIRONMENT INTERNATIONAL 2019; 124:98-108. [PMID: 30641261 DOI: 10.1016/j.envint.2019.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/01/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The increased incidence of diseases, including metabolic syndrome and infertility, may be related to exposure to the mixture of chemicals, which are ubiquitous in the modern environment (environmental chemicals, ECs). Xeno-detoxification occurs within the liver which is also the source of many plasma proteins and growth factors and plays an important role in the regulation of homeostasis. OBJECTIVES The objective of this study was to investigate the effects of ECs on aspects of liver function, in a well characterized ovine model of exposure to a real-life EC mixture. METHODS Four groups of sheep (n = 10-12/sex/treatment) were maintained long-term on control or sewage sludge-fertilized pastures: from conception to culling at 19 months of age in females and from conception to 7 months of age and thereafter in control plots until culling at 19 months of age in males. Environmental chemicals were measured in sheep livers and RNA and protein extracts were assessed for exposure markers. Liver proteins were resolved using 2D differential in-gel electrophoresis and differentially expressed protein spots were identified by liquid chromatography/tandem mass spectroscopy. RESULTS Higher levels of polycyclic aromatic hydrocarbons (PAHs) and lower levels of polychlorinated biphenyls (PCBs) in the livers of control males compared to control females indicated sexually dimorphic EC body burdens. Increased levels of the PAHs Benzo[a]anthracene and chrysene and reduced levels of PCB 153 and PCB 180 were observed in the livers of continuously exposed females. EC exposure affected xenobiotic and detoxification responses and the liver proteome in both sexes and included major plasma-secreted and blood proteins, and metabolic enzymes whose pathway analysis predicted dysregulation of cancer-related pathways and altered lipid dynamics. The latter were confirmed by a reduction in total lipids in female livers and up-regulation of cancer-related transcript markers in male livers respectively by sewage sludge exposure. CONCLUSIONS Our results demonstrate that chronic exposure to ECs causes major physiological changes in the liver, likely to affect multiple systems in the body and which may predispose individuals to increased disease risks.
Collapse
Affiliation(s)
- Panagiotis Filis
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Natasha Walker
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Linda Robertson
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Emily Eaton-Turner
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Lauma Ramona
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Michelle Bellingham
- Institute of Biodiversity, Animal Health & Comparative Medicine (IBAHCM), College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Campus, Bearsden Rd, Glasgow G61 1QH, UK
| | - Maria R Amezaga
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | | | - Neil P Evans
- Institute of Biodiversity, Animal Health & Comparative Medicine (IBAHCM), College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Campus, Bearsden Rd, Glasgow G61 1QH, UK
| | - Richard M Sharpe
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Corinne Cotinot
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - William D Rees
- The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Peter O'Shaughnessy
- Institute of Biodiversity, Animal Health & Comparative Medicine (IBAHCM), College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Campus, Bearsden Rd, Glasgow G61 1QH, UK
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
14
|
Bioaccumulation of persistent organic pollutants in the deepest ocean fauna. Nat Ecol Evol 2017; 1:51. [DOI: 10.1038/s41559-016-0051] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/13/2016] [Indexed: 11/09/2022]
|
15
|
Sathish Kumar T, Sugantha Priya E, Raja Singh P, Arunakaran J. Lactational exposure of polychlorinated biphenyls downregulates critical genes in Leydig cells of F1 male progeny (PND21). Andrologia 2016; 49. [DOI: 10.1111/and.12734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2016] [Indexed: 01/11/2023] Open
Affiliation(s)
- T. Sathish Kumar
- Department of Endocrinology; Dr. ALM Post Graduate Institute of Basic Medical Sciences; University of Madras; Taramani Campus; Chennai 600113 Tamil Nadu India
| | - E. Sugantha Priya
- Department of Endocrinology; Dr. ALM Post Graduate Institute of Basic Medical Sciences; University of Madras; Taramani Campus; Chennai 600113 Tamil Nadu India
| | - P. Raja Singh
- Department of Endocrinology; Dr. ALM Post Graduate Institute of Basic Medical Sciences; University of Madras; Taramani Campus; Chennai 600113 Tamil Nadu India
| | - J. Arunakaran
- Department of Endocrinology; Dr. ALM Post Graduate Institute of Basic Medical Sciences; University of Madras; Taramani Campus; Chennai 600113 Tamil Nadu India
| |
Collapse
|
16
|
Lea RG, Byers AS, Sumner RN, Rhind SM, Zhang Z, Freeman SL, Moxon R, Richardson HM, Green M, Craigon J, England GCW. Environmental chemicals impact dog semen quality in vitro and may be associated with a temporal decline in sperm motility and increased cryptorchidism. Sci Rep 2016; 6:31281. [PMID: 27503122 PMCID: PMC4977511 DOI: 10.1038/srep31281] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/15/2016] [Indexed: 11/15/2022] Open
Abstract
Adverse temporal trends in human semen quality and cryptorchidism in infants have been associated with exposure to environmental chemicals (ECs) during development. Here we report that a population of breeding dogs exhibit a 26 year (1988-2014) decline in sperm quality and a concurrent increased incidence of cryptorchidism in male offspring (1995-2014). A decline in the number of males born relative to the number of females was also observed. ECs, including diethylhexyl phthalate (DEHP) and polychlorinated biphenyl 153 (PCB153), were detected in adult dog testes and commercial dog foods at concentrations reported to perturb reproductive function in other species. Testicular concentrations of DEHP and PCB153 perturbed sperm viability, motility and DNA integrity in vitro but did not affect LH stimulated testosterone secretion from adult testis explants. The direct effects of chemicals on sperm may therefore contribute to the decline in canine semen quality that parallels that reported in the human.
Collapse
Affiliation(s)
- Richard G. Lea
- School of Veterinary Medicine and Science, University of Nottingham, UK
- School of Animal Rural and Environmental Sciences, Nottingham Trent University, UK
| | - Andrew S. Byers
- School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Rebecca N. Sumner
- School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Stewart M. Rhind
- Environmental and Biochemical Sciences, The James Hutton Institute, UK
| | - Zulin Zhang
- Environmental and Biochemical Sciences, The James Hutton Institute, UK
| | - Sarah L. Freeman
- School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Rachel Moxon
- National Breeding Centre, Guide Dogs for the Blind Association, UK
| | | | - Martin Green
- School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Jim Craigon
- School of Biosciences, University of Nottingham, UK
| | | |
Collapse
|
17
|
Sinclair KD, Rutherford KMD, Wallace JM, Brameld JM, Stöger R, Alberio R, Sweetman D, Gardner DS, Perry VEA, Adam CL, Ashworth CJ, Robinson JE, Dwyer CM. Epigenetics and developmental programming of welfare and production traits in farm animals. Reprod Fertil Dev 2016; 28:RD16102. [PMID: 27439952 DOI: 10.1071/rd16102] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/06/2016] [Indexed: 12/11/2022] Open
Abstract
The concept that postnatal health and development can be influenced by events that occur in utero originated from epidemiological studies in humans supported by numerous mechanistic (including epigenetic) studies in a variety of model species. Referred to as the 'developmental origins of health and disease' or 'DOHaD' hypothesis, the primary focus of large-animal studies until quite recently had been biomedical. Attention has since turned towards traits of commercial importance in farm animals. Herein we review the evidence that prenatal risk factors, including suboptimal parental nutrition, gestational stress, exposure to environmental chemicals and advanced breeding technologies, can determine traits such as postnatal growth, feed efficiency, milk yield, carcass composition, animal welfare and reproductive potential. We consider the role of epigenetic and cytoplasmic mechanisms of inheritance, and discuss implications for livestock production and future research endeavours. We conclude that although the concept is proven for several traits, issues relating to effect size, and hence commercial importance, remain. Studies have also invariably been conducted under controlled experimental conditions, frequently assessing single risk factors, thereby limiting their translational value for livestock production. We propose concerted international research efforts that consider multiple, concurrent stressors to better represent effects of contemporary animal production systems.
Collapse
|
18
|
Evans NP, Bellingham M, Robinson JE. Prenatal programming of neuroendocrine reproductive function. Theriogenology 2016; 86:340-8. [PMID: 27142489 DOI: 10.1016/j.theriogenology.2016.04.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/24/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
It is now well recognized that the gestational environment can have long-lasting effects not only on the life span and health span of an individual but also, through potential epigenetic changes, on future generations. This article reviews the "prenatal programming" of the neuroendocrine systems that regulate reproduction, with a specific focus on the lessons learned using ovine models. The review examines the critical roles played by steroids in normal reproductive development before considering the effects of prenatal exposure to exogenous steroid hormones including androgens and estrogens, the effects of maternal nutrition and stress during gestation, and the effects of exogenous chemicals such as alcohol and environment chemicals. In so doing, it becomes evident that, to maximize fitness, the regulation of reproduction has evolved to be responsive to many different internal and external cues and that the GnRH neurosecretory system expresses a degree of plasticity throughout life. During fetal life, however, the system is particularly sensitive to change and at this time, the GnRH neurosecretory system can be "shaped" both to achieve normal sexually differentiated function but also in ways that may adversely affect or even prevent "normal function". The exact mechanisms through which these programmed changes are brought about remain largely uncharacterized but are likely to differ depending on the factor, the timing of exposure to that factor, and the species. It would appear, however, that some afferent systems to the GnRH neurons such as kisspeptin, may be critical in this regard as it would appear to be sensitive to a wide variety of factors that can program reproductive function. Finally, it has been noted that the prenatal programming of neuroendocrine reproductive function can be associated with epigenetic changes, which would suggest that in addition to direct effects on the exposed offspring, prenatal programming could have transgenerational effects on reproductive potential.
Collapse
Affiliation(s)
- Neil P Evans
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Michelle Bellingham
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jane E Robinson
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
19
|
Lea RG, Amezaga MR, Loup B, Mandon-Pépin B, Stefansdottir A, Filis P, Kyle C, Zhang Z, Allen C, Purdie L, Jouneau L, Cotinot C, Rhind SM, Sinclair KD, Fowler PA. The fetal ovary exhibits temporal sensitivity to a 'real-life' mixture of environmental chemicals. Sci Rep 2016; 6:22279. [PMID: 26931299 PMCID: PMC4773987 DOI: 10.1038/srep22279] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/10/2016] [Indexed: 01/09/2023] Open
Abstract
The development of fetal ovarian follicles is a critical determinant of adult female reproductive competence. Prolonged exposure to environmental chemicals (ECs) can perturb this process with detrimental consequences for offspring. Here we report on the exposure of pregnant ewes to an environmental mixture of ECs derived from pastures fertilized with sewage sludge (biosolids): a common global agricultural practice. Exposure of pregnant ewes to ECs over 80 day periods during early, mid or late gestation reduced the proportion of healthy early stage fetal follicles comprising the ovarian reserve. Mid and late gestation EC exposures had the most marked effects, disturbing maternal and fetal liver chemical profiles, masculinising fetal anogenital distance and greatly increasing the number of altered fetal ovarian genes and proteins. In conclusion, differential temporal sensitivity of the fetus and its ovaries to EC mixtures has implications for adult ovarian function following adverse exposures during pregnancy.
Collapse
Affiliation(s)
- Richard G Lea
- Schools of Veterinary Medicine and Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK
| | - Maria R Amezaga
- Institute of Medical Sciences, School of Medicine, Medical Sciences &Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Benoit Loup
- UMR BDR, INRA, Université Paris Saclay, 78350, Jouy-en-Josas, France
| | | | - Agnes Stefansdottir
- Institute of Medical Sciences, School of Medicine, Medical Sciences &Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Panagiotis Filis
- Institute of Medical Sciences, School of Medicine, Medical Sciences &Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Carol Kyle
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Ceri Allen
- Schools of Veterinary Medicine and Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK
| | - Laura Purdie
- Schools of Veterinary Medicine and Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK
| | - Luc Jouneau
- UMR BDR, INRA, Université Paris Saclay, 78350, Jouy-en-Josas, France
| | - Corinne Cotinot
- UMR BDR, INRA, Université Paris Saclay, 78350, Jouy-en-Josas, France
| | - Stewart M Rhind
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Kevin D Sinclair
- Schools of Veterinary Medicine and Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences &Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
20
|
Zhang Z, Le Velly M, Rhind SM, Kyle CE, Hough RL, Duff EI, McKenzie C. A study on temporal trends and estimates of fate of Bisphenol A in agricultural soils after sewage sludge amendment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 515-516:1-11. [PMID: 25682473 DOI: 10.1016/j.scitotenv.2015.01.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/18/2015] [Accepted: 01/18/2015] [Indexed: 06/04/2023]
Abstract
Temporal concentration trends of BPA in soils were investigated following sewage sludge application to pasture (study 1: short term sludge application; study 2: long term multiple applications over 13 years). The background levels of BPA in control soils were similar, ranging between 0.67-10.57 ng g(-1) (mean: 3.02 ng g(-1)) and 0.51-6.58 ng g(-1) (mean: 3.22 ng g(-1)) for studies 1 and 2, respectively. Concentrations in both treated and control plots increased over the earlier sampling times of the study to a maximum and then decreased over later sampling times, suggesting other sources of BPA to both the treated and control soils over the study period. In study 1 there was a significant treatment effect of sludge application in the autumn (p=0.002) although no significant difference was observed between treatment and control soils in the spring. In study 2 treated soils contained considerably higher BPA concentrations than controls ranging between 12.89-167.9 ng g(-1) (mean: 63.15 ng g(-1)). This and earlier studies indicate the long-term accumulation of multiple contaminants by multiple sewage sludge applications over a prolonged period although the effects of the presence of such contaminant mixtures have not yet been elucidated. Fugacity modelling was undertaken to estimate partitioning of Bisphenol A (soil plus sewage: pore water: soil air partitioning) and potential uptake into a range of food crops. While Bisphenol A sorbs strongly to the sewage-amended soil, 4% by mass was predicted to enter soil pore water resulting in significant uptake by crops particularly leafy vegetables (3.12-75.5 ng g(-1)), but also for root crops (1.28-31.0 ng g(-1)) with much lower uptake into cereal grains (0.62-15.0 ng g(-1)). This work forms part of a larger programme of research aimed at assessing the risks associated with the long-term application of sewage sludge to agricultural soils.
Collapse
Affiliation(s)
- Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.
| | - Morgane Le Velly
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK; Robert Gordon University, Institute for Innovation Design and Sustainability (IDEAS), Riverside East, Garthdee, Aberdeen AB10 7GJ, UK
| | - Stewart M Rhind
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Carol E Kyle
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Rupert L Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Elizabeth I Duff
- Biomathematics and Statistics Scotland, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Craig McKenzie
- Robert Gordon University, Institute for Innovation Design and Sustainability (IDEAS), Riverside East, Garthdee, Aberdeen AB10 7GJ, UK
| |
Collapse
|
21
|
Nie M, Yan C, Dong W, Liu M, Zhou J, Yang Y. Occurrence, distribution and risk assessment of estrogens in surface water, suspended particulate matter, and sediments of the Yangtze Estuary. CHEMOSPHERE 2015; 127:109-116. [PMID: 25676496 DOI: 10.1016/j.chemosphere.2015.01.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 01/16/2015] [Indexed: 06/04/2023]
Abstract
The occurrence and distribution of six selected estrogen compounds were investigated in samples of surface water, suspended particulate matter (SPM), and sediment in the Yangtze Estuary and its coastal areas over four seasons. With the exception of 17α-ethinylestradiol (EE2), all estrogens were detected at least once in all three phases with bisphenol A (BPA) and estriol (E3) as the dominant estrogens in all phases. EE2 was not detected in any surface water samples. In addition, the highest total estrogen concentrations were found in January in all phases, which could be due to the low flow conditions and temperature during this season. A significant positive correlation was found between total estrogen concentrations and organic carbon (OC) contents, both in the water phase and solid phase (i.e. SPM and sediment), indicating the vital role played by OC. Based on a yeast estrogen screen (YES) bioassay, the higher estrogenic risk was found in the SPM and sediment phase when compared to the water phase. These results were confirmed by a risk assessment which revealed that the Yangtze Estuary was displayed a low to high risk over the seasons for all selected estrogens.
Collapse
Affiliation(s)
- Minghua Nie
- Key Laboratory of Geographic Information Science of the Ministry of Education, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Department of Geosciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Caixia Yan
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Wenbo Dong
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Department of Geosciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Junliang Zhou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Department of Geosciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China.
| |
Collapse
|
22
|
Zhang LP, Wang XH, Ya ML, Wu YL, Li YY, Zhang ZL. Levels of endocrine disrupting compounds in South China Sea. MARINE POLLUTION BULLETIN 2014; 85:628-633. [PMID: 24556359 DOI: 10.1016/j.marpolbul.2013.12.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 12/04/2013] [Accepted: 12/19/2013] [Indexed: 06/03/2023]
Abstract
The occurrence of estrogens in the aquatic environment has become a major concern worldwide because of their strong endocrine disrupting potency. In this study, concentrations of four estrogenic compounds, estrone (E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), estriol (E3) were determined with liquid chromatography-tandem mass spectrometry analyses in surface water from South China Sea, and distributions and potential risks of their estrogenic activity were assessed. The estrogenic compounds E1, E2 and E3 were detected in most of the samples, with their concentrations up to 11.16, 3.71 and 21.63 ng L(-1). However, EE2 was only detected in 3 samples. Causality analysis, EEQ values from chemical analysis identified E2 as the main responsible compounds. Based on the EEQ values in the surface water, high estrogenic risks were in the coastal water, and low estrogenic risks in the open sea.
Collapse
Affiliation(s)
- Li-Peng Zhang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Xin-Hong Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| | - Miao-Lei Ya
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yu-Ling Wu
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yong-Yu Li
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Zu-lin Zhang
- The James Hutton Institute, Aberdeen AB15 8QH, UK
| |
Collapse
|
23
|
Evans NP, Bellingham M, Sharpe RM, Cotinot C, Rhind SM, Kyle C, Erhard H, Hombach-Klonisch S, Lind PM, Fowler PA. Reproduction Symposium: does grazing on biosolids-treated pasture pose a pathophysiological risk associated with increased exposure to endocrine disrupting compounds? J Anim Sci 2014; 92:3185-98. [PMID: 24948646 DOI: 10.2527/jas.2014-7763] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Biosolids (processed human sewage sludge), which contain low individual concentrations of an array of contaminants including heavy metals and organic pollutants such as polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), and polychlorinated dibenzodioxins/polychlorinated dibenzofurans known to cause physiological disturbances, are increasingly being used as an agricultural fertilizer. This could pose a health threat to both humans and domestic and wild animal species. This review summarizes results of a unique model, used to determine the effects of exposure to mixtures of environmentally relevant concentrations of pollutants, in sheep grazed on biosolids-treated pastures. Pasture treatment results in nonsignificant increases in environmental chemical (EC) concentrations in soil. Whereas EC concentrations were increased in some tissues of both ewes and their fetuses, concentrations were low and variable and deemed to pose little risk to consumer health. Investigation of the effects of gestational EC exposure on fetal development has highlighted a number of issues. The results indicate that gestational EC exposure can adversely affect gonadal development (males and females) and that these effects can impact testicular morphology, ovarian follicle numbers and health, and the transcriptome and proteome in adult animals. In addition, EC exposure can be associated with altered expression of GnRH, GnRH receptors, galanin receptors, and kisspeptin mRNA within the hypothalamus and pituitary gland, gonadotroph populations within the pituitary gland, and regional aberrations in thyroid morphology. In most cases, these anatomical and functional differences do not result in altered peripheral hormone concentrations or reproductive function (e.g., lambing rate), indicating physiological compensation under the conditions tested. Physiological compensation is also suggested from studies that indicate that EC effects may be greater when exposure occurs either before or during gestation compared with EC exposure throughout life. With regard to human and animal health, this body of work questions the concept of safe individual concentration of EC when EC exposure typically occurs as complex mixtures. It suggests that developmental EC exposure may affect many different physiological systems, with some sex-specific differences in EC sensitivity, and that EC effects may be masked under favorable physiological conditions.
Collapse
Affiliation(s)
- N P Evans
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH
| | - M Bellingham
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH
| | - R M Sharpe
- MRC Human Reproductive Sciences Unit, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - C Cotinot
- INRA, UMR 1198, Biologie du Développement et Reproduction F-78350, Jouy-en-Josas, France
| | - S M Rhind
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - C Kyle
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - H Erhard
- INRA, UMR791 MoSAR/AgroParis Tech, UMR MoSAR, F-75005 Paris, France
| | - S Hombach-Klonisch
- Dept Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada
| | - P M Lind
- Dept Medical Sciences, Occupational and Environmental medicine, Uppsala University, 751 85 Uppsala, Sweden
| | - P A Fowler
- Institute of Medical Sciences, Division of Applied Medicine, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
24
|
Aitkenhead MJ, Rhind SM, Zhang ZL, Kyle CE, Coull MC. Neural network integration of field observations for soil endocrine disruptor characterisation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 468-469:240-248. [PMID: 24036219 DOI: 10.1016/j.scitotenv.2013.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/02/2013] [Accepted: 08/02/2013] [Indexed: 06/02/2023]
Abstract
A neural network approach was used to predict the presence and concentration of a range of endocrine disrupting compounds (EDCs), based on field observations. Soil sample concentrations of endocrine disrupting compounds (EDCs) and site environmental characteristics, drawn from the National Soil Inventory of Scotland (NSIS) database, were used. Neural network models were trained to predict soil EDC concentrations using field observations for 184 sites. The results showed that presence/absence and concentration of several of the EDCs, mostly no longer in production, could be predicted with some accuracy. We were able to predict concentrations of seven of 31 compounds with r(2) values greater than 0.25 for log-normalised values and of eight with log-normalised predictions converted to a linear scale. Additional statistical analyses were carried out, including Root Mean Square Error (RMSE), Mean Error (ME), Willmott's index of agreement, Percent Bias (PBIAS) and ratio of root mean square to standard deviation (RSR). These analyses allowed us to demonstrate that the neural network models were making meaningful predictions of EDC concentration. We identified the main predictive input parameters in each case, based on a sensitivity analysis of the trained neural network model. We also demonstrated the capacity of the method for predicting the presence and level of EDC concentration in the field, identified further developments required to make this process as rapid and operator-friendly as possible and discussed the potential value of a system for field surveys of soil composition.
Collapse
Affiliation(s)
- M J Aitkenhead
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland, UK.
| | | | | | | | | |
Collapse
|
25
|
Rhind SM, Kyle CE, Kerr C, Osprey M, Zhang ZL, Duff EI, Lilly A, Nolan A, Hudson G, Towers W, Bell J, Coull M, McKenzie C. Concentrations and geographic distribution of selected organic pollutants in Scottish surface soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 182:15-27. [PMID: 23892068 DOI: 10.1016/j.envpol.2013.06.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 06/03/2013] [Accepted: 06/26/2013] [Indexed: 06/02/2023]
Abstract
Concentrations of selected persistent organic pollutants (POPs) representing three chemical classes (polycyclic aromatic hydrocarbons (PAH), polybrominated diphenyl ethers (PBDE) and polychlorinated biphenyls (PCB) and the organic pollutant diethylhexyl phthalate (DEHP), were determined in surface soil samples (0-5 cm) collected at 20 km grid intersects throughout Scotland over a three-year period. Detectable amounts of all chemical classes and most individual congeners were present in all samples. There were no consistent effects of soil or vegetation type, soil carbon content, pH, altitude or distance from centres of population on concentrations which exhibited extreme variation, even in adjacent samples. It is concluded that soil POPs and DEHP concentrations and associated rates of animal and human exposure were highly variable, influenced by multiple, interacting factors, and not clearly related to local sources but possibly related to wet atmospheric deposition and the organic carbon content of the soil.
Collapse
Affiliation(s)
- S M Rhind
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rhind SM, Kyle CE, Ruffie H, Calmettes E, Osprey M, Zhang ZL, Hamilton D, McKenzie C. Short- and long-term temporal changes in soil concentrations of selected endocrine disrupting compounds (EDCs) following single or multiple applications of sewage sludge to pastures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 181:262-270. [PMID: 23896644 DOI: 10.1016/j.envpol.2013.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/14/2013] [Accepted: 06/16/2013] [Indexed: 06/02/2023]
Abstract
Temporal changes in soil burdens of selected endocrine disrupting compounds were determined following application to pasture of either sewage sludge or inorganic fertilizer. Soil polycyclic aromatic hydrocarbon and polychlorinated biphenyl concentrations were not altered. Changes in concentrations of diethylhexyl phthalate (DEHP) and PBDEs 47 and 99 differed with season but concentrations remained elevated for more than three weeks after application, when grazing animals are normally excluded from pasture. It is concluded that single applications of sewage sludge can increase soil concentrations of some, but not all classes of EDCs, possibly to concentrations sufficient to exert biological effects when different chemicals act in combination, but patterns of change depend on season and soil temperature. Analysis of soil from pasture subjected to repeated sludge applications, over 13 years, provided preliminary evidence of greater increases in soil burdens of all of the EDC groups measured, including all of the PBDE congeners measured.
Collapse
Affiliation(s)
- S M Rhind
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Bellingham M, Amezaga MR, Mandon-Pepin B, Speers CJ, Kyle CE, Evans NP, Sharpe RM, Cotinot C, Rhind SM, Fowler PA. Exposure to chemical cocktails before or after conception--- the effect of timing on ovarian development. Mol Cell Endocrinol 2013; 376:156-72. [PMID: 23791816 PMCID: PMC3731555 DOI: 10.1016/j.mce.2013.06.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 12/19/2022]
Abstract
Exposure of female fetuses to environmental chemicals (ECs) during pregnancy results in a disturbed ovarian adult phenotype. We investigated the influence of pre- and/or post-conception exposure to low-level mixtures of ECs on the structure and function of the fetal ovine ovary. We examined ovarian morphology, expression of oocyte and granulosa cell-specific genes and proteome. Female fetuses were collected at day 110 of gestation, from dams exposed continuously until, and after mating, by grazing in pastures treated with sewage sludge as a fertiliser (TT) or in control fields treated with inorganic fertiliser (CC). In addition, in a cross-over design, fetal ovaries were collected from dams maintained on sludge pastures up to the time of mating but then transferred to control pastures (TC) and, reciprocally, those transferred from control to treated pastures at mating (CT). On examination, the proportion of type 1a follicles (activating primordial follicles) was significantly lower in animals from the CT groups compared with CC and TT groups (P<0.05). Of the 23 ovarian gene transcripts studied, 14 were altered in the ovaries of exposed fetuses (CT, TC, and TT) relative to controls, with the largest number of changes observed in cross-exposure pattern groups (CT or TC). Continuous EC exposure (TT) produced fewer transcript alterations and only two genes (INHBA and GSN) presented differential profiles between CC and TT. Fetal ovarian proteome analysis (2-DE gels) showed, across all exposure groups, 86 differentially expressed protein spots compared to controls. Animals in the CT group exhibited the highest number (53) while TC and TT presented the same number of affected protein spots (42). Fetal ovarian proteins with altered expression included MVP (major vault protein) and several members of the heat-shock family (HSPA4L, HSP90AA1 and HSF1). The present findings indicate that continuous maternal EC exposure before and during gestation, are less deleterious for fetal ovarian development than a change in maternal EC exposure between pre and post-conception. The pathways by which the ovary responds to this chemical stress were common in TT, CT, TC exposed foetuses. In addition to the period of pregnancy, the pre-conception period appears also as crucial for conditioning long-term effects of EC exposure on ovarian development and primordial follicle reserve and hence future fertility.
Collapse
Affiliation(s)
- Michelle Bellingham
- Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Maria R. Amezaga
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Beatrice Mandon-Pepin
- INRA, UMR 1198, Biologie du Développement et Reproduction F-78350, Jouy-en-Josas, France
| | - Christopher J.B. Speers
- Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Carol E. Kyle
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Neil P. Evans
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Richard M. Sharpe
- MRC Centre for Reproductive Health, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Corinne Cotinot
- INRA, UMR 1198, Biologie du Développement et Reproduction F-78350, Jouy-en-Josas, France
| | - Stewart M. Rhind
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Paul A. Fowler
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
28
|
Hombach-Klonisch S, Danescu A, Begum F, Amezaga MR, Rhind SM, Sharpe RM, Evans NP, Bellingham M, Cotinot C, Mandon-Pepin B, Fowler PA, Klonisch T. Peri-conceptional changes in maternal exposure to sewage sludge chemicals disturbs fetal thyroid gland development in sheep. Mol Cell Endocrinol 2013; 367:98-108. [PMID: 23291342 PMCID: PMC3581773 DOI: 10.1016/j.mce.2012.12.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 11/14/2012] [Accepted: 12/13/2012] [Indexed: 11/24/2022]
Abstract
Ewes were exposed to sewage sludge-fertilized pastures in a study designed investigate pre-conceptual and/or gestational exposure to environmental chemicals. The in utero impact on fetal thyroid morphology and function at day 110 (of 145) of pregnancy was then determined. Pre-conceptual exposure increased the relative thyroid organ weights in male fetuses. The number of thyroid follicles in thyroids of fetuses after pre-conceptual or gestational exposure was reduced. This correlated with an increase in Ki67 positive cells. Pre-conceptual exposure to sewage sludge reduced small blood vessels in fetal thyroids. Thyroid tissues of exposed fetuses contained regions where mature angio-follicular units were reduced exhibiting decreased immunostaining for sodium-iodide symporter (NIS). Fetal plasma levels of fT3 and fT4 in exposed animals, however, were not different from controls suggesting compensatory changes in the thyroid gland to maintain homeostasis in exposed fetuses. The regional aberrations in thyroid morphology may impact on the post-natal life of the exposed offspring.
Collapse
Key Words
- ecs, environmental chemicals
- edcs, endocrine-disrupting compounds
- nis, sodium-iodide symporter
- ft3, free triiodothyronine
- ft4, free thyroxine
- th, thyroid hormone
- tsh, thyroid stimulating hormone
- tr, thyroid hormone receptor
- ttr, transthyretin
- hpt, hypothalamic-pituitary-thyroid axis
- pcbs, polychlorinated biphenyls
- pbde, polybrominated diphenyl ether
- dehp, di(2-ethylhexyl) phthalate
- cv, coefficient of variation
- dab, 3,3′-diaminobenzidine tetrahydrochloride
- hrp, horseradish peroxidase
- rt, room temperature
- he, hematoxylin-eosin
- gnrh, gonadotropin releasing hormone
- gd, gestational day
- tunel, terminal deoxynucleotidyl transferase dutp nick end labeling
- endocrine disruptors
- thyroid gland
- sheep
- fetal
- sewage sludge
- development
Collapse
Affiliation(s)
- Sabine Hombach-Klonisch
- Department of Human Anatomy & Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
McLaggan D, Amezaga MR, Petra E, Frost A, Duff EI, Rhind SM, Fowler PA, Glover LA, Lagido C. Impact of sublethal levels of environmental pollutants found in sewage sludge on a novel Caenorhabditis elegans model biosensor. PLoS One 2012; 7:e46503. [PMID: 23056324 PMCID: PMC3463613 DOI: 10.1371/journal.pone.0046503] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 08/31/2012] [Indexed: 01/12/2023] Open
Abstract
A transgenic strain of the model nematode Caenorhabditis elegans in which bioluminescence reports on relative, whole-organism ATP levels was used to test an environmentally-relevant mixture of pollutants extracted from processed sewage sludge. Changes in bioluminescence, following exposure to sewage sludge extract, were used to assess relative ATP levels and overall metabolic health. Reproductive function and longevity were also monitored. A short (up to 8 h) sublethal exposure of L4 larval stage worms to sewage sludge extract had a concentration-dependent, detrimental effect on energy status, with bioluminescence decreasing to 50-60% of the solvent control (1% DMSO). Following longer exposure (22-24 h), the energy status of the nematodes showed recovery as assessed by bioluminescence. Continuous exposure to sewage sludge extract from the L4 stage resulted in a shorter median lifespan relative to that of solvent or medium control animals, but only in the presence of 400-600 µM 5-fluoro-2'-deoxyuridine (FUdR), which was incorporated to inhibit reproduction. This indicated that FUdR increased lifespan, and that the effect was counteracted by SSE. Exposure to sewage sludge extract from the L1 stage led to slower growth and a delayed onset of egg laying. When L1 exposed nematodes reached the reproductive stage, no effect on egg laying rate or egg number in the uterus was observed. DMSO itself (1%) had a significant inhibitory effect on growth and development of C. elegans exposed from the L1 stage and on reproduction when exposed from the L4 stage. Results demonstrate subtle adverse effects on C. elegans of a complex mixture of environmental pollutants that are present, individually, in very low concentrations and indicate that our biosensor of energy status is a novel, sensitive, rapid, quantitative, whole-organism test system which is suitable for high throughput risk assessment of complex pollutant mixtures.
Collapse
Affiliation(s)
- Debbie McLaggan
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
- * E-mail: (DM); (CL)
| | - Maria R. Amezaga
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Eleni Petra
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Andrew Frost
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Elizabeth I. Duff
- Biomathematics and Statistics Scotland, Aberdeen, Scotland, United Kingdom
| | | | - Paul A. Fowler
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - L. Anne Glover
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Cristina Lagido
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
- * E-mail: (DM); (CL)
| |
Collapse
|
30
|
Bellingham M, Fiandanese N, Byers A, Cotinot C, Evans NP, Pocar P, Amezaga MR, Lea RG, Sinclair KD, Rhind SM, Fowler PA. Effects of Exposure to Environmental Chemicals During Pregnancy on the Development of the Male and Female Reproductive Axes. Reprod Domest Anim 2012; 47 Suppl 4:15-22. [DOI: 10.1111/j.1439-0531.2012.02050.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Fowler PA, Bellingham M, Sinclair KD, Evans NP, Pocar P, Fischer B, Schaedlich K, Schmidt JS, Amezaga MR, Bhattacharya S, Rhind SM, O'Shaughnessy PJ. Impact of endocrine-disrupting compounds (EDCs) on female reproductive health. Mol Cell Endocrinol 2012; 355:231-9. [PMID: 22061620 DOI: 10.1016/j.mce.2011.10.021] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 10/12/2011] [Accepted: 10/19/2011] [Indexed: 10/15/2022]
Abstract
Evidence is accumulating that environmental chemicals (ECs) including endocrine-disrupting compounds (EDCs) can alter female reproductive development, fertility and onset of menopause. While not as clearly defined as in the male, this set of abnormalities may constitute an Ovarian Dysgenesis Syndrome with at least some origins of the syndrome arising during foetal development. ECs/EDCs have been shown to affect trophoblast and placental function, the female hypothalamo-pituitary-gonadal axis, onset of puberty and adult ovarian function. The effects of ECs/EDCs are complex, not least because it is emerging that low-level, 'real-life' mixtures of ECs/EDCs may carry significant biological potency. In addition, there is evidence that ECs/EDCs can alter the epigenome in a sexually dimorphic manner, which may lead to changes in the germ line and perhaps even to transgenerational effects. This review summarises the evidence for EC, including EDC, involvement in female reproductive dysfunction, it highlights potential mechanisms of EC action in the female and emphasises the need for further research into EC effects on female development and reproductive function.
Collapse
Affiliation(s)
- Paul A Fowler
- Division of Applied Medicine, Institute of Medical Sciences, Polwarth Building, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Summary
Collapse
|
33
|
Favetta L, Villagómez D, Iannuzzi L, Di Meo G, Webb A, Crain S, King W. Disorders of Sexual Development and Abnormal Early Development in Domestic Food-Producing Mammals: The Role of Chromosome Abnormalities, Environment and Stress Factors. Sex Dev 2012; 6:18-32. [DOI: 10.1159/000332754] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
34
|
Bellingham M, McKinnell C, Fowler PA, Amezaga MR, Zhang Z, Rhind SM, Cotinot C, Mandon-Pepin B, Evans NP, Sharpe RM. Foetal and post-natal exposure of sheep to sewage sludge chemicals disrupts sperm production in adulthood in a subset of animals. ACTA ACUST UNITED AC 2011; 35:317-29. [PMID: 22150464 PMCID: PMC3440584 DOI: 10.1111/j.1365-2605.2011.01234.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exposure to ubiquitous, environmental chemicals (ECs) has been hypothesized as a cause for declining male reproductive health. Understanding the long-term effects of EC exposure on reproductive health in humans requires animal models and exposure to ‘real life’, environmentally relevant, mixtures during development, a life stage of particular sensitivity to ECs. The aim of this study was to evaluate the effects of in utero and post-natal exposure to environmentally relevant levels of ECs, via sewage sludge application to pasture, on the adult male sheep testis. Hormones, liver concentrations of candidate ECs and Sertoli and germ cell numbers in testes of adult rams that were exposed to ECs in sewage sludge in utero, and until weaning via maternal exposure, and post-weaning via grazing pastures fertilized with sewage sludge, were quantified. Evaluated as a single group, exposure to sludge ECs was without significant effect on most parameters. However, a more detailed study revealed that 5 of 12 sludge-exposed rams exhibited major spermatogenic abnormalities. These consisted of major reductions in germ cell numbers per testis or per Sertoli cell and more Sertoli cell-only tubules, when compared with controls, which did not show any such changes. The sludge-related spermatogenic changes in the five affected animals were significantly different from controls (p < 0.001); Sertoli cell number was unaffected. Hormone profiles and liver candidate EC concentrations were not measurably affected by exposure. We conclude that developmental exposure of male sheep to real-world mixtures of ECs can result in major reduction in germ cell numbers, indicative of impaired sperm production, in a proportion of exposed males. The individual-specific effects are presumed to reflect EC effects on a heterogeneous population in which some individuals may be more susceptible to adverse EC effects. Such effects of EC exposure in humans could have adverse consequences for sperm counts and fertility in some exposed males.
Collapse
Affiliation(s)
- M Bellingham
- Institute of Biodiversity, Animal Health and Comparative Medicine, School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Pocar P, Fiandanese N, Secchi C, Berrini A, Fischer B, Schmidt JS, Schaedlich K, Rhind SM, Zhang Z, Borromeo V. Effects of Polychlorinated Biphenyls in CD-1 Mice: Reproductive Toxicity and Intergenerational Transmission. Toxicol Sci 2011; 126:213-26. [DOI: 10.1093/toxsci/kfr327] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
36
|
4-Nonylphenol triggers apoptosis and affects 17-β-Estradiol receptors in calvarial osteoblasts. Toxicology 2011; 290:334-41. [DOI: 10.1016/j.tox.2011.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 10/17/2011] [Accepted: 10/20/2011] [Indexed: 12/16/2022]
|
37
|
Rhind SM, Kyle CE, Kerr C, Osprey M, Zhang ZL. Effect of duration of exposure to sewage sludge-treated pastures on liver tissue accumulation of persistent endocrine disrupting compounds (EDCs) in sheep. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:3850-3856. [PMID: 21767868 DOI: 10.1016/j.scitotenv.2011.03.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 03/15/2011] [Accepted: 03/17/2011] [Indexed: 05/31/2023]
Abstract
Liver tissue concentrations of selected polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and polycyclic aromatic hydrocarbons (PAHs) were determined in groups of Texel ewes and lambs following exposure to pastures fertilised with either sewage sludge (Treated; T) or inorganic fertiliser (Control; C). Lambs were slaughtered at the age of 6 months, in each of 3 years, while ewes were slaughtered at 5 to 6 years of age having been exposed to the respective pastures for approximately 6, 18 or 30 months, during the same, respective years, immediately before slaughter. Mean liver concentrations of very few of the chemical classes were elevated in either ewe or lamb tissue as a result of exposure of the animals to sewage sludge. Mean concentrations, in lamb liver, of chemicals of each of the classes differed significantly, but inconsistently, between years, reflecting temporal variations in exposure, although the pattern of annual change differed with individual chemical. On the other hand, in ewes, liver concentrations of many chemicals increased, significantly and consistently, with increasing duration of exposure. It was concluded that the increases in tissue concentrations with increased duration of exposure were unlikely to be sufficient to be of concern to consumers and that tissue burdens cannot be linked, easily, with the physiological effects reported previously for animals similarly exposed.
Collapse
Affiliation(s)
- S M Rhind
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, United Kingdom.
| | | | | | | | | |
Collapse
|
38
|
Zhang Z, Ohiozebau E, Rhind SM. Simultaneous extraction and clean-up of polybrominated diphenyl ethers and polychlorinated biphenyls from sheep liver tissue by selective pressurized liquid extraction and analysis by gas chromatography–mass spectrometry. J Chromatogr A 2011; 1218:1203-9. [DOI: 10.1016/j.chroma.2010.12.098] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/26/2010] [Accepted: 12/26/2010] [Indexed: 11/24/2022]
|
39
|
Elabbas LE, Finnilä MA, Herlin M, Stern N, Trossvik C, Bowers WJ, Nakai J, Tuukkanen J, Heimeier RA, Åkesson A, Håkansson H. Perinatal exposure to environmental contaminants detected in Canadian Arctic human populations changes bone geometry and biomechanical properties in rat offspring. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:1304-1318. [PMID: 21830859 DOI: 10.1080/15287394.2011.590103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Arctic inhabitants consume large proportions of fish and marine mammals, and are therefore continuously exposed to levels of environmental toxicants, which may produce adverse health effects. Fetuses and newborns are the most vulnerable groups. The aim of this study was to evaluate changes in bone geometry, mineral density, and biomechanical properties during development following perinatal exposure to a mixture of environmental contaminants corresponding to maternal blood levels in Canadian Arctic human populations. Sprague-Dawley rat dams were dosed with a Northern Contaminant Mixture (NCM) from gestational day 1 to postnatal day (PND) 23. NCM contains 27 contaminants comprising polychlorinated biphenyls, organochlorine pesticides, and methylmercury. Femurs were collected on PND 35, 77 and 350, and diaphysis was analyzed by peripheral quantitative computed tomography and three-point bending test, while femoral neck was assessed in an axial loading experiment. Dose-response modeling was performed to establish the benchmark dose (BMD) for the analyzed bone parameters. Exposure to the high dose of NMC resulted in short and thin femur with reduced mechanical strength in offspring at PND35. BMD of femur length, cortical area, and stiffness were 3.2, 1.6, and 0.8 mg/kg bw/d, respectively. At PND77 femur was still thin, but at PND350 no treatment-related bone differences were detected. This study provides new insights on environmental contaminants present in the maternal blood of Canadian Arctic populations, showing that perinatal exposure induces bone alterations in the young offspring. These findings could be significant from a health risk assessment point of view.
Collapse
Affiliation(s)
- Lubna E Elabbas
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|