1
|
Rahimova R, Nogaret P, Huteau V, Gelin M, Clément DA, Labesse G, Pochet S, Blanc-Potard AB, Lionne C. Structure-based design, synthesis and biological evaluation of a NAD + analogue targeting Pseudomonas aeruginosa NAD kinase. FEBS J 2023; 290:482-501. [PMID: 36036789 PMCID: PMC10087438 DOI: 10.1111/febs.16604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 02/05/2023]
Abstract
Multidrug resistance is a major public health problem that requires the urgent development of new antibiotics and therefore the identification of novel bacterial targets. The activity of nicotinamide adenine dinucleotide kinase, NADK, is essential in all bacteria tested so far, including many human pathogens that display antibiotic resistance leading to the failure of current treatments. Inhibiting NADK is therefore a promising and innovative antibacterial strategy since there is currently no drug on the market targeting this enzyme. Through a fragment-based drug design approach, we have recently developed a NAD+ -competitive inhibitor of NADKs, which displayed in vivo activity against Staphylococcus aureus. Here, we show that this compound, a di-adenosine derivative, is inactive against the NADK enzyme from the Gram-negative bacteria Pseudomonas aeruginosa (PaNADK). This lack of activity can be explained by the crystal structure of PaNADK, which was determined in complex with NADP+ in this study. Structural analysis led us to design and synthesize a benzamide adenine dinucleoside analogue, active against PaNADK. This novel compound efficiently inhibited PaNADK enzymatic activity in vitro with a Ki of 4.6 μm. Moreover, this compound reduced P. aeruginosa infection in vivo in a zebrafish model.
Collapse
Affiliation(s)
- Rahila Rahimova
- Centre de Biologie Structurale (CBS), Université de Montpellier, CNRS UMR 5048, INSERM U1054, France
| | - Pauline Nogaret
- Laboratory of Pathogen Host Interactions (LPHI), Université de Montpellier, CNRS UMR 5235, France
| | - Valérie Huteau
- Unité de Chimie Biologique Epigénétique, Institut Pasteur, Université Paris Cité, CNRS UMR3523, France
| | - Muriel Gelin
- Centre de Biologie Structurale (CBS), Université de Montpellier, CNRS UMR 5048, INSERM U1054, France
| | - David A Clément
- Unité de Chimie Biologique Epigénétique, Institut Pasteur, Université Paris Cité, CNRS UMR3523, France
| | - Gilles Labesse
- Centre de Biologie Structurale (CBS), Université de Montpellier, CNRS UMR 5048, INSERM U1054, France
| | - Sylvie Pochet
- Unité de Chimie Biologique Epigénétique, Institut Pasteur, Université Paris Cité, CNRS UMR3523, France
| | | | - Corinne Lionne
- Centre de Biologie Structurale (CBS), Université de Montpellier, CNRS UMR 5048, INSERM U1054, France
| |
Collapse
|
2
|
Cofactor and Process Engineering for Nicotinamide Recycling and Retention in Intensified Biocatalysis. Catalysts 2022. [DOI: 10.3390/catal12111454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
There is currently considerable interest in the intensification of biocatalytic processes to reduce the cost of goods for biocatalytically produced chemicals, including pharmaceuticals and advanced pharmaceutical intermediates. Continuous-flow biocatalysis shows considerable promise as a method for process intensification; however, the reliance of some reactions on the use of diffusible cofactors (such as the nicotinamide cofactors) has proven to be a technical barrier for key enzyme classes. This minireview covers attempts to overcome this limitation, including the cofactor recapture and recycling retention of chemically modified cofactors. For the latter, we also consider the state of science for cofactor modification, a field reinvigorated by the current interest in continuous-flow biocatalysis.
Collapse
|
3
|
Manik MK, Shi Y, Li S, Zaydman MA, Damaraju N, Eastman S, Smith TG, Gu W, Masic V, Mosaiab T, Weagley JS, Hancock SJ, Vasquez E, Hartley-Tassell L, Kargios N, Maruta N, Lim BYJ, Burdett H, Landsberg MJ, Schembri MA, Prokes I, Song L, Grant M, DiAntonio A, Nanson JD, Guo M, Milbrandt J, Ve T, Kobe B. Cyclic ADP ribose isomers: Production, chemical structures, and immune signaling. Science 2022; 377:eadc8969. [PMID: 36048923 DOI: 10.1126/science.adc8969] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cyclic adenosine diphosphate (ADP)-ribose (cADPR) isomers are signaling molecules produced by bacterial and plant Toll/interleukin-1 receptor (TIR) domains via nicotinamide adenine dinucleotide (oxidized form) (NAD+) hydrolysis. We show that v-cADPR (2'cADPR) and v2-cADPR (3'cADPR) isomers are cyclized by O-glycosidic bond formation between the ribose moieties in ADPR. Structures of 2'cADPR-producing TIR domains reveal conformational changes that lead to an active assembly that resembles those of Toll-like receptor adaptor TIR domains. Mutagenesis reveals a conserved tryptophan that is essential for cyclization. We show that 3'cADPR is an activator of ThsA effector proteins from the bacterial antiphage defense system termed Thoeris and a suppressor of plant immunity when produced by the effector HopAM1. Collectively, our results reveal the molecular basis of cADPR isomer production and establish 3'cADPR in bacteria as an antiviral and plant immunity-suppressing signaling molecule.
Collapse
Affiliation(s)
- Mohammad K Manik
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yun Shi
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Sulin Li
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mark A Zaydman
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63100, USA
| | - Neha Damaraju
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63100, USA
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63100, USA
| | - Samuel Eastman
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Thomas G Smith
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Weixi Gu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Veronika Masic
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Tamim Mosaiab
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - James S Weagley
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Steven J Hancock
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Eduardo Vasquez
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | | | - Nestoras Kargios
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Natsumi Maruta
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bryan Y J Lim
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hayden Burdett
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael J Landsberg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ivan Prokes
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Lijiang Song
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Murray Grant
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Aaron DiAntonio
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63100, USA
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63100, USA
| | - Jeffrey D Nanson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ming Guo
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jeffrey Milbrandt
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63100, USA
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| |
Collapse
|
4
|
Zähringer S, Rumpf T, Melesina J, Lang AE, Aktories K, Sippl W, Jung M, Wagner GK. Defined stereoisomers of 2″-amino NAD + and their activity against human sirtuins and a bacterial (ADP-ribosyl) transferase. Bioorg Med Chem 2022; 68:116875. [PMID: 35716588 DOI: 10.1016/j.bmc.2022.116875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/02/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an important biomolecule with essential roles at the intersection of energy metabolism, epigenetic regulation and cell signalling. Synthetic analogues of NAD+ are therefore of great interest as chemical tools for medicinal chemistry, chemical biology and drug discovery. Herein, we report the chemical synthesis and full analytical characterisation of three stereoisomers of 2″-amino NAD+, and their biochemical evaluation against two classes of NAD+-consuming enzymes: the human sirtuins 1-3, and the bacterial toxin TccC3. To rationalise the observed activities, molecular docking experiments were carried out with SIRT1 and SIRT2, which identified the correct orientation of the pyrophosphate linkage as a major determinant for activity in this series. These results, together with results from stability tests and a conformational analysis, allow, for the first time, a side-by-side comparison of the chemical and biochemical features, and analytical properties, of different 2″-amino NAD+ stereoisomers. Our findings provide insight into the recognition of co-substrate analogues by sirtuins, and will greatly facilitate the application of these important NAD+ analogues as chemical tool compounds for mechanistic studies with these as well as other NAD+-dependent enyzmes.
Collapse
Affiliation(s)
- Sarah Zähringer
- Department of Chemistry, King's College London, Faculty of Natural & Mathematical Sciences, Britannia House, 7 Trinity Street, London SE1 1DB, United Kingdom; Institute of Pharmaceutical Sciences, Albert-Ludwigs-University Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Tobias Rumpf
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Jelena Melesina
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany
| | - Alexander E Lang
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Albertstr 25, 79104 Freiburg, Germany
| | - Klaus Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Albertstr 25, 79104 Freiburg, Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Gerd K Wagner
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| |
Collapse
|
5
|
Wilkinson IVL, Pfanzelt M, Sieber SA. Functionalised Cofactor Mimics for Interactome Discovery and Beyond. Angew Chem Int Ed Engl 2022; 61:e202201136. [PMID: 35286003 PMCID: PMC9401033 DOI: 10.1002/anie.202201136] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 11/09/2022]
Abstract
Cofactors are required for almost half of all enzyme reactions, but their functions and binding partners are not fully understood even after decades of research. Functionalised cofactor mimics that bind in place of the unmodified cofactor can provide answers, as well as expand the scope of cofactor activity. Through chemical proteomics approaches such as activity-based protein profiling, the interactome and localisation of the native cofactor in its physiological environment can be deciphered and previously uncharacterised proteins annotated. Furthermore, cofactors that supply functional groups to substrate biomolecules can be hijacked by mimics to site-specifically label targets and unravel the complex biology of post-translational protein modification. The diverse activity of cofactors has inspired the design of mimics for use as inhibitors, antibiotic therapeutics, and chemo- and biosensors, and cofactor conjugates have enabled the generation of novel enzymes and artificial DNAzymes.
Collapse
Affiliation(s)
- Isabel V. L. Wilkinson
- Centre for Functional Protein AssembliesTechnical University of MunichErnst-Otto-Fischer-Straße 885748GarchingGermany
| | - Martin Pfanzelt
- Centre for Functional Protein AssembliesTechnical University of MunichErnst-Otto-Fischer-Straße 885748GarchingGermany
| | - Stephan A. Sieber
- Centre for Functional Protein AssembliesTechnical University of MunichErnst-Otto-Fischer-Straße 885748GarchingGermany
| |
Collapse
|
6
|
Wilkinson IVL, Pfanzelt M, Sieber SA. Funktionalisierte Cofaktor‐Analoga für die Erforschung von Interaktomen und darüber hinaus. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Isabel V. L. Wilkinson
- Centre for Functional Protein Assemblies Technische Universität München Ernst-Otto-Fischer-Straße 8 85748 Garching Deutschland
| | - Martin Pfanzelt
- Centre for Functional Protein Assemblies Technische Universität München Ernst-Otto-Fischer-Straße 8 85748 Garching Deutschland
| | - Stephan A. Sieber
- Centre for Functional Protein Assemblies Technische Universität München Ernst-Otto-Fischer-Straße 8 85748 Garching Deutschland
| |
Collapse
|
7
|
Nimma S, Gu W, Manik MK, Ve T, Nanson JD, Kobe B. Crystal structure of the Toll/interleukin-1 receptor (TIR) domain of IL-1R10 provides structural insights into TIR domain signaling. FEBS Lett 2022; 596:886-897. [PMID: 35038778 DOI: 10.1002/1873-3468.14288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022]
Abstract
The Toll/interleukin-1 receptor (TIR) domains are key innate immune signaling modules. Here, we present the crystal structure of the TIR domain of human Interleukin-1 receptor 10 (IL-1R10), also called IL-1RAPL2. It is similar to that of IL-1R9 (IL-1RAPL1) but shows significant structural differences to those from Toll-like receptors (TLRs) and the adaptor proteins MAL and MyD88. Interactions of TIR domains in their respective crystals and the higher-order assemblies (MAL and MyD88) reveal the presence of a common 'BCD surface', suggesting its functional significance. We also show that the TIR domains of IL-1R10 and IL-1R9 lack NADase activity, consistent with their structures. Our study provides a foundation for unraveling the functions of IL-1R9 and IL-1R10.
Collapse
Affiliation(s)
- Surekha Nimma
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute of Molecular Bioscience, Brisbane, Queensland, 4072, Australia
| | - Weixi Gu
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute of Molecular Bioscience, Brisbane, Queensland, 4072, Australia
| | - Mohammad K Manik
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute of Molecular Bioscience, Brisbane, Queensland, 4072, Australia
| | - Thomas Ve
- Griffith University, Institute for Glycomics, Southport, Queensland, 4222, Australia
| | - Jeffrey D Nanson
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute of Molecular Bioscience, Brisbane, Queensland, 4072, Australia
| | - Bostjan Kobe
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute of Molecular Bioscience, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
8
|
Crystal structure and functional implication of bacterial STING. Nat Commun 2022; 13:26. [PMID: 35013136 PMCID: PMC8748872 DOI: 10.1038/s41467-021-26583-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/20/2021] [Indexed: 12/30/2022] Open
Abstract
Mammalian innate immune sensor STING (STimulator of INterferon Gene) was recently found to originate from bacteria. During phage infection, bacterial STING sense c-di-GMP generated by the CD-NTase (cGAS/DncV-like nucleotidyltransferase) encoded in the same operon and signal suicide commitment as a defense strategy that restricts phage propagation. However, the precise binding mode of c-di-GMP to bacterial STING and the specific recognition mechanism are still elusive. Here, we determine two complex crystal structures of bacterial STING/c-di-GMP, which provide a clear picture of how c-di-GMP is distinguished from other cyclic dinucleotides. The protein-protein interactions further reveal the driving force behind filament formation of bacterial STING. Finally, we group the bacterial STING into two classes based on the conserved motif in β-strand lid, which dictate their ligand specificity and oligomerization mechanism, and propose an evolution-based model that describes the transition from c-di-GMP-dependent signaling in bacteria to 2’3’-cGAMP-dependent signaling in eukaryotes. The bacterial Cyclic-oligonucleotide-Based Anti-phage Signaling System (CBASS) contains a CD-NTase that synthesizes cyclic di- and tri-nucleotides, and bacterial STING proteins recognize c-di-GMP generated by CD-NTase during phage infection and signal the infected bacteria to commit suicide. Here, the authors provide insights into the molecular basis for c-di-GMP recognition of bacterial STING proteins by determining two STING protein crystal structures with bound c-di-GMP from Prevotella corporis and Myroides sp. ZB35.
Collapse
|
9
|
Glumoff T, Sowa ST, Lehtiö L. Assay technologies facilitating drug discovery for ADP-ribosyl writers, readers and erasers. Bioessays 2021; 44:e2100240. [PMID: 34816463 DOI: 10.1002/bies.202100240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022]
Abstract
ADP-ribosylation is a post-translational modification catalyzed by writer enzymes - ADP-ribosyltransferases. The modification is part of many signaling events, can modulate the function and stability of target proteins, and often results in the recruitment of reader proteins that bind to the ADP-ribosyl groups. Erasers are integral actors in these signaling events and reverse the modification. ADP-ribosylation can be targeted with therapeutics and many inhibitors against writers exist, with some being in clinical use. Inhibitors against readers and erasers are sparser and development of these has gained momentum only in recent years. Drug discovery has been hampered by the lack of specific tools, however many significant advances in the methods have recently been reported. We discuss assays used in the field with a focus on methods allowing efficient identification of small molecule inhibitors and profiling against enzyme families. While human proteins are focused, the methods can be also applied to bacterial toxins and virus encoded erasers that can be targeted to treat infectious diseases in the future.
Collapse
Affiliation(s)
- Tuomo Glumoff
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Sven T Sowa
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
10
|
A Novel NAD-RNA Decapping Pathway Discovered by Synthetic Light-Up NAD-RNAs. Biomolecules 2020; 10:biom10040513. [PMID: 32231086 PMCID: PMC7226252 DOI: 10.3390/biom10040513] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/20/2022] Open
Abstract
The complexity of the transcriptome is governed by the intricate interplay of transcription, RNA processing, translocation, and decay. In eukaryotes, the removal of the 5’-RNA cap is essential for the initiation of RNA degradation. In addition to the canonical 5’-N7-methyl guanosine cap in eukaryotes, the ubiquitous redox cofactor nicotinamide adenine dinucleotide (NAD) was identified as a new 5’-RNA cap structure in prokaryotic and eukaryotic organisms. So far, two classes of NAD-RNA decapping enzymes have been identified, namely Nudix enzymes that liberate nicotinamide mononucleotide (NMN) and DXO-enzymes that remove the entire NAD cap. Herein, we introduce 8-(furan-2-yl)-substituted NAD-capped-RNA (FurNAD-RNA) as a new research tool for the identification and characterization of novel NAD-RNA decapping enzymes. These compounds are found to be suitable for various enzymatic reactions that result in the release of a fluorescence quencher, either nicotinamide (NAM) or nicotinamide mononucleotide (NMN), from the RNA which causes a fluorescence turn-on. FurNAD-RNAs allow for real-time quantification of decapping activity, parallelization, high-throughput screening and identification of novel decapping enzymes in vitro. Using FurNAD-RNAs, we discovered that the eukaryotic glycohydrolase CD38 processes NAD-capped RNA in vitro into ADP-ribose-modified-RNA and nicotinamide and therefore might act as a decapping enzyme in vivo. The existence of multiple pathways suggests that the decapping of NAD-RNA is an important and regulated process in eukaryotes.
Collapse
|
11
|
Loring HS, Icso JD, Nemmara VV, Thompson PR. Initial Kinetic Characterization of Sterile Alpha and Toll/Interleukin Receptor Motif-Containing Protein 1. Biochemistry 2020; 59:933-942. [PMID: 32049506 DOI: 10.1021/acs.biochem.9b01078] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sterile alpha and toll/interleukin receptor (TIR) motif-containing protein 1 (SARM1) plays a pivotal role in triggering the neurodegenerative processes that underlie peripheral neuropathies, traumatic brain injury, and neurodegenerative diseases. Importantly, SARM1 knockdown or knockout prevents degeneration, thereby demonstrating that SARM1 is a promising therapeutic target. Recently, SARM1 was shown to promote neurodegeneration via its ability to hydrolyze NAD+, forming nicotinamide and ADP ribose (ADPR). Herein, we describe the initial kinetic characterization of full-length SARM1, as well as the truncated constructs corresponding to the SAM1-2TIR and TIR domains, highlighting the distinct challenges that have complicated efforts to characterize this enzyme. Moreover, we show that bacterially expressed full-length SARM1 (kcat/KM = 6000 ± 2000 M-1 s-1) is at least as active as the TIR domain alone (kcat/KM = 1500 ± 300 M-1 s-1). Finally, we show that the SARM1 hydrolyzes NAD+ via an ordered uni-bi reaction in which nicotinamide is released prior to ADPR.
Collapse
Affiliation(s)
- Heather S Loring
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States.,Program in Chemical Biology, UMass Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Janneke D Icso
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States.,Program in Chemical Biology, UMass Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Venkatesh V Nemmara
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States.,Program in Chemical Biology, UMass Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Paul R Thompson
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States.,Program in Chemical Biology, UMass Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| |
Collapse
|
12
|
Depaix A, Kowalska J. NAD Analogs in Aid of Chemical Biology and Medicinal Chemistry. Molecules 2019; 24:molecules24224187. [PMID: 31752261 PMCID: PMC6891637 DOI: 10.3390/molecules24224187] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) serves as an essential redox co-factor and mediator of multiple biological processes. Besides its well-established role in electron transfer reactions, NAD serves as a substrate for other biotransformations, which, at the molecular level, can be classified as protein post-translational modifications (protein deacylation, mono-, and polyADP-ribosylation) and formation of signaling molecules (e.g., cyclic ADP ribose). These biochemical reactions control many crucial biological processes, such as cellular signaling and recognition, DNA repair and epigenetic modifications, stress response, immune response, aging and senescence, and many others. However, the links between the biological effects and underlying molecular processes are often poorly understood. Moreover, NAD has recently been found to tag the 5′-ends of some cellular RNAs, but the function of these NAD-capped RNAs remains largely unrevealed. Synthetic NAD analogs are invaluable molecular tools to detect, monitor, structurally investigate, and modulate activity of NAD-related enzymes and biological processes in order to aid their deeper understanding. Here, we review the recent advances in the design and development of NAD analogs as probes for various cellular NAD-related enzymes, enzymatic inhibitors with anticancer or antimicrobial therapeutic potential, and other NAD-related chemical biology tools. We focus on research papers published within the last 10 years.
Collapse
|
13
|
Horsefield S, Burdett H, Zhang X, Manik MK, Shi Y, Chen J, Qi T, Gilley J, Lai JS, Rank MX, Casey LW, Gu W, Ericsson DJ, Foley G, Hughes RO, Bosanac T, von Itzstein M, Rathjen JP, Nanson JD, Boden M, Dry IB, Williams SJ, Staskawicz BJ, Coleman MP, Ve T, Dodds PN, Kobe B. NAD + cleavage activity by animal and plant TIR domains in cell death pathways. Science 2019; 365:793-799. [PMID: 31439792 DOI: 10.1126/science.aax1911] [Citation(s) in RCA: 334] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/23/2019] [Indexed: 02/02/2023]
Abstract
SARM1 (sterile alpha and TIR motif containing 1) is responsible for depletion of nicotinamide adenine dinucleotide in its oxidized form (NAD+) during Wallerian degeneration associated with neuropathies. Plant nucleotide-binding leucine-rich repeat (NLR) immune receptors recognize pathogen effector proteins and trigger localized cell death to restrict pathogen infection. Both processes depend on closely related Toll/interleukin-1 receptor (TIR) domains in these proteins, which, as we show, feature self-association-dependent NAD+ cleavage activity associated with cell death signaling. We further show that SARM1 SAM (sterile alpha motif) domains form an octamer essential for axon degeneration that contributes to TIR domain enzymatic activity. The crystal structures of ribose and NADP+ (the oxidized form of nicotinamide adenine dinucleotide phosphate) complexes of SARM1 and plant NLR RUN1 TIR domains, respectively, reveal a conserved substrate binding site. NAD+ cleavage by TIR domains is therefore a conserved feature of animal and plant cell death signaling pathways.
Collapse
Affiliation(s)
- Shane Horsefield
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Hayden Burdett
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Xiaoxiao Zhang
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia.,Plant Sciences Division, Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| | - Mohammad K Manik
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Yun Shi
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Jian Chen
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia.,Plant Sciences Division, Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| | - Tiancong Qi
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jonathan Gilley
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, ED Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK.,Babraham Institute, Babraham, Cambridge CB22 3AT, UK
| | - Jhih-Siang Lai
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Maxwell X Rank
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Lachlan W Casey
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia.,Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD 4072, Australia
| | - Weixi Gu
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel J Ericsson
- Macromolecular Crystallography (MX) Beamlines, Australian Synchrotron, Melbourne, VIC 3168, Australia
| | - Gabriel Foley
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert O Hughes
- Disarm Therapeutics, 400 Technology Square, Cambridge, MA 02139, USA
| | - Todd Bosanac
- Disarm Therapeutics, 400 Technology Square, Cambridge, MA 02139, USA
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - John P Rathjen
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| | - Jeffrey D Nanson
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Mikael Boden
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Ian B Dry
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Urrbrae, SA 5064, Australia
| | - Simon J Williams
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| | - Brian J Staskawicz
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Michael P Coleman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, ED Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK.,Babraham Institute, Babraham, Cambridge CB22 3AT, UK
| | - Thomas Ve
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia. .,Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Peter N Dodds
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia.
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
14
|
Feldmann J, Li Y, Tor Y. Emissive Synthetic Cofactors: A Highly Responsive NAD + Analogue Reveals Biomolecular Recognition Features. Chemistry 2019; 25:4379-4389. [PMID: 30648291 DOI: 10.1002/chem.201805520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Indexed: 12/14/2022]
Abstract
Apart from its vital function as a redox cofactor, nicotinamide adenine dinucleotide (NAD+ ) has emerged as a crucial substrate for NAD+ -consuming enzymes, including poly(ADP-ribosyl)transferase 1 (PARP1) and CD38/CD157. Their association with severe diseases, such as cancer, Alzheimer's disease, and depressions, necessitates the development of new analytical tools based on traceable NAD+ surrogates. Here, the synthesis, photophysics and biochemical utilization of an emissive, thieno[3,4-d]pyrimidine-based NAD+ surrogate, termed Nth AD+ , are described. Its preparation was accomplished by enzymatic conversion of synthetic th ATP by nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1). The new NAD+ analogue possesses useful photophysical features including redshifted absorption and emission maxima as well as a relatively high quantum yield. Serving as a versatile substrate, Nth AD+ was reduced by alcohol dehydrogenase (ADH) to Nth ADH and afforded th ADP-ribose (th ADPr) upon hydrolysis by NAD+ -nucleosidase (NADase). Furthermore, Nth AD+ was engaged in cholera toxin A (CTA)-catalyzed mono(th ADP-ribosyl)ation, but was found incapable in promoting PARP1-mediated poly(th ADP-ribosyl)ation. Due to its high photophysical responsiveness, Nth AD+ is suited for spectroscopic real-time monitoring. Intriguingly, and as an N7-lacking NAD+ surrogate, the thieno-based cofactor showed reduced compatibility (i.e., functional similarity compared to native NAD+ ) relative to its isothiazolo-based analogue. The distinct tolerance, displayed by diverse NAD+ producing and consuming enzymes, suggests unique biological recognition features and dependency on the purine N7 moiety, which is found to be of importance, if not essential, for PARP1-mediated reactions.
Collapse
Affiliation(s)
- Jonas Feldmann
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0358, USA.,Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Yao Li
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0358, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0358, USA
| |
Collapse
|
15
|
Hallé F, Fin A, Rovira AR, Tor Y. Emissive Synthetic Cofactors: Enzymatic Interconversions of tz A Analogues of ATP, NAD + , NADH, NADP + , and NADPH. Angew Chem Int Ed Engl 2018; 57:1087-1090. [PMID: 29228460 PMCID: PMC5771816 DOI: 10.1002/anie.201711935] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 12/11/2022]
Abstract
A series of enzymatic transformations, which generate visibly emissive isofunctional cofactors based on an isothiazolo[4,3-d]pyrimidine analogue of adenosine (tz A), was developed. Nicotinamide adenylyl transferase condenses nicotinamide mononucleotide and tz ATP to yield Ntz AD+ , which can be enzymatically phosphorylated by NAD+ kinase and ATP or tz ATP to the corresponding Ntz ADP+ . The latter can be engaged in NADP-specific coupled enzymatic transformations involving conversion to Ntz ADPH by glucose-6-phosphate dehydrogenase and reoxidation to Ntz ADP+ by glutathione reductase. The Ntz ADP+ /Ntz ADPH cycle can be monitored in real time by fluorescence spectroscopy.
Collapse
Affiliation(s)
- François Hallé
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Andrea Fin
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Alexander R Rovira
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| |
Collapse
|
16
|
Emissive Synthetic Cofactors: Enzymatic Interconversions of tz
A Analogues of ATP, NAD+
, NADH, NADP+
, and NADPH. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201711935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Rovira AR, Fin A, Tor Y. Emissive Synthetic Cofactors: An Isomorphic, Isofunctional, and Responsive NAD + Analogue. J Am Chem Soc 2017; 139:15556-15559. [PMID: 29043790 DOI: 10.1021/jacs.7b05852] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The synthesis, photophysics, and biochemical utility of a fluorescent NAD+ analogue based on an isothiazolo[4,3-d]pyrimidine core (NtzAD+) are described. Enzymatic reactions, photophysically monitored in real time, show NtzAD+ and NtzADH to be substrates for yeast alcohol dehydrogenase and lactate dehydrogenase, respectively, with reaction rates comparable to that of the native cofactors. A drop in fluorescence is seen as NtzAD+ is converted to NtzADH, reflecting a complementary photophysical behavior to that of the native NAD+/NADH. NtzAD+ and NtzADH serve as substrates for NADase, which selectively cleaves the nicotinamide's glycosidic bond yielding tzADP-ribose. NtzAD+ also serves as a substrate for ribosyl transferases, including human adenosine ribosyl transferase 5 (ART5) and Cholera toxin subunit A (CTA), which hydrolyze the nicotinamide and transfer tzADP-ribose to an arginine analogue, respectively. These reactions can be monitored by fluorescence spectroscopy, in stark contrast to the corresponding processes with the nonemissive NAD+.
Collapse
Affiliation(s)
- Alexander R Rovira
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093-0358, United States
| | - Andrea Fin
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093-0358, United States
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093-0358, United States
| |
Collapse
|
18
|
Pergolizzi G, Wagner GK, Bowater RP. Biochemical and Structural Characterisation of DNA Ligases from Bacteria and Archaea. Biosci Rep 2016; 36:00391. [PMID: 27582505 PMCID: PMC5052709 DOI: 10.1042/bsr20160003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 08/28/2016] [Accepted: 08/30/2016] [Indexed: 12/13/2022] Open
Abstract
DNA ligases are enzymes that seal breaks in the backbones of DNA, leading to them being essential for the survival of all organisms. DNA ligases have been studied from many different types of cells and organisms and shown to have diverse sizes and sequences, with well conserved specific sequences that are required for enzymatic activity. A significant number of DNA ligases have been isolated or prepared in recombinant forms and, here, we review their biochemical and structural characterisation. All DNA ligases contain an essential lysine that transfers an adenylate group from a co-factor to the 5'-phosphate of the DNA end that will ultimately be joined to the 3'-hydroxyl of the neighbouring DNA strand. The essential DNA ligases in bacteria use nicotinamide adenine dinucleotide ( β -NAD+) as their co-factor whereas those that are essential in other cells use adenosine-5'-triphosphate (ATP) as their co-factor. This observation suggests that the essential bacterial enzyme could be targeted by novel antibiotics and the complex molecular structure of β -NAD+ affords multiple opportunities for chemical modification. Several recent studies have synthesised novel derivatives and their biological activity against a range of DNA ligases has been evaluated as inhibitors for drug discovery and/or non-natural substrates for biochemical applications. Here, we review the recent advances that herald new opportunities to alter the biochemical activities of these important enzymes. The recent development of modified derivatives of nucleotides highlights that the continued combination of structural, biochemical and biophysical techniques will be useful in targeting these essential cellular enzymes.
Collapse
Affiliation(s)
- Giulia Pergolizzi
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, N/A, United Kingdom
| | - Gerd K Wagner
- Department of Chemistry, King's College London, Faculty of Natural & Mathematical Sciences, Britannia House, 7 Trinity Street, London, N/A, United Kingdom
| | - Richard Peter Bowater
- School of Biological Sciences, University of East Anglia, Norwich, N/A, NR4 7TJ, United Kingdom
| |
Collapse
|
19
|
Abstract
In prokaryotic organisms, certain regulatory RNAs have recently been found to be linked to the ubiquitous redox cofactor nicotinamide adenine dinucleotide (NAD) at their 5'-ends. Biochemical and structural investigations of this new caplike RNA modification require synthetic access to pure NAD-RNA. Here we report a chemoenzymatic approach to generate 5'-NAD-capped RNA in high yields and purity under mild conditions. This approach uses unprotected 5'-monophosphate RNA synthesized either chemically or enzymatically, 5',5'-pyrophosphate bond formation by phosphorimidazolide chemistry, and an enzymatic cleanup step. Thus, 5'-NAD-modified RNA can be synthesized independent of length, structure, and nucleotide sequence.
Collapse
Affiliation(s)
- Katharina Höfer
- Institute for Pharmacy and Molecular Biotechnology, Heidelberg University , 69120 Heidelberg, Germany
| | - Florian Abele
- Institute for Pharmacy and Molecular Biotechnology, Heidelberg University , 69120 Heidelberg, Germany
| | - Jasmin Schlotthauer
- Institute for Pharmacy and Molecular Biotechnology, Heidelberg University , 69120 Heidelberg, Germany
| | - Andres Jäschke
- Institute for Pharmacy and Molecular Biotechnology, Heidelberg University , 69120 Heidelberg, Germany
| |
Collapse
|
20
|
Drenichev MS, Mikhailov SN. Poly(ADP-ribose)--a unique natural polymer structural features, biological role and approaches to the chemical synthesis. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 34:258-76. [PMID: 25774719 DOI: 10.1080/15257770.2014.984073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Poly(ADP-ribose) (PAR) is a natural polymer, taking part in numerous important cellular processes. Several enzymes are involved in biosynthesis and degradation of PAR. One of them, poly(ADP-ribose)polymerase-1 (PARP-1) is considered to be a perspective target for the design of new drugs, affecting PAR metabolism. The structure of PAR was established by enzymatic hydrolysis and further analysis of the products, but total chemical synthesis of PAR hasn't been described yet. Several approaches have been developed on the way to chemical synthesis of this unique biopolymer.
Collapse
Affiliation(s)
- Mikhail S Drenichev
- a Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , Moscow , Russian Federation
| | | |
Collapse
|
21
|
Pergolizzi G, Cominetti MMD, Butt JN, Field RA, Bowater RP, Wagner GK. Base-modified NAD and AMP derivatives and their activity against bacterial DNA ligases. Org Biomol Chem 2015; 13:6380-98. [PMID: 25974621 DOI: 10.1039/c5ob00294j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We report the chemical synthesis and conformational analysis of a collection of 2-, 6- and 8-substituted derivatives of β-NAD(+) and AMP, and their biochemical evaluation against NAD(+)-dependent DNA ligases from Escherichia coli and Mycobacterium tuberculosis. Bacterial DNA ligases are validated anti-microbial targets, and new strategies for their inhibition are therefore of considerable scientific and practical interest. Our study includes several pairs of β-NAD(+) and AMP derivatives with the same substitution pattern at the adenine base. This has enabled the first direct comparison of co-substrate and inhibitor behaviour against bacterial DNA ligases. Our results suggest that an additional substituent in position 6 or 8 of the adenine base in β-NAD(+) is detrimental for activity as either co-substrate or inhibitor. In contrast, substituents in position 2 are not only tolerated, but appear to give rise to a new mode of inhibition, which targets the conformational changes these DNA ligases undergo during catalysis. Using a molecular modelling approach, we highlight that these findings have important implications for our understanding of ligase mechanism and inhibition, and may provide a promising starting point for the rational design of a new class of inhibitors against NAD(+)-dependent DNA ligases.
Collapse
Affiliation(s)
- Giulia Pergolizzi
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | | | | | | | | | | |
Collapse
|
22
|
Shaughnessy KH. Palladium-catalyzed modification of unprotected nucleosides, nucleotides, and oligonucleotides. Molecules 2015; 20:9419-54. [PMID: 26007192 PMCID: PMC6272472 DOI: 10.3390/molecules20059419] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/15/2015] [Accepted: 05/19/2015] [Indexed: 11/30/2022] Open
Abstract
Synthetic modification of nucleoside structures provides access to molecules of interest as pharmaceuticals, biochemical probes, and models to study diseases. Covalent modification of the purine and pyrimidine bases is an important strategy for the synthesis of these adducts. Palladium-catalyzed cross-coupling is a powerful method to attach groups to the base heterocycles through the formation of new carbon-carbon and carbon-heteroatom bonds. In this review, approaches to palladium-catalyzed modification of unprotected nucleosides, nucleotides, and oligonucleotides are reviewed. Polar reaction media, such as water or polar aprotic solvents, allow reactions to be performed directly on the hydrophilic nucleosides and nucleotides without the need to use protecting groups. Homogeneous aqueous-phase coupling reactions catalyzed by palladium complexes of water-soluble ligands provide a general approach to the synthesis of modified nucleosides, nucleotides, and oligonucleotides.
Collapse
Affiliation(s)
- Kevin H Shaughnessy
- Department of Chemistry, The University of Alabama, Box 870336, Tuscaloosa, AL 35487-0336, USA.
| |
Collapse
|
23
|
Pesnot T, Tedaldi LM, Jambrina PG, Rosta E, Wagner GK. Exploring the role of the 5-substituent for the intrinsic fluorescence of 5-aryl and 5-heteroaryl uracil nucleotides: a systematic study. Org Biomol Chem 2014; 11:6357-71. [PMID: 23945704 DOI: 10.1039/c3ob40485d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Derivatives of UMP (uridine monophosphate) with a fluorogenic substituent in position 5 represent a small but unique class of fluorophores, which has found important applications in chemical biology and biomolecular chemistry. In this study, we have synthesised a series of derivatives of the uracil nucleotides UMP, UDP and UTP with different aromatic and heteroaromatic substituents in position 5, in order to systematically investigate the influence of the 5-substituent on fluorescence emission. We have determined relevant photophysical parameters for all derivatives in this series, including quantum yields for the best fluorophores. The strongest fluorescence emission was observed with a 5-formylthien-2-yl substituent in position 5 of the uracil base, while the corresponding 3-formylthien-2-yl-substituted regioisomer was significantly less fluorescent. The 5-(5-formylthien-2-yl) uracil fluorophore was studied further in solvents of different polarity and proticity. In conjunction with results from a conformational analysis based on NMR data and computational experiments, these findings provide insights into the steric and electronic factors that govern fluorescence emission in this class of fluorophores. In particular, they highlight the interplay between fluorescence emission and conformation in this series. Finally, we carried out ligand-binding experiments with the 5-(5-formylthien-2-yl) uracil fluorophore and a UDP-sugar-dependent glycosyltransferase, demonstrating its utility for biological applications. The results from our photophysical and biological studies suggest, for the first time, a structural explanation for the fluorescence quenching effect that is observed upon binding of these fluorophores to a target protein.
Collapse
Affiliation(s)
- Thomas Pesnot
- School of Pharmacy, University of East Anglia, Norwich, UK
| | | | | | | | | |
Collapse
|
24
|
Sun Q, Gong S, Sun J, Wang C, Liu S, Liu G, Ma C. Efficient synthesis of nucleoside 5′-triphosphates and their β,γ-bridging oxygen-modified analogs from nucleoside 5′-phosphates. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.02.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Schutkowski M, Fischer F, Roessler C, Steegborn C. New assays and approaches for discovery and design of Sirtuin modulators. Expert Opin Drug Discov 2014; 9:183-99. [DOI: 10.1517/17460441.2014.875526] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|