1
|
León-Alcaide L, Castillo-Blas C, Martin-Diaconescu V, da Silva I, Keen DA, Bennett TD, Mínguez Espallargas G. Solvent-free approach for the synthesis of heterometallic Fe-Zn-ZIF glass via a melt-quenched process. Chem Sci 2025; 16:7946-7955. [PMID: 40201169 PMCID: PMC11973450 DOI: 10.1039/d5sc00767d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025] Open
Abstract
We report the solvent-free synthesis of a crystalline heterometallic imidazolate derivative with formula [Fe1Zn2(im)6(Him)2], designated MUV-25, incorporating both iron and zinc. The structure imposes strict positional constraints on the metal centres due to the lattice containing distinct geometric coordination sites, tetrahedral and octahedral. As a consequence, each metal is exclusively directed to its specific coordination site, ensuring precise spatial organization within the lattice. Atom locations were meticulously monitored utilizing X-ray diffraction (single crystal and total scattering) and XAS techniques, demonstrating that the tetrahedral sites are occupied exclusively by zinc, and the octahedral sites are occupied by iron. This combination of metal centres results, upon heating, in a structural phase transformation to the zni topology at a very low temperature. Further heating causes the melting of the solid, yielding a heterometallic MOF-derived glass. The methodology lays the groundwork for tailoring crystalline structures to advance the development of novel materials capable of melting and forming glasses upon cooling.
Collapse
Affiliation(s)
- Luis León-Alcaide
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia c/ Catedrático José Beltrán, 2 46980 Paterna Spain
| | - Celia Castillo-Blas
- Department of Materials Science and Metallurgy, University of Cambridge Cambridge CB3 0FS UK
| | | | - Ivan da Silva
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus Didcot Oxfordshire OX11 0QX UK
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus Didcot Oxfordshire OX11 0QX UK
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge Cambridge CB3 0FS UK
| | | |
Collapse
|
2
|
Souilah C, Jannuzzi SAV, Becker FJ, Demirbas D, Jenisch D, Ivlev S, Xie X, Peredkov S, Lichtenberg C, DeBeer S, Casitas A. Synthesis of Iron(IV) Alkynylide Complexes and Their Reactivity to Form 1,3-Diynes. Angew Chem Int Ed Engl 2025; 64:e202421222. [PMID: 39551703 DOI: 10.1002/anie.202421222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
The isolation of thermally unstable and highly reactive organoiron(IV) complexes is a challenge for synthetic chemists. In particular, the number of examples where the C-based ligand is not part of the chelating ligand remains scarce. These compounds are of interest because they could pave the way to designing catalytic cycles of bond forming reactions proceeding via organoiron(IV) intermediates. Herein, we report the synthesis and characterization, including single-crystal X-ray diffraction, of a family of alkynylferrates(III) and Fe(IV) alkynylide complexes. The alkynylferrates(III) are formed by transmetalation of the Fe(III) precursor [(N3N')FeIII] (N3N'3- is tris(N-tert-butyldimethylsilyl-2-amidoethyl)amine) with lithium alkynylides, and their further one-electron oxidation enables the synthesis of the corresponding Fe(IV) alkynylides. The electronic structure of this family of organometallic Fe(III) and Fe(IV) complexes has been thoroughly investigated by spectroscopic methods (EPR, NMR, 57Fe Mössbauer, X-Ray absorption (XAS) and emission (XES) spectroscopies) and theoretical calculations. While alkynylferrates(III) are sluggish to engage into C-C bond forming processes, the Fe(IV) alkynylides react to afford 1,3-diynes at room temperature. A bimolecular reductive elimination from a bimetallic Fe(IV) intermediate to form the 1,3-diynes is proposed based on the mechanistic investigations performed.
Collapse
Affiliation(s)
- Charafa Souilah
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Sergio A V Jannuzzi
- Max Planck Institute for Chemical Energy Conversion (MPI CEC), Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Felix J Becker
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Derya Demirbas
- Max-Planck-Institut für Kohlenforschung (MPI KOFO), Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Daniel Jenisch
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Sergei Ivlev
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Xiulan Xie
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Sergey Peredkov
- Max Planck Institute for Chemical Energy Conversion (MPI CEC), Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Crispin Lichtenberg
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion (MPI CEC), Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Alicia Casitas
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| |
Collapse
|
3
|
Braun A, Gee LB, Waters MDJ, Jose A, Baker ML, Mara MW, Babicz JT, Ehudin MA, Quist DA, Zhou A, Kroll T, Titus CJ, Lee SJ, Nordlund D, Sokaras D, Yoda Y, Kobayashi Y, Tamasaku K, Hedman B, Hodgson KO, Karlin KD, Que L, Solomon EI. Experimental electronic structures of the Fe IV=O bond in S=1 heme vs. nonheme sites: Effect of the porphyrin ligand. Proc Natl Acad Sci U S A 2025; 122:e2420205122. [PMID: 39982745 PMCID: PMC11873928 DOI: 10.1073/pnas.2420205122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025] Open
Abstract
High-valent FeIV=O species are common intermediates in biological and artificial catalysts. Heme and nonheme S=1 FeIV=O sites have been synthesized and studied for decades but little quantitative experimental comparison of their electronic structures has been available, due to the lack of direct methods focused on the iron. This study allows a rigorous determination of the electronic structure of a nonheme FeIV=O center and its comparison to an FeIV=O heme site using 1s2p resonant inelastic X-ray scattering (RIXS) and Fe L-edge X-ray absorption spectroscopy (XAS). Further, variable temperature magnetic circular dichroism (VT-MCD) of the ligand field transitions, combined with nuclear resonance vibrational spectroscopy of the two S=1 FeIV=O systems show that the equatorial ligand field decreases from a nonheme to a heme FeIV=O site. Alternatively, RIXS and Fe L-edge XAS combined with MCD show that the Fe dπ orbitals are unperturbed in the FeIV=O heme relative to the nonheme site because the strong axial Fe-O bond uncouples the Fe dπ orbitals from the porphyrin π-system. As a consequence, the thermodynamics and kinetics of the H-atom abstraction reactions are actually very similar for heme compound II and nonheme FeIV=O active sites.
Collapse
Affiliation(s)
- Augustin Braun
- Department of Chemistry, Stanford University, Stanford, CA94305
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | - Leland B. Gee
- Department of Chemistry, Stanford University, Stanford, CA94305
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | | | - Anex Jose
- Department of Chemistry, Stanford University, Stanford, CA94305
| | - Michael L. Baker
- Department of Chemistry, Stanford University, Stanford, CA94305
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | - Michael W. Mara
- Department of Chemistry, Stanford University, Stanford, CA94305
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | | | - Melanie A. Ehudin
- Department of Chemistry, Johns Hopkins University, Baltimore, MD21218
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, MD21218
| | - Ang Zhou
- Department of Chemistry, University of Minnesota, Minneapolis, MN55455
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | - Charles J. Titus
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
- Department of Physics, Stanford University, Stanford
| | - Sang-Jun Lee
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | - Dennis Nordlund
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | - Yoshitaka Yoda
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo679-5198, Japan
| | - Yasuhiro Kobayashi
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka590-0494, Japan
| | - Kenji Tamasaku
- RIKEN SPring-8 Center, RIKEN, Sayo, Hyogo679-5148, Japan
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | - Keith O. Hodgson
- Department of Chemistry, Stanford University, Stanford, CA94305
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, MD21218
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, MN55455
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, CA94305
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| |
Collapse
|
4
|
Halldin Stenlid J, Görlin M, Diaz-Morales O, Davies B, Grigorev V, Degerman D, Kalinko A, Börner M, Shipilin M, Bauer M, Gallo A, Abild-Pedersen F, Bajdich M, Nilsson A, Koroidov S. Operando Characterization of Fe in Doped Ni x(Fe 1-x)O yH z Catalysts for Electrochemical Oxygen Evolution. J Am Chem Soc 2025; 147:4120-4134. [PMID: 39862200 PMCID: PMC11803719 DOI: 10.1021/jacs.4c13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
Iron-doped nickel oxyhydroxides, Nix(Fe1-x)OyHz, are among the most promising oxygen evolution reaction (OER) electrocatalysts in alkaline environments. Although iron (Fe) significantly enhances the catalytic activity, there is still no clear consensus on whether Fe directly participates in the reaction or merely acts as a promoter. To elucidate the Fe's role, we performed operando X-ray spectroscopy studies supported by DFT on Nix(Fe1-x)OyHz electrocatalysts. We probed the reversible changes in the structure and electronic character of Nix(Fe1-x)OyHz as the electrode potential is cycled between the resting (here at 1.10 VRHE) and operational states (1.66 VRHE). DFT calculations and XAS simulations on a library of Fe structures in various NiOyHz environments are in favor of a distorted local octahedral Fe(III)O3(OH)3 configuration at the resting state with the NiOyHz scaffold going from α-Ni(OH)2 to γ-NiOOH as the potential is increased. Under catalytic conditions, EXAFS and HERFD spectra reveal changes in p-d mixing (covalency) relative to the resting state between O/OH ligands and Fe leading to a shift from octahedral to square pyramidal coordination at the Fe site. XES measurements and theoretical simulations further support that the Fe equilibrium structure remains in a formal Fe(III) state under both resting and operational conditions. These spectral changes are attributed to potential dependent structural rearrangements around Fe. The results suggest that ligand dissociation leads to the C4v symmetry as the most stable intermediate of the Fe during OER. This implies that Fe has a weakly coordinated or easily dissociable ligand that could serve to coordinate the O-O bond formation and, tentatively, play an active role in the Nix(Fe1-x)OyHz electrocatalyst.
Collapse
Affiliation(s)
- Joakim Halldin Stenlid
- Department
of Physics, Alba Nova Research Center, Stockholm
University, Stockholm SE-106 91 Sweden
- SUNCAT
Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sandhill Road, Menlo
Park, California 94025, United States
- SUNCAT
Center for Interface Science and Catalysis, Department of Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
| | - Mikaela Görlin
- Department
of Physics, Alba Nova Research Center, Stockholm
University, Stockholm SE-106 91 Sweden
- Department
of Chemistry, Ångström Laboratory, Uppsala University, Uppsala SE-751 21, Sweden
| | - Oscar Diaz-Morales
- Department
of Physics, Alba Nova Research Center, Stockholm
University, Stockholm SE-106 91 Sweden
- Holst
Centre, Netherlands Organisation for Applied Scientific Research, HighTech Campus 31, Eindhoven, 5656, the Netherlands
| | - Bernadette Davies
- Department
of Physics, Alba Nova Research Center, Stockholm
University, Stockholm SE-106 91 Sweden
| | - Vladimir Grigorev
- Department
of Physics, Alba Nova Research Center, Stockholm
University, Stockholm SE-106 91 Sweden
- Wallenberg
Initiative Materials Science for Sustainability (WISE), Department
of Physics, Stockholm University, Stockholm SE-106 91, Sweden
| | - David Degerman
- Department
of Physics, Alba Nova Research Center, Stockholm
University, Stockholm SE-106 91 Sweden
- Wallenberg
Initiative Materials Science for Sustainability (WISE), Department
of Physics, Stockholm University, Stockholm SE-106 91, Sweden
| | - Aleksandr Kalinko
- Department
of Chemistry and Center for Sustainable Systems Design (CSSD), University of Paderborn, Warburger Strasse 100, Paderborn D-33098, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg D-22607, Germany
| | - Mia Börner
- Department
of Physics, Alba Nova Research Center, Stockholm
University, Stockholm SE-106 91 Sweden
| | - Mikhail Shipilin
- Department
of Physics, Alba Nova Research Center, Stockholm
University, Stockholm SE-106 91 Sweden
| | - Matthias Bauer
- Department
of Chemistry and Center for Sustainable Systems Design (CSSD), University of Paderborn, Warburger Strasse 100, Paderborn D-33098, Germany
| | - Alessandro Gallo
- SUNCAT
Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sandhill Road, Menlo
Park, California 94025, United States
- SUNCAT
Center for Interface Science and Catalysis, Department of Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- Sila
Nanotechnologies, 2470
Mariner Square Loop, Alameda, California 94501, United States
| | - Frank Abild-Pedersen
- SUNCAT
Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sandhill Road, Menlo
Park, California 94025, United States
| | - Michal Bajdich
- SUNCAT
Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sandhill Road, Menlo
Park, California 94025, United States
| | - Anders Nilsson
- Department
of Physics, Alba Nova Research Center, Stockholm
University, Stockholm SE-106 91 Sweden
- SUNCAT
Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sandhill Road, Menlo
Park, California 94025, United States
- Wallenberg
Initiative Materials Science for Sustainability (WISE), Department
of Physics, Stockholm University, Stockholm SE-106 91, Sweden
| | - Sergey Koroidov
- Department
of Physics, Alba Nova Research Center, Stockholm
University, Stockholm SE-106 91 Sweden
- Wallenberg
Initiative Materials Science for Sustainability (WISE), Department
of Physics, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
5
|
Ansari M, Bhattacharjee S, Pantazis DA. Correlating Structure with Spectroscopy in Ascorbate Peroxidase Compound II. J Am Chem Soc 2024; 146:9640-9656. [PMID: 38530124 PMCID: PMC11009960 DOI: 10.1021/jacs.3c13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024]
Abstract
Structural and spectroscopic investigations of compound II in ascorbate peroxidase (APX) have yielded conflicting conclusions regarding the protonation state of the crucial Fe(IV) intermediate. Neutron diffraction and crystallographic data support an iron(IV)-hydroxo formulation, whereas Mössbauer, X-ray absorption (XAS), and nuclear resonance vibrational spectroscopy (NRVS) studies appear consistent with an iron(IV)-oxo species. Here we examine APX with spectroscopy-oriented QM/MM calculations and extensive exploration of the conformational space for both possible formulations of compound II. We establish that irrespective of variations in the orientation of a vicinal arginine residue and potential reorganization of proximal water molecules and hydrogen bonding, the Fe-O distances for the oxo and hydroxo forms consistently fall within distinct, narrow, and nonoverlapping ranges. The accuracy of geometric parameters is validated by coupled-cluster calculations with the domain-based local pair natural orbital approach, DLPNO-CCSD(T). QM/MM calculations of spectroscopic properties are conducted for all structural variants, encompassing Mössbauer, optical, X-ray absorption, and X-ray emission spectroscopies and NRVS. All spectroscopic observations can be assigned uniquely to an Fe(IV)═O form. A terminal hydroxy group cannot be reconciled with the spectroscopic data. Under no conditions can the Fe(IV)═O distance be sufficiently elongated to approach the crystallographically reported Fe-O distance. The latter is consistent only with a hydroxo species, either Fe(IV) or Fe(III). Our findings strongly support the Fe(IV)═O formulation of APX-II and highlight unresolved discrepancies in the nature of samples used across different experimental studies.
Collapse
Affiliation(s)
- Mursaleem Ansari
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz
1, Mülheim an der Ruhr 45470, Germany
| | - Sinjini Bhattacharjee
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz
1, Mülheim an der Ruhr 45470, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz
1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
6
|
Chrysina M, Drosou M, Castillo RG, Reus M, Neese F, Krewald V, Pantazis DA, DeBeer S. Nature of S-States in the Oxygen-Evolving Complex Resolved by High-Energy Resolution Fluorescence Detected X-ray Absorption Spectroscopy. J Am Chem Soc 2023; 145:25579-25594. [PMID: 37970825 PMCID: PMC10690802 DOI: 10.1021/jacs.3c06046] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 11/19/2023]
Abstract
Photosystem II, the water splitting enzyme of photosynthesis, utilizes the energy of sunlight to drive the four-electron oxidation of water to dioxygen at the oxygen-evolving complex (OEC). The OEC harbors a Mn4CaO5 cluster that cycles through five oxidation states Si (i = 0-4). The S3 state is the last metastable state before the O2 evolution. Its electronic structure and nature of the S2 → S3 transition are key topics of persisting controversy. Most spectroscopic studies suggest that the S3 state consists of four Mn(IV) ions, compared to the Mn(III)Mn(IV)3 of the S2 state. However, recent crystallographic data have received conflicting interpretations, suggesting either metal- or ligand-based oxidation, the latter leading to an oxyl radical or a peroxo moiety in the S3 state. Herein, we utilize high-energy resolution fluorescence detected (HERFD) X-ray absorption spectroscopy to obtain a highly resolved description of the Mn K pre-edge region for all S-states, paying special attention to use chemically unperturbed S3 state samples. In combination with quantum chemical calculations, we achieve assignment of specific spectroscopic features to geometric and electronic structures for all S-states. These data are used to confidently discriminate between the various suggestions concerning the electronic structure and the nature of oxidation events in all observable catalytic intermediates of the OEC. Our results do not support the presence of either peroxo or oxyl in the active configuration of the S3 state. This establishes Mn-centered storage of oxidative equivalents in all observable catalytic transitions and constrains the onset of the O-O bond formation until after the final light-driven oxidation event.
Collapse
Affiliation(s)
- Maria Chrysina
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstr. 34-36, Mülheim
an der Ruhr 45470, Germany
- Institute
of Nanoscience & Nanotechnology, NCSR “Demokritos”, Athens 15310, Greece
| | - Maria Drosou
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Rebeca G. Castillo
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstr. 34-36, Mülheim
an der Ruhr 45470, Germany
- Laboratory
of Ultrafast Spectroscopy (LSU) and Lausanne Centre for Ultrafast
Science, École Polytechnique Fédérale
de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Michael Reus
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstr. 34-36, Mülheim
an der Ruhr 45470, Germany
| | - Frank Neese
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Vera Krewald
- Department
of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 4, Darmstadt 64287, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Serena DeBeer
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstr. 34-36, Mülheim
an der Ruhr 45470, Germany
| |
Collapse
|
7
|
Paris JC, Hu S, Wen A, Weitz AC, Cheng R, Gee LB, Tang Y, Kim H, Vegas A, Chang WC, Elliott SJ, Liu P, Guo Y. An S=1 Iron(IV) Intermediate Revealed in a Non-Heme Iron Enzyme-Catalyzed Oxidative C-S Bond Formation. Angew Chem Int Ed Engl 2023; 62:e202309362. [PMID: 37640689 PMCID: PMC10592081 DOI: 10.1002/anie.202309362] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/11/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Ergothioneine (ESH) and ovothiol A (OSHA) are two natural thiol-histidine derivatives. ESH has been implicated as a longevity vitamin and OSHA inhibits the proliferation of hepatocarcinoma. The key biosynthetic step of ESH and OSHA in the aerobic pathways is the O2 -dependent C-S bond formation catalyzed by non-heme iron enzymes (e.g., OvoA in ovothiol biosynthesis), but due to the lack of identification of key reactive intermediate the mechanism of this novel reaction is unresolved. In this study, we report the identification and characterization of a kinetically competent S=1 iron(IV) intermediate supported by a four-histidine ligand environment (three from the protein residues and one from the substrate) in enabling C-S bond formation in OvoA from Methyloversatilis thermotoleran, which represents the first experimentally observed intermediate spin iron(IV) species in non-heme iron enzymes. Results reported in this study thus set the stage to further dissect the mechanism of enzymatic oxidative C-S bond formation in the OSHA biosynthesis pathway. They also afford new opportunities to study the structure-function relationship of high-valent iron intermediates supported by a histidine rich ligand environment.
Collapse
Affiliation(s)
- Jared C Paris
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, PA 15213, USA
| | - Sha Hu
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Aiwen Wen
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Andrew C Weitz
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Ronghai Cheng
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Leland B Gee
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Yijie Tang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, PA 15213, USA
| | - Hyomin Kim
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Arturo Vegas
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Wei-Chen Chang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Sean J Elliott
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Pinghua Liu
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, PA 15213, USA
| |
Collapse
|
8
|
Braun A, Gee LB, Mara MW, Hill EA, Kroll T, Nordlund D, Sokaras D, Glatzel P, Hedman B, Hodgson KO, Borovik AS, Baker ML, Solomon EI. X-ray Spectroscopic Study of the Electronic Structure of a Trigonal High-Spin Fe(IV)═O Complex Modeling Non-Heme Enzyme Intermediates and Their Reactivity. J Am Chem Soc 2023; 145:18977-18991. [PMID: 37590931 PMCID: PMC10631461 DOI: 10.1021/jacs.3c06181] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Fe K-edge X-ray absorption spectroscopy (XAS) has long been used for the study of high-valent iron intermediates in biological and artificial catalysts. 4p-mixing into the 3d orbitals complicates the pre-edge analysis but when correctly understood via 1s2p resonant inelastic X-ray scattering and Fe L-edge XAS, it enables deeper insight into the geometric structure and correlates with the electronic structure and reactivity. This study shows that in addition to the 4p-mixing into the 3dz2 orbital due to the short iron-oxo bond, the loss of inversion in the equatorial plane leads to 4p mixing into the 3dx2-y2,xy, providing structural insight and allowing the distinction of 6- vs 5-coordinate active sites as shown through application to the Fe(IV)═O intermediate of taurine dioxygenase. Combined with O K-edge XAS, this study gives an unprecedented experimental insight into the electronic structure of Fe(IV)═O active sites and their selectivity for reactivity enabled by the π-pathway involving the 3dxz/yz orbitals. Finally, the large effect of spin polarization is experimentally assigned in the pre-edge (i.e., the α/β splitting) and found to be better modeled by multiplet simulations rather than by commonly used time-dependent density functional theory.
Collapse
Affiliation(s)
- Augustin Braun
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Leland B Gee
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Michael W Mara
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Ethan A Hill
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Dennis Nordlund
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Pieter Glatzel
- ESRF-The European Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Keith O Hodgson
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - A S Borovik
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Michael L Baker
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
- The University of Manchester at Harwell, Diamond Light Source, Harwell Campus, Didcot OX11 0DE, U.K
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| |
Collapse
|
9
|
Antolini C, Spellman CD, Otolski CJ, Doumy G, March AM, Walko DA, Liu C, Zhang X, Young BT, Goodwill JE, Hayes D. Photochemical and Photophysical Dynamics of the Aqueous Ferrate(VI) Ion. J Am Chem Soc 2022; 144:22514-22527. [PMID: 36454056 DOI: 10.1021/jacs.2c08048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Ferrate(VI) has the potential to play a key role in future water supplies. Its salts have been suggested as "green" alternatives to current advanced oxidation and disinfection methods in water treatment, especially when combined with ultraviolet light to stimulate generation of highly oxidizing Fe(V) and Fe(IV) species. However, the nature of these intermediates, the mechanisms by which they form, and their roles in downstream oxidation reactions remain unclear. Here, we use a combination of optical and X-ray transient absorption spectroscopies to study the formation, interconversion, and relaxation of several excited-state and metastable high-valent iron species following excitation of aqueous potassium ferrate(VI) by ultraviolet and visible light. Branching from the initially populated ligand-to-metal charge transfer state into independent photophysical and photochemical pathways occurs within tens of picoseconds, with the quantum yield for the generation of reactive Fe(V) species determined by relative rates of the competing intersystem crossing and reverse electron transfer processes. Relaxation of the metal-centered states then occurs within 4 ns, while the formation of metastable Fe(V) species occurs in several steps with time constants of 250 ps and 300 ns. Results here improve the mechanistic understanding of the formation and fate of Fe(V) and Fe(IV), which will accelerate the development of novel advanced oxidation processes for water treatment applications.
Collapse
Affiliation(s)
- Cali Antolini
- Department of Chemistry, University of Rhode Island, 45 Upper College Road, Kingston, Rhode Island 02881, United States
| | - Charles D Spellman
- Department of Civil and Environmental Engineering, University of Rhode Island, 45 Upper College Road, Kingston, Rhode Island 02881, United States
| | - Christopher J Otolski
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Gilles Doumy
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Anne Marie March
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Donald A Walko
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Cunming Liu
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Xiaoyi Zhang
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Benjamin T Young
- Department of Physical Sciences, Rhode Island College, 600 Mt Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Joseph E Goodwill
- Department of Civil and Environmental Engineering, University of Rhode Island, 45 Upper College Road, Kingston, Rhode Island 02881, United States
| | - Dugan Hayes
- Department of Chemistry, University of Rhode Island, 45 Upper College Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
10
|
Cutsail III GE, DeBeer S. Challenges and Opportunities for Applications of Advanced X-ray Spectroscopy in Catalysis Research. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- George E. Cutsail III
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
11
|
Coutard N, Musgrave CB, Moon J, Liebov NS, Nielsen RM, Goldberg JM, Li M, Jia X, Lee S, Dickie DA, Schinski WL, Wu Z, Groves JT, Goddard WA, Gunnoe TB. Manganese Catalyzed Partial Oxidation of Light Alkanes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nathan Coutard
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Charles B. Musgrave
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Jisue Moon
- Chemical Science Division, Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
| | - Nichole S. Liebov
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Robert M. Nielsen
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Jonathan M. Goldberg
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Meijun Li
- Chemical Science Division, Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
| | - Xiaofan Jia
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Sungsik Lee
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Diane A. Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | | | - Zili Wu
- Chemical Science Division, Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
| | - John T. Groves
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - William A. Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - T. Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
12
|
Saiz F, Bernasconi L. Catalytic properties of the ferryl ion in the solid state: a computational review. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00200k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarises the last findings in the emerging field of heterogeneous catalytic oxidation of light alkanes by ferryl species supported on solid-state systems such as the conversion of methane into methanol by FeO-MOF74.
Collapse
Affiliation(s)
- Fernan Saiz
- ALBA Synchrotron, Carrer de la Llum 2-26, Cerdanyola del Valles 08290, Spain
| | - Leonardo Bernasconi
- Center for Research Computing and Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
13
|
Schulz C, Castillo RG, Pantazis DA, DeBeer S, Neese F. Structure-Spectroscopy Correlations for Intermediate Q of Soluble Methane Monooxygenase: Insights from QM/MM Calculations. J Am Chem Soc 2021; 143:6560-6577. [PMID: 33884874 PMCID: PMC8154522 DOI: 10.1021/jacs.1c01180] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Indexed: 12/22/2022]
Abstract
The determination of the diiron core intermediate structures involved in the catalytic cycle of soluble methane monooxygenase (sMMO), the enzyme that selectively catalyzes the conversion of methane to methanol, has been a subject of intense interest within the bioinorganic scientific community. Particularly, the specific geometry and electronic structure of the intermediate that precedes methane binding, known as intermediate Q (or MMOHQ), has been debated for over 30 years. Some reported studies support a bis-μ-oxo-bridged Fe(IV)2O2 closed-core conformation Fe(IV)2O2 core, whereas others favor an open-core geometry, with a longer Fe-Fe distance. The lack of consensus calls for a thorough re-examination and reinterpretation of the spectroscopic data available on the MMOHQ intermediate. Herein, we report extensive simulations based on a hybrid quantum mechanics/molecular mechanics approach (QM/MM) approach that takes into account the complete enzyme to explore possible conformations for intermediates MMOHox and MMOHQ of the sMMOH catalytic cycle. High-level quantum chemical approaches are used to correlate specific structural motifs with geometric parameters for comparison with crystallographic and EXAFS data, as well as with spectroscopic data from Mössbauer spectroscopy, Fe K-edge high-energy resolution X-ray absorption spectroscopy (HERFD XAS), and resonance Raman 16O-18O difference spectroscopy. The results provide strong support for an open-core-type configuration in MMOHQ, with the most likely topology involving mono-oxo-bridged Fe ions and alternate terminal Fe-oxo and Fe-hydroxo groups that interact via intramolecular hydrogen bonding. The implications of an open-core intermediate Q on the reaction mechanism of sMMO are discussed.
Collapse
Affiliation(s)
- Christine
E. Schulz
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Rebeca G. Castillo
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
14
|
Kroll T, Baker ML, Wilson SA, Lundberg M, Juhin A, Arrio MA, Yan JJ, Gee LB, Braun A, Weng TC, Sokaras D, Hedman B, Hodgson KO, Solomon EI. Effect of 3d/4p Mixing on 1s2p Resonant Inelastic X-ray Scattering: Electronic Structure of Oxo-Bridged Iron Dimers. J Am Chem Soc 2021; 143:4569-4584. [PMID: 33730507 PMCID: PMC8018712 DOI: 10.1021/jacs.0c11193] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1s2p resonant inelastic X-ray scattering (1s2p RIXS) has proven successful in the determination of the differential orbital covalency (DOC, the amount of metal vs ligand character in each d molecular orbital) of highly covalent centrosymmetric iron environments including heme models and enzymes. However, many reactive intermediates have noncentrosymmetric environments, e.g., the presence of strong metal-oxo bonds, which results in the mixing of metal 4p character into the 3d orbitals. This leads to significant intensity enhancement in the metal K-pre-edge and as shown here, the associated 1s2p RIXS features, which impact their insight into electronic structure. Binuclear oxo bridged high spin Fe(III) complexes are used to determine the effects of 4p mixing on 1s2p RIXS spectra. In addition to developing the analysis of 4p mixing on K-edge XAS and 1s2p RIXS data, this study explains the selective nature of the 4p mixing that also enhances the analysis of L-edge XAS intensity in terms of DOC. These 1s2p RIXS biferric model studies enable new structural insight from related data on peroxo bridged biferric enzyme intermediates. The dimeric nature of the oxo bridged Fe(III) complexes further results in ligand-to-ligand interactions between the Fe(III) sites and angle dependent features just above the pre-edge that reflect the superexchange pathway of the oxo bridge. Finally, we present a methodology that enables DOC to be obtained when L-edge XAS is inaccessible and only 1s2p RIXS experiments can be performed as in many metalloenzyme intermediates in solution.
Collapse
Affiliation(s)
- Thomas Kroll
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Michael L Baker
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Samuel A Wilson
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Marcus Lundberg
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemistry - Ångström Laboratory, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Amélie Juhin
- CNRS, Sorbonne Université, UMR7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC) Univ Paris 06, Muséum National d'Histoire Naturelle, IRD UMR206, 4 Place Jussieu, F-75005 Paris, France
| | - Marie-Anne Arrio
- CNRS, Sorbonne Université, UMR7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC) Univ Paris 06, Muséum National d'Histoire Naturelle, IRD UMR206, 4 Place Jussieu, F-75005 Paris, France
| | - James J Yan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Leland B Gee
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Augustin Braun
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Tsu-Chien Weng
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Keith O Hodgson
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| |
Collapse
|
15
|
Rosenbach H, Walla E, Cutsail GE, Birrell JA, Pascual-Ortiz M, DeBeer S, Fleig U, Span I. The Asp1 pyrophosphatase from S. pombe hosts a [2Fe-2S] 2+ cluster in vivo. J Biol Inorg Chem 2021; 26:93-108. [PMID: 33544225 PMCID: PMC8038993 DOI: 10.1007/s00775-020-01840-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/29/2020] [Indexed: 11/25/2022]
Abstract
The Schizosaccharomyces pombe Asp1 protein is a bifunctional kinase/pyrophosphatase that belongs to the highly conserved eukaryotic diphosphoinositol pentakisphosphate kinase PPIP5K/Vip1 family. The N-terminal Asp1 kinase domain generates specific high-energy inositol pyrophosphate (IPP) molecules, which are hydrolyzed by the C-terminal Asp1 pyrophosphatase domain (Asp1365-920). Thus, Asp1 activities regulate the intracellular level of a specific class of IPP molecules, which control a wide number of biological processes ranging from cell morphogenesis to chromosome transmission. Recently, it was shown that chemical reconstitution of Asp1371-920 leads to the formation of a [2Fe-2S] cluster; however, the biological relevance of the cofactor remained under debate. In this study, we provide evidence for the presence of the Fe-S cluster in Asp1365-920 inside the cell. However, we show that the Fe-S cluster does not influence Asp1 pyrophosphatase activity in vitro or in vivo. Characterization of the as-isolated protein by electronic absorption spectroscopy, mass spectrometry, and X-ray absorption spectroscopy is consistent with the presence of a [2Fe-2S]2+ cluster in the enzyme. Furthermore, we have identified the cysteine ligands of the cluster. Overall, our work reveals that Asp1 contains an Fe-S cluster in vivo that is not involved in its pyrophosphatase activity.
Collapse
Affiliation(s)
- Hannah Rosenbach
- Institut Für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Eva Walla
- Lehrstuhl Für Funktionelle Genomforschung Der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - George E Cutsail
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany
| | - James A Birrell
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Marina Pascual-Ortiz
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera, CEU Universities, 46113, Valencia, Spain
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Ursula Fleig
- Lehrstuhl Für Funktionelle Genomforschung Der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| | - Ingrid Span
- Institut Für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
16
|
Keshari K, Bera M, Velasco L, Munshi S, Gupta G, Moonshiram D, Paria S. Characterization and reactivity study of non-heme high-valent iron-hydroxo complexes. Chem Sci 2021; 12:4418-4424. [PMID: 34163706 PMCID: PMC8179568 DOI: 10.1039/d0sc07054h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A terminal FeIIIOH complex, [FeIII(L)(OH)]2− (1), has been synthesized and structurally characterized (H4L = 1,2-bis(2-hydroxy-2-methylpropanamido)benzene). The oxidation reaction of 1 with one equiv. of tris(4-bromophenyl)ammoniumyl hexachloroantimonate (TBAH) or ceric ammonium nitrate (CAN) in acetonitrile at −45 °C results in the formation of a FeIIIOH ligand radical complex, [FeIII(L˙)(OH)]− (2), which is hereby characterized by UV-visible, 1H nuclear magnetic resonance, electron paramagnetic resonance, and X-ray absorption spectroscopy techniques. The reaction of 2 with a triphenylcarbon radical further gives triphenylmethanol and mimics the so-called oxygen rebound step of Cpd II of cytochrome P450. Furthermore, the reaction of 2 was explored with different 4-substituted-2,6-di-tert-butylphenols. Based on kinetic analysis, a hydrogen atom transfer (HAT) mechanism has been established. A pKa value of 19.3 and a BDFE value of 78.2 kcal/mol have been estimated for complex 2. One-electron oxidation of an FeIII–OH complex (1) results in the formation of a FeIII–OH ligand radical complex (2). Its reaction with (C6H5)3C˙ results in the formation of (C6H5)3COH, which is a functional mimic of compound II of cytochrome P450.![]()
Collapse
Affiliation(s)
- Kritika Keshari
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Moumita Bera
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Lucía Velasco
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia Calle Faraday, 9 28049 Madrid Spain
| | - Sandip Munshi
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Geetika Gupta
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Dooshaye Moonshiram
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia Calle Faraday, 9 28049 Madrid Spain
| | - Sayantan Paria
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| |
Collapse
|
17
|
Tavani F, Capocasa G, Martini A, Sessa F, Di Stefano S, Lanzalunga O, D'Angelo P. Direct structural and mechanistic insights into fast bimolecular chemical reactions in solution through a coupled XAS/UV–Vis multivariate statistical analysis. Dalton Trans 2021; 50:131-142. [DOI: 10.1039/d0dt03083j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined multivariate and theoretical analysis of coupled XAS/UV–Vis data was proven to be an innovative method to obtain direct structural and mechanistic evidence for bimolecular reactions in solution involving organic substrates.
Collapse
Affiliation(s)
- Francesco Tavani
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| | - Giorgio Capocasa
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| | - Andrea Martini
- Dipartimento di Chimica
- Università degli Studi di Torino
- 10125 Torino
- Italy
- The Smart Materials Research Institute
| | - Francesco Sessa
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| | | | | | - Paola D'Angelo
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| |
Collapse
|
18
|
Arnett CH, Bogacz I, Chatterjee R, Yano J, Oyala PH, Agapie T. Mixed-Valent Diiron μ-Carbyne, μ-Hydride Complexes: Implications for Nitrogenase. J Am Chem Soc 2020; 142:18795-18813. [PMID: 32976708 DOI: 10.1021/jacs.0c05920] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Binding of N2 by the FeMo-cofactor of nitrogenase is believed to occur after transfer of 4 e- and 4 H+ equivalents to the active site. Although pulse EPR studies indicate the presence of two Fe-(μ-H)-Fe moieties, the structural and electronic features of this mixed valent intermediate remain poorly understood. Toward an improved understanding of this bioorganometallic cluster, we report herein that diiron μ-carbyne complex (P6ArC)Fe2(μ-H) can be oxidized and reduced, allowing for the first time spectral characterization of two EPR-active Fe(μ-C)(μ-H)Fe model complexes linked by a 2 e- transfer which bear some resemblance to a pair of En and En+2 states of nitrogenase. Both species populate S = 1/2 states at low temperatures, and the influence of valence (de)localization on the spectroscopic signature of the μ-hydride ligand was evaluated by pulse EPR studies. Compared to analogous data for the {Fe2(μ-H)}2 state of FeMoco (E4(4H)), the data and analysis presented herein suggest that the hydride ligands in E4(4H) bridge isovalent (most probably FeIII) metal centers. Although electron transfer involves metal-localized orbitals, investigations of [(P6ArC)Fe2(μ-H)]+1 and [(P6ArC)Fe2(μ-H)]-1 by pulse EPR revealed that redox chemistry induces significant changes in Fe-C covalency (-50% upon 2 e- reduction), a conclusion further supported by X-ray absorption spectroscopy, 57Fe Mössbauer studies, and DFT calculations. Combined, our studies demonstrate that changes in covalency buffer against the accumulation of excess charge density on the metals by partially redistributing it to the bridging carbon, thereby facilitating multielectron transformations.
Collapse
Affiliation(s)
- Charles H Arnett
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Isabel Bogacz
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Paul H Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
19
|
McCubbin Stepanic O, Ward J, Penner-Hahn JE, Deb A, Bergmann U, DeBeer S. Probing a Silent Metal: A Combined X-ray Absorption and Emission Spectroscopic Study of Biologically Relevant Zinc Complexes. Inorg Chem 2020; 59:13551-13560. [PMID: 32893611 PMCID: PMC7509839 DOI: 10.1021/acs.inorgchem.0c01931] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As the second most common transition metal in the human body, zinc is of great interest to research but has few viable routes for its direct structural study in biological systems. Herein, Zn valence-to-core X-ray emission spectroscopy (VtC XES) and Zn K-edge X-ray absorption spectroscopy (XAS) are presented as a means to understand the local structure of zinc in biological systems through the application of these methods to a series of biologically relevant molecular model complexes. Taken together, the Zn K-edge XAS and VtC XES provide a means to establish the ligand identity, local geometry, and metal-ligand bond lengths. Experimental results are supported by correlation with density-functional-theory-based calculations. Combining these theoretical and experimental approaches will enable future applications to protein systems in a predictive manner.
Collapse
Affiliation(s)
- Olivia McCubbin Stepanic
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Jesse Ward
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - James E Penner-Hahn
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Aniruddha Deb
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
20
|
Neese F, Wennmohs F, Becker U, Riplinger C. The ORCA quantum chemistry program package. J Chem Phys 2020; 152:224108. [DOI: 10.1063/5.0004608] [Citation(s) in RCA: 697] [Impact Index Per Article: 139.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Frank Neese
- Max Planck Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany
- FAccTs GmbH, Rolandstr. 67, 50677 Köln, Germany
| | - Frank Wennmohs
- Max Planck Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Ute Becker
- Max Planck Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | | |
Collapse
|
21
|
Levin N, Peredkov S, Weyhermüller T, Rüdiger O, Pereira NB, Grötzsch D, Kalinko A, DeBeer S. Ruthenium 4d-to-2p X-ray Emission Spectroscopy: A Simultaneous Probe of the Metal and the Bound Ligands. Inorg Chem 2020; 59:8272-8283. [PMID: 32390417 PMCID: PMC7298721 DOI: 10.1021/acs.inorgchem.0c00663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Ruthenium 4d-to-2p
X-ray emission spectroscopy (XES) was systematically
explored for a series of Ru2+ and Ru3+ species.
Complementary density functional theory calculations were utilized
to allow for a detailed assignment of the experimental spectra. The
studied complexes have a range of different coordination spheres,
which allows the influence of the ligand donor/acceptor properties
on the spectra to be assessed. Similarly, the contributions of the
site symmetry and the oxidation state of the metal were analyzed.
Because the 4d-to-2p emission lines are dipole-allowed, the spectral
features are intense. Furthermore, in contrast with K- or L-edge X-ray
absorption of 4d transition metals, which probe the unoccupied levels,
the observed 4p-to-2p XES arises from electrons in filled-ligand-
and filled-metal-based orbitals, thus providing simultaneous access
to the ligand and metal contributions to bonding. As such, 4d-to-2p
XES should be a promising tool for the study of a wide range of 4d
transition-metal compounds. Ruthenium 4d-to-2p
XES was applied to a series of molecular
Ru complexes with varied coordination environment, oxidation state
and site symmetry. Through correlations to calculations, it is demonstrated
the Ru 4d-to-2p XES provides a unique probe of both the filled ligand np and filled metal 4d orbitals, providing a promising new
tool for the study of a wide range of 4d transition metals.
Collapse
Affiliation(s)
- Natalia Levin
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Sergey Peredkov
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Thomas Weyhermüller
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Nilson B Pereira
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Daniel Grötzsch
- Institut für Optik und Atomare Physik (IOAP), TU-Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Aleksandr Kalinko
- Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany.,DESY Photon Science, Notkestrasse 85, 22603 Hamburg, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
22
|
Chen WT, Hsu CW, Lee JF, Pao CW, Hsu IJ. Theoretical Analysis of Fe K-Edge XANES on Iron Pentacarbonyl. ACS OMEGA 2020; 5:4991-5000. [PMID: 32201785 PMCID: PMC7081404 DOI: 10.1021/acsomega.9b03887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/21/2020] [Indexed: 05/21/2023]
Abstract
Iron pentacarbonyl (Fe(CO)5) is a versatile material that is utilized as an inhibitor of flame, shows soot suppressibility, and is used as a precursor for focused electron-beam-induced deposition (FEBID). X-ray absorption near-edge structure (XANES) of the K edge, which is a powerful technique for monitoring the oxidation states and coordination environment of metal sites, can be used to gain insight into Fe(CO)5-related reaction mechanisms in in situ experiments. We use a finite difference method (FDM) and molecular-orbital-based time-dependent density functional theory (TDDFT) calculations to clarify the Fe K-edge XANES features of Fe(CO)5. The two pre-edge peaks P1 and P2 are mainly the Fe(1s) → Fe-C(σ*) and Fe(1s) → Fe-C(π*) transitions, respectively. When the geometry transformed from D 3h to C 4v symmetry, a ∼30% decrease of the pre-edge P2 intensity was observed in the simulated spectra. This implies that the π bonding of Fe and CO is sensitive to changes in geometry. The following rising edge and white line regions are assigned to the Fe(1s) → Fe(4p)(mixing C(2p)) transitions. Our results may provide useful information to interpret XANES spectra variations of in situ reactions of metal-CO or similar compounds with π acceptor ligandlike metal-CN complexes.
Collapse
Affiliation(s)
- Wei-Ting Chen
- Department
of Molecular Science and Engineering, National
Taipei University of Technology, Taipei 10608, Taiwan
| | - Che-Wei Hsu
- Department
of Molecular Science and Engineering, National
Taipei University of Technology, Taipei 10608, Taiwan
| | - Jyh-Fu Lee
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chih-Wen Pao
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - I-Jui Hsu
- Department
of Molecular Science and Engineering, National
Taipei University of Technology, Taipei 10608, Taiwan
- Research
and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan
- E-mail: .
Tel: +886-2-27712171#2420
| |
Collapse
|
23
|
Cao R, Thomas KE, Ghosh A, Sarangi R. X-ray absorption spectroscopy of archetypal chromium porphyrin and corrole derivatives. RSC Adv 2020; 10:20572-20578. [PMID: 35517776 PMCID: PMC9054285 DOI: 10.1039/d0ra02335c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/13/2020] [Indexed: 01/16/2023] Open
Abstract
A Cr K-edge XAS study of paradigmatic chromium porphyrin and corrole derivatives has been carried out, providing key data for the Cr(iv) and Cr(v) oxidation states.
Collapse
Affiliation(s)
- Rui Cao
- Stanford Synchrotron Radiation Lightsource
- SLAC National Accelerator Laboratory
- Stanford University
- Menlo Park
- USA
| | - Kolle E. Thomas
- Department of Chemistry
- UiT – the Arctic University of Norway
- N-9037 Tromsø
- Norway
| | - Abhik Ghosh
- Department of Chemistry
- UiT – the Arctic University of Norway
- N-9037 Tromsø
- Norway
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource
- SLAC National Accelerator Laboratory
- Stanford University
- Menlo Park
- USA
| |
Collapse
|
24
|
McLoughlin EA, Matson BD, Sarangi R, Waymouth RM. Electrocatalytic Alcohol Oxidation with Iron-Based Acceptorless Alcohol Dehydrogenation Catalyst. Inorg Chem 2019; 59:1453-1460. [DOI: 10.1021/acs.inorgchem.9b03230] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Benjamin D. Matson
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Robert M. Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
25
|
Sabenya G, Gamba I, Gómez L, Clémancey M, Frisch JR, Klinker EJ, Blondin G, Torelli S, Que L, Martin-Diaconescu V, Latour JM, Lloret-Fillol J, Costas M. Octahedral iron(iv)-tosylimido complexes exhibiting single electron-oxidation reactivity. Chem Sci 2019; 10:9513-9529. [PMID: 32055323 PMCID: PMC6979323 DOI: 10.1039/c9sc02526j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/17/2019] [Indexed: 11/28/2022] Open
Abstract
High valent iron species are very reactive molecules involved in oxidation reactions of relevance to biology and chemical synthesis. Herein we describe iron(iv)-tosylimido complexes [FeIV(NTs)(MePy2tacn)](OTf)2 (1(IV)[double bond, length as m-dash]NTs) and [FeIV(NTs)(Me2(CHPy2)tacn)](OTf)2 (2(IV)[double bond, length as m-dash]NTs), (MePy2tacn = N-methyl-N,N-bis(2-picolyl)-1,4,7-triazacyclononane, and Me2(CHPy2)tacn = 1-(di(2-pyridyl)methyl)-4,7-dimethyl-1,4,7-triazacyclononane, Ts = Tosyl). 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs are rare examples of octahedral iron(iv)-imido complexes and are isoelectronic analogues of the recently described iron(iv)-oxo complexes [FeIV(O)(L)]2+ (L = MePy2tacn and Me2(CHPy2)tacn, respectively). 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs are metastable and have been spectroscopically characterized by HR-MS, UV-vis, 1H-NMR, resonance Raman, Mössbauer, and X-ray absorption (XAS) spectroscopy as well as by DFT computational methods. Ferric complexes [FeIII(HNTs)(L)]2+, 1(III)-NHTs (L = MePy2tacn) and 2(III)-NHTs (L = Me2(CHPy2)tacn) have been isolated after the decay of 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs in solution, spectroscopically characterized, and the molecular structure of [FeIII(HNTs)(MePy2tacn)](SbF6)2 determined by single crystal X-ray diffraction. Reaction of 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs with different p-substituted thioanisoles results in the transfer of the tosylimido moiety to the sulphur atom producing sulfilimine products. In these reactions, 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs behave as single electron oxidants and Hammett analyses of reaction rates evidence that tosylimido transfer is more sensitive than oxo transfer to charge effects. In addition, reaction of 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs with hydrocarbons containing weak C-H bonds results in the formation of 1(III)-NHTs and 2(III)-NHTs respectively, along with the oxidized substrate. Kinetic analyses indicate that reactions proceed via a mechanistically unusual HAT reaction, where an association complex precedes hydrogen abstraction.
Collapse
Affiliation(s)
- Gerard Sabenya
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , E17071 Girona , Spain .
| | - Ilaria Gamba
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , E17071 Girona , Spain .
| | - Laura Gómez
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , E17071 Girona , Spain .
| | - Martin Clémancey
- Univ. Grenoble-Alpes , CNRS , CEA , IRIG , DIESE , CBM , Grenoble 38000 , France
| | - Jonathan R Frisch
- Department of Chemistry , University of Minnesota , Pleasant Str 207 , Minneapolis , Minnesota , USA
| | - Eric J Klinker
- Department of Chemistry , University of Minnesota , Pleasant Str 207 , Minneapolis , Minnesota , USA
| | - Geneviève Blondin
- Univ. Grenoble-Alpes , CNRS , CEA , IRIG , DIESE , CBM , Grenoble 38000 , France
| | - Stéphane Torelli
- Univ. Grenoble-Alpes , CNRS , CEA , IRIG , DIESE , CBM , Grenoble 38000 , France
| | - Lawrence Que
- Department of Chemistry , University of Minnesota , Pleasant Str 207 , Minneapolis , Minnesota , USA
| | - Vlad Martin-Diaconescu
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , E17071 Girona , Spain .
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology , Avinguda Països Catalans 16 , 43007 Tarragona , Spain .
| | - Jean-Marc Latour
- Univ. Grenoble-Alpes , CNRS , CEA , IRIG , DIESE , CBM , Grenoble 38000 , France
| | - Julio Lloret-Fillol
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , E17071 Girona , Spain .
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology , Avinguda Països Catalans 16 , 43007 Tarragona , Spain .
- Catalan Institution for Research and Advanced Studies (ICREA) , Passeig Lluïs Companys, 23 , 08010 , Barcelona , Spain
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , E17071 Girona , Spain .
| |
Collapse
|
26
|
High-resolution iron X-ray absorption spectroscopic and computational studies of non-heme diiron peroxo intermediates. J Inorg Biochem 2019; 203:110877. [PMID: 31710865 DOI: 10.1016/j.jinorgbio.2019.110877] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/05/2019] [Accepted: 10/01/2019] [Indexed: 11/20/2022]
Abstract
Ferritin-like carboxylate-bridged non-heme diiron enzymes activate O2 for a variety of difficult reactions throughout nature. These reactions often begin by abstraction of hydrogen from strong CH bonds. The enzymes activate O2 at their diferrous cofactors to form canonical diferric peroxo intermediates, with a range of possible coordination modes. Herein, we explore the ability of high-energy resolution fluorescence detected X-ray absorption spectroscopy (HERFD XAS) to provide insight into the nature of peroxo level intermediates in non-heme diiron proteins. Freeze quenched (FQ) peroxo intermediates from p-aminobenzoate N-oxygenase (AurF), aldehyde-deformylating oxygenase (ADO), and the β subunit of class Ia ribonucleotide reductase from Escherichia coli (Ecβ) are investigated. All three intermediates are proposed to adopt different peroxo binding modes, and each exhibit different Fe Kα HERFD XAS pre-edge features and intensities. As these FQ-trapped samples consist of multiple species, deconvolution of HERFD XAS spectra based on speciation, as determined by Mössbauer spectroscopy, is also necessitated - yielding 'pure' diferric peroxo HERFD XAS spectra from dilute protein samples. Finally, the impact of a given peroxo coordination mode on the HERFD XAS pre-edge energy and intensity is evaluated through time-dependent density functional theory (TDDFT) calculations of the XAS spectra on a series of hypothetical model complexes, which span a full range of possible peroxo coordination modes to a diferric core. The utility of HERFD XAS for future studies of enzymatic intermediates is discussed.
Collapse
|
27
|
Van Stappen C, Davydov R, Yang ZY, Fan R, Guo Y, Bill E, Seefeldt LC, Hoffman BM, DeBeer S. Spectroscopic Description of the E 1 State of Mo Nitrogenase Based on Mo and Fe X-ray Absorption and Mössbauer Studies. Inorg Chem 2019; 58:12365-12376. [PMID: 31441651 PMCID: PMC6751781 DOI: 10.1021/acs.inorgchem.9b01951] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Indexed: 11/29/2022]
Abstract
Mo nitrogenase (N2ase) utilizes a two-component protein system, the catalytic MoFe and its electron-transfer partner FeP, to reduce atmospheric dinitrogen (N2) to ammonia (NH3). The FeMo cofactor contained in the MoFe protein serves as the catalytic center for this reaction and has long inspired model chemistry oriented toward activating N2. This field of chemistry has relied heavily on the detailed characterization of how Mo N2ase accomplishes this feat. Understanding the reaction mechanism of Mo N2ase itself has presented one of the most challenging problems in bioinorganic chemistry because of the ephemeral nature of its catalytic intermediates, which are difficult, if not impossible, to singly isolate. This is further exacerbated by the near necessity of FeP to reduce native MoFe, rendering most traditional means of selective reduction inept. We have now investigated the first fundamental intermediate of the MoFe catalytic cycle, E1, as prepared both by low-flux turnover and radiolytic cryoreduction, using a combination of Mo Kα high-energy-resolution fluorescence detection and Fe K-edge partial-fluorescence-yield X-ray absorption spectroscopy techniques. The results demonstrate that the formation of this state is the result of an Fe-centered reduction and that Mo remains redox-innocent. Furthermore, using Fe X-ray absorption and 57Fe Mössbauer spectroscopies, we correlate a previously reported unique species formed under cryoreducing conditions to the natively formed E1 state through annealing, demonstrating the viability of cryoreduction in studying the catalytic intermediates of MoFe.
Collapse
Affiliation(s)
- Casey Van Stappen
- Max Planck Institute
for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Roman Davydov
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhi-Yong Yang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Ruixi Fan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Eckhard Bill
- Max Planck Institute
for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Lance C. Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Serena DeBeer
- Max Planck Institute
for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
28
|
Dunn PL, Chatterjee S, MacMillan SN, Pearce AJ, Lancaster KM, Tonks IA. The 4-Electron Cleavage of a N═N Double Bond by a Trimetallic TiNi2 Complex. Inorg Chem 2019; 58:11762-11772. [DOI: 10.1021/acs.inorgchem.9b01805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Peter L. Dunn
- Department of Chemistry, University of Minnesota—Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Sudipta Chatterjee
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Samantha N. MacMillan
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Adam J. Pearce
- Department of Chemistry, University of Minnesota—Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Kyle M. Lancaster
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ian A. Tonks
- Department of Chemistry, University of Minnesota—Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
29
|
Matson BD, McLoughlin EA, Armstrong KC, Waymouth RM, Sarangi R. Effect of Redox Active Ligands on the Electrochemical Properties of Manganese Tricarbonyl Complexes. Inorg Chem 2019; 58:7453-7465. [PMID: 31117629 DOI: 10.1021/acs.inorgchem.9b00652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis, structural characterization, and electrochemical behavior of the neutral Mn(azpy)(CO)3(Br) 4 (azpy = 2-phenylazopyridine) complex is reported and compared with its structural analogue Mn(bipy)(CO)3(Br) 1 (bipy = 2,2'-bipyridine). 4 exhibits reversible two-electron reduction at a mild potential (-0.93 V vs Fc+/0 in acetonitrile) in contrast to 1, which exhibits two sequential one-electron reductions at -1.68 V and -1.89 V vs Fc+/0 in acetonitrile. The key electronic structure differences between 1 and 4 that lead to disparate electrochemical properties are investigated using a combination of Mn-K-edge X-ray absorption spectroscopy (XAS), Mn-Kβ X-ray emission spectroscopy (XES), and density functional theory (DFT) on 1, 4, their debrominated analogues, [Mn(L)(CO)3(CH3CN)][CF3SO3] (L = bipy 2, azpy 5), and two-electron reduced counterparts [Mn(bipy)(CO)3][K(18-crown-6)] 3 and [Mn(azpy)(CO)3][Cp2Co] 6. The results reveal differences in the distribution of electrons about the CO and bidentate ligands (bipy and azpy), particularly upon formation of the highly reduced, formally Mn(-1) species. The data show that the degree of ligand noninnocence and resulting redox-activity in Mn(L)(CO)3 type complexes impacts not only the reducing power of such systems, but the speciation of the reduced complexes via perturbation of the monomer-dimer equilibrium in the singly reduced Mn(0) state. This study highlights the role of redox-active ligands in tuning the reactivity of metal centers involved in electrocatalytic transformations.
Collapse
Affiliation(s)
- Benjamin D Matson
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States.,Stanford Synchrotron Radiation Lightsource , SLAC National Accelerator Laboratory , Menlo Park , California , United States
| | - Elizabeth A McLoughlin
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Keith C Armstrong
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Robert M Waymouth
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource , SLAC National Accelerator Laboratory , Menlo Park , California , United States
| |
Collapse
|
30
|
Lim H, Thomas KE, Hedman B, Hodgson KO, Ghosh A, Solomon EI. X-ray Absorption Spectroscopy as a Probe of Ligand Noninnocence in Metallocorroles: The Case of Copper Corroles. Inorg Chem 2019; 58:6722-6730. [PMID: 31046257 PMCID: PMC6644708 DOI: 10.1021/acs.inorgchem.9b00128] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The question of ligand noninnocence in Cu corroles has long been a topic of discussion. Presented herein is a Cu K-edge X-ray absorption spectroscopy (XAS) study, which provides a direct probe of the metal oxidation state, of three Cu corroles, Cu[TPC], Cu[Br8TPC], and Cu[(CF3)8TPC] (TPC = meso-triphenylcorrole), and the analogous Cu(II) porphyrins, Cu[TPP], Cu[Br8TPP], and Cu[(CF3)8TPP] (TPP = meso-tetraphenylporphyrin). The Cu K rising-edges of the Cu corroles were found to be about 0-1 eV upshifted relative to the analogous porphyrins, which is substantially lower than the 1-2 eV shifts typically exhibited by authentic Cu(II)/Cu(III) model complex pairs. In an unusual twist, the Cu K pre-edge regions of both the Cu corroles and the Cu porphyrins exhibit two peaks split by 0.8-1.3 eV. Based on time-dependent density functional theory calculations, the lower- and higher-energy peaks were assigned to a Cu 1s → 3d x2- y2 transition and a Cu 1s → corrole/porphyrin π* transition, respectively. From the Cu(II) porphyrins to the corresponding Cu corroles, the energy of the Cu 1s → 3d x2- y2 transition peak was found to upshift by 0.6-0.8 eV. This shift is approximately half that observed between Cu(II) to Cu(III) states for well-defined complexes. The Cu K-edge XAS spectra thus show that although the metal sites in the Cu corroles are more oxidized relative to those in their Cu(II) porphyrin analogues, they are not oxidized to the Cu(III) level, consistent with the notion of a noninnocent corrole. The relative importance of σ-donation versus corrole π-radical character is discussed.
Collapse
Affiliation(s)
- Hyeongtaek Lim
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Kolle E. Thomas
- Department of Chemistry, UiT — The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Keith O. Hodgson
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Abhik Ghosh
- Department of Chemistry, UiT — The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| |
Collapse
|
31
|
McLoughlin EA, Giles LJ, Waymouth RM, Sarangi R. X-ray Absorption Spectroscopy and Theoretical Investigation of the Reductive Protonation of Cyclopentadienyl Cobalt Compounds. Inorg Chem 2019; 58:1167-1176. [DOI: 10.1021/acs.inorgchem.8b02475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Logan J. Giles
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Robert M. Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
32
|
de Arruda EGR, Rocha BA, Barrionuevo MVF, Aðalsteinsson HM, Galdino FE, Loh W, Lima FA, Abbehausen C. The influence of ZnII coordination sphere and chemical structure over the reactivity of metallo-β-lactamase model compounds. Dalton Trans 2019; 48:2900-2916. [DOI: 10.1039/c8dt03905d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The first coordination sphere influences the reactivity of metallo-β-lactamase monozinc model complexes.
Collapse
|
33
|
Müller P, Karhan K, Krack M, Gerstmann U, Schmidt WG, Bauer M, Kühne TD. Impact of finite-temperature and condensed-phase effects on theoretical X-ray absorption spectra of transition metal complexes. J Comput Chem 2018; 40:712-716. [PMID: 30306614 DOI: 10.1002/jcc.25641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/20/2018] [Accepted: 09/18/2018] [Indexed: 11/09/2022]
Abstract
The impact of condensed-phase and finite-temperature effects on the theoretical X-ray absorption spectra of transition metal complexes is assessed. The former are included in terms of the all-electron Gaussian and augmented plane-wave approach, whereas the latter are taken into account by extensive ensemble averaging along second-generation Car-Parrinello ab initio molecular dynamics trajectories. We find that employing the periodic boundary conditions and including finite-temperature effects systematically improves the agreement between our simulated X-ray absorption spectra and experimental measurements. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Patrick Müller
- Department of Chemistry, University of Paderborn, Warburger Str. 100, 33098, Paderborn, Germany
| | - Kristof Karhan
- Department of Chemistry, University of Paderborn, Warburger Str. 100, 33098, Paderborn, Germany
| | - Matthias Krack
- Laboratory for Scientific Computing and Modelling, Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland
| | - Uwe Gerstmann
- Department of Physics, University of Paderborn, Warburger Str. 100, 33098, Paderborn, Germany
| | - Wolf Gero Schmidt
- Department of Physics, University of Paderborn, Warburger Str. 100, 33098, Paderborn, Germany
| | - Matthias Bauer
- Department of Chemistry and Center for Sustainable Systems Design, University of Paderborn, Warburger Str. 100, 33098, Paderborn, Germany
| | - Thomas D Kühne
- Department of Chemistry and Center for Sustainable Systems Design, University of Paderborn, Warburger Str. 100, 33098, Paderborn, Germany
| |
Collapse
|
34
|
Rudolph J, Jacob CR. Revisiting the Dependence of Cu K-Edge X-ray Absorption Spectra on Oxidation State and Coordination Environment. Inorg Chem 2018; 57:10591-10607. [PMID: 30113840 DOI: 10.1021/acs.inorgchem.8b01219] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
X-ray absorption spectroscopy (XAS) at the Cu K-edge is an important tool for probing the properties of copper centers in transition-metal chemistry and catalysis. However, the interpretation of experimental XAS spectra requires a detailed understanding of the dependence of spectroscopic features on the local geometric and electronic structure, which can be established by theoretical X-ray spectroscopy. Here, we present a systematic computational study of the Cu K-edge XAS spectra of selected Cu complexes based on time-dependent density-functional theory in combination with a molecular orbital analysis of the relevant transitions. For a series of Cu ammine model complexes as well as a comprehensive test set of 12 Cu(I) and 5 Cu(II) complexes, we revisit the dependence of the pre-edge region in Cu K-edge XAS spectra on oxidation state and coordination geometry. While our calculations confirm earlier experimental assignments, we can also reveal additional signatures of the ligand orbitals and identify the underlying orbital interactions. The comprehensive picture revealed by this study will provide a reliable basis for the interpretation of in situ Cu K-edge XAS spectra of catalytic intermediates.
Collapse
Affiliation(s)
- Julian Rudolph
- Institute of Physical and Theoretical Chemistry , TU Braunschweig , Gaußstraße 17 , 38106 Braunschweig , Germany
| | - Christoph R Jacob
- Institute of Physical and Theoretical Chemistry , TU Braunschweig , Gaußstraße 17 , 38106 Braunschweig , Germany
| |
Collapse
|
35
|
Chantzis A, Kowalska JK, Maganas D, DeBeer S, Neese F. Ab Initio Wave Function-Based Determination of Element Specific Shifts for the Efficient Calculation of X-ray Absorption Spectra of Main Group Elements and First Row Transition Metals. J Chem Theory Comput 2018; 14:3686-3702. [DOI: 10.1021/acs.jctc.8b00249] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Agisilaos Chantzis
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Joanna K. Kowalska
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Dimitrios Maganas
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
36
|
Kubas A, Maszota P. Theoretical Insights into the Unique Ligation of [Fe
4
S
4
] Iron–Sulfur Clusters. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Adam Kubas
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01‐224 Warsaw Poland
| | - Paweł Maszota
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01‐224 Warsaw Poland
| |
Collapse
|
37
|
Wilkin OM, Harris N, Rooms JF, Dixon EL, Bridgeman AJ, Young NA. How Inert, Perturbing, or Interacting Are Cryogenic Matrices? A Combined Spectroscopic (Infrared, Electronic, and X-ray Absorption) and DFT Investigation of Matrix-Isolated Iron, Cobalt, Nickel, and Zinc Dibromides. J Phys Chem A 2018; 122:1994-2029. [DOI: 10.1021/acs.jpca.7b09734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Owen M. Wilkin
- Department
of Chemistry, The University of Hull, Kingston upon Hull HU6
7RX, U.K
| | - Neil Harris
- Department
of Chemistry, The University of Hull, Kingston upon Hull HU6
7RX, U.K
| | - John F. Rooms
- Department
of Chemistry, The University of Hull, Kingston upon Hull HU6
7RX, U.K
| | - Emma L. Dixon
- Department
of Chemistry, The University of Hull, Kingston upon Hull HU6
7RX, U.K
| | - Adam J. Bridgeman
- School
of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Nigel A. Young
- Department
of Chemistry, The University of Hull, Kingston upon Hull HU6
7RX, U.K
| |
Collapse
|
38
|
Castillo RG, Banerjee R, Allpress CJ, Rohde GT, Bill E, Que L, Lipscomb JD, DeBeer S. High-Energy-Resolution Fluorescence-Detected X-ray Absorption of the Q Intermediate of Soluble Methane Monooxygenase. J Am Chem Soc 2017; 139:18024-18033. [PMID: 29136468 PMCID: PMC5729100 DOI: 10.1021/jacs.7b09560] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Kα high-energy-resolution fluorescence detected X-ray absorption spectroscopy (HERFD XAS) provides a powerful tool for overcoming the limitations of conventional XAS to identify the electronic structure and coordination environment of metalloprotein active sites. Herein, Fe Kα HERFD XAS is applied to the diiron active site of soluble methane monooxygenase (sMMO) and to a series of high-valent diiron model complexes, including diamond-core [FeIV2(μ-O)2(L)2](ClO4)4] (3) and open-core [(O═FeIV-O-FeIV(OH)(L)2](ClO4)3 (4) models (where, L = tris(3,5-dimethyl-4-methoxypyridyl-2-methyl)amine) (TPA*)). Pronounced differences in the HERFD XAS pre-edge energies and intensities are observed for the open versus closed Fe2O2 cores in the model compounds. These differences are reproduced by time-dependent density functional theory (TDDFT) calculations and allow for the pre-edge energies and intensity to be directly correlated with the local active site geometric and electronic structure. A comparison of the model complex HERFD XAS data to that of MMOHQ (the key intermediate in methane oxidation) is supportive of an open-core structure. Specifically, the large pre-edge area observed for MMOHQ may be rationalized by invoking an open-core structure with a terminal FeIV═O motif, though further modulations of the core structure due to the protein environment cannot be ruled out. The present study thus motivates the need for additional experimental and theoretical studies to unambiguously assess the active site conformation of MMOHQ.
Collapse
Affiliation(s)
- Rebeca G. Castillo
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, D-45470 Mülheim an der Ruhr, Germany
| | - Rahul Banerjee
- Department of Biochemistry, Molecular Biology and Biophysics, 321 Church St. SE, Minneapolis, MN 55455
| | - Caleb J. Allpress
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455
| | - Gregory T. Rohde
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, D-45470 Mülheim an der Ruhr, Germany
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology and Biophysics, 321 Church St. SE, Minneapolis, MN 55455
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
39
|
Bajnóczi ÉG, Németh Z, Vankó G. Simultaneous Speciation, Structure, and Equilibrium Constant Determination in the Ni2+–EDTA–CN– Ternary System via High-Resolution Laboratory X-ray Absorption Fine Structure Spectroscopy and Theoretical Calculations. Inorg Chem 2017; 56:14220-14226. [DOI: 10.1021/acs.inorgchem.7b02311] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Éva G. Bajnóczi
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zoltán Németh
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
| | - György Vankó
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
40
|
Ganguly S, Giles LJ, Thomas KE, Sarangi R, Ghosh A. Ligand Noninnocence in Iron Corroles: Insights from Optical and X-ray Absorption Spectroscopies and Electrochemical Redox Potentials. Chemistry 2017; 23:15098-15106. [PMID: 28845891 PMCID: PMC5710759 DOI: 10.1002/chem.201702621] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Indexed: 11/11/2022]
Abstract
Two new series of iron meso-tris(para-X-phenyl)corrole (TpXPC) complexes, Fe[TpXPC]Ph and Fe[TpXPC]Tol, in which X=CF3 , H, Me, and OMe, and Tol=p-methylphenyl (p-tolyl), have been synthesized, allowing a multitechnique electronic-structural comparison with the corresponding FeCl, FeNO, and Fe2 (μ-O) TpXPC derivatives. Optical spectroscopy revealed that the Soret maxima of the FePh and FeTol series are insensitive to the phenyl para substituent, consistent with the presumed innocence of the corrole ligand in these compounds. Accordingly, we may be increasingly confident in the ability of the substituent effect criterion to serve as a probe of corrole noninnocence. Furthermore, four complexes-Fe[TPC]Cl, Fe[TPC](NO), {Fe[TPC]}2 O, and Fe[TPC]Ph-were selected for a detailed XANES investigation of the question of ligand noninnocence. The intensity-weighted average energy (IWAE) positions were found to exhibit rather modest variations (0.8 eV over the series of corroles). The integrated Fe-K pre-edge intensities, on the other hand, vary considerably, with a 2.5 fold increase for Fe[TPC]Ph relative to Fe[TPC]Cl and Fe[TPC](NO). Given the approximately C4v local symmetry of the Fe in all the complexes, the large increase in intensity for Fe[TPC]Ph may be attributed to a higher number of 3d holes, consistent with an expected FeIV -like description, in contrast to Fe[TPC]Cl and Fe[TPC](NO), in which the Fe is thought to be FeIII -like. These results afford strong validation of XANES as a probe of ligand noninnocence in metallocorroles. Electrochemical redox potentials, on the other hand, were found not to afford a simple probe of ligand noninnocence in Fe corroles.
Collapse
Affiliation(s)
- Sumit Ganguly
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT-, The Arctic University of Norway, 9037, Tromsø, Norway
| | - Logan J Giles
- Structural Molecular Biology, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94306, USA
| | - Kolle E Thomas
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT-, The Arctic University of Norway, 9037, Tromsø, Norway
| | - Ritimukta Sarangi
- Structural Molecular Biology, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94306, USA
| | - Abhik Ghosh
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT-, The Arctic University of Norway, 9037, Tromsø, Norway
| |
Collapse
|
41
|
Sabenya G, Lázaro L, Gamba I, Martin-Diaconescu V, Andris E, Weyhermüller T, Neese F, Roithova J, Bill E, Lloret-Fillol J, Costas M. Generation, Spectroscopic, and Chemical Characterization of an Octahedral Iron(V)-Nitrido Species with a Neutral Ligand Platform. J Am Chem Soc 2017; 139:9168-9177. [DOI: 10.1021/jacs.7b00429] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Gerard Sabenya
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
| | - Laura Lázaro
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
| | - Ilaria Gamba
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
| | - Vlad Martin-Diaconescu
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
| | - Erik Andris
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843 Prague 2, Czech Republic
| | - Thomas Weyhermüller
- Max Planck Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max Planck Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Jana Roithova
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843 Prague 2, Czech Republic
| | - Eckhard Bill
- Max Planck Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Julio Lloret-Fillol
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Paisos Catalans 16, 43007 Tarragona, Catalonia, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys 23, 08010 Barcelona, Spain
| | - Miquel Costas
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
| |
Collapse
|
42
|
Pattanayak S, Jasniewski AJ, Rana A, Draksharapu A, Singh KK, Weitz A, Hendrich M, Que L, Dey A, Sen Gupta S. Spectroscopic and Reactivity Comparisons of a Pair of bTAML Complexes with Fe V═O and Fe IV═O Units. Inorg Chem 2017; 56:6352-6361. [PMID: 28481521 DOI: 10.1021/acs.inorgchem.7b00448] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this report we compare the geometric and electronic structures and reactivities of [FeV(O)]- and [FeIV(O)]2- species supported by the same ancillary nonheme biuret tetraamido macrocyclic ligand (bTAML). Resonance Raman studies show that the Fe═O vibration of the [FeIV(O)]2- complex 2 is at 798 cm-1, compared to 862 cm-1 for the corresponding [FeV(O)]- species 3, a 64 cm-1 frequency difference reasonably reproduced by density functional theory calculations. These values are, respectively, the lowest and the highest frequencies observed thus far for nonheme high-valent Fe═O complexes. Extended X-ray absorption fine structure analysis of 3 reveals an Fe═O bond length of 1.59 Å, which is 0.05 Å shorter than that found in complex 2. The redox potentials of 2 and 3 are 0.44 V (measured at pH 12) and 1.19 V (measured at pH 7) versus normal hydrogen electrode, respectively, corresponding to the [FeIV(O)]2-/[FeIII(OH)]2- and [FeV(O)]-/[FeIV(O)]2- couples. Consistent with its higher potential (even after correcting for the pH difference), 3 oxidizes benzyl alcohol at pH 7 with a second-order rate constant that is 2500-fold bigger than that for 2 at pH 12. Furthermore, 2 exhibits a classical kinteic isotope effect (KIE) of 3 in the oxidation of benzyl alcohol to benzaldehyde versus a nonclassical KIE of 12 for 3, emphasizing the reactivity differences between 2 and 3.
Collapse
Affiliation(s)
- Santanu Pattanayak
- Chemical Engineering Division, CSIR-National Chemical Laboratory , Pune 411008, India
| | - Andrew J Jasniewski
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Atanu Rana
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science , Kolkata 700032, India
| | - Apparao Draksharapu
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Kundan K Singh
- Chemical Engineering Division, CSIR-National Chemical Laboratory , Pune 411008, India
| | - Andrew Weitz
- Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Michael Hendrich
- Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Abhishek Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science , Kolkata 700032, India
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata , Mohanpur, West Bengal 741246, India
| |
Collapse
|
43
|
MacMillan SN, Lancaster KM. X-ray Spectroscopic Interrogation of Transition-Metal-Mediated Homogeneous Catalysis: Primer and Case Studies. ACS Catal 2017. [DOI: 10.1021/acscatal.6b02875] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Samantha N. MacMillan
- Department of Chemistry and
Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Kyle M. Lancaster
- Department of Chemistry and
Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
44
|
Sorokin AB. μ-Nitrido Diiron Phthalocyanine and Porphyrin Complexes: Unusual Structures With Interesting Catalytic Properties. ADVANCES IN INORGANIC CHEMISTRY 2017. [DOI: 10.1016/bs.adioch.2017.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Gimbert-Suriñach C, Moonshiram D, Francàs L, Planas N, Bernales V, Bozoglian F, Guda A, Mognon L, López I, Hoque MA, Gagliardi L, Cramer CJ, Llobet A. Structural and Spectroscopic Characterization of Reaction Intermediates Involved in a Dinuclear Co–Hbpp Water Oxidation Catalyst. J Am Chem Soc 2016; 138:15291-15294. [DOI: 10.1021/jacs.6b08532] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Carolina Gimbert-Suriñach
- Institute
of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Dooshaye Moonshiram
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Laia Francàs
- Institute
of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Nora Planas
- Department
of Chemistry, Supercomputing Institute and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Varinia Bernales
- Department
of Chemistry, Supercomputing Institute and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Fernando Bozoglian
- Institute
of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Alexander Guda
- International
Research Center “Smart Materials”, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Lorenzo Mognon
- Institute
of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Isidoro López
- Institute
of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Md Asmaul Hoque
- Institute
of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Laura Gagliardi
- Department
of Chemistry, Supercomputing Institute and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christopher J. Cramer
- Department
of Chemistry, Supercomputing Institute and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Antoni Llobet
- Institute
of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
46
|
Vollmers NJ, Müller P, Hoffmann A, Herres-Pawlis S, Rohrmüller M, Schmidt WG, Gerstmann U, Bauer M. Experimental and Theoretical High-Energy-Resolution X-ray Absorption Spectroscopy: Implications for the Investigation of the Entatic State. Inorg Chem 2016; 55:11694-11706. [DOI: 10.1021/acs.inorgchem.6b01704] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | | | - Alexander Hoffmann
- Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Sonja Herres-Pawlis
- Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | | | | | | | | |
Collapse
|
47
|
Moonshiram D, Gimbert-Suriñach C, Guda A, Picon A, Lehmann CS, Zhang X, Doumy G, March AM, Benet-Buchholz J, Soldatov A, Llobet A, Southworth SH. Tracking the Structural and Electronic Configurations of a Cobalt Proton Reduction Catalyst in Water. J Am Chem Soc 2016; 138:10586-96. [PMID: 27452370 DOI: 10.1021/jacs.6b05680] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
X-ray transient absorption spectroscopy (X-TAS) has been used to study the light-induced hydrogen evolution reaction catalyzed by a tetradentate macrocyclic cobalt complex with the formula [LCo(III)Cl2](+) (L = macrocyclic ligand), [Ru(bpy)3](2+) photosensitizer, and an equimolar mixture of sodium ascorbate/ascorbic acid electron donor in pure water. X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analysis of a binary mixture of the octahedral Co(III) precatalyst and [Ru(bpy)3](2+) after illumination revealed in situ formation of a Co(II) intermediate with significantly distorted geometry and electron-transfer kinetics of 51 ns. On the other hand, X-TAS experiments of the complete photocatalytic system in the presence of the electron donor showed the formation of a square planar Co(I) intermediate species within a few nanoseconds, followed by its decay in the microsecond time scale. The Co(I) structural assignment is supported by calculations based on density functional theory (DFT). At longer reaction times, we observe the formation of the initial Co(III) species concomitant to the decay of Co(I), thus closing the catalytic cycle. The experimental X-ray absorption spectra of the molecular species formed along the catalytic cycle are modeled using a combination of molecular orbital DFT calculations (DFT-MO) and finite difference method (FDM). These findings allowed us to assign the full mechanistic pathway, followed by the catalyst as well as to determine the rate-limiting step of the process, which consists in the protonation of the Co(I) species. This study provides a complete kinetics scheme for the hydrogen evolution reaction by a cobalt catalyst, revealing unique information for the development of better catalysts for the reductive side of hydrogen fuel cells.
Collapse
Affiliation(s)
| | - Carolina Gimbert-Suriñach
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology , Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Alexander Guda
- International Research Center "Smart Materials", Southern Federal University , 344090 Rostov-on-Don, Russia
| | | | | | | | | | | | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology , Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Alexander Soldatov
- International Research Center "Smart Materials", Southern Federal University , 344090 Rostov-on-Don, Russia
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology , Avinguda Països Catalans 16, 43007 Tarragona, Spain.,Departament de Química, Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès, Barcelona, Spain
| | | |
Collapse
|
48
|
Schrapers P, Mebs S, Goetzl S, Hennig SE, Dau H, Dobbek H, Haumann M. Axial Ligation and Redox Changes at the Cobalt Ion in Cobalamin Bound to Corrinoid Iron-Sulfur Protein (CoFeSP) or in Solution Characterized by XAS and DFT. PLoS One 2016; 11:e0158681. [PMID: 27384529 PMCID: PMC4934906 DOI: 10.1371/journal.pone.0158681] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/20/2016] [Indexed: 11/18/2022] Open
Abstract
A cobalamin (Cbl) cofactor in corrinoid iron-sulfur protein (CoFeSP) is the primary methyl group donor and acceptor in biological carbon oxide conversion along the reductive acetyl-CoA pathway. Changes of the axial coordination of the cobalt ion within the corrin macrocycle upon redox transitions in aqua-, methyl-, and cyano-Cbl bound to CoFeSP or in solution were studied using X-ray absorption spectroscopy (XAS) at the Co K-edge in combination with density functional theory (DFT) calculations, supported by metal content and cobalt redox level quantification with further spectroscopic methods. Calculation of the highly variable pre-edge X-ray absorption features due to core-to-valence (ctv) electronic transitions, XANES shape analysis, and cobalt-ligand bond lengths determination from EXAFS has yielded models for the molecular and electronic structures of the cobalt sites. This suggested the absence of a ligand at cobalt in CoFeSP in α-position where the dimethylbenzimidazole (dmb) base of the cofactor is bound in Cbl in solution. As main species, (dmb)CoIII(OH2), (dmb)CoII(OH2), and (dmb)CoIII(CH3) sites for solution Cbl and CoIII(OH2), CoII(OH2), and CoIII(CH3) sites in CoFeSP-Cbl were identified. Our data support binding of a serine residue from the reductive-activator protein (RACo) of CoFeSP to the cobalt ion in the CoFeSP-RACo protein complex that stabilizes Co(II). The absence of an α-ligand at cobalt not only tunes the redox potential of the cobalamin cofactor into the physiological range, but is also important for CoFeSP reactivation.
Collapse
Affiliation(s)
- Peer Schrapers
- Freie Universität Berlin, Department of Physics, 14195, Berlin, Germany
| | - Stefan Mebs
- Freie Universität Berlin, Department of Physics, 14195, Berlin, Germany
| | - Sebastian Goetzl
- Humboldt-Universität zu Berlin, Department of Biology, 10115, Berlin, Germany
| | - Sandra E. Hennig
- Humboldt-Universität zu Berlin, Department of Biology, 10115, Berlin, Germany
| | - Holger Dau
- Freie Universität Berlin, Department of Physics, 14195, Berlin, Germany
| | - Holger Dobbek
- Humboldt-Universität zu Berlin, Department of Biology, 10115, Berlin, Germany
| | - Michael Haumann
- Freie Universität Berlin, Department of Physics, 14195, Berlin, Germany
- * E-mail:
| |
Collapse
|
49
|
Mono- and binuclear non-heme iron chemistry from a theoretical perspective. J Biol Inorg Chem 2016; 21:619-44. [DOI: 10.1007/s00775-016-1357-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
|
50
|
Kowalska JK, Hahn AW, Albers A, Schiewer CE, Bjornsson R, Lima FA, Meyer F, DeBeer S. X-ray Absorption and Emission Spectroscopic Studies of [L2Fe2S2](n) Model Complexes: Implications for the Experimental Evaluation of Redox States in Iron-Sulfur Clusters. Inorg Chem 2016; 55:4485-97. [PMID: 27097289 PMCID: PMC5108557 DOI: 10.1021/acs.inorgchem.6b00295] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, a systematic study of [L2Fe2S2](n) model complexes (where L = bis(benzimidazolato) and n = 2-, 3-, 4-) has been carried out using iron and sulfur K-edge X-ray absorption (XAS) and iron Kβ and valence-to-core X-ray emission spectroscopies (XES). These data are used as a test set to evaluate the relative strengths and weaknesses of X-ray core level spectroscopies in assessing redox changes in iron-sulfur clusters. The results are correlated to density functional theory (DFT) calculations of the spectra in order to further support the quantitative information that can be extracted from the experimental data. It is demonstrated that due to canceling effects of covalency and spin state, the information that can be extracted from Fe Kβ XES mainlines is limited. However, a careful analysis of the Fe K-edge XAS data shows that localized valence vs delocalized valence species may be differentiated on the basis of the pre-edge and K-edge energies. These findings are then applied to existing literature Fe K-edge XAS data on the iron protein, P-cluster, and FeMoco sites of nitrogenase. The ability to assess the extent of delocalization in the iron protein vs the P-cluster is highlighted. In addition, possible charge states for FeMoco on the basis of Fe K-edge XAS data are discussed. This study provides an important reference for future X-ray spectroscopic studies of iron-sulfur clusters.
Collapse
Affiliation(s)
- Joanna K Kowalska
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Anselm W Hahn
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Antonia Albers
- Institute of Inorganic Chemistry, Georg-August-University Göttingen , Tammannstraße 4, D-37077 Göttingen, Germany
| | - Christine E Schiewer
- Institute of Inorganic Chemistry, Georg-August-University Göttingen , Tammannstraße 4, D-37077 Göttingen, Germany
| | - Ragnar Bjornsson
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Frederico A Lima
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Franc Meyer
- Institute of Inorganic Chemistry, Georg-August-University Göttingen , Tammannstraße 4, D-37077 Göttingen, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany.,Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|