1
|
Sultana N, Andagonde SV, Chakraborty R, Bala A, Sen Sarma N. A non-enzymatic dual sensing approach for the detection of cholesterol in real samples using silk fiber functionalized phosphorene quantum dots. NANOSCALE 2025; 17:3042-3052. [PMID: 39699346 DOI: 10.1039/d4nr03945a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Reliable point-of-care (POC) detection of the specific biomarkers responsible for different diseases is crucial for health monitoring. For the routine detection of important biomarkers, rapid, precise, and cost-effective analytical techniques are more and more in demand. Cardiovascular diseases like hypertension, myocardial infarction, and stroke can occur due to high cholesterol levels. Herein, we have proposed an inner filter effect-based optical sensing platform for the selective and sensitive detection of cholesterol in aqueous media and real samples, i.e. human blood serum, rat blood serum, and milk. The sensing platform was developed by utilizing silk fiber functionalized phosphorene quantum dots (Ph-SF) using a simple hydrothermal approach. The obtained limit of detection (LOD) was 22 nM for aqueous media, 21.7 nM for human blood serum, 11.01 nM for rat blood serum, and 19.9 nM for milk in the linear range of 0-80 μL for the concentration range of 4.5-36.36 μM. Moreover, we have also fabricated a paper-based electronic device using a Ph-SF-incorporated cellulose nitrate membrane for detecting the same. The membrane shows a current value of about 7.74 × 10-6 A. However, upon interaction with cholesterol, it shows a current value of about 2.16 × 10-5 A. We have also calculated the LOD in this regard which was found to be about 0.263 μM, 1.69 μM, 1.402 μM, and 1.192 μM for aqueous media, human blood serum, rat blood serum, and milk respectively in the linear range of 1-5 mM.
Collapse
Affiliation(s)
- Nasrin Sultana
- Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati-35, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shreyash Vijay Andagonde
- Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati-35, Assam, India.
| | - Ratul Chakraborty
- Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati-35, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Asis Bala
- Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati-35, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Neelotpal Sen Sarma
- Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati-35, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
2
|
Mahato M, Sultana T, Sahoo R, Ahamed S, Tohora N, Maiti A, Kumar Das S. Brightness and AIEE behaviour of methylenebis(4,1-phenylene) linkage electron donor-acceptor-based dyads and their implications for robust quantification of explosive picric acid in both aqueous medium and solid state. Phys Chem Chem Phys 2025; 27:1366-1377. [PMID: 39690944 DOI: 10.1039/d4cp04294h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Organic luminescent materials having photoluminescence in their solid state have become emerging trends in chemistry, materials science, and biology due to their versatile potential applications. In the present contribution, we have introduced some methylenebis(4,1-phenylene) electron donor-acceptor-based fashionable solid-state fluorescent molecules, MBA, MBB, and MBH, having exciting photoluminescence characteristics in their solid and aggregate states. Interestingly, all probes exhibited a compelling aggregation-induced enhanced emission (AIEE) phenomenon in aqueous media. The mechanistic aspects of solid-state brightness and AIEE behavior are elucidated by diverse spectroscopic, microscopic, and X-ray crystallographic analyses. Employing their intriguing AIEE characteristics, the water-suspended low dimensional particles have been employed as a sensor, demonstrating rapid sensitivity and brilliant selectivity towards the nitro-explosive compound picric acid (PA). The estimated limits of detection (LOD) and quantification (LOQ) reach as low as the μM to nM range in the aqueous medium. The fluorescent paper strip-based test kit experiment has been demonstrated for instant detection of PA through visual examination in the solid state, rendering the protocol quick, cost-effective, and appropriate for on-spot solid-state recognition.
Collapse
Affiliation(s)
- Manas Mahato
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India.
| | - Tuhina Sultana
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India.
| | - Rajkumar Sahoo
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Sabbir Ahamed
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India.
| | - Najmin Tohora
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India.
| | - Arpita Maiti
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India.
| | - Sudhir Kumar Das
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India.
| |
Collapse
|
3
|
Mohan B, Shanmughan A, Krishna AV, Noushija MK, Umadevi D, Shanmugaraju S. Porous organic polymers-based fluorescent chemosensors for Fe(III) ions-a functional mimic of siderophores. Front Chem 2024; 12:1361796. [PMID: 38425658 PMCID: PMC10901996 DOI: 10.3389/fchem.2024.1361796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Extended organic polymers such as amorphous Covalent Organic Polymers (COPs) and crystalline Covalent Organic Frameworks (COFs) are emerging functional polymeric materials that have recently been shown promises as luminescent materials for chemosensing applications. A wide variety of luminescence COPs and COFs have been synthesized and successfully used as fluorescence-sensing materials for hazardous environmental pollutants and toxic contaminants. This review exemplifies various COPs and COFs-based fluorescence sensors for selective sensing of Fe(III) ions. The fluorescence sensors are sorted according to their structural features and each section provides a detailed discussion on the synthesis and fluorescence sensing ability of different COPs and COFs towards Fe(III) ions. Also, this review highlights the limitations of the existing organic polymer-based chemosensors and future perspectives on translating COPs and COFs-based fluorescence sensors for the practical detection of Fe(III) ions.
Collapse
Affiliation(s)
| | | | | | | | - Deivasigamani Umadevi
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, India
| | | |
Collapse
|
4
|
Liu YL, Wu LF, Wu C, Rahman S, Alodhayb A, Redshaw C, Georghiou PE, Yamato T. A facile and sensitive hexahomotrioxacalix[3]arene-based fluorescent sensor for the detection of trace amounts of 2,4,6-trinitrophenol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168209. [PMID: 37914116 DOI: 10.1016/j.scitotenv.2023.168209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Nitroaromatic compounds are common explosives and toxic pollutants, the selective and sensitive detection of which is of great importance. Herein, a facile and sensitive fluorescent sensor L was constructed for the sensing of TNP based on the hexahomotrioxacalix[3]arene skeleton. The fluorescence emission of L was drastically quenched in the presence of 2,4,6-trinitrophenol (TNP), while other tested NACs, metal ions, and anions induced negligible changes. Under the optimized conditions, the spectroscopic studies revealed that L exhibited extremely sensitive and selective TNP recognition, with a detection limit of 9.17 × 10-7 M and a quenching constant of 2.44 × 104 M-1. The sensitivity of sensor L for TNP was attributed to the formation of a ground-state charge-transfer complex and an inner filter effect, which also contributed to the special selectivity of the sensor among the various nitroaromatic analogues. Compared with previous reports, L can serve as a highly efficient sensor for the sensing of TNP and can be employed over a wide pH range of 2 to 12. Sensor L was effectively used to quantify TNP in real water and soil samples. Additionally, fluorescent test strips were also developed for visual and rapid detection of TNP in both the solution and vapour phases.
Collapse
Affiliation(s)
- Yong-Lang Liu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Lu-Fang Wu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Chong Wu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan.
| | - Shofiur Rahman
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alodhayb
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, The University of Hull, Hull HU6 7RX, UK
| | - Paris E Georghiou
- Department of Chemistry, Memorial University of Newfoundland, St. John's A1B3X7, Canada.
| | - Takehiko Yamato
- Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan.
| |
Collapse
|
5
|
Lv Q, Guan QL, Li JL, Li JX, Jin J, Bai FY, Xing YH. Smart crystalline framework materials with a triazole carboxylic acid ligand: fluorescence sensing and catalytic reduction of PNP. Dalton Trans 2023; 52:17201-17212. [PMID: 37943065 DOI: 10.1039/d3dt02406g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Triazole polycarboxylic acid ligands are widely employed in the construction of MOFs due to their strong coordination ability and flexible coordination modes. In this work, three novel complexes (Pb(MCTCA)(H2O) (1), Co(HMCTCA)2(H2O)2 (2) and Cu(HMCTCA)2(H2O)2 (3)) based on the H2MCTCA ligand (5-methyl-1-(4-carboxyl)-1H-1,2,3-triazole-4-carboxylic acid) were successfully synthesized under hydrothermal conditions, respectively. X-ray single crystal structure analysis shows that complex 1 is a 3D network structure, where the central metal Pb(II) is six coordinated to form deformed triangular prism geometry. The complexes 2 and 3 are both 2D layer supramolecular structures connected through intermolecular hydrogen, where the central metals (Co/Cu) are six coordinated to form octahedral configuration geometry. Based on functional properties, it is found that complex 1 exhibits excellent detection ability for small-molecule drugs (azithromycin, colchicine and balsalazide disodium) and actinide cations (Th4+ and UO22+) within a lower concentration range without interference from other components. In particular, the detection limits of three small-molecule drugs are all lower than 0.30 μM. In addition, complexes 2 and 3 exhibited excellent catalytic reduction performance toward p-nitrophenol (PNP), with a reduction efficiency exceeding 98%. These experimental results evidence that complexes 1-3 have potential application prospects in fluorescence sensing and catalytic reduction.
Collapse
Affiliation(s)
- Qiu Lv
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Qing Lin Guan
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Jin Long Li
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Jin Xiao Li
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Jing Jin
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Feng Ying Bai
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Yong Heng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| |
Collapse
|
6
|
Sultana N, Thanil Singh C, Khan MR, Sen Sarma N. An optical sensing platform for the detection of anti-cancer drugs and their cytotoxicity screening using a highly selective phosphorene-based composite. NANOSCALE 2023; 15:17570-17582. [PMID: 37873646 DOI: 10.1039/d3nr03948j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Monitoring therapeutic drugs and their elimination is crucial because they may cause severe side effects on the human body. Methotrexate (MTX) is a widely used anti-cancer drug, which is highly expensive, and the detection of unwanted overdoses of MTX using traditional procedures is time-consuming and involves complex instrumentation. In this work, we have developed a nanocomposite material using phosphorene, cystine, and gold (Ph-Cys-Au) that shows excellent optical properties. This nanocomposite can be used as an optical sensing platform for the detection of MTX in the range 0-260 μM. The synthesized sensing platform is very sensitive, selective, and cost-effective for the detection of MTX. Ph-Cys-Au can effectively detect MTX in aqueous media with a limit of detection (LOD) of about 0.0266 nM (for a linear range of 0-140 μM) and 0.0077 nM (for a linear range of 160-260 μM). The nanocomposite is equally selective for real samples, such as human blood serum (HBS) and artificial urine (AU) with a LOD of 0.0914 nM and 0.0734 nM, respectively. We have also determined the limit of quantification (LOQ); the LOQ values for the aqueous media were 0.0807 nM (for a linear range of 0-140 μM) and 0.0234 nM (for a linear range of 160-260 μM), whereas, the values for HBS and AU were around 0.2771 nM and 0.2226 nM, respectively. Moreover, the nanocomposite also provides a feasible platform for cytotoxicity screening in cancerous cells (Caco-2 cell lines) and non-cancerous cells (L-929 cell lines).
Collapse
Affiliation(s)
- Nasrin Sultana
- Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati-35, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Chingtham Thanil Singh
- Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati-35, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Mojibur R Khan
- Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati-35, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Neelotpal Sen Sarma
- Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati-35, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
7
|
Lakshmi PR, Mohan B, Kang P, Nanjan P, Shanmugaraju S. Recent advances in fluorescence chemosensors for ammonia sensing in the solution and vapor phases. Chem Commun (Camb) 2023; 59:1728-1743. [PMID: 36661305 DOI: 10.1039/d2cc06529k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Developing low-cost and reliable sensor systems for the detection of trace amounts of toxic gases is an important area of research. Ammonia (NH3) is a commonly produced industrial chemical and a harmful colorless pungent gas released from various manufacturing and processing industries. Continuous exposure to NH3 vapor causes serious menace to human health, microorganisms, and the ecosystem. Exposure to relatively higher concentrations of NH3 severely affects the respiratory system and leads to kidney failure, nasal erosion ulcers, and gastrointestinal diseases. Excessive accumulation of NH3 in the biosphere can cause various metabolic disruptions. As a consequence of this, therefore, suitable sensing methods for selective detection and quantification of trace amounts of NH3 are of utmost need to protect the environment and living systems. Given this, there have been significant research advances in the preceding years on the development of fluorescence chemosensors for efficient sensing and monitoring of the trace concentration of NH3 both in solution and vapor phases. This review article highlights several fluorescence chemosensors reported until recently for sensing and quantifying NH3 in the vapor phase or ammonium ions (NH4+) in the solution phase. The wide variety of fluorescence chemosensors discussed in this article are systematically gathered according to their structures, functional properties, and fluorescence sensing properties. Finally, the usefulness and existing challenges of using the fluorescence-based sensing method for NH3 detection and the future perspective on this research area have also been highlighted.
Collapse
Affiliation(s)
- Pandi Raja Lakshmi
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad-678557, Kerala, India.
| | - Binduja Mohan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad-678557, Kerala, India.
| | - Preeti Kang
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad-678557, Kerala, India.
| | - Pandurangan Nanjan
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus-570026, Karnataka, India.
| | | |
Collapse
|
8
|
Rathod SL, Sharma VS, Patel KR, Mali HA, Shrivastav PS, Parekh HM. Lower rim functionalized bowl-shaped resorcin[4]arene with alkyl arms: a simplified approach to build supramolecular liquid crystals. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Guo Z, Liu X, Che Y, Chen D, Xing H. One-Pot Dual Catalysis of a Photoactive Coordination Polymer and Palladium Acetate for the Highly Efficient Cross-Coupling Reaction via Interfacial Electron Transfer. Inorg Chem 2022; 61:2695-2705. [DOI: 10.1021/acs.inorgchem.1c03961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhifen Guo
- Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, Changchun 130021, P. R. China
| | - Xin Liu
- Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, Changchun 130021, P. R. China
| | - Yan Che
- Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, Changchun 130021, P. R. China
| | - Dashu Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China
| | - Hongzhu Xing
- Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, Changchun 130021, P. R. China
| |
Collapse
|
10
|
Ali SM, Santra S, Mondal A, Kolay S, Roy L, Molla MR. Luminescence property switching in 1D supramolecular polymerization of organic donor–π-acceptor chromophores. Polym Chem 2022. [DOI: 10.1039/d1py01417j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The naphthalene monoimide building block endows with amide functionality undergoes supramolecular polymerization in a J type fashion in a particular co-solvent composition. This leads to luminescent property switching as a result of PET effect.
Collapse
Affiliation(s)
- Sk. Mursed Ali
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India
| | - Subrata Santra
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India
| | - Arun Mondal
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India
| | - Soumya Kolay
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar – 751013, India
| | | |
Collapse
|
11
|
Kovalev I, Taniya O, Sadieva L, Volkova N, Minin A, Grzhegorzhevskii K, Gorbunov E, Zyryanov G, Chupakhin O, Charushin V, Tsurkan M. Bola-type PAH-based fluorophores/chemosensors: Synthesis via an unusual clemmensen reduction and photophysical studies. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Wang GL, Wang J, Zhou LP, Cai X, Xu M, Lin J, Muddassir M, Sakiyama H. A multi-functional Cd(II)-based coordination polymer for the highly sensitive detection of nitrofurazone and photocatalytic efficiency of Rhodamine B. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Islam K, Narjinari H, Kumar A. Polycyclic Aromatic Hydrocarbons Bearing Polyethynyl Bridges: Synthesis, Photophysical Properties, and their Applications. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Khadimul Islam
- Department of Chemistry Indian Institute of Technology Guwahati 781039 Guwahati Assam India
| | - Himani Narjinari
- Department of Chemistry Indian Institute of Technology Guwahati 781039 Guwahati Assam India
| | - Akshai Kumar
- Department of Chemistry Indian Institute of Technology Guwahati 781039 Guwahati Assam India
- Center for Nanotechnology Indian Institute of Technology Guwahati 781039 Guwahati Assam India
| |
Collapse
|
14
|
Jiang S, Meng L, Ma W, Qi Q, Zhang W, Xu B, Liu L, Tian W. Morphology controllable conjugated network polymers based on AIE-active building block for TNP detection. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Xie W, Jiang W, Xu GJ, Zhang SR, Xu YH, Su ZM. A luminescent metal–organic framework with tetragonal nanochannels as an efficient chemosensor for nitroaromatic explosives detection. CrystEngComm 2021. [DOI: 10.1039/d1ce00331c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A 3D MOF with nanosized channels can act as an effective fluorescence probe, showing obvious fluorescence “turn-off” for nitroaromatic explosives.
Collapse
Affiliation(s)
- Wei Xie
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
- Ministry of Education
- Jilin Normal University
- Changchun
- China
| | - Wei Jiang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
- Ministry of Education
- Jilin Normal University
- Changchun
- China
| | - Guang-Juan Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
- Ministry of Education
- Jilin Normal University
- Changchun
- China
| | - Shu-Ran Zhang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
- Ministry of Education
- Jilin Normal University
- Changchun
- China
| | - Yan-Hong Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
- Ministry of Education
- Jilin Normal University
- Changchun
- China
| | - Zhong-Min Su
- Institute of Functional Material Chemistry
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| |
Collapse
|
16
|
Wu H, Gao L, Zhang J, Zhai L, Gao T, Niu X, Hu T. Syntheses, characterization, and slow magnetic relaxation or luminescence properties of three new 2D coordination polymers. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Rasheed T, Nabeel F, Rizwan K, Bilal M, Hussain T, Shehzad SA. Conjugated supramolecular architectures as state-of-the-art materials in detection and remedial measures of nitro based compounds: A review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115958] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Transition metal complexes constructed by pyridine–amino acid: fluorescence sensing and catalytic properties. TRANSIT METAL CHEM 2020. [DOI: 10.1007/s11243-020-00394-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Prusti B, Chakravarty M. An electron-rich small AIEgen as a solid platform for the selective and ultrasensitive on-site visual detection of TNT in the solid, solution and vapor states. Analyst 2020; 145:1687-1694. [PMID: 31894757 DOI: 10.1039/c9an02334h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Promising research on AIEgen (aggregation-induced emission active fluorogens)-based sensors for the detection of explosives (mostly picric acid) is primarily dominated by polymeric molecules. However, herein, we report the ability of a recently developed anthracene-based electron-rich π-conjugate as a small and suitable AIEgen for the selective and sensitive detection of 2,4,6-trinitrotoluene (TNT) through fluorescence (PL) quenching. This fluorophore consists of trimethoxybenzene-linked anthranyl-π-phenothiazine, which is recognized as a significantly electron-rich AIEgen suitable for the selective detection of TNT detection. The detection of TNT was performed in the solid, liquid and vapor states using this AIEgen in the aggregate or solid-state. The detection limit in the solution state was measured to be 3.2 × 10-9 M. When this fluorophore was impregnated on a paper strip for on-site visual detection, TNT was detected up to the 10-14 M level by the naked eye using a 365 nm UV-torch. The paper strip was also successfully used to detect TNT in the vapour state. This application was further extended to detect TNT in field soil. The detection of TNT by replacing trimethoxybenzene in the fluorophore with dimethoxy or monomethoxy was a failure, indicating the requirement of an adequate electron-rich system. Unlike the previous report with static quenching as the main reason for TNT detection, our experimental observations demonstrated the participation of favorable photo-induced electron transfer (PET) between TNT and the fluorophore as the origin of the PL quenching.
Collapse
Affiliation(s)
- Banchhanidhi Prusti
- Department of Chemistry, Birla Institute of Technology and Science, Pilani-Hyderabad Campus, Jawahar nagar, Shamirpet Mandal, Hyderabad, Telangana-500078, India.
| | - Manab Chakravarty
- Department of Chemistry, Birla Institute of Technology and Science, Pilani-Hyderabad Campus, Jawahar nagar, Shamirpet Mandal, Hyderabad, Telangana-500078, India.
| |
Collapse
|
20
|
Liu JQ, Luo ZD, Pan Y, Kumar Singh A, Trivedi M, Kumar A. Recent developments in luminescent coordination polymers: Designing strategies, sensing application and theoretical evidences. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213145] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Li X, Wang C, Song W, Meng C, Zuo C, Xue Y, Lai WY, Huang W. Electron-Rich π-Extended Diindolotriazatruxene-Based Chemosensors with Highly Selective and Rapid Responses to Nitroaromatic Explosives. Chempluschem 2020; 84:1623-1629. [PMID: 31943936 DOI: 10.1002/cplu.201900347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/30/2019] [Indexed: 11/07/2022]
Abstract
A series of electron-rich π-extended diindolotriazatruxene-based compounds DIT, 4Py-DIT (bearing pyrene units) and 4PyF-DIT (bearing fluorene units) have been explored and investigated as fluorescence chemosensors. Quantitative analysis through fluorescence titrations showed that the resulting DIT molecules exhibited highly selective response to electron-deficient nitroaromatic explosives. The calculated Stern-Volmer quenching constants (>4.0×103 M-1 ) revealed that these sensors were much more sensitive in solution compared to most of the existing small-molecule fluorescence chemosensors based on pyrene, triphenylene, triphenylamine, and triazatruxene skeletons. Fluorescence quenching showed that the sensors adsorbed on paper were sensitive to explosives in the solid, solution, and vapor phases, with fast response times of about 10 s. Moreover, these chemosensors are reusable for the detection of nitroaromatic compounds as they recover their fluorescence intensity after quenching.
Collapse
Affiliation(s)
- Xiangchun Li
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Chunyu Wang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Wan Song
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Cheng Meng
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Chao Zuo
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Yibo Xue
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Wen-Yong Lai
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China.,Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, Shaanxi, P. R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China.,Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, Shaanxi, P. R. China
| |
Collapse
|
22
|
Kumar G, Pachisia S, Kumar P, Kumar V, Gupta R. Zn‐ and Cd‐based Coordination Polymers Offering H‐Bonding Cavities: Highly Selective Sensing of S
2
O
7
2−
and Fe
3+
Ions. Chem Asian J 2019; 14:4594-4600. [DOI: 10.1002/asia.201901142] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/28/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Gulshan Kumar
- Department of ChemistryUniversity of Delhi Delhi 110007 India
| | - Sanya Pachisia
- Department of ChemistryUniversity of Delhi Delhi 110007 India
| | - Pramod Kumar
- Department of ChemistryUniversity of Delhi Delhi 110007 India
| | - Vijay Kumar
- Department of ChemistryUniversity of Delhi Delhi 110007 India
| | - Rajeev Gupta
- Department of ChemistryUniversity of Delhi Delhi 110007 India
| |
Collapse
|
23
|
Kaneko T, Araki Y, Shinohara KI, Teraguchi M, Aoki T. Antiparallel Arrangement of 2,7-Substituted 9,10-Bis(phenylethynyl)anthracene Assisted by Hydrogen Bonding of Terminal Units. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takashi Kaneko
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan
| | - Yosuke Araki
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan
| | - Ken-ichi Shinohara
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahi-dai, Nomi, Ishikawa 923-1292, Japan
| | - Masahiro Teraguchi
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan
| | - Toshiki Aoki
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan
| |
Collapse
|
24
|
Experimental and theoretical exploration of sensing and magnetic properties of a triply bridged dicopper(II) complex: The first discrete metal complex to sense picric acid in pure water. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Abbasi F, Akbarinejad A, Alizadeh N. CdS QDs/N-methylpolypyrrole hybrids as fluorescent probe for ultrasensitive and selective detection of picric acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 216:230-235. [PMID: 30903871 DOI: 10.1016/j.saa.2019.03.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Inorganic-organic hybrids are an advanced class of luminescent materials showing great promise for fabrication of highly sensitive and selective optical sensors. In the present study, a novel CdS quantum dots/N-methylpolypyrrole (CdS QDs/NMPPY) hybrid was synthesized via the direct polymerization of NMPPY on L-cysteine capped CdS QD aggregates. A number of characterization techniques including FTIR, DLS, FESEM, UV-vis, and fluorescence spectroscopies were used to study the chemical composition, morphology and optical properties of the resultant QDs/polymer hybrid. The as-synthesized CdS QDs/NMPPY hybrid shows a bright emission at 459 nm under excitation at 367 nm in water. Also the results show the role of sodium dodecyl benzenesulfonate (SDBS) to control the mechanism of synthesis and spectroscopic of the prepared CdS/NMPPY hybrid. Moreover, in this work was reported the direct hybridization procedure without other modification such as ligand exchange and coating. We demonstrated that the hybridization of CdS QDs with NMPPY polymer leads to a significant change in fluorescence sensing properties toward nitroaromatic compounds. Further studies unveiled that the emission of CdS QDs/NMPPY hybrid is strongly and selectively quenched by picric acid molecule with a large Stern-Volmer constant of 843,900 M-1 and an excellent detection limit of 4.6 × 10-7 M. The changes in the UV-vis spectra of picric acid solutions in the presence and absence of CdS QDs/NMPPY hybrid displayed that the fluorescence quenching occurs through a static quenching mechanism. Finally, the proposed CdS QDs/NMPPY sensor was successfully utilized to determine the amount of picric acid in real water samples.
Collapse
Affiliation(s)
- Fatemeh Abbasi
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Alireza Akbarinejad
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Naader Alizadeh
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| |
Collapse
|
26
|
Li J, Sun F, Shi X, Ren H, Li M, Zhu G. A Highly Crystalline Fluorene‐Based Porous Organic Framework with High Photoluminescence Quantum Yield. Macromol Rapid Commun 2019; 40:e1900060. [DOI: 10.1002/marc.201900060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/18/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Jiawen Li
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University Changchun 130012 P. R. China
| | - Fuxing Sun
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University Changchun 130012 P. R. China
| | - Xinli Shi
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University Changchun 130012 P. R. China
| | - Hao Ren
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University Changchun 130012 P. R. China
| | - Meiping Li
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University Changchun 130012 P. R. China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate Science of the Ministry of EducationFaculty of ChemistryNortheast Normal University Changchun 130024 P. R. China
| |
Collapse
|
27
|
Ding HL, Chen LD, Wang N, Li K, An Y, Lü CW. Two highly selective and sensitive fluorescent imidazole derivatives design and application for 2,4,6-trinitrophenol detection. Talanta 2019; 195:345-353. [DOI: 10.1016/j.talanta.2018.11.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/17/2018] [Accepted: 11/21/2018] [Indexed: 10/27/2022]
|
28
|
Rana A, Sahoo SS, Panda PK. β-Octaalkoxyporphyrins: Versatile fluorometric sensors towards nitrated explosives. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424618501171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Real time detection of explosive residues is important to mitigate increasing security threats. Therefore, systematic studies are essential to optimize the performance of sensors. In this work, we have explored β-octamethoxyporphyrin and β-octabutoxyporphyrin to evaluate the effect of alkoxy groups in solution and in vapor phase sensing of nitrated explosives. Our systematic studies revealed a marked difference in sensitivity of these free-base porphyrins in solution state and vapor phase sensing of nitrated explosives simply by modulation of alkyl chain lengths. Alkoxyporphyrins exhibit very good sensitivity towards not only nitro aromatics but also alkyl nitro explosive taggants compared to β-octaethylporphyrin. Therefore, alkoxyporphyrins may act as versatile fluorescence turn-off based chemical sensors for nitrated explosives.
Collapse
Affiliation(s)
- Anup Rana
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India
- Advance Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad-500046, India
| | | | - Pradeepta K. Panda
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India
- Advance Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad-500046, India
| |
Collapse
|
29
|
Singh R, Mitra K, Singh S, Senapati S, Patel VK, Vishwakarma S, Kumari A, Singh J, Sen Gupta SK, Misra N, Maiti P, Ray B. Highly selective fluorescence 'turn off' sensing of picric acid and efficient cell labelling by water-soluble luminescent anthracene-bridged poly(N-vinyl pyrrolidone). Analyst 2019; 144:3620-3634. [PMID: 31070612 DOI: 10.1039/c8an02417k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel, water-soluble, luminescent anthracene-bridged AA-type bi-arm poly(N-vinylpyrrolidone) (ATC-PNVP) was synthesized using a click reaction between alkyne-terminated PNVP and 9,10-bis(azidomethyl)anthracene. The resultant anthracene-bridged PNVP (ATC-PNVP) was characterized using 1H NMR, FTIR, UV-Vis, and fluorescence spectroscopic methods and GPC analysis. ATC-PNVP showed effective fluorescence properties in an aqueous medium. It showed highly selective "turn off" sensing behaviour towards picric acid, a common nitro-aromatic explosive, with a wide linear range of detection of 0.01-0.3 mM and LOD value of 0.006 mM in water. ATC-PNVP-based paper sensors also showed very effective detection of picric acid in the concentration range 0.001-1.0 mM. Its binding with bovine serum albumin (BSA) was studied using steady-state, synchronous and 3D fluorescence spectroscopy and this study showed effective quenching of the intrinsic fluorescence of BSA and occurrence of a FRET-type interaction. Furthermore, this luminescent ATC-PNVP was efficiently used as a fluorescence microscopy labelling agent in NIH-3T3 and HeLa cells, and showed greater uptake and hence better fluorescent labelling in the cytosols of the tested cells than free 9,10-bis(azidomethyl) anthracene. The cell viability study also showed a very good biocompatible and non-toxic nature of ATC-PNVP at lower working concentrations towards each of the types of cells tested.
Collapse
Affiliation(s)
- Rajshree Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ghosh TK, Jana S, Ghosh A. Exploitation of the Flexidentate Nature of a Ligand To Synthesize Zn(II) Complexes of Diverse Nuclearity and Their Use in Solid-State Naked Eye Detection and Aqueous Phase Sensing of 2,4,6-Trinitrophenol. Inorg Chem 2018; 57:15216-15228. [PMID: 30516050 DOI: 10.1021/acs.inorgchem.8b02497] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three Zn(II) complexes, [Zn2(HL)2(NO3)2]·H2O (1), [(Zn4L2)(μ3-OH)2](NO3)2·0.5H2O (2), and [(Zn6L2)( o-van)2(μ3-OCH3)2(μ3-OH)2](NO3)2 (3), have been synthesized by exploiting the flexidentate nature of a multidentate Schiff base ligand, H2L ( N, N'-bis(3-methoxysalicylidene)diethylenetriamine), by changing the reaction conditions and stoichiometry of the reactants. All three complexes are highly fluorescent in solution as well as in solid and have been used as luminescence sensors toward nitrophenol explosives in both the media. In aqueous/methanol medium, these complexes show very high selectivity and sensitivity with detection limit in ppb (2.03) or nM level (8.89 nM) for picric acid. The yellow color of all three Zn(II) complexes changes to red on mixing with small amount (∼5%) of picric acid in solid state, revealing the potential of these complexes for practical use in naked eye detection of 2,4,6-trinitrophenol (TNP) or picric acid in ambient light. In order to identify the host-guest interactions between Zn(II) complex and TNP, single crystals of the adduct of TNP with Zn(II) complex, [Zn2(HL)2(H2O)2][C6H2N3O7]2 (4), were grown. Its X-ray crystal structure reveals that two picrate ions are attached to a dinuclear host with the help of H-bonding and π···π interactions, throwing light into the quenching mechanism and selectivity of detection.
Collapse
Affiliation(s)
- Tanmoy Kumar Ghosh
- Department of Chemistry, University College of Science , University of Calcutta , 92, A.P.C. Road , Kolkata 700 009 , India
| | - Subrata Jana
- Department of Chemistry, University College of Science , University of Calcutta , 92, A.P.C. Road , Kolkata 700 009 , India
| | - Ashutosh Ghosh
- Department of Chemistry, University College of Science , University of Calcutta , 92, A.P.C. Road , Kolkata 700 009 , India
| |
Collapse
|
31
|
Xia L, Ni J, Wu P, Ma J, Bao L, Shi Y, Wang J. Photoactive metal-organic framework as a bifunctional material for 4-hydroxy-4'-nitrobiphenyl detection and photodegradation of methylene blue. Dalton Trans 2018; 47:16551-16557. [PMID: 30417188 DOI: 10.1039/c8dt03278e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Environmental pollution resulting from organic pollutants is becoming an overwhelming problem throughout the world, and how to efficiently detect or eliminate these organic pollutants remains an important issue for environmental protection. Herein, a cadmium(ii)-based MOF, Cd-TCAA, was successfully prepared by the hydrothermal reaction of 4,4',4''-tricarboxyltriphenylamine (H3tca), (E)-1,2-di(pyridin-4-yl)diazene (abp) and cadmium nitrate. Because the H3tca moiety is a typically versatile functional material that exhibits good hole-transporting capabilities, efficient light harvesting, and excellent electron-donating properties, this novel photoactive metal-organic framework operates as a bifunctional material for the detection and degradation of organic pollutants. It exhibits excellent selectivity and sensitivity towards 4-hydroxy-4'-nitrobiphenyl (HNBP) with a detection limit of 50 nM in solution, and represents the first example of a MOF-based sensor for the detection of HNBP. The photocatalytic activity of Cd-TCAA was also determined by investigating the photo-induced degradation of methylene blue (MB). Cd-TCAA has the advantages of excellent catalytic activity, stability, and recyclability.
Collapse
Affiliation(s)
- Lingling Xia
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Makkad SK, SK A. Surface Functionalized Fluorescent PS Nanobead Based Dual-Distinct Solid State Sensor for Detection of Volatile Organic Compounds. Anal Chem 2018; 90:7434-7441. [DOI: 10.1021/acs.analchem.8b00936] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Sarabjot Kaur Makkad
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| | - Asha SK
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| |
Collapse
|
33
|
Shaw PE, Burn PL. Real-time fluorescence quenching-based detection of nitro-containing explosive vapours: what are the key processes? Phys Chem Chem Phys 2018; 19:29714-29730. [PMID: 28850131 DOI: 10.1039/c7cp04602b] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The detection of explosives continues to be a pressing global challenge with many potential technologies being pursued by the scientific research community. Luminescence-based detection of explosive vapours with an organic semiconductor has attracted much interest because of its potential for detectors that have high sensitivity, compact form factor, simple operation and low-cost. Despite the abundance of literature on novel sensor materials systems there are relatively few mechanistic studies targeted towards vapour-based sensing. In this Perspective, we will review the progress that has been made in understanding the processes that control the real-time luminescence quenching of thin films by analyte vapours. These are the non-radiative quenching process by which the sensor exciton decays, the analyte-sensor intermolecular binding interaction, and the diffusion process for the analyte vapours in the film. We comment on the contributions of each of these processes towards the sensing response and, in particular, the relative roles of analyte diffusion and exciton diffusion. While the latter has been historically judged to be one of, if not the primary, causes for the high sensitivity of many conjugated polymers to nitrated vapours, recent evidence suggests that long exciton diffusion lengths are unnecessary. The implications of these results on the development of sensor materials for real-time detection are discussed.
Collapse
Affiliation(s)
- P E Shaw
- Centre for Organic Photonics & Electronics, School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | | |
Collapse
|
34
|
A metal-organic framework based on nanosized hexagonal channels as fluorescent indicator for detection of nitroaromatic explosives. J SOLID STATE CHEM 2018. [DOI: 10.1016/j.jssc.2017.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Ren G, Gao L, Wang X, Fan L, Hu T. Highly fluorescent selectivity of two Cd(II) coordination networks with active sites for nitroaromatic compounds and Fe3+ and Hg2+. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.12.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Vishnoi P, Kaleeswaran D, Murugavel R. 1,3,5-Triphenylbenzene: a versatile photoluminescent chemo-sensor platform and supramolecular building block. RSC Adv 2018; 8:17535-17550. [PMID: 35539277 PMCID: PMC9081830 DOI: 10.1039/c8ra02658k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/26/2018] [Indexed: 12/15/2022] Open
Abstract
Rich and diverse chemistry of 1,3,5-triphenylbenzene is discussed with emphasis on fluorescence based chemo-sensors, apart from a discussion on its use in building a number of supramolecular assemblies and fluorescent covalent-organic-frameworks.
Collapse
Affiliation(s)
- Pratap Vishnoi
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai
- India-400 076
- Jawaharlal Nehru Centre for Advanced Scientific Research
| | | | - Ramaswamy Murugavel
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai
- India-400 076
- Jawaharlal Nehru Centre for Advanced Scientific Research
| |
Collapse
|
37
|
Halder S, Ghosh P, Hazra A, Banerjee P, Roy P. A quinoline-based compound for explosive 2,4,6-trinitrophenol sensing: experimental and DFT-D3 studies. NEW J CHEM 2018. [DOI: 10.1039/c8nj00817e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A quinoline-based compound, 2,5-dimethylbis(quinolin-2-ylmethylene)benzene-1,4-diamine (DQB), has been found to be a turn-off chemosensor for 2,4,6-trinitrophenol.
Collapse
Affiliation(s)
| | - Pritam Ghosh
- Surface Engineering & Tribology Group
- CSIR-Central Mechanical Engineering Research Institute
- Mahatma Gandhi Avenue
- Burdwan
- Durgapur 713209
| | - Ananta Hazra
- Department of Chemistry
- Jadavpur University
- Kolkata
- India
| | - Priyabrata Banerjee
- Surface Engineering & Tribology Group
- CSIR-Central Mechanical Engineering Research Institute
- Mahatma Gandhi Avenue
- Burdwan
- Durgapur 713209
| | - Partha Roy
- Department of Chemistry
- Jadavpur University
- Kolkata
- India
| |
Collapse
|
38
|
Kumar N, Mandal SK. Design and application of a fluorogenic receptor for selective sensing of cations, small neutral molecules, and anions. NEW J CHEM 2018. [DOI: 10.1039/c8nj03998d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
An unprecedented single multi-analyte fluorogenic receptor, a sodium salt of N-(methyl-2-thiophenyl)-tyrosine (NaHTyrthio), is reported for the selective sensing of cations (Cu2+), small neutral molecules (nitrobenzene and aniline) and anions (F−) by variable spectral responses.
Collapse
Affiliation(s)
- Navnita Kumar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Mohali
- Mohali
- India
| | - Sanjay K. Mandal
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Mohali
- Mohali
- India
| |
Collapse
|
39
|
Muthuraja P, Shanmugavadivu T, Joselin Beaula T, Bena Jothy V, Dhandapani M. Influence of intramolecular hydrogen bonding interaction on the molecular properties of N-p-tolyl-5-oxo pyrrolidine-3-carboxylic acid: A theoretical and experimental study. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2017.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Liu J, Wu J, Luo Z, Li B, Singh A, Abhinav K. A porous zinc(II) metal–organic framework exhibiting high sensing ability for ferric and nitroaromatics as well as photocatalytic degradation activities against organic dyes. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1414202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jianqiang Liu
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, Dongguan key laboratory of drug design and formulation technology, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jian Wu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, China
| | - Zhidong Luo
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, Dongguan key laboratory of drug design and formulation technology, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Baohong Li
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, Dongguan key laboratory of drug design and formulation technology, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Amita Singh
- Faculty of Science, Department of Chemistry, University of Lucknow, Lucknow, India
| | - Kumar Abhinav
- Faculty of Science, Department of Chemistry, University of Lucknow, Lucknow, India
| |
Collapse
|
41
|
Korlepara DB, Bejagam KK, Balasubramanian S. Supramolecular Polymerization of N,N′,N″,N‴-tetra-(Tetradecyl)-1,3,6,8-pyrenetetracarboxamide: A Computational Study. J Phys Chem B 2017; 121:11492-11503. [DOI: 10.1021/acs.jpcb.7b10171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Divya B. Korlepara
- Chemistry and Physics of Materials
Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Karteek K. Bejagam
- Chemistry and Physics of Materials
Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials
Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
42
|
Huy Do H, Villinger A, Lochbrunner S, Ehlers P, Langer P. Palladium‐Catalyzed Synthesis and Fluorescence Study of Ethynylated Naphthalene Derivatives. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hoang Huy Do
- Institut für Chemie Universität Rostock Albert‐Einstein‐Str. 3a 18059 Rostock Germany
| | - Alexander Villinger
- Institut für Chemie Universität Rostock Albert‐Einstein‐Str. 3a 18059 Rostock Germany
| | - Stefan Lochbrunner
- Institut für Physik Universität Rostock Albert‐Einstein‐Str. 23–24 18059 Rostock Germany
| | - Peter Ehlers
- Institut für Chemie Universität Rostock Albert‐Einstein‐Str. 3a 18059 Rostock Germany
- Leibniz‐Institut für Katalyse an der Universität Rostock e.V. Albert‐Einstein‐Str. 29a 18059 Rostock Germany
| | - Peter Langer
- Institut für Chemie Universität Rostock Albert‐Einstein‐Str. 3a 18059 Rostock Germany
- Leibniz‐Institut für Katalyse an der Universität Rostock e.V. Albert‐Einstein‐Str. 29a 18059 Rostock Germany
| |
Collapse
|
43
|
Ding Z, Li H, Gao W, Zhang Y, Liu C, Zhu Y. Detection of Picric Acid by Terpy-Based Metallo-Supramolecular Fluorescent Coordination Polymers in Aqueous Media. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201600885] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhongyu Ding
- School of Chemistry and Chemical Engineering; Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei Anhui 230009 China
| | - Hongqing Li
- School of Chemistry and Chemical Engineering; Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei Anhui 230009 China
| | - Wanqing Gao
- School of Chemistry and Chemical Engineering; Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei Anhui 230009 China
| | - Yiquan Zhang
- Jiangsu Provincial Key Laboratory for Numerical Simulation of Large Scale Complex Systems (NSLSCS), School of Physical Science and Technology; Nanjing Normal University; Nanjing Jiangsu 210023 China
| | - Chunhua Liu
- School of Chemistry and Chemical Engineering; Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei Anhui 230009 China
| | - Yuanyuan Zhu
- School of Chemistry and Chemical Engineering; Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei Anhui 230009 China
| |
Collapse
|
44
|
Constructions and properties of zinc coordination polymers based on 3,5-di(4H-1,2,4-triazol-4-yl) benzoic acid with different polycarboxylic acids as a secondary ligand. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.12.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
45
|
Shanmugaraju S, Dabadie C, Byrne K, Savyasachi AJ, Umadevi D, Schmitt W, Kitchen JA, Gunnlaugsson T. A supramolecular Tröger's base derived coordination zinc polymer for fluorescent sensing of phenolic-nitroaromatic explosives in water. Chem Sci 2017; 8:1535-1546. [PMID: 28572910 PMCID: PMC5452275 DOI: 10.1039/c6sc04367d] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/24/2016] [Indexed: 12/13/2022] Open
Abstract
A V-Shaped 4-amino-1,8-napthalimide derived tetracarboxylic acid linker (L; bis-[N-(1,3-benzenedicarboxylic acid)]-9,18-methano-1,8-naphthalimide-[b,f][1,5]diazocine) comprising the Tröger's base (TB) structural motif was rationally designed and synthesised to access a nitrogen-rich fluorescent supramolecular coordination polymer. By adopting the straight forward precipitation method, a new luminescent nanoscale Zn(ii) coordination polymer (TB-Zn-CP) was synthesized in quantitative yield using Zn(OAc)2·2H2O and tetraacid linker L (1 : 0.5) in DMF at room temperature. The phase-purity of as-synthesised TB-Zn-CP was confirmed by X-ray powder diffraction analysis, infra-red spectroscopy, and elemental analysis. Thermogravimetric analysis suggests that TB-Zn-CP is thermally stable up to 330 °C and the morphological features of TB-Zn-CP was analysed by SEM and AFM techniques. The N2 adsorption isotherm of thermally activated TB-Zn-CP at 77 K revealed a type-II reversible adsorption isotherm and the calculated Brunauer-Emmett-Teller (BET) surface area was found to be 72 m2 g-1. Furthermore, TB-Zn-CP displayed an excellent CO2 uptake capacity of 76 mg g-1 at 273 K and good adsorption selectivity for CO2 over N2 and H2. The aqueous suspension of as-synthesized TB-Zn-CP showed strong green fluorescence (λmax = 520 nm) characteristics due to the internal-charge transfer (ICT) transition and was used as a fluorescent sensor for the discriminative sensing of nitroaromatic explosives. The aqueous suspension of TB-Zn-CP showed the largest quenching responses with high selectivity for phenolic-nitroaromatics (4-NP, 2,4-DNP and PA) even in the concurrent presence of other potentially competing nitroaromatic analytes. The fluorescence titration studies also provide evidence that TB-Zn-CP detects picric acid as low as the parts per billion (26.3 ppb) range. Furthermore, the observed fluorescence quenching responses of TB-Zn-CP towards picric acid were highly reversible. The highly selective fluorescence quenching responses including the reversible detection efficiency make the nanoscale coordination polymer TB-Zn-CP a potential material for the discriminative fluorescent sensing of nitroaromatic explosives.
Collapse
Affiliation(s)
- Sankarasekaran Shanmugaraju
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI) , Trinity College Dublin , The University of Dublin , Dublin 2 , Ireland . ;
| | - Charlyne Dabadie
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI) , Trinity College Dublin , The University of Dublin , Dublin 2 , Ireland . ;
| | - Kevin Byrne
- School of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) , Trinity College Dublin , The University of Dublin , Dublin 2 , Ireland
| | - Aramballi J Savyasachi
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI) , Trinity College Dublin , The University of Dublin , Dublin 2 , Ireland . ;
| | - Deivasigamani Umadevi
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI) , Trinity College Dublin , The University of Dublin , Dublin 2 , Ireland . ;
| | - Wolfgang Schmitt
- School of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) , Trinity College Dublin , The University of Dublin , Dublin 2 , Ireland
| | - Jonathan A Kitchen
- Chemistry, Faculty of Natural and Environmental Sciences , University of Southampton-Highfield , Southampton , SO17 1BJ , UK
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI) , Trinity College Dublin , The University of Dublin , Dublin 2 , Ireland . ;
| |
Collapse
|
46
|
Li S, Sun LX, Ni JC, Shi Z, Xing YH, Shang D, Bai FY. Two uranyl heterocyclic carboxyl compounds with fluorescent properties as high sensitivity and selectivity optical detectors for nitroaromatics. NEW J CHEM 2017. [DOI: 10.1039/c6nj03933b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uranyl skeleton compounds showed high sensitivity and selectivity for the detection of nitroaromatics.
Collapse
Affiliation(s)
- Shuang Li
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Huanghe Road 850#
- Dalian 116029
- P. R. China
| | - Li Xian Sun
- Guangxi Key Laboratory of Information Materials
- Guilin University of Electronic Technology
- Guilin 541004
- P. R. China
| | - Jue Chen Ni
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Huanghe Road 850#
- Dalian 116029
- P. R. China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Yong Heng Xing
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Huanghe Road 850#
- Dalian 116029
- P. R. China
| | - Di Shang
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Huanghe Road 850#
- Dalian 116029
- P. R. China
| | - Feng Ying Bai
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Huanghe Road 850#
- Dalian 116029
- P. R. China
| |
Collapse
|
47
|
Wang J, Wu XR, Liu JQ, Li BH, Singh A, Kumar A, Batten SR. An uncommon (5,5)-connected 3D metal organic material for selective and sensitive sensing of nitroaromatics and ferric ion: experimental studies and theoretical analysis. CrystEngComm 2017. [DOI: 10.1039/c7ce00912g] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
48
|
Li J, Wang N, Liu WT, Ding HL, An Y, Lü CW. A revisit to the Gattermann reaction: interesting synthesis of nitrogen heterocyclic aromatic halides and their fluorescence properties. NEW J CHEM 2017. [DOI: 10.1039/c7nj02672b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Gattermann reaction and an electrophilic substitution reaction, which were conducted in a one-pot reaction, are reported, and four aromatic dihalides of similar structure were obtained. 2-Chloro-5-(3-chloro-4-methoxy-phenyl)-1,3,4-thiadiazole was applied as a highly efficient fluorescence sensor for the detection of TNP.
Collapse
Affiliation(s)
- Juan Li
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian
- China
| | - Ning Wang
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian
- China
| | - Wen-Tao Liu
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian
- China
| | - Hong-Lin Ding
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian
- China
| | - Yue An
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian
- China
| | - Cheng-Wei Lü
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian
- China
| |
Collapse
|
49
|
Gao LL, Zhao QN, Li MM, Fan LM, Niu XY, Wang XQ, Hu TP. Magnetic properties and luminescence sensing of five coordination polymers based on a rigid terphenyl-tetracarboxylic acid. CrystEngComm 2017. [DOI: 10.1039/c7ce01510k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five terphenyl-tetracarboxylic acid based on CPs with variable-temperature magnetic susceptibilities and luminescence sensing of small organic molecules.
Collapse
Affiliation(s)
- Ling-Ling Gao
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| | - Qian-Nan Zhao
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| | - Miao-Miao Li
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| | - Li-Ming Fan
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| | - Xiao-Yan Niu
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| | - Xiao-Qing Wang
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| | - Tuo-Ping Hu
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| |
Collapse
|
50
|
Jin JC, Wu J, He YX, Li BH, Liu JQ, Prasad R, Kumar A, Batten SR. A 3D luminescent Zn(ii) MOF for the detection of high explosives and the degradation of organic dyes: an experimental and computational study. CrystEngComm 2017. [DOI: 10.1039/c7ce01341h] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 3D uncommon porous MOF 1 with a 4-c lonsdaleite (lon) topology based on binuclear Zn clusters behaves as a fluorescent chemosensor and a photocatalyst.
Collapse
Affiliation(s)
- Jun-Cheng Jin
- Technology Promotion Center of Nano Composite Material Preparation and Application
- Anhui Provincial Laboratory of Biomimetic Sensor and Detecting Technology
- West Anhui University
- China
| | - Jian Wu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products
- College of Chemistry and Chemical Engineering
- Guangxi University for Nationalities
- Nanning
- China
| | - Yong-Xiang He
- Dongguan Key Laboratory of Drug Design and Formulation Technology
- Key Laboratory for Research and Development of New Medical Materials of Guangdong Medical University
- School of Pharmacy
- Guangdong Medical University
- Dongguan
| | - Bao-Hong Li
- Dongguan Key Laboratory of Drug Design and Formulation Technology
- Key Laboratory for Research and Development of New Medical Materials of Guangdong Medical University
- School of Pharmacy
- Guangdong Medical University
- Dongguan
| | - Jian-Qiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology
- Key Laboratory for Research and Development of New Medical Materials of Guangdong Medical University
- School of Pharmacy
- Guangdong Medical University
- Dongguan
| | - Rajendra Prasad
- Department of Chemistry
- S.G.B. Amravati University
- Amrawati
- India
| | - Abhinav Kumar
- Department of Chemistry
- Faculty of Science
- University of Lucknow
- Lucknow 226 007
- India
| | | |
Collapse
|