1
|
Šuránek M, Melichová Z, Thomas M. Removal of cadmium and cobalt from water by Slovak bentonites: efficiency, isotherms, and kinetic study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29199-29217. [PMID: 38568306 DOI: 10.1007/s11356-024-33133-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024]
Abstract
Slovak bentonite was used as an effective natural adsorbent for the removal of Cd(II) and Co(II). Characterization of the samples was conducted using X-ray diffraction (XRD), high-resolution scanning electron microscopy with an X-ray energy dispersion spectrometer (SEM-EDS), and infrared spectroscopy (FT-IR). Adsorption experiments were carried out for pure water and artificial seawater, each containing cobalt and cadmium cations within the concentration range of 5-60 mg/L. The highest bentonite adsorption capacities of the tested bentonites were 23.5 (Cd) and 32.2 (Co) mg g-1. The kinetics data revealed that, in addition to chemisorption, intraparticle diffusion contributes to metal removal. The physical and structural properties of bentonites play an important role in adsorption. Bentonite P 135 from the Lieskovec deposit showed the highest efficiency for removing both ions, with removal percentages exceeding 90% and 77.5% for pure water and artificial seawater, respectively. The results indicate the suitability of using Slovak bentonites as an alternative sorbent for both metal extractions. The mechanism of metal ion adsorption on bentonite clay can be understood through surface complexation and ion exchange. The examined bentonite deposits show potential as promising natural sorbents for the removal of cobalt and cadmium cations from polluted waters.
Collapse
Affiliation(s)
- Matej Šuránek
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01, Banská Bystrica, Slovak Republic
| | - Zuzana Melichová
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01, Banská Bystrica, Slovak Republic
| | - Maciej Thomas
- Department of Environmental Technologies, Faculty of Environmental Engineering and Energy, Cracow University of Technology, Warszawska 24, 31-155, Cracow, Poland.
| |
Collapse
|
2
|
Chauhan AK, Kataria N, Gupta R, Garg VK. Biogenic fabrication of ZnO@EC and MgO@EC using Eucalyptus leaf extract for the removal of hexavalent chromium Cr(VI) ions from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124884-124901. [PMID: 36596976 DOI: 10.1007/s11356-022-24967-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Zinc and magnesium oxide nanoparticles were fabricated using green synthesis method for the sequestration of hexavalent chromium Cr(VI) from the aqueous medium. The biogenically prepared ZnO@EC and MgO@EC nanoparticles were successfully loaded on the Eucalyptus. The prepared nanomaterials were characterized using various techniques such as FESEM, TGA, XRD, EDX, FTIR, BET, and elemental mapping. FE-SEM analysis has revealed the surface morphology of ZnO nanoparticles, which were rod-like and spherical in shape, whereas MgO nanoparticles were of irregular shape. Batch mode was selected to remove the hexavalent chromium from aqueous solution using the prepared nanomaterials. The Cr(VI) adsorption was carried out under optimized conditions, viz., pH (3.0), adsorbent dose (0.05 g), contact time (150 min), temperature (25 ± 2 °C), and initial concentration (50 mg/L). The experimental results were compared using the different isotherm models; The observations have indicated that experimental data fit better with Freundlich (R2 = 0.99) and Langmuir (R2 = 0.99) isotherms, respectively. The maximum adsorption capacity of ZnO@EC and MgO@EC for Cr(VI) was found to be 49.3 and 17.4 mg/g, respectively. The regeneration study of the adsorbents was conducted using different desorbing agents viz., ethanol, NaOH, and NaCl. The desorbing agent NaOH performed better and showed removal percentage of 34.24% and 20.18% for ZnO@EC and MgO@EC, respectively, after the three reusability cycles. The kinetics of reaction was assessed using the pseudo-first-order and pseudo-second-order kinetic models. The experimental data of both the nanomaterials ZnO@EC and MgO@EC obeyed pseudo-second-order model with correlation coefficient values 0.999 and 0.983, respectively. The thermodynamic study confirmed that adsorption was feasible, spontaneous, and endothermic. The adsorbents were tested for spiked real water which confirms their applicability and potential in real water systems also. The results indicated fair removal of chromium suggesting applicability of both adsorbents.
Collapse
Affiliation(s)
- Amit Kumar Chauhan
- Department of Environmental Sciences and Technology, Central University of Punjab, Bathinda, 151001, Punjab, India
| | - Navish Kataria
- Department of Environmental Science and Engineering, J. C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Renuka Gupta
- Department of Environmental Science and Engineering, J. C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Vinod Kumar Garg
- Department of Environmental Sciences and Technology, Central University of Punjab, Bathinda, 151001, Punjab, India.
| |
Collapse
|
3
|
Peng S, Wei Y, Huang Y, Wei L, Chen P. Highly efficient adsorption of antibiotic ciprofloxacin hydrochloride from aqueous solution by diatomite-basic zinc chloride composites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98490-98501. [PMID: 37608178 DOI: 10.1007/s11356-023-29217-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
The antibiotic ciprofloxacin (CIP) is used to treat a variety of bacterial infections, yet it poses significant health risks to aquatic environments. While adsorption is a promising technique for CIP removal, current adsorption capacities remain limited. In this study, we introduce a diatomite and basic zinc chloride composite (ZnHC-Dt) prepared using a straightforward deposition method, with the ability to achieve highly efficient ciprofloxacin removal. ZnHC-Dt is characterized using field emission scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), and the Brunauer-Emmett-Teller method (BET). We also assess the zeta potential. The optimized ZnHC-Dt adsorbent, achieved at a mass ratio of 0.45 with ZnHC/(ZnHC+Dt), is adopted with a CIP adsorption capacity of 831.96 mg/g at 25 °C, broad pH adaptability (within 3.0-10.0), rapid adsorption rate (reaching equilibrium in 4 h), and stable performance under Na+ ionic strength. The CIP adsorption process follows pseudo-second-order kinetics and aligns well with the Langmuir adsorption model. The high adsorption capacity of ZnHC-Dt can be attributed to electrostatic attraction, hydrogen bonding, surface complexation, and available adsorption sites. During the desorption process, the CIP removal rate retains 65.33% effectiveness after five cycles. The results suggest that ZnHC-Dt holds significant potential for CIP removal in aqueous solutions.
Collapse
Affiliation(s)
- Shuwei Peng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanfu Wei
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Macao, Taipa, 999078, China
| | - Yiming Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Longmeng Wei
- Analysis and Test Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Pengcheng Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Baig N, Shetty S, Bargakshatriya R, Pramanik SK, Alameddine B. Efficient Removal of Carcinogenic Azo Dyes from Water Using Iron(II) Clathrochelate Derived Metalorganic Copolymers Made from a Copper-Catalyzed [4 + 2] Cyclobenzannulation Reaction. Polymers (Basel) 2023; 15:2948. [PMID: 37447593 DOI: 10.3390/polym15132948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
A novel synthetic strategy is disclosed to prepare a new class of metalorganic copolymers that contain iron(II) clathrochelate building blocks by employing a mild and cost-effective copper-catalyzed [4 + 2] cyclobenzannulation reaction, using three specially designed diethynyl iron(II) clathrochelate synthons. The target copolymers CBP1-3 were isolated in high purity and excellent yields as proven by their structural and photophysical characterization, namely, Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS) and UV-VIS absorption and emission spectroscopies. The thermogravimetric analysis (TGA) of CBP1-3 revealed an excellent chemical stability. Investigation of the adsorption properties of the target copolymers towards the carcinogenic methyl red dye from aqueous solution revealed a quantitative uptake in 30 min. Isothermal adsorption studies disclosed that methyl red uptake from aqueous solution followed the Langmuir model for all of the target copolymers, reaching a maximum adsorption capacity (qm) of 431 mg g-. Kinetic investigation revealed that the adsorption followed pseudo-first-order with an equilibrium adsorption capacity (qe,cal) of 79.35 mg g- and whose sorption property was sustained even after its reuse several times.
Collapse
Affiliation(s)
- Noorullah Baig
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| | - Suchetha Shetty
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| | - Rupa Bargakshatriya
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
| | - Sumit Kumar Pramanik
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
| | - Bassam Alameddine
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| |
Collapse
|
5
|
Abdel-Hady EE, Mohamed HFM, Hafez SHM, Fahmy AMM, Magdy A, Mohamed AS, Ali EO, Abdelhamed HR, Mahmoud OM. Textural properties and adsorption behavior of Zn-Mg-Al layered double hydroxide upon crystal violet dye removal as a low cost, effective, and recyclable adsorbent. Sci Rep 2023; 13:6435. [PMID: 37081088 PMCID: PMC10119303 DOI: 10.1038/s41598-023-33142-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/07/2023] [Indexed: 04/22/2023] Open
Abstract
The preparation of adsorbents plays a vital role in the adsorption method. In particular, many adsorbents with high specific surface areas and unique shapes are essential for the adsorption strategy. A Zn-Mg-Al/layer double hydroxide (LDH) was designed in this study using a simple co-precipitation process. Adsorbent based on Zn-Mg-Al/LDH was used to remove crystal violet (CV) from the wastewater. The impacts of the initial dye concentration, pH, and temperature on CV adsorption performance were systematically examined. The adsorbents were analyzed both before and after adsorption using FTIR, XRD, and SEM. The roughness parameters and surface morphologies of the produced LDH were estimated using 3D SEM images. Under the best conditions (dose of adsorbent = 0.07 g and pH = 9), the maximum adsorption capacity has been achieved. Adsorption kinetics studies revealed that the reaction that led to the adsorption of CV dye onto Zn-Mg-Al/LDH was a pseudo-second-order model. Additionally, intraparticle diffusion suggests that Zn-Mg-Al/LDH has a fast diffusion constant for CV molecules (0.251 mg/(g min1/2)). Furthermore, as predicted by the Langmuir model, the maximal Zn-Mg-Al/LDH adsorption capacity of CV was 64.80 mg/g. The CV dimensionless separation factor (RL) onto Zn-Mg-Al/LDH was 0.769, indicating that adsorption was favorable. The effect of temperature was performed at 25, 35, and 45 °C in order to establish the thermodynamic parameters ∆Ho, ∆So, and ∆Go. The computed values indicated exothermic and spontaneous adsorption processes. The study presented here might be used to develop new adsorbents with enhanced adsorption capabilities for the purpose of protecting the water environment.
Collapse
Affiliation(s)
- E E Abdel-Hady
- Physics Department, Faculty of Science, Minia University, P.O. Box 61519, Minia, Egypt
| | - Hamdy F M Mohamed
- Physics Department, Faculty of Science, Minia University, P.O. Box 61519, Minia, Egypt.
| | - Sarah H M Hafez
- Physics Department, Faculty of Science, Minia University, P.O. Box 61519, Minia, Egypt
| | - Abdalla M M Fahmy
- Physics Department, Faculty of Science, Minia University, P.O. Box 61519, Minia, Egypt
| | - Abdelhamed Magdy
- Physics Department, Faculty of Science, Minia University, P.O. Box 61519, Minia, Egypt
| | - Aya S Mohamed
- Physics Department, Faculty of Science, Minia University, P.O. Box 61519, Minia, Egypt
| | - Eman O Ali
- Physics Department, Faculty of Science, Minia University, P.O. Box 61519, Minia, Egypt
| | - Hager R Abdelhamed
- Physics Department, Faculty of Science, Minia University, P.O. Box 61519, Minia, Egypt
| | - Osama M Mahmoud
- Physics Department, Faculty of Science, Minia University, P.O. Box 61519, Minia, Egypt
| |
Collapse
|
6
|
Shi TT, Jiang XY, Yu JG. Efficient and Selective Removal of Organic Cationic Dyes by Peel of Brassica juncea Coss. var. gemmifera Lee et Lin-Based Biochar. Molecules 2023; 28:molecules28083353. [PMID: 37110588 PMCID: PMC10143088 DOI: 10.3390/molecules28083353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/03/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
The design and preparation of cheaper, greener and more efficient adsorbents is essential for the removal of pollutants by adsorption. In this study, biochar was prepared from peel of Brassica juncea var. gemmifera Lee et Lin (PoBJ) using a facile, low-temperature and vacuum pyrolysis, and the adsorption mechanism toward organic dyes in aqueous solution was elucidated. The adsorbent was characterized by XPS, FT-IR and SEM, and zeta potential techniques. The adsorption ability of PoBJ biochar for cationic dyes (methylene blue, brilliant green, calcein-safranine, azure I, rhodamine B), anionic dyes (alizarin yellow R), and neutral dyes (neutral red) revealed that the biochar exhibited adsorption selectivity toward cationic dyes. The effects of different factors on the adsorption performance of PoBJ biochar, as well as the adsorption kinetics and thermodynamics, were further investigated by using methylene blue as the model adsorbate. These factors included temperature, pH, contact time and dye concentration. The experimental results showed that BJ280 and BJ160 (prepared at 280 °C and 160 °C, respectively) possessed relatively higher adsorption capacity of 192.8 and 167.40 mg g-1 for methylene blue (MB), respectively, demonstrating the possibility of utilization of PoBJ biochar as a superior bio-adsorbent. The experimental data of BJ160 toward MB were correlated with various kinetic and isothermal models. The results indicated that the adsorption process was consistent with the Langmuir isotherm model and nonlinear pseudo-second-order kinetic model. Thermodynamic parameters indicated that the adsorption of MB onto BJ160 was exothermic. Thus, the low-temperature prepared PoBJ biochar was an environmentally friendly, economic and efficient cationic dye adsorbent.
Collapse
Affiliation(s)
- Tao-Tao Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xin-Yu Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jin-Gang Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
7
|
Liu P, Song T, Deng R, Hou X, Yi J. The efficient removal of congo red and ciprofloxacin by peony seeds shell activated carbon with ultra-high specific surface area. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53177-53190. [PMID: 36853543 PMCID: PMC9973249 DOI: 10.1007/s11356-023-26146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Preparation of high-performance activated carbon from agroforestry waste biomass can effectively improve the shortcomings of traditional biomass carbon performance. Using the waste biomass peony seeds shell (PSS) as the precursors in this study, high performance activated carbon was prepared by the KOH two-step activation method and used to remove congo red (CR) and ciprofloxacin (CIP) in water pollution. The obtained PSS-based activated carbons (PSACs) were characterized by SEM, EDS, N2 adsorption-desorption isotherm, FTIR, and XRD methods. The results showed that the activated carbon at 700 °C (PSAC-700) had an ultra-high specific surface area (2980.96 m2/g), excellent micropore volume (1.12 cm3/g), and abundant surface functional groups. The results of adsorption performance revealed that PSAC-700 exhibited excellent adsorption capacity for CR (qmax = 2003.2 mg/g) and CIP (qmax = 782.3 mg/g), which was superior to the carbon-based adsorbents reported reviously in the literature. Langmuir model could well describe the adsorption process of PSACs for CR and CIP, indicating that the pollutant molecules were uniformly adsorbed on the surface monolayer. The regeneration experiment suggested that after three cycles, the adsorption capacities of PSAC-700 for CR and CIP reached 1814 mg/g and 697 mg/g, respectively, with good repeatability. The preparation of PSAC-700 in this study has high adsorption capacity and strong application, which is an ideal material for wastewater purification adsorbent and has broad application prospect.
Collapse
Affiliation(s)
- Pu Liu
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China.
| | - Tianpeng Song
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Ruixue Deng
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Xiaogai Hou
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Junpeng Yi
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| |
Collapse
|
8
|
Aziz K, Aziz F, Mamouni R, Aziz L, Anfar Z, Azrrar A, Kjidaa B, Saffaj N, Laknifli A. High thiabendazole fungicide uptake using Cellana tramoserica shells modified by copper: characterization, adsorption mechanism, and optimization using CCD-RSM approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86020-86035. [PMID: 34490581 DOI: 10.1007/s11356-021-16340-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
In this paper, Cellana tramoserica (CT) shells were modified by copper and used as an adsorbent to remove thiabendazole (TBZ) from aqueous media. The removal efficiency of TBZ onto CT shells and modified Cellana tramoserica (CT-Cu) shells was investigated by considering the following parameters: initial pesticide concentration, solution pH, agitation time, temperature, and adsorbent mass. The experimental results show that the pseudo-first-order and Langmuir models well describe the adsorption process. The maximum adsorption amount for CT and CT-Cu is 319.68 mg/g and 376.12 mg/g, respectively. CT-Cu showed higher TBZ removal efficiency than CT, explained by the ligand exchange between the water and the pesticide molecules in the metal coordination sphere. Response surface methodology combined with central composite design (RSM-CCD) was used to optimize the adsorption conditions. Optimized values were obtained at 5 for pH, 50 ppm, 120 min, and 20 mg of CT-Cu adsorbent. Under these optimal conditions, 91% of TBZ was removed by adsorption onto CT-Cu. Graphical abstract.
Collapse
Affiliation(s)
- Khalid Aziz
- Laboratory of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Faissal Aziz
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000, Marrakech, Morocco.
| | - Rachid Mamouni
- Laboratory of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Layla Aziz
- Laboratory, Computer Science Department (LAROSERI), Faculty of Sciences, Chouaib Doukkali University, El Jadida, Morocco
| | - Zakaria Anfar
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
- Institute of Sciences and Materials of Mulhouse - CNRS, Haute Alsace University, Mulhouse, France
| | - Ahmed Azrrar
- Laboratory of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Bouthayna Kjidaa
- Laboratory of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Nabil Saffaj
- Laboratory of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Abdellatif Laknifli
- Laboratory of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|
9
|
Ghoniem MG, Ali FAM, Abdulkhair BY, Elamin MRA, Alqahtani AM, Rahali S, Ben Aissa MA. Highly Selective Removal of Cationic Dyes from Wastewater by MgO Nanorods. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1023. [PMID: 35335846 PMCID: PMC8950184 DOI: 10.3390/nano12061023] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 02/07/2023]
Abstract
The organic synthetic dyes employed in industries are carcinogenic and harmful. Dyes must be removed from wastewater to limit or eliminate their presence before dumping into the natural environment. The current study aims to investigate the use of MgO nanoparticles to eliminate basic fuchsine (BF), as a model cationic dye pollutant, from wastewater. The MgO nanorods were synthesized through a coprecipitation method. The obtained nanocomposite was characterized using various techniques such as X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Brunauer-Emmett-Teller (BET), and FTIR spectroscopy. It was found that the variation of dye concentration and pH influenced the removal of BF by MgO. The adsorption capacity of 493.90 mg/g is achieved under optimum operating conditions (pH = 11, contact time = 236 min, and initial BF concentration = 200 ppm). Pseudo-second-order adsorption kinetics and Freundlich isotherm models best fitted BF sorption onto MgO nanorods. The BF sorption mechanism is associated with the electrostatic attractions and hydrogen bond between the O-H group of MgO and the NH2 groups of BF, as indicated by the pH, isotherms, and FTIR studies. The reusability study indicates that MgO was effectively used to eliminate BF in at least four continuous cycles. The investigation of MgO with different dyes suggests the high adsorption selectivity of BF, crystal violet (CV), and malachite green (MG) dyes compared with methyl orange (MO) dye. Overall, MgO nanorods can act as a potential and promising adsorbent for the efficient and rapid removal of cationic dyes (CV, MG, and BF) from wastewater.
Collapse
Affiliation(s)
- Monira Galal Ghoniem
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (M.G.G.); (B.Y.A.); (M.R.A.E.); (A.M.A.)
| | - Fatima Adam Mohamed Ali
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (M.G.G.); (B.Y.A.); (M.R.A.E.); (A.M.A.)
| | - Babiker Yagoub Abdulkhair
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (M.G.G.); (B.Y.A.); (M.R.A.E.); (A.M.A.)
| | - Mohamed Rahmt Allah Elamin
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (M.G.G.); (B.Y.A.); (M.R.A.E.); (A.M.A.)
| | - Arwa Mofareh Alqahtani
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (M.G.G.); (B.Y.A.); (M.R.A.E.); (A.M.A.)
| | - Seyfeddine Rahali
- Department of Chemistry, College of Science and Arts, Qassim University, Ar Rass, Saudi Arabia
| | - Mohamed Ali Ben Aissa
- Department of Chemistry, College of Science and Arts, Qassim University, Ar Rass, Saudi Arabia
| |
Collapse
|
10
|
Milojević-Rakić M, Popadić D, Janošević Ležaić A, Jevremović A, Nedić Vasiljević B, Uskoković-Marković S, Bajuk-Bogdanović D. MFI, BEA and FAU zeolite scavenging role in neonicotinoids and radical species elimination. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:265-276. [PMID: 35037685 DOI: 10.1039/d1em00437a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ecotoxicity caused by neonicotinoid pesticides is largely due to oxidative stress on non-target species. Due to the fact that reactive radical species reach the environment, materials intended for pesticide removal should be applicable for the simultaneous removal of reactive radicals, as well. This work uses the spectroscopic, adsorptive and antioxidant responses from MFI, FAU and BEA zeolites as descriptors of their potential environmental importance. Different network structures and Si/Al ratios were correlated with excellent zeolite adsorption properties, as over 200 mg g-1 of investigated neonicotinoids, acetamiprid and imidacloprid, was achieved in one cycle. Additionally, after two regeneration steps, over 450 mg g-1 adsorbed pesticides were retained, in three adsorption cycles. Overall the best results were detected for the FAU zeotype in both tested applications, insecticide adsorption and radical-scavenging performance, with and without insecticides present. The proposed mechanism for adsorption relies on kinetic investigation, isotherm modelling and spectroscopic post-adsorption analysis and targets zeolite hydroxyl/siloxane groups as active sites for insecticide adsorption via hydrogen bonding. Neat, well-defined zeolite structures enable their prospective application in ecotoxic species removal.
Collapse
Affiliation(s)
- M Milojević-Rakić
- University of Belgrade-Faculty of Physical Chemistry, Studentski Trg 12-16, 11000 Belgrade, Serbia.
| | - D Popadić
- Department of Organic Residual Analysis, National Laboratory Sector, Serbian Environmental Protection Agency, Žabljačka 10A, 11160 Belgrade, Serbia
| | - A Janošević Ležaić
- University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - A Jevremović
- University of Belgrade-Faculty of Physical Chemistry, Studentski Trg 12-16, 11000 Belgrade, Serbia.
| | - B Nedić Vasiljević
- University of Belgrade-Faculty of Physical Chemistry, Studentski Trg 12-16, 11000 Belgrade, Serbia.
| | - S Uskoković-Marković
- University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - D Bajuk-Bogdanović
- University of Belgrade-Faculty of Physical Chemistry, Studentski Trg 12-16, 11000 Belgrade, Serbia.
| |
Collapse
|
11
|
Grover A, Mohiuddin I, Malik AK, Aulakh JS, Vikrant K, Kim KH, Brown RJC. Magnesium/aluminum layered double hydroxides intercalated with starch for effective adsorptive removal of anionic dyes. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127454. [PMID: 34655876 DOI: 10.1016/j.jhazmat.2021.127454] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/26/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
In this research, the adsorptive performance of a starch-magnesium/aluminum layered double hydroxide (S-Mg/Al LDH) composite was investigated for different organic dyes in single-component systems by conducting a series of batch mode experiments. S-Mg/Al LDH composite showed preferential adsorption of anionic dyes than cationic dyes. The marked impact of key process variables (e.g., contact time, adsorbent dosage, pH, and temperature) on its adsorption was investigated. Multiple isotherms, kinetics, and thermodynamic models were applied to describe adsorption behavior, diffusion, and uptake rates of the organic dyes over S-Mg/Al LDH composite. A better fitting of the non-linear Langmuir model reflects the predominance of monolayered adsorption of dye molecules on the composite surface. Partition coefficients (mg g-1 μM-1) for S-Mg/Al LDH were observed in the following descending order: Amaranth (665) > Tartrazine (186) > Sunset yellow (71) > Eosin yellow (65). Furthermore, comparative evaluation of the adsorption enthalpy, entropy, and Gibbs free energy values indicates that the adsorption process is spontaneous and exothermic. S-Mg/Al LDH composite maintained a stable adsorption/desorption recycling process over six consecutive cycles with the advantages of low cost, chemical/mechanical stability, and easy recovery. The results of this study are expected to expand the application of modified LDHs toward wastewater treatment.
Collapse
Affiliation(s)
- Aman Grover
- Department of Chemistry, Punjabi University, Patiala 147002, Punjab, India
| | - Irshad Mohiuddin
- Department of Chemistry, Punjabi University, Patiala 147002, Punjab, India
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala 147002, Punjab, India
| | | | - Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, Republic of Korea.
| | - Richard J C Brown
- Atmospheric Environmental Science Department, National Physical Laboratory, Teddington TW11 0LW, UK
| |
Collapse
|
12
|
Elamin MR, Abdulkhair BY, Algethami FK, Khezami L. Linear and nonlinear investigations for the adsorption of paracetamol and metformin from water on acid-treated clay. Sci Rep 2021; 11:13606. [PMID: 34193935 PMCID: PMC8245496 DOI: 10.1038/s41598-021-93040-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Natural clays are considered a safe, low-cost, and sound sorbent for some pharmaceutical and body care products from water. Metformin (MF) and paracetamol (PA) are of the most consumable drugs worldwide. A portion of natural clay was treated with distilled water, and another part was treated with hydrochloric acid. The water-treated clay (WTC) and the acid-treated clay (ATC) were characterized by scanning electron microscopy-energy dispersive spectroscopy, X-ray diffraction, Fourier transforms infrared spectroscopy, and nitrogen adsorption isotherm. Batch experiments were employed to investigate the influence of contact time and solution parameters on the adsorption of PA and MF on WTC and ATC. 30 min attained the equilibrium for all sorbent-sorbate systems. Both sorbents fitted the pseudo-second-order kinetic model with a preference to the nonlinear fitting, and the mechanism of adsorption partially fitted the liquid-film diffusion model. The PA and MF adsorption on WTC and ATC fitted the Freundlich model in preference to nonlinear fitting. The adsorption of pollutants on both sorbents was spontaneous, exothermic, and physisorption in nature. Even at low concentrations, both WTC and ATC showed efficiency above 80% in removing PA and MF from tab water, groundwater, and Red seawater. These findings nominated natural clay as an alternative to the costly nanomaterials as sorbents for removing pharmaceutical contaminants from water.
Collapse
Affiliation(s)
- Mohamed R Elamin
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90905, Riyadh, 11623, Kingdom of Saudi Arabia
- Industrial Research and Consultancy Center (IRCC), Khartoum North, Sudan
| | - Babiker Y Abdulkhair
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90905, Riyadh, 11623, Kingdom of Saudi Arabia.
- College of Science, Chemistry Department, Sudan University of Science and Technology (SUST), Khartoum, Sudan.
| | - Faisal K Algethami
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90905, Riyadh, 11623, Kingdom of Saudi Arabia
| | - L Khezami
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90905, Riyadh, 11623, Kingdom of Saudi Arabia
| |
Collapse
|
13
|
Removal of Pesticides from Waters by Adsorption: Comparison between Synthetic Zeolites and Mesoporous Silica Materials. A Review. MATERIALS 2021; 14:ma14133532. [PMID: 34202727 PMCID: PMC8269501 DOI: 10.3390/ma14133532] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 01/19/2023]
Abstract
Pesticides are pollutants found in wastewater due to increasing agricultural activities over the years. Inappropriate dosing of pesticides results in the dispersal of active ingredients in the environment. The complete removal of pesticides from wastewater is an immediate concern due to their high toxicity and mobility. At present, adsorption is one of the most widely used methods for pesticide removal, in which synthetic zeolites and mesoporous silica materials are extensively applied. This article presents a systematic and comparative review of the applications and comparison of these adsorbents, based on the data reported in the literature. The paper summarizes the information collected from various studies, including the type of adsorbents and pesticides used, experimental conditions, and results of each work. The studies analyzed were laboratory-based and show potential advantages for the treatment of pesticide-bearing waters using functionalized and unfunctionalized synthetic zeolites and mesoporous silica materials. As a whole, functionalized materials are reported to exhibit better removal performance for different pesticides than conventional materials. It is expected that the results of this review will help researchers to establish a powerful strategy for the abatement of pesticides in wastewater.
Collapse
|
14
|
Bachmann SAL, Calvete T, Féris LA. Caffeine removal from aqueous media by adsorption: An overview of adsorbents evolution and the kinetic, equilibrium and thermodynamic studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144229. [PMID: 33445003 DOI: 10.1016/j.scitotenv.2020.144229] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Caffeine is an emerging pollutant and is considered the most representative pollutant of the Pharmaceutical Active due to its high consumption by the general population. It can be used to track pollution caused by humans. Different technologies have been employed to remove the caffeine from aqueous media, however the adsorption has been preferred due to its simplicity, high removal efficiency, operational and implementation facility and low cost. This paper provides a systematic review of the published peer-reviewed literature concerned with caffeine removal by the adsorption process. The Scopus and ScienceDirect databases were used to identify relevant articles researches on caffeine removal. Many authors have studied caffeine's adsorption equilibrium in aqueous media, different conditions, and different adsorbents. This paper aims to uncover the overall trend of adsorbent used, kinetic and thermodynamic studies. The impact of pH, temperature, adsorbent dosage and competitive effect were presented and analyzed. It was observed that the adsorption capacities ranged between 10 and 1000 mg g-1, according to the nature and properties of the adsorbent. The pseudo-second order (kinetic model) and the Langmuir isotherm model showed the best adjustment of the experimental data from caffeine adsorption in most studies. The mechanistic understanding of adsorption and the development of new adsorbents are still a matter of future research, as well as the use of other kinetic models based on statistical factors and the thermodynamic studies should be considered.
Collapse
Affiliation(s)
- Suyanne Angie Lunelli Bachmann
- University of Rio Grande do Sul, School of Engineering, Department of Chemical Engineering, Ramiro Barcelos Street, 2777, Porto Alegre, RS, Postcode 90035-007, Brazil.
| | - Tatiana Calvete
- University of Rio Grande do Sul, School of Engineering, Department of Chemical Engineering, Ramiro Barcelos Street, 2777, Porto Alegre, RS, Postcode 90035-007, Brazil
| | - Liliana Amaral Féris
- University of Rio Grande do Sul, School of Engineering, Department of Chemical Engineering, Ramiro Barcelos Street, 2777, Porto Alegre, RS, Postcode 90035-007, Brazil
| |
Collapse
|
15
|
Ganesan S, Karthick K, Namasivayam C, Arul Pragasan L, Kirankumar VS, Devaraj S, Ponnusamy VK. Discarded biodiesel waste-derived lignocellulosic biomass as effective biosorbent for removal of sulfamethoxazole drug. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:17619-17630. [PMID: 31845244 DOI: 10.1007/s11356-019-07022-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
This work aims to evaluate the removal of pharmaceutical drug using discarded biodiesel waste-derived lignocellulosic-based activated carbon biomaterial. Lignocellulosic-based activated carbon (LAC) biomaterial was prepared from Jatropha shell (biodiesel processing waste) by a zinc chloride activation method. The LAC biomaterial was characterized using various techniques including powder XRD, FT-IR, SEM-EDAX, and BET analysis. LAC biomaterial was applied to examine the adsorption of sulfamethoxazole (SMZ) drug in aqueous solution under ambient temperature. Various experimental parameters such as the effect of pH, treatment time, adsorbate concentration, and LAC dose of adsorption experiments were thoroughly examined and optimized. Under the optimal conditions, LAC biomaterial showed the maximum adsorption removal efficiency of SMZ drug. The kinetic models of Lagergren first-order, pseudo-second-order, intraparticle diffusion, and Bhangam's equation for SMZ removal onto LAC were used to recognize the probable mechanism of adsorption manner. From the experimental results, the Freundlich isotherm model (Kf = 83.56 mg g-1 (L mg-1)1/n) shows similar fit than the Langmuir (Q0 = 206.2 mg g-1) and Dubinin-Radushkevich (Qm = 150.69 mg g-1) condition models of adsorption isotherms. The rate constants of adsorption were found to confirm the pseudo-first-order kinetic and Bhangam's models with a significant correlation. The separation factor (RL) showed the favorable condition of the adsorption isotherm for the experimental system. The desorption results indicate that the ionic molecular exchange of SMZ from the hydroxyl group of LAC surface plays an important role in the recycling processes. Therefore, these results proved that the prepared low-cost LAC biomaterial could be used as an efficient adsorption material for the effective removal of pharmaceutical drugs in aqueous samples.
Collapse
Affiliation(s)
- Sivarasan Ganesan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shiquan 1st Road, Sanmin District, Kaohsiung City, 807, Taiwan
- Division of Environmental Ecology, Department of Environmental Sciences, Bharathiar University, Coimbatore, 641046, India
| | - Kumaravel Karthick
- Division of Environmental Ecology, Department of Environmental Sciences, Bharathiar University, Coimbatore, 641046, India
- Division of Environmental Chemistry, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Chinnaya Namasivayam
- Division of Environmental Chemistry, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Lingassamy Arul Pragasan
- Division of Environmental Ecology, Department of Environmental Sciences, Bharathiar University, Coimbatore, 641046, India
| | - V S Kirankumar
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shiquan 1st Road, Sanmin District, Kaohsiung City, 807, Taiwan
| | - Sabarinathan Devaraj
- Biopharmacy Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shiquan 1st Road, Sanmin District, Kaohsiung City, 807, Taiwan.
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan.
| |
Collapse
|
16
|
Wang P, Li D, Fan X, Hu B, Wang X. Sorption and desorption behaviors of triphenyl phosphate (TPhP) and its degradation intermediates on aquatic sediments. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121574. [PMID: 31732336 DOI: 10.1016/j.jhazmat.2019.121574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/17/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
As triphenyl phosphate (TPhP) can biodegrade extensively in sediments, researches should further the understanding of the fate and transport of TPhP and its degradation intermediates in the environment. Therefore, the sorption/desorption behaviors of TPhP, diphenyl phosphate (DPhP) and phenyl phosphate (PhP) on sediments were investigated. The kinetic process was well-fitted by pseudo-second-order model, suggesting that chemisorption was involved. And the Langmuir model could describe the sorption isotherms of TPhP and DPhP well except for PhP. The redundancy analysis revealed that the sorption amount had a positive correlation with sediment organic matter, zeta potential and C/H of sediments. Besides the sorption/desorption behaviors were greatly influenced by the physicochemical properties of the sorbates. PhP with high molecular electrostatic potential (0.132 e0) was prone to protonation and formed hydrogen bonds, leading to higher sorption. Furthermore, hydrophobicity, π-π interactions, Lewis acid-base interaction and hydrogen bonding were involved in the sorption process and resulted in nonlinear sorption isotherms. TPhP, DPhP and PhP exhibited apparent desorption hysteresis on the sediments. Sediments with organic matter removed, which have complex pore distributions, exhibited more hysteresis. These results may contribute to the risk assessment and fate modeling of TPhP and its degradation products in sediments.
Collapse
Affiliation(s)
- Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Dandan Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiulei Fan
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Bin Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
17
|
Lee H, Kim D, Kim J, Ji MK, Han YS, Park YT, Yun HS, Choi J. As(III) and As(V) removal from the aqueous phase via adsorption onto acid mine drainage sludge (AMDS) alginate beads and goethite alginate beads. JOURNAL OF HAZARDOUS MATERIALS 2015; 292:146-154. [PMID: 25804789 DOI: 10.1016/j.jhazmat.2015.03.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 06/04/2023]
Abstract
Acid mine drainage sludge (AMDS) is a solid waste generated following the neutralization of acid mine drainage (AMD). This material entrapped in calcium alginate was investigated for the sorption of As(III) and As(V). Three different adsorbent materials were prepared: AMDS alginate beads (AABs), goethite alginate beads (GABs), and pure alginate beads. The effects of pH and the adsorption kinetics were investigated, and the adsorption isotherms were also evaluated. The optimum pH range using the AABs was determined to be within 2-10 for As(III) and 2-9 for As(V). Adsorption equilibrium data were evaluated using the Langmuir isotherm model, and the maximum adsorption capacity qmax was 18.25 and 4.97 mg g(-1) for As(III) on AAB and GAB, respectively, and 21.79 and 10.92 mg g(-1) for As(V) on AAB and GAB, respectively. The adsorption of As(III) and As(V) was observed to follow pseudo-second order kinetics. The As K-edge X-ray absorption near-edge structure (XANES) revealed that the adsorbed As(III) on the AABs was oxidized to As(V) via manganese oxide in the AMDS.
Collapse
Affiliation(s)
- Hongkyun Lee
- Green City Technology Institute, Korea Institute of Science and Technolgy, Seoul 136-791, South Korea
| | - Dohyeong Kim
- Green City Technology Institute, Korea Institute of Science and Technolgy, Seoul 136-791, South Korea
| | - Jongsik Kim
- Department of Chemistry, Dong-A University, Busan 604-714, South Korea
| | - Min-Kyu Ji
- Green City Technology Institute, Korea Institute of Science and Technolgy, Seoul 136-791, South Korea
| | - Young-Soo Han
- Korea Institute of Geoscience and Mineral Resources, 124 Gwahang-no, Daejeon 305-350, South Korea
| | - Young-Tae Park
- Green City Technology Institute, Korea Institute of Science and Technolgy, Seoul 136-791, South Korea
| | - Hyun-Shik Yun
- Green City Technology Institute, Korea Institute of Science and Technolgy, Seoul 136-791, South Korea; Department of Environmental Engineering, Yonsei University, Wonju 220 710, South Korea
| | - Jaeyoung Choi
- Green City Technology Institute, Korea Institute of Science and Technolgy, Seoul 136-791, South Korea.
| |
Collapse
|
18
|
Zheng Y, Wang W, Zhu G, Wang A. Enhanced Selectivity for Heavy Metals Using Polyaniline-Modified Hydrogel. Ind Eng Chem Res 2013. [DOI: 10.1021/ie302562f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yian Zheng
- Center of
Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People’s
Republic of China
- University of Chinese Academy of Sciences, Beijing
100049, People’s Republic of China
| | - Wenbo Wang
- Center of
Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People’s
Republic of China
| | - Gong Zhu
- Center of
Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People’s
Republic of China
| | - Aiqin Wang
- Center of
Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People’s
Republic of China
| |
Collapse
|
19
|
Canzano S, Iovino P, Leone V, Salvestrini S, Capasso S. Use and Misuse of Sorption Kinetic Data: A Common Mistake That Should Be Avoided. ADSORPT SCI TECHNOL 2012. [DOI: 10.1260/0263-6174.30.3.217] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Silvana Canzano
- Dipartimento di Scienze Ambientali, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Pasquale Iovino
- Dipartimento di Scienze Ambientali, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Vincenzo Leone
- Dipartimento di Scienze Ambientali, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Stefano Salvestrini
- Dipartimento di Scienze Ambientali, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Sante Capasso
- Dipartimento di Scienze Ambientali, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|