1
|
Chen PHB, Li XL, Baskin JM. Synthetic Lipid Biology. Chem Rev 2025; 125:2502-2560. [PMID: 39805091 PMCID: PMC11969270 DOI: 10.1021/acs.chemrev.4c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Cells contain thousands of different lipids. Their rapid and redundant metabolism, dynamic movement, and many interactions with other biomolecules have justly earned lipids a reputation as a vexing class of molecules to understand. Further, as the cell's hydrophobic metabolites, lipids assemble into supramolecular structures─most commonly bilayers, or membranes─from which they carry out myriad biological functions. Motivated by this daunting complexity, researchers across disciplines are bringing order to the seeming chaos of biological lipids and membranes. Here, we formalize these efforts as "synthetic lipid biology". Inspired by the idea, central to synthetic biology, that our abilities to understand and build biological systems are intimately connected, we organize studies and approaches across numerous fields to create, manipulate, and analyze lipids and biomembranes. These include construction of lipids and membranes from scratch using chemical and chemoenzymatic synthesis, editing of pre-existing membranes using optogenetics and protein engineering, detection of lipid metabolism and transport using bioorthogonal chemistry, and probing of lipid-protein interactions and membrane biophysical properties. What emerges is a portrait of an incipient field where chemists, biologists, physicists, and engineers work together in proximity─like lipids themselves─to build a clearer description of the properties, behaviors, and functions of lipids and membranes.
Collapse
Affiliation(s)
- Po-Hsun Brian Chen
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xiang-Ling Li
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy M Baskin
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
2
|
Rahman MS, Bharadwaj V, Lautaha AKHS, Sampson P, Brasch NE, Seed AJ. Developing Photoactive Coumarin-Caged N-Hydroxysulfonamides for Generation of Nitroxyl (HNO). Molecules 2024; 29:3918. [PMID: 39202997 PMCID: PMC11356963 DOI: 10.3390/molecules29163918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Photoactive N-hydroxysulfonamides photocaged with the (6-bromo-7-hydroxycoumarin-4-yl)methyl chromophore have been successfully synthesized, and the mechanisms of photodecomposition investigated for two of the compounds. Upon irradiation up to 97% of a diagnostic marker for (H)NO release, sulfinate was observed for the trifluoromethanesulfonamide system. In the absence of a species that reacts rapidly with (H)NO, (H)NO instead reacts with the carbocation intermediate to ultimately generate (E)-BHC-oxime and (Z)-BHC-oxime. Alternatively, the carbocation intermediate reacts with solvent water to give a diol. Deprotonation of the N(H) proton is required for HNO generation via concerted C-O/N-S bond cleavage, whereas the protonation state of the O(H) does not affect the observed photoproducts. If the N(H) is protonated, C-O bond cleavage to generate the parent N-hydroxysulfonamide will occur, and/or O-N bond cleavage to generate a sulfonamide. The undesired competing O-N bond cleavage pathway increases when the volume percentage of water in acetonitrile/water solvent mixtures is increased.
Collapse
Affiliation(s)
- Mohammad S. Rahman
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Vinay Bharadwaj
- School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
- The Dodd-Walls Centre for Quantum and Photonic Technologies, Dunedin 9054, New Zealand
| | - Anau K. H. S. Lautaha
- School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
- The Dodd-Walls Centre for Quantum and Photonic Technologies, Dunedin 9054, New Zealand
| | - Paul Sampson
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Nicola E. Brasch
- School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
- The Dodd-Walls Centre for Quantum and Photonic Technologies, Dunedin 9054, New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland 1142, New Zealand
| | - Alexander J. Seed
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
3
|
Abstract
Lipids are key components of all organisms. We are well educated in their use as fuel and their essential role to form membranes. We also know much about their biosynthesis and metabolism. We are also aware that most lipids have signaling character meaning that a change in their concentration or location constitutes a signal that helps a living cell to respond to changes in the environment or to fulfill its specific function ranging from secretion to cell division. What is much less understood is how lipids change location in cells over time and what other biomolecules they interact with at each stage of their lifetime. Due to the large number of often quite similar lipid species and the sometimes very short lifetime of signaling lipids, we need highly specific tools to manipulate and visualize lipids and lipid-protein interactions. If successfully applied, these tools provide fabulous opportunities for discovery.In this Account, I summarize the development of synthetic tools from our lab that were designed to address crucial properties that allow them to function as tools in live cell experiments. Techniques to change the concentration of lipids by adding a small molecule or by light are described and complemented by examples of biological findings made when applying the tools. This ranges from chemical dimerizer-based systems to synthetic "caged" lipid derivatives. Furthermore, I discuss the problem of locating a lipid in an intact cell. Synthetic molecular probes are described that help to unravel the lipid location and to determine their binding proteins. These location studies require in-cell lipid tagging by click chemistry, photo-cross-linking to prevent further movement and the "caging" groups to avoid premature metabolism. The combination of these many technical features in a single tool allows for the analysis of not only lipid fluxes through metabolism but also lipid transport from one membrane to another as well as revealing the lipid interactome in a cell-dependent manner. This latter point is crucial because with these multifunctional tools in combination with lipidomics we can now address differences in healthy versus diseased cells and ultimately find the changes that are essential for disease development and new therapeutics that prevent these changes.
Collapse
Affiliation(s)
- Carsten Schultz
- Department of Chemical Physiology and
Biochemistry, Oregon Health & Science
University, Portland, Oregon 97239, United States
| |
Collapse
|
4
|
Simon C, Asaro A, Feng S, Riezman H. An organelle-specific photoactivation and dual-isotope labeling strategy reveals phosphatidylethanolamine metabolic flux. Chem Sci 2023; 14:1687-1695. [PMID: 36819876 PMCID: PMC9930920 DOI: 10.1039/d2sc06069h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
Phosphatidylethanolamine metabolism plays essential roles in eukaryotic cells but has not been completely investigated due to its complexity. This is because lipid species, unlike proteins or nucleic acids, cannot be easily manipulated at the single molecule level or controlled with subcellular resolution, two of the key factors toward understanding their functions. Here, we use the organelle-targeting photoactivation method to study PE metabolism in living cells with a high spatiotemporal resolution. Containing predefined PE structures, probes which can be selectively introduced into the ER or mitochondria were designed to compare their metabolic products according to their subcellular localization. We combined photo-uncaging with dual stable isotopic labeling to track PE metabolism in living cells by mass spectrometry analysis. Our results reveal that both mitochondria- and ER-released PE participate in phospholipid remodeling, and that PE methylation can be detected only under particular conditions. Thus, our method provides a framework to study phospholipid metabolism at subcellular resolution.
Collapse
Affiliation(s)
- Clémence Simon
- Department of Biochemistry, NCCR Chemical Biology, University of Geneva Geneva 1205 Switzerland
| | - Antonino Asaro
- Department of Biochemistry, NCCR Chemical Biology, University of Geneva Geneva 1205 Switzerland
| | - Suihan Feng
- Unit of Chemical Biology and Lipid Metabolism, Center for Microbes, Development and Health (CMDH), Institut Pasteur of Shanghai, Chinese Academy of SciencesShanghai200031China
| | - Howard Riezman
- Department of Biochemistry, NCCR Chemical Biology, University of Geneva Geneva 1205 Switzerland
| |
Collapse
|
5
|
Jiménez-López C, Nadler A. Caged lipid probes for controlling lipid levels on subcellular scales. Curr Opin Chem Biol 2023; 72:102234. [PMID: 36493527 DOI: 10.1016/j.cbpa.2022.102234] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/26/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022]
Abstract
Lipids exert their cellular functions in individual organelles, in some cases on the scale of even smaller, specialized membrane domains. Thus, the experimental capacity to precisely manipulate lipid levels at the subcellular level is crucial for studying lipid-related processes in cell biology. Photo-caged lipid probes which partition into specific cellular membranes prior to photoactivation have emerged as key tools for localized and selective perturbation of lipid concentration in living cells. In this review, we provide an overview of the recent advances in the area and outline which developments are still required for the methodology to be more widely implemented in the wider membrane biology community.
Collapse
Affiliation(s)
| | - André Nadler
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
6
|
Simon C, Feng S, Riezman H. Chemical Biology Tools to Study Lipids and their Metabolism with Increased Spatial and Temporal Resolution. Chimia (Aarau) 2021; 75:1012-1016. [PMID: 34920769 DOI: 10.2533/chimia.2021.1012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lipids are important cellular components providing many essential functions. To fulfill these various functions evolution has selected for a diverse set of lipids and this diversity is seen at the organismal, cellular and subcellular level. Understanding how cells maintain this complex lipid organization is a very challenging problem, which for lipids, is not easily addressed using biochemical and genetic techniques. Therefore, chemical tools have an important role to play in our quest to understand the complexities of lipid metabolism. Here we discuss new chemical tools to study lipids, their distribution and metabolism with increased spatial and temporal resolution.
Collapse
Affiliation(s)
- Clémence Simon
- NCCR Chemical Biology, University of Geneva, CH-1211 Geneva
| | - Suihan Feng
- NCCR Chemical Biology, University of Geneva, CH-1211 Geneva; Current Address : Center for Microbes, Health and Development (CMDH), Institut Pasteur of Shanghai, Chinese Academy of Sciences, China
| | - Howard Riezman
- NCCR Chemical Biology, University of Geneva, CH-1211 Geneva;,
| |
Collapse
|
7
|
Farley S, Laguerre A, Schultz C. Caged lipids for subcellular manipulation. Curr Opin Chem Biol 2021; 65:42-48. [PMID: 34119744 DOI: 10.1016/j.cbpa.2021.04.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022]
Abstract
We present recently developed strategies to manipulate lipid levels in live cells by light. We focus on photoremovable protecting groups that lead to subcellular restricted localization and activation and discuss alternative techniques. We emphasize the development of organelle targeting of caged lipids and discuss recent advances in chromatic orthogonality of caging groups for future applications.
Collapse
Affiliation(s)
- Scotland Farley
- Dept. Chemical Physiology & Biochemistry, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Aurélien Laguerre
- Dept. Chemical Physiology & Biochemistry, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Carsten Schultz
- Dept. Chemical Physiology & Biochemistry, Oregon Health and Science University (OHSU), Portland, OR, USA.
| |
Collapse
|
8
|
Prause K, Naseri G, Schumacher F, Kappe C, Kleuser B, Arenz C. A photocaged inhibitor of acid sphingomyelinase. Chem Commun (Camb) 2021; 56:14885-14888. [PMID: 33179626 DOI: 10.1039/d0cc06661c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acid sphingomyelinase (ASM) is a potential drug target and involved in rapid lipid signalling events. However, there are no tools available to adequately study such processes. Based on a non cell-permeable PtdIns(3,5)P2 inhibitor of ASM, we developed a compound with o-nitrobenzyl photocages and butyryl esters to transiently mask hydroxyl groups. This resulted in a potent light-inducible photocaged ASM inhibitor (PCAI). The first example of a time-resolved inhibition of ASM was shown in intact living cells.
Collapse
Affiliation(s)
- Kevin Prause
- Institute for Chemistry, Humboldt Universität zu Berlin, 12437 Berlin, Germany.
| | - Gita Naseri
- Institute for Chemistry, Humboldt Universität zu Berlin, 12437 Berlin, Germany.
| | - Fabian Schumacher
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany and Department of Molecular Biology, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Christian Kappe
- Institute for Chemistry, Humboldt Universität zu Berlin, 12437 Berlin, Germany.
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Christoph Arenz
- Institute for Chemistry, Humboldt Universität zu Berlin, 12437 Berlin, Germany.
| |
Collapse
|
9
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 324] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
10
|
Kaewchangwat N, Thanayupong E, Jarussophon S, Niamnont N, Yata T, Prateepchinda S, Unger O, Han BH, Suttisintong K. Coumarin-Caged Compounds of 1-Naphthaleneacetic Acid as Light-Responsive Controlled-Release Plant Root Stimulators. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6268-6279. [PMID: 32396350 DOI: 10.1021/acs.jafc.0c00138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Six coumarin-caged compounds of 1-naphthaleneacetic acid (NAA) comprising different substituents on the coumarin moiety were synthesized and evaluated for their photophysical and chemical properties as light-responsive controlled-release plant root stimulators. The 1H NMR and HPLC techniques were used to verify the release of NAA from the caged compounds. After irradiation at 365 nm, the caged compounds exhibited the fastest release rate at t1/2 of 6.7 days and the slowest release rate at t1/2 of 73.7 days. Caged compounds at high concentrations (10-5 and 10-6 M) significantly stimulate secondary root germination while free NAA at the same level is toxic and leads to inhibition of secondary root germination. The cytotoxicity of the caged compounds against fibroblasts and vero cells were evaluated, and the results suggested that, at 10-5-10-6 M, caged compounds exhibited no significant cytotoxicity to the cells. Thus, the caged compounds of NAA in this study could be of great benefit as efficient agrochemicals.
Collapse
Affiliation(s)
- Narongpol Kaewchangwat
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Thanon Phahonyothin, Tumbon Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand
| | - Eknarin Thanayupong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Thanon Phahonyothin, Tumbon Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand
| | - Suwatchai Jarussophon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Thanon Phahonyothin, Tumbon Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand
| | - Nakorn Niamnont
- Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
| | - Teerapong Yata
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sagaw Prateepchinda
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Thanon Phahonyothin, Tumbon Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand
| | - Onuma Unger
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Thanon Phahonyothin, Tumbon Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand
| | - Bao-Hang Han
- National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao Zhongguancun, 100190 Beijing, P. R. China
| | - Khomson Suttisintong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Thanon Phahonyothin, Tumbon Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
11
|
Tang S, Cannon J, Yang K, Krummel MF, Baker JR, Choi SK. Spacer-Mediated Control of Coumarin Uncaging for Photocaged Thymidine. J Org Chem 2020; 85:2945-2955. [PMID: 32020803 PMCID: PMC7293860 DOI: 10.1021/acs.joc.9b02617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Despite its importance in the design of photocaged molecules, less attention is focused on linker chemistry than the cage itself. Here, we describe unique uncaging properties displayed by two coumarin-caged thymidine compounds, each conjugated with (2) or without (1) an extended, self-immolative spacer. Photolysis of 1 using long-wavelength UVA (365 nm) or visible (420, 455 nm) light led to the release of free thymidine along with the competitive generation of a thymidine-bearing recombination product. The occurrence of this undesired side reaction, which is previously unreported, was not present with the photolysis of 2, which released thymidine exclusively with higher quantum efficiency. We propose that the spatial separation between the cage and the substrate molecule conferred by the extended linker can play a critical role in circumventing this unproductive reaction. This report reinforces the importance of linker selection in the design of coumarin-caged oligonucleosides and other conjugates.
Collapse
Affiliation(s)
- Shengzhuang Tang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Ann Arbor, Michigan 48109, United States of America
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America
| | - Jayme Cannon
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Ann Arbor, Michigan 48109, United States of America
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America
| | - Kelly Yang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America
| | - Matthew F. Krummel
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, HSW512, San Francisco, California 94143, United States of America
| | - James R. Baker
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Ann Arbor, Michigan 48109, United States of America
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America
| | - Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Ann Arbor, Michigan 48109, United States of America
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America
| |
Collapse
|
12
|
Müller AK, Jung D, Sun J, Kuckling D. Synthesis and characterization of light-degradable bromocoumarin functionalized polycarbonates. Polym Chem 2020. [DOI: 10.1039/c9py01405e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The preparation, characterization and degradation properties of novel light-degradable bromocoumarin functionalized polycarbonates were investigated in the present work.
Collapse
Affiliation(s)
- Ann-Kathrin Müller
- Department of Chemistry
- Paderborn University
- D-33098 Paderborn
- Germany
- Department of Chemistry
| | - Dimitri Jung
- Department of Chemistry
- Paderborn University
- D-33098 Paderborn
- Germany
| | - Jingjiang Sun
- Department of Chemistry
- Paderborn University
- D-33098 Paderborn
- Germany
- Key Laboratory of Rubber-plastics
| | - Dirk Kuckling
- Department of Chemistry
- Paderborn University
- D-33098 Paderborn
- Germany
| |
Collapse
|
13
|
Light-triggered release of photocaged therapeutics - Where are we now? J Control Release 2019; 298:154-176. [PMID: 30742854 DOI: 10.1016/j.jconrel.2019.02.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 01/02/2023]
Abstract
The current available therapeutics face several challenges such as the development of ideal drug delivery systems towards the goal of personalized treatments for patients benefit. The application of light as an exogenous activation mechanism has shown promising outcomes, owning to the spatiotemporal confinement of the treatment in the vicinity of the diseased tissue, which offers many intriguing possibilities. Engineering therapeutics with light responsive moieties have been explored to enhance the bioavailability, and drug efficacy either in vitro or in vivo. The tailor-made character turns the so-called photocaged compounds highly desirable to reduce the side effects of drugs and, therefore, have received wide research attention. Herein, we seek to highlight the potential of photocaged compounds to obtain a clear understanding of the mechanisms behind its use in therapeutic delivery. A deep overview on the progress achieved in the design, fabrication as well as current and possible future applications in therapeutics of photocaged compounds is provided, so that novel formulations for biomedical field can be designed.
Collapse
|
14
|
Glucosylceramide acyl chain length is sensed by the glycolipid transfer protein. PLoS One 2018; 13:e0209230. [PMID: 30550553 PMCID: PMC6294359 DOI: 10.1371/journal.pone.0209230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/30/2018] [Indexed: 12/02/2022] Open
Abstract
The glycolipid transfer protein, GLTP, can be found in the cytoplasm, and it has a FFAT-like motif (two phenylalanines in an acidic tract) that targets it to the endoplasmic reticulum (ER). We have previously shown that GLTP can bind to a transmembrane ER protein, vesicle-associated membrane protein-associated protein A (VAP-A), which is involved in a wide range of ER functions. We have addressed the mechanisms that might regulate the association between GLTP and the VAP proteins by studying the capacity of GLTP to recognize different N-linked acyl chain species of glucosylceramide. We used surface plasmon resonance and a lipid transfer competition assay to show that GLTP prefers shorter N-linked fully saturated acyl chain glucosylceramides, such as C8, C12, and C16, whereas long C18, C20, and C24-glucosylceramides are all bound more weakly and transported more slowly than their shorter counterparts. Changes in the intrinsic GLTP tryptophan fluorescence blueshifts, also indicate a break-point between C16- and C18-glucosylceramide in the GLTP sensing ability. It has long been postulated that GLTP would be a sensor in the sphingolipid synthesis machinery, but how this mechanistically occurs has not been addressed before. It is unclear what proteins the GLTP VAP association would influence. Here we found that if GLTP has a bound GlcCer the association with VAP-A is weaker. We have also used a formula for identifying putative FFAT-domains, and we identified several potential VAP-interactors within the ceramide and sphingolipid synthesis pathways that could be candidates for regulation by GLTP.
Collapse
|
15
|
Traceless synthesis of ceramides in living cells reveals saturation-dependent apoptotic effects. Proc Natl Acad Sci U S A 2018; 115:7485-7490. [PMID: 29967152 DOI: 10.1073/pnas.1804266115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mammalian cells synthesize thousands of distinct lipids, yet the function of many of these lipid species is unknown. Ceramides, a class of sphingolipid, are implicated in several cell-signaling pathways but poor cell permeability and lack of selectivity in endogenous synthesis pathways have hampered direct study of their effects. Here we report a strategy that overcomes the inherent biological limitations of ceramide delivery by chemoselectively ligating lipid precursors in vivo to yield natural ceramides in a traceless manner. Using this method, we uncovered the apoptotic effects of several ceramide species and observed differences in their apoptotic activity based on acyl-chain saturation. Additionally, we demonstrate spatiotemporally controlled ceramide synthesis in live cells through photoinitiated lipid ligation. Our in situ lipid ligation approach addresses the long-standing problem of lipid-specific delivery and enables the direct study of unique ceramide species in live cells.
Collapse
|
16
|
Wong PT, Roberts EW, Tang S, Mukherjee J, Cannon J, Nip AJ, Corbin K, Krummel MF, Choi SK. Control of an Unusual Photo-Claisen Rearrangement in Coumarin Caged Tamoxifen through an Extended Spacer. ACS Chem Biol 2017; 12:1001-1010. [PMID: 28191924 PMCID: PMC5404426 DOI: 10.1021/acschembio.6b00999] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
The use of coumarin
caged molecules has been well documented in
numerous photocaging applications including for the spatiotemporal
control of Cre-estrogen receptor (Cre-ERT2) recombinase activity.
In this article, we report that 4-hydroxytamoxifen (4OHT) caged with
coumarin via a conventional ether linkage led to
an unexpected photo-Claisen rearrangement which significantly competed
with the release of free 4OHT. The basis for this unwanted reaction
appears to be related to the coumarin structure and its radical-based
mechanism of uncaging, as it did not occur in ortho-nitrobenzyl (ONB) caged 4OHT that was otherwise linked in the same
manner. In an effort to perform design optimization, we introduced
a self-immolative linker longer than the ether linkage and identified
an optimal linker which allowed rapid 4OHT release by both single-photon
and two-photon absorption mechanisms. The ability of this construct
to actively control Cre-ERT2 mediated gene modifications was investigated
in mouse embryonic fibroblasts (MEFs) in which the expression of a
green fluorescent protein (GFP) reporter dependent gene recombination
was controlled by 4OHT release and measured by confocal fluorescence
microscopy and flow cytometry. In summary, we report the implications
of this photo-Claisen rearrangement in coumarin caged compounds and
demonstrate a rational linker strategy for addressing this unwanted
side reaction.
Collapse
Affiliation(s)
| | - Edward W. Roberts
- Department
of Pathology, University of California, San Francisco, 513 Parnassus Ave, HSW512, San Francisco, California 94143, United States
| | | | | | | | - Alyssa J. Nip
- Department
of Pathology, University of California, San Francisco, 513 Parnassus Ave, HSW512, San Francisco, California 94143, United States
| | - Kaitlin Corbin
- Department
of Pathology, University of California, San Francisco, 513 Parnassus Ave, HSW512, San Francisco, California 94143, United States
| | - Matthew F. Krummel
- Department
of Pathology, University of California, San Francisco, 513 Parnassus Ave, HSW512, San Francisco, California 94143, United States
| | | |
Collapse
|
17
|
Shigenaga A, Yamamoto J, Kohiki T, Inokuma T, Otaka A. Invention of stimulus-responsive peptide-bond-cleaving residue (Spr) and its application to chemical biology tools. J Pept Sci 2017; 23:505-513. [PMID: 28105728 DOI: 10.1002/psc.2961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 01/04/2023]
Abstract
Elucidation of biological functions of peptides and proteins is essential for understanding peptide/protein-related biological events and developing drugs. Caged peptides and proteins that release a parent active peptide/protein by photo-irradiation have successfully been employed to elucidate the functions. Whereas the usual caged peptide/protein enables conversion of an inactive form to an active form (OFF-to-ON conversion) by photo-induced deprotection, photo-triggered main chain cleavage is reported to be applicable to ON-to-OFF conversion. These peptides and proteins are photo-responsive; however, if peptides and proteins could respond to other stimuli such as disease-related environment or enzymes, their range of application should be widened. To convert the photo-responsive peptide/protein into other stimulus-responsive peptide/protein, quite laborious de novo design and synthesis of the stimulus-responsive unit are required. In this context, we designed a stimulus-responsive peptide-bond-cleaving residue (Spr) in which the stimuli available for the main chain cleavage vary according to the choice of protecting groups on the residue. In this review, design and synthesis of Spr are introduced, and challenges to apply Spr to other fields to enable, for example, functional control, localization control, delivery of cargos, labeling of a protein of interest in living cells, and identification of target proteins of bioactive ligands are discussed. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Akira Shigenaga
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Jun Yamamoto
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Taiki Kohiki
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Tsubasa Inokuma
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Akira Otaka
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| |
Collapse
|
18
|
Benoit C, Talitha S, David F, Michel S, Anna SJ, Rachel AV, Patrice W. Dual thermo- and light-responsive coumarin-based copolymers with programmable cloud points. Polym Chem 2017. [DOI: 10.1039/c7py00914c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This article deals with the design of a new class of dual-responsive coumarin-based copolymers, sensitive to temperature and light (UV and near infrared).
Collapse
Affiliation(s)
- Couturaud Benoit
- Univ. Lille
- CNRS
- ENSCL
- UMR 8207 – UMET – Unité Matériaux Et Transformations
- Ingénierie des Systèmes Polymères (ISP) team
| | - Stefanello Talitha
- Grenoble Alpes University
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS)
- 38041 Grenoble Cedex 9
- France
| | - Fournier David
- Univ. Lille
- CNRS
- ENSCL
- UMR 8207 – UMET – Unité Matériaux Et Transformations
- Ingénierie des Systèmes Polymères (ISP) team
| | - Sliwa Michel
- Univ. Lille
- CNRS
- UMR 8516 – LASIR – Laboratoire de Spectrochimie Infrarouge et Raman
- F-59000 Lille
- France
| | - Szarpack-Jankowska Anna
- Grenoble Alpes University
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS)
- 38041 Grenoble Cedex 9
- France
| | - Auzély-Velty Rachel
- Grenoble Alpes University
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS)
- 38041 Grenoble Cedex 9
- France
| | - Woisel Patrice
- Univ. Lille
- CNRS
- ENSCL
- UMR 8207 – UMET – Unité Matériaux Et Transformations
- Ingénierie des Systèmes Polymères (ISP) team
| |
Collapse
|
19
|
Frank JA, Franquelim HG, Schwille P, Trauner D. Optical Control of Lipid Rafts with Photoswitchable Ceramides. J Am Chem Soc 2016; 138:12981-12986. [DOI: 10.1021/jacs.6b07278] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- James Allen Frank
- Department
of Chemistry and Center for Integrated Protein Science, Ludwig Maximilians University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Henri G. Franquelim
- Department
of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Petra Schwille
- Department
of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Dirk Trauner
- Department
of Chemistry and Center for Integrated Protein Science, Ludwig Maximilians University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| |
Collapse
|
20
|
Optopharmacological control of TRPC channels by coumarin-caged lipids is associated with a phototoxic membrane effect. SCIENCE CHINA-LIFE SCIENCES 2016; 59:802-10. [DOI: 10.1007/s11427-016-5095-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
|
21
|
Kim YA, Day J, Lirette CA, Costain WJ, Johnston LJ, Bittman R. Synthesis and photochemical properties of PEGylated coumarin-caged ceramides for cell studies. Chem Phys Lipids 2015. [PMID: 26200920 DOI: 10.1016/j.chemphyslip.2015.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Caged ceramide analogues (C6-, C16-, C18-, C22- and C24-Cer) have been prepared by introducing a hydrophilic coumarin-based cage bearing a short polyethylene glycol (PEG) chain. (6-Bromo-7-mTEGylated-coumarin-4-yl)methyl (Btc) caged ceramide showed efficient photo-uncaging to release the parent ceramide upon direct exposure to 350 nm UV light; in contrast (7-mTEGylated-coumarin-4-yl)methyl (Tc) caged ceramide was photolysed more slowly. In preliminary experiments, Btc-caged ceramides were taken up by cells and their photolysis led to decreases in cell viability, but not to activation of caspase enzymes, suggesting that either reactive oxygen species or an alternate caspase-independent pathway may be responsible for the decreases in cell viability caused by photolysis of caged ceramides.
Collapse
Affiliation(s)
- Young Ah Kim
- Department of Chemistry and Biochemistry, Queens College of The City University of New York, Flushing, NY 11367, USA.
| | - Jenna Day
- National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; Department of Chemistry, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Carol Ann Lirette
- National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; Department of Chemistry, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | | | | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College of The City University of New York, Flushing, NY 11367, USA
| |
Collapse
|
22
|
Höglinger D, Nadler A, Schultz C. Caged lipids as tools for investigating cellular signaling. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1085-96. [PMID: 24713581 DOI: 10.1016/j.bbalip.2014.03.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 12/21/2022]
Abstract
Lipid derivatives that can be activated by light, often referred to as 'caged' lipids, are useful tools to manipulate intact cells non-invasively. Here we focus on experimental approaches that have made use of caged lipids. Apart from summarizing the recent advances and available tools in the field, we strive to highlight the experimental challenges that arise from lipid-specific biophysical properties and the abundance of an enormous diversity of distinct molecular lipid species in cells. This article is part of a Special Issue entitled Tools to study lipid functions.
Collapse
Affiliation(s)
- Doris Höglinger
- European Molecular Biology Laboratory (EMBL), Cell Biology & Biophysics Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - André Nadler
- European Molecular Biology Laboratory (EMBL), Cell Biology & Biophysics Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL), Cell Biology & Biophysics Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany.
| |
Collapse
|
23
|
Liu Z, Liu T, Lin Q, Bao C, Zhu L. Photoreleasable thiol chemistry for facile and efficient bioconjugation. Chem Commun (Camb) 2014; 50:1256-8. [DOI: 10.1039/c3cc48263d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mild and controllable photoreleasable thiol chemistry was utilized for in situ bioconjugation with protein and quantum dot nanoparticles (QDs).
Collapse
Affiliation(s)
- Zhenzhen Liu
- Key Laboratory for Advanced Materials
- Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai, P. R. China
| | - Tao Liu
- Key Laboratory for Advanced Materials
- Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai, P. R. China
| | - Qiuning Lin
- Key Laboratory for Advanced Materials
- Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai, P. R. China
| | - Chunyan Bao
- Key Laboratory for Advanced Materials
- Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai, P. R. China
| | - Linyong Zhu
- Key Laboratory for Advanced Materials
- Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai, P. R. China
| |
Collapse
|
24
|
Synthesis and Characterization of Cell-Permeable Caged Phosphates that Can Be Photolyzed by Visible Light or 800 nm Two-Photon Photolysis. Chembiochem 2013; 14:2277-83. [DOI: 10.1002/cbic.201300425] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Indexed: 01/05/2023]
|
25
|
Carter Ramirez DM, Kim YA, Bittman R, Johnston LJ. Lipid Phase Separation and Protein-Ganglioside Clustering in Supported Bilayers Are Induced by Photorelease of Ceramide. SOFT MATTER 2013; 9:4890-4899. [PMID: 23667384 PMCID: PMC3649770 DOI: 10.1039/c3sm50240f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Photolysis of 6-bromo-7-hydroxycoumarinyl-caged ceramide was used to generate ceramide with spatial and temporal control in supported lipid bilayers prepared from mixtures of caged ceramide and phospholipids. The caged ceramide molecules are randomly distributed in fluid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers, and upon photolysis with long wavelength UV light small ordered ceramide domains are formed that phase separate from the bulk fluid membrane. Irradiation of a spatially restricted area leads to the transient formation of ceramide-enriched gel phase domains that equilibrate via lipid diffusion with the surrounding unirradiated membrane. Photorelease of C16-ceramide in supported bilayers prepared from POPC, caged ceramide and the ganglioside GM1 (90:10:1 molar ratio) results in partitioning of a ganglioside-protein complex into the ceramide-enriched domains, modeling some aspects of ceramide's behavior in cells. The photo-uncaging strategy used here for delivery of ceramide in bilayers provides a novel and useful alternative to the enzymatic generation of ceramide in sphingomyelin-containing membranes. The ability to control membrane phase separation behavior and the clustering of membrane-anchored proteins illustrates the potential of photo-uncaging for studying the compartmentalization of ceramide in cellular membranes.
Collapse
Affiliation(s)
- Daniel M Carter Ramirez
- Measurement Science and Standards, National Research Council of Canada, Ottawa, ON K1A 0R6, CANADA ; Department of Chemistry, University of Ottawa, Ottawa, ON K1N 6N5, CANADA
| | | | | | | |
Collapse
|
26
|
Ramirez DMC, Pitre SP, Kim YA, Bittman R, Johnston LJ. Photouncaging of ceramides promotes reorganization of liquid-ordered domains in supported lipid bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:3380-3387. [PMID: 23402522 PMCID: PMC3607952 DOI: 10.1021/la3039158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
6-Bromo-7-hydroxycoumarin (Bhc)-caged ceramide (Cer) analogs were incorporated into supported lipid bilayers containing a mixture of coexisting liquid-ordered (Lo) and liquid-disordered (Ld) phases. The release of N-palmitoyl and N-butanoyl-D-erythro-sphingosine (C16- and C4-Cer) by the photolysis of caged Cers using long-wavelength UV light was studied using a combination of atomic force microscopy and fluorescence microscopy. This approach demonstrated the ability to generate Cer with spatial and temporal control, providing an alternative method to the enzymatic generation of Cer. The generation of C16-Cer from Bhc-C16-Cer disrupted the Lo domains, with the incorporation of small fluid-phase regions and the disappearance of some smaller domains. Cer-rich gel-phase domains were not observed, in contrast to results reported by either direct Cer incorporation or enzymatic Cer generation. The photorelease of C4-Cer from Bhc-C4-Cer resulted in qualitatively similar changes in bilayer morphology, with the disappearance of some Lo domains and no evidence of Cer-rich gel domains but with a smaller height difference between the ordered and disordered phases.
Collapse
|
27
|
Yoo JS, Park T, Bang G, Lee C, Rho JR, Kim YH. High-energy collision-induced dissociation of [M+Na]+ ions desorbed by fast atom bombardment of ceramides isolated from the starfish Distolasterias nipon. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:164-171. [PMID: 23378088 DOI: 10.1002/jms.3140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/07/2012] [Accepted: 11/11/2012] [Indexed: 06/01/2023]
Abstract
Ten ceramides and four cerebrosides were extracted from the starfish Distolasterias nipon by solvent extraction, silica gel column chromatography and reversed-phase high-performance liquid chromatography. Structural identification was conducted using tandem mass spectrometry of monosodiated ions desorbed by fast atom bombardment. The complete structures of four cerebrosides were determined by a previously reported method. The high-energy collision-induced dissociation (CID) spectral characteristics of ceramides with various structures depend on the number and positions of double bonds on both the N-acyl and sphingoid chains, the presence of a hydroxyl group or a double bond at the C-4 position of the sphingoid chain and the presence of an α-hydroxy group on the N-acyl chain. The high-energy CID of the monosodiated ion, [M+Na](+), of each ceramide molecular species generated abundant ions, providing information on the composition of the fatty acyl chains and sphingoid long-chain bases. Each homologous ion series along the fatty acyl group and aliphatic chain of the sphingoid base was used for locating the double-bond positions of both chains and hydroxyl groups on the sphingoid base chain. The double-bond positions were also confirmed by the m/z values of abundant allylic even- and odd-electron ions, and the intensity ratio of the T ion peak relative to the O ion peak. This technique could determine the complete structures of ceramides and cerebrosides in an extract mixture and has great potential for determining other sphingolipids isolated from various biological sources.
Collapse
Affiliation(s)
- Ji Sun Yoo
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Ochang, 363-883, Korea
| | | | | | | | | | | |
Collapse
|
28
|
Brieke C, Rohrbach F, Gottschalk A, Mayer G, Heckel A. Light-controlled tools. Angew Chem Int Ed Engl 2012; 51:8446-76. [PMID: 22829531 DOI: 10.1002/anie.201202134] [Citation(s) in RCA: 763] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Indexed: 12/21/2022]
Abstract
Spatial and temporal control over chemical and biological processes plays a key role in life, where the whole is often much more than the sum of its parts. Quite trivially, the molecules of a cell do not form a living system if they are only arranged in a random fashion. If we want to understand these relationships and especially the problems arising from malfunction, tools are necessary that allow us to design sophisticated experiments that address these questions. Highly valuable in this respect are external triggers that enable us to precisely determine where, when, and to what extent a process is started or stopped. Light is an ideal external trigger: It is highly selective and if applied correctly also harmless. It can be generated and manipulated with well-established techniques, and many ways exist to apply light to living systems--from cells to higher organisms. This Review will focus on developments over the last six years and includes discussions on the underlying technologies as well as their applications.
Collapse
Affiliation(s)
- Clara Brieke
- Goethe University Frankfurt, Institute for Organic Chemistry and Chemical Biology Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Strasse 9, 60438 Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
29
|
Brieke C, Rohrbach F, Gottschalk A, Mayer G, Heckel A. Lichtgesteuerte Werkzeuge. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202134] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Clara Brieke
- Goethe‐Universität Frankfurt, Institut für Organische Chemie und Chemische Biologie, Buchmann‐Institut für Molekulare Lebenswissenschaften, Max‐von‐Laue‐Straße 9, 60438 Frankfurt/Main (Deutschland)
| | - Falk Rohrbach
- Universität Bonn, LIMES‐Institut, Gerhard‐Domagk‐Straße 1, 53121 Bonn (Deutschland)
| | - Alexander Gottschalk
- Buchmann‐Institut für Molekulare Lebenswissenschaften, Institut für Biochemie, Max‐von‐Laue‐Straße 15, 60438 Frankfurt/Main (Deutschland)
| | - Günter Mayer
- Universität Bonn, LIMES‐Institut, Gerhard‐Domagk‐Straße 1, 53121 Bonn (Deutschland)
| | - Alexander Heckel
- Goethe‐Universität Frankfurt, Institut für Organische Chemie und Chemische Biologie, Buchmann‐Institut für Molekulare Lebenswissenschaften, Max‐von‐Laue‐Straße 9, 60438 Frankfurt/Main (Deutschland)
| |
Collapse
|