1
|
Mallory ML, MacLean S, Baak JE, Boudreau M, Priest JM, Morrill A, Provencher JF, O'Driscoll NJ. Mercury in eastern coyotes from Nova Scotia, Canada: Effects of geography and trophic position. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179186. [PMID: 40154090 DOI: 10.1016/j.scitotenv.2025.179186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/02/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
Mercury (Hg) is a global environmental concern due to its wide distribution and myriad of deleterious effects on biota. We studied hepatic Hg in a widespread, top predator in the terrestrial ecosystem of Nova Scotia, Canada, the eastern coyote (Canis latrans), to determine recent concentrations, identify drivers of variation in Hg levels, and assess the utility of this species as a mercury biomonitor for this ecosystem. Coyotes feeding at higher trophic levels, and those in the south and east of the province, had higher Hg concentrations, but there was high variability within and among age-sex groupings. We conclude that coyotes may be useful biomonitors at larger regional scales (e.g., the Maritimes), but we recommend additional research on fishers (Pekania pennanti), a species which we used to compare to coyotes, and for which trophic position and Hg concentrations were surprisingly high at smaller scales within Nova Scotia.
Collapse
Affiliation(s)
- Mark L Mallory
- Biology, Acadia University, 15 University Drive, Wolfville, Nova Scotia B4P 2R6, Canada.
| | - Seth MacLean
- Biology, Acadia University, 15 University Drive, Wolfville, Nova Scotia B4P 2R6, Canada
| | - Julia E Baak
- Biology, Acadia University, 15 University Drive, Wolfville, Nova Scotia B4P 2R6, Canada; Environment and Climate Change Canada, Iqaluit, Nunavut X0A 3H0, Canada
| | - Michael Boudreau
- Nova Scotia Department of Natural Resources, 136 Exhibition St (3rd floor), Kentville, Nova Scotia B4N 4E5, Canada
| | - Jenna M Priest
- Nova Scotia Department of Natural Resources, 136 Exhibition St (3rd floor), Kentville, Nova Scotia B4N 4E5, Canada
| | - André Morrill
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Raven Road, Carleton University, Ottawa, Ontario K1A 0H3, Canada
| | - Jennifer F Provencher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Raven Road, Carleton University, Ottawa, Ontario K1A 0H3, Canada
| | - Nelson J O'Driscoll
- Earth and Environmental Science, Acadia University, 15 University Drive, Wolfville, Nova Scotia B4P 2R6, Canada
| |
Collapse
|
2
|
Evers DC, Ackerman JT, Åkerblom S, Bally D, Basu N, Bishop K, Bodin N, Braaten HFV, Burton MEH, Bustamante P, Chen C, Chételat J, Christian L, Dietz R, Drevnick P, Eagles-Smith C, Fernandez LE, Hammerschlag N, Harmelin-Vivien M, Harte A, Krümmel EM, Brito JL, Medina G, Barrios Rodriguez CA, Stenhouse I, Sunderland E, Takeuchi A, Tear T, Vega C, Wilson S, Wu P. Global mercury concentrations in biota: their use as a basis for a global biomonitoring framework. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:325-396. [PMID: 38683471 PMCID: PMC11213816 DOI: 10.1007/s10646-024-02747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 05/01/2024]
Abstract
An important provision of the Minamata Convention on Mercury is to monitor and evaluate the effectiveness of the adopted measures and its implementation. Here, we describe for the first time currently available biotic mercury (Hg) data on a global scale to improve the understanding of global efforts to reduce the impact of Hg pollution on people and the environment. Data from the peer-reviewed literature were compiled in the Global Biotic Mercury Synthesis (GBMS) database (>550,000 data points). These data provide a foundation for establishing a biomonitoring framework needed to track Hg concentrations in biota globally. We describe Hg exposure in the taxa identified by the Minamata Convention: fish, sea turtles, birds, and marine mammals. Based on the GBMS database, Hg concentrations are presented at relevant geographic scales for continents and oceanic basins. We identify some effective regional templates for monitoring methylmercury (MeHg) availability in the environment, but overall illustrate that there is a general lack of regional biomonitoring initiatives around the world, especially in Africa, Australia, Indo-Pacific, Middle East, and South Atlantic and Pacific Oceans. Temporal trend data for Hg in biota are generally limited. Ecologically sensitive sites (where biota have above average MeHg tissue concentrations) have been identified throughout the world. Efforts to model and quantify ecosystem sensitivity locally, regionally, and globally could help establish effective and efficient biomonitoring programs. We present a framework for a global Hg biomonitoring network that includes a three-step continental and oceanic approach to integrate existing biomonitoring efforts and prioritize filling regional data gaps linked with key Hg sources. We describe a standardized approach that builds on an evidence-based evaluation to assess the Minamata Convention's progress to reduce the impact of global Hg pollution on people and the environment.
Collapse
Affiliation(s)
- David C Evers
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA.
| | - Joshua T Ackerman
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, CA, 95620, USA
| | | | - Dominique Bally
- African Center for Environmental Health, BP 826 Cidex 03, Abidjan, Côte d'Ivoire
| | - Nil Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Upsalla, Sweden
| | - Nathalie Bodin
- Research Institute for Sustainable Development Seychelles Fishing Authority, Victoria, Seychelles
| | | | - Mark E H Burton
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Paco Bustamante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Celia Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - John Chételat
- Environment and Cliamte Change Canada, National Wildlife Research Centre, Ottawa, ON, K1S 5B6, Canada
| | - Linroy Christian
- Department of Analytical Services, Dunbars, Friars Hill, St John, Antigua and Barbuda
| | - Rune Dietz
- Department of Ecoscience, Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Paul Drevnick
- Teck American Incorporated, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Collin Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Luis E Fernandez
- Sabin Center for Environment and Sustainability and Department of Biology, Wake Forest University, Winston-Salem, NC, 29106, USA
- Centro de Innovación Científica Amazonica (CINCIA), Puerto Maldonado, Madre de Dios, Peru
| | - Neil Hammerschlag
- Shark Research Foundation Inc, 29 Wideview Lane, Boutiliers Point, NS, B3Z 0M9, Canada
| | - Mireille Harmelin-Vivien
- Aix-Marseille Université, Université de Toulon, CNRS/INSU/IRD, Institut Méditerranéen d'Océanologie (MIO), UM 110, Campus de Luminy, case 901, 13288, Marseille, cedex 09, France
| | - Agustin Harte
- Basel, Rotterdam and Stockholm Conventions Secretariat, United Nations Environment Programme (UNEP), Chem. des Anémones 15, 1219, Vernier, Geneva, Switzerland
| | - Eva M Krümmel
- Inuit Circumpolar Council-Canada, Ottawa, Canada and ScienTissiME Inc, Barry's Bay, ON, Canada
| | - José Lailson Brito
- Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier, 524, Sala 4002, CEP 20550-013, Maracana, Rio de Janeiro, RJ, Brazil
| | - Gabriela Medina
- Director of Basel Convention Coordinating Centre, Stockholm Convention Regional Centre for Latin America and the Caribbean, Hosted by the Ministry of Environment, Montevideo, Uruguay
| | | | - Iain Stenhouse
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Elsie Sunderland
- Harvard University, Pierce Hall 127, 29 Oxford Street, Cambridge, MA, 02138, USA
| | - Akinori Takeuchi
- National Institute for Environmental Studies, Health and Environmental Risk Division, 16-2 Onogawa Tsukuba, Ibaraki, 305-8506, Japan
| | - Tim Tear
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Claudia Vega
- Centro de Innovaccion Cientifica Amazonica (CINCIA), Jiron Ucayali 750, Puerto Maldonado, Madre de Dios, 17001, Peru
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme (AMAP) Secretariat, N-9296, Tromsø, Norway
| | - Pianpian Wu
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
3
|
Andersen-Ranberg EU, Leifsson PS, Rigét FF, Søndergaard J, Andersen S, Alstrup AKO, Dietz R, Sonne C. Element Concentrations and Histopathology of Liver and Kidney in West Greenland Ringed Seals ( Pusa hispida). Animals (Basel) 2024; 14:1739. [PMID: 38929358 PMCID: PMC11200747 DOI: 10.3390/ani14121739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Ringed seals are consumed in Greenland and are therefore included as a key biomonitoring species with the focus on pollution exposure and health effects. Ringed seals in Central West Greenland (Qeqertarsuaq) and in North West Greenland (Qaanaaq) were analyzed for metal concentrations in the liver and histological changes in the liver and kidney. The mean liver concentration of mercury in Qaanaaq was 3.73 ± 5.01 µg/g ww (range: 0.28-23.29 µg/g ww), and the mean cadmium concentration was 7.80 ± 8.95 µg/g ww (range: 0.013-38.79 µg/g ww). For Qeqertarsuaq, the liver concentration of mercury was 1.78 ± 1.70 µg/g ww (range: 0.45-8.00 µg/g ww) and the mean cadmium concentration was 11.58 ± 6.32 µg/g ww (range: 0.11-25.45 µg/g ww). Age had a positive effect on the liver concentrations of metals, while no effect was found for sex or histological changes. The prevalence of histological changes in liver tissue decreased in the following order: random pattern mononuclear cell infiltration (92.1%), portal cell infiltration (68.4%), hepatic intracellular fat (18.4%), portal fibrosis (7.9%), focal hepatic fibrosis (7.9%), bile duct hyperplasia/fibrosis (7.9%) and lipid granuloma (2.6%). For kidney tissue, the prevalence of histological changes decreased in the following order: glomerular mesangial deposits (54.1%) > glomerular basement membrane thickening (45.9%) > THD (40%) > tubular hyaline casts (14.0%) > glomerular atrophy (13.5%) > dilated tubules (13.5%) > glomerular hyper-cellularity (10.8%) > mononuclear cell infiltrations (8.1%).
Collapse
Affiliation(s)
- Emilie U. Andersen-Ranberg
- Arctic Research Centre (ARC), Department of Ecoscience, Faculty of Technological Sciences, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark; (F.F.R.); (J.S.); (R.D.); (C.S.)
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 16, DK-1870 Frederiksberg, Denmark
| | - Pall S. Leifsson
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 3, DK-1870 Frederiksberg, Denmark;
| | - Frank F. Rigét
- Arctic Research Centre (ARC), Department of Ecoscience, Faculty of Technological Sciences, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark; (F.F.R.); (J.S.); (R.D.); (C.S.)
| | - Jens Søndergaard
- Arctic Research Centre (ARC), Department of Ecoscience, Faculty of Technological Sciences, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark; (F.F.R.); (J.S.); (R.D.); (C.S.)
| | - Steen Andersen
- Hunters Science, Rådmandsgade 55, DK-2200 Copenhagen N, Denmark;
| | - Aage Kristian Olsen Alstrup
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark
- Department of Nuclear medicine & PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark
| | - Rune Dietz
- Arctic Research Centre (ARC), Department of Ecoscience, Faculty of Technological Sciences, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark; (F.F.R.); (J.S.); (R.D.); (C.S.)
| | - Christian Sonne
- Arctic Research Centre (ARC), Department of Ecoscience, Faculty of Technological Sciences, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark; (F.F.R.); (J.S.); (R.D.); (C.S.)
| |
Collapse
|
4
|
Boyi JO, Sonne C, Dietz R, Rigét F, Siebert U, Lehnert K. Gene expression and trace elements in Greenlandic ringed seals (Pusa hispida). ENVIRONMENTAL RESEARCH 2024; 244:117839. [PMID: 38081340 DOI: 10.1016/j.envres.2023.117839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Marine top predators such as ringed seals biomagnify environmental contaminants; and with the increasing human activities in the Arctic, ringed seals are exposed to biologically significant concentrations of trace elements resulting in reproductive impairment, immunosuppression, and neurological damages. Little is known about the molecular effects of heavy metals on these vulnerable apex predators suffering from a rapidly changing Arctic with significant loss of sea-ice. In the present study, concentrations of cadmium (Cd), mercury (Hg) and selenium (Se) were measured in liver of sixteen Greenlandic ringed seals (nine adults and seven subadults) together with molecular biomarkers involved in bio-transformation, oxidative stress, endocrine disruption and immune activity in blood and blubber. The concentrations of trace elements increased in the following order: Hg > Se > Cd with levels of mercury and selenium being highest in adults. Aryl hydrocarbon receptor nuclear translocator (ARNT), peroxisome proliferator activated receptor alpha (PPARα, estrogen receptor alpha (ESR1), thyroid hormone receptor alpha (TRα) and interleukin - 2 (IL-2) mRNA transcript levels were highest in blubber, while heat shock protein 70 (HSP70) and interleukin - 10 (IL-10) were significantly higher in blood. There were no significant correlations between the concentrations of trace elements and mRNA transcript levels suggesting that stressors other than the trace elements investigated are responsible for the changes in gene expression levels. Since Hg seems to increase in Greenlandic ringed seals, there is a need to re-enforce health monitoring of this ringed seal population.
Collapse
Affiliation(s)
- Joy Ometere Boyi
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Büsum, Germany.
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Roskilde, Denmark.
| | - Rune Dietz
- Department of Ecoscience, Aarhus University, Roskilde, Denmark.
| | - Frank Rigét
- Department of Ecoscience, Aarhus University, Roskilde, Denmark.
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Büsum, Germany.
| | - Kristina Lehnert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Büsum, Germany.
| |
Collapse
|
5
|
Dietz R, Wilson S, Loseto LL, Dommergue A, Xie Z, Sonne C, Chételat J. Special issue on the AMAP 2021 assessment of mercury in the Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157020. [PMID: 35764153 DOI: 10.1016/j.scitotenv.2022.157020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This Editorial presents an overview of the Special Issue on advances in Arctic mercury (Hg) science synthesized from the 2021 assessment of the Arctic Monitoring and Assessment Programme (AMAP). Mercury continues to travel to Arctic environments and threaten wildlife and human health in this circumpolar region. Over the last decade, progress has been achieved in addressing policy-relevant uncertainties in environmental Hg contamination. This includes temporal trends of Hg, its transport to and within the Arctic, methylmercury cycling, climate change influences, biological effects of Hg on fish and wildlife, human exposure to Hg, and forecasting of Arctic responses to different future scenarios of anthropogenic Hg emissions. In addition, important contributions of Indigenous Peoples to Arctic research and monitoring of Hg are highlighted, including through projects of knowledge co-production. Finally, policy-relevant recommendations are summarized for future study of Arctic mercury. This series of scientific articles presents comprehensive information relevant to supporting effectiveness evaluation of the United Nations Minamata Convention on Mercury.
Collapse
Affiliation(s)
- Rune Dietz
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark.
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme (AMAP) Secretariat, N-9296 Tromsø, Norway
| | - Lisa L Loseto
- Freshwater Institute, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada; Centre for Earth Observation Science, University of Manitoba, Winnipeg MB R3T 2N2, Canada
| | - Aurélien Dommergue
- Institut des Géosciences de l'Environnement, Univ Grenoble Alpes, CNRS, IRD, Grenoble INP, France
| | - Zhouqing Xie
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Christian Sonne
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - John Chételat
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON K1A 0H3, Canada
| |
Collapse
|
6
|
Dietz R, Letcher RJ, Aars J, Andersen M, Boltunov A, Born EW, Ciesielski TM, Das K, Dastnai S, Derocher AE, Desforges JP, Eulaers I, Ferguson S, Hallanger IG, Heide-Jørgensen MP, Heimbürger-Boavida LE, Hoekstra PF, Jenssen BM, Kohler SG, Larsen MM, Lindstrøm U, Lippold A, Morris A, Nabe-Nielsen J, Nielsen NH, Peacock E, Pinzone M, Rigét FF, Rosing-Asvid A, Routti H, Siebert U, Stenson G, Stern G, Strand J, Søndergaard J, Treu G, Víkingsson GA, Wang F, Welker JM, Wiig Ø, Wilson SJ, Sonne C. A risk assessment review of mercury exposure in Arctic marine and terrestrial mammals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154445. [PMID: 35304145 DOI: 10.1016/j.scitotenv.2022.154445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/25/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
There has been a considerable number of reports on Hg concentrations in Arctic mammals since the last Arctic Monitoring and Assessment Programme (AMAP) effort to review biological effects of the exposure to mercury (Hg) in Arctic biota in 2010 and 2018. Here, we provide an update on the state of the knowledge of health risk associated with Hg concentrations in Arctic marine and terrestrial mammal species. Using available population-specific data post-2000, our ultimate goal is to provide an updated evidence-based estimate of the risk for adverse health effects from Hg exposure in Arctic mammal species at the individual and population level. Tissue residues of Hg in 13 species across the Arctic were classified into five risk categories (from No risk to Severe risk) based on critical tissue concentrations derived from experimental studies on harp seals and mink. Exposure to Hg lead to low or no risk for health effects in most populations of marine and terrestrial mammals, however, subpopulations of polar bears, pilot whales, narwhals, beluga and hooded seals are highly exposed in geographic hotspots raising concern for Hg-induced toxicological effects. About 6% of a total of 3500 individuals, across different marine mammal species, age groups and regions, are at high or severe risk of health effects from Hg exposure. The corresponding figure for the 12 terrestrial species, regions and age groups was as low as 0.3% of a total of 731 individuals analyzed for their Hg loads. Temporal analyses indicated that the proportion of polar bears at low or moderate risk has increased in East/West Greenland and Western Hudson Bay, respectively. However, there remain numerous knowledge gaps to improve risk assessments of Hg exposure in Arctic mammalian species, including the establishment of improved concentration thresholds and upscaling to the assessment of population-level effects.
Collapse
Affiliation(s)
- Rune Dietz
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark.
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada.
| | - Jon Aars
- Norwegian Polar Institute, Tromsø NO-9296, Norway
| | | | - Andrei Boltunov
- Marine Mammal Research and Expedition Centre, 36 Nahimovskiy pr., Moscow 117997, Russia
| | - Erik W Born
- Greenland Institute of Natural Resources, P.O. Box 570, DK-3900 Nuuk, Greenland
| | - Tomasz M Ciesielski
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Krishna Das
- Freshwater and Oceanic sciences Unit of reSearch (FOCUS), University of Liege, 4000 Liege, Belgium
| | - Sam Dastnai
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Andrew E Derocher
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Jean-Pierre Desforges
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark; Department of Environmental Studies and Science, University of Winnipeg, Winnipeg, MB, Canada
| | - Igor Eulaers
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark; Norwegian Polar Institute, Tromsø NO-9296, Norway
| | - Steve Ferguson
- Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada; Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | | | - Lars-Eric Heimbürger-Boavida
- Géosciences Environnement Toulouse, CNRS/IRD/Université Paul Sabatier Toulouse III, Toulouse, France; Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France
| | | | - Bjørn M Jenssen
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark; Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Stephen Gustav Kohler
- Department of Chemistry, Norwegian University of Science and Technology, Realfagbygget, E2-128, Gløshaugen, NO-7491 Trondheim, Norway
| | - Martin M Larsen
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Ulf Lindstrøm
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway; Department of Arctic Technology, Institute of Marine Research, FRAM Centre, NO-9007 Tromsø, Norway
| | - Anna Lippold
- Norwegian Polar Institute, Tromsø NO-9296, Norway
| | - Adam Morris
- Northern Contaminants Program, Crown-Indigenous Relations and Northern Affairs Canada, 15 Eddy Street, 14th floor, Gatineau, Quebec K1A 0H4, Canada
| | - Jacob Nabe-Nielsen
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Nynne H Nielsen
- Greenland Institute of Natural Resources, P.O. Box 570, DK-3900 Nuuk, Greenland
| | - Elizabeth Peacock
- USGS Alaska Science Center, 4210 University Dr., Anchorage, AK 99508-4626, USA
| | - Marianna Pinzone
- Department of Environmental Studies and Science, University of Winnipeg, Winnipeg, MB, Canada
| | - Frank F Rigét
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Aqqalu Rosing-Asvid
- Greenland Institute of Natural Resources, P.O. Box 570, DK-3900 Nuuk, Greenland
| | - Heli Routti
- Norwegian Polar Institute, Tromsø NO-9296, Norway
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, DE-25761 Büsum, Germany
| | - Garry Stenson
- Northwest Atlantic Fisheries Centre, Department DFO-MPO, 80 EastWhite Hills vie, St John's A1C 5X1, Newfoundland and Labrador, Canada
| | - Gary Stern
- Centre for Earth Observation Sciences (CEOS), Clayton H. Riddell Faculty of Environment, Earth and Resources, University of Manitoba, 586Wallace Bld, 125 Dysart Rd., Winnipeg, Manitoba R3T, 2N2, Canada
| | - Jakob Strand
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Jens Søndergaard
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Gabriele Treu
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - Gisli A Víkingsson
- Marine and Freshwater Research Institute, Skúlagata 4, 101 Reykjavík, Iceland
| | - Feiyue Wang
- Centre for Earth Observation Sciences (CEOS), Clayton H. Riddell Faculty of Environment, Earth and Resources, University of Manitoba, 586Wallace Bld, 125 Dysart Rd., Winnipeg, Manitoba R3T, 2N2, Canada
| | - Jeffrey M Welker
- University of Alaska Anchorage, Anchorage 99508, United States; University of Oulu, Oulu 90014, Finland; University of the Arctic, Rovaniemi 96460, Finland
| | - Øystein Wiig
- Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, N-0318 Oslo, Norway
| | - Simon J Wilson
- Arctic Monitoring and Assessment Programme (AMAP) Secretariat, Box 6606 Stakkevollan, N-9296 Tromsø, Norway
| | - Christian Sonne
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark
| |
Collapse
|
7
|
Lippold A, Boltunov A, Aars J, Andersen M, Blanchet MA, Dietz R, Eulaers I, Morshina TN, Sevastyanov VS, Welker JM, Routti H. Spatial variation in mercury concentrations in polar bear (Ursus maritimus) hair from the Norwegian and Russian Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153572. [PMID: 35121036 DOI: 10.1016/j.scitotenv.2022.153572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
We examined spatial variation in total mercury (THg) concentrations in 100 hair samples collected between 2008 and 2016 from 87 polar bears (Ursus maritimus) from the Norwegian (Svalbard Archipelago, western Barents Sea) and Russian Arctic (Kara Sea, Laptev Sea, and Chukchi Sea). We used latitude and longitude of home range centroid for the Norwegian bears and capture position for the Russian bears to account for the locality. We additionally examined hair stable isotope values of carbon (δ13C) and nitrogen (δ15N) to investigate feeding habits and their possible effect on THg concentrations. Median THg levels in polar bears from the Norwegian Arctic (1.99 μg g-1 dry weight) and the three Russian Arctic regions (1.33-1.75 μg g-1 dry weight) constituted about 25-50% of levels typically reported for the Greenlandic or North American populations. Total Hg concentrations in the Norwegian bears increased with intake of marine and higher trophic prey, while δ13C and δ15N did not explain variation in THg concentrations in the Russian bears. Total Hg levels were higher in northwest compared to southeast Svalbard. δ13C and δ15N values did not show any spatial pattern in the Norwegian Arctic. Total Hg concentrations adjusted for feeding ecology showed similar spatial trends as the measured concentrations. In contrast, within the Russian Arctic, THg levels were rather uniformly distributed, whereas δ13C values increased towards the east and south. The results indicate that Hg exposure in Norwegian and Russian polar bears is at the lower end of the pan-Arctic spectrum, and its spatial variation in the Norwegian and Russian Arctic is not driven by the feeding ecology of polar bears.
Collapse
Affiliation(s)
- Anna Lippold
- Norwegian Polar Institute, Fram Centre, Tromsø 9296, Norway
| | - Andrei Boltunov
- Marine Mammal Research and Expedition Centre, 36 Nahimovskiy pr., Moscow 117997, Russia
| | - Jon Aars
- Norwegian Polar Institute, Fram Centre, Tromsø 9296, Norway
| | | | - Marie-Anne Blanchet
- Norwegian Polar Institute, Fram Centre, Tromsø 9296, Norway; UiT The Arctic University of Norway, Tromsø 9019, Norway
| | - Rune Dietz
- Aarhus University, Institute of Ecoscience, Arctic Research Centre, Roskilde 4000, Denmark
| | - Igor Eulaers
- Norwegian Polar Institute, Fram Centre, Tromsø 9296, Norway; Aarhus University, Institute of Ecoscience, Arctic Research Centre, Roskilde 4000, Denmark
| | - Tamara N Morshina
- Research and Production Association "Typhoon", 249038 Obninsk, Kaluga Region, Russia
| | | | - Jeffrey M Welker
- University of Alaska Anchorage, Anchorage 99508, United States; University of Oulu, Oulu 90014, Finland; University of the Arctic, Rovaniemi 96460, Finland
| | - Heli Routti
- Norwegian Polar Institute, Fram Centre, Tromsø 9296, Norway.
| |
Collapse
|
8
|
Morris AD, Braune BM, Gamberg M, Stow J, O'Brien J, Letcher RJ. Temporal change and the influence of climate and weather factors on mercury concentrations in Hudson Bay polar bears, caribou, and seabird eggs. ENVIRONMENTAL RESEARCH 2022; 207:112169. [PMID: 34624268 DOI: 10.1016/j.envres.2021.112169] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/07/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Temporal trends of mercury in Arctic wildlife are inconsistent within and between species and are often insignificant, which limits data interpretation. Recent multivariate analyses have shown that weather and climate factors (e.g. temperatures, sea ice conditions) are related to total Hg (THg) concentrations in wildlife tissues, though relatively few studies have explored these relationships. The present study compared time series of THg concentrations in liver of polar bear (Ursus maritimus, 2007/08-2015/16), eggs of thick-billed murres (Uria lomvia, 1993-2015) and kidney of caribou (Rangifer tarandus groenlandicus, 2006-2015) from the Hudson Bay region of Canada and statistically modelled THg over time with available climate and weather data. Significant temporal trends of THg concentrations were not detected in any species. However, in multivariate models that included time-lagged sea ice freeze up dates, THg concentrations increased 4.4% yr-1 in Qamanirjuaq caribou. Sea ice conditions were also related to THg levels in polar bear liver but not those in eggs of murres, though year was not a signifcant factor. Greater precipitation levels one to two years prior to sampling were associated with greater THg concentrations in polar bears and caribou, likely due to greater deposition, flooding and discharge from nearby wetlands and rivers. Time-lagged Arctic and/or North Atlantic Oscillation (AO/NAO) indices also generated significant, inverse models for all three species, agreeing with relationships in other time series of similar length. The magnitude and direction of many relationships were affected by season, duration of time-lags, and the length of the time series. Our findings support recent observations suggesting that temporal studies monitoring Hg in Arctic wildlife should consider including key climatic or weather factors to help identify consistent variables of influence and to improve temporal analyses of THg time series.
Collapse
Affiliation(s)
- Adam D Morris
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive (Raven Road), Ottawa, ON, K1A 0H3, Canada; Department of Chemistry, Carleton University, 1125 Colonel By Drive (Raven Road), Ottawa, ON, K1S 5B6, Canada.
| | - Birgit M Braune
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive (Raven Road), Ottawa, ON, K1A 0H3, Canada.
| | - Mary Gamberg
- Gamberg Consulting, Box 11267, Whitehorse, YT, Y1A 2J2, Canada.
| | - Jason Stow
- Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada.
| | - Jason O'Brien
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive (Raven Road), Ottawa, ON, K1A 0H3, Canada; Department of Biology, Carleton University, 1125 Colonel By Drive (Raven Road), Ottawa, ON, K1S 5B6, Canada.
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive (Raven Road), Ottawa, ON, K1A 0H3, Canada; Department of Chemistry, Carleton University, 1125 Colonel By Drive (Raven Road), Ottawa, ON, K1S 5B6, Canada; Department of Biology, Carleton University, 1125 Colonel By Drive (Raven Road), Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
9
|
Desforges JP, Outridge P, Hobson KA, Heide-Jørgensen MP, Dietz R. Anthropogenic and Climatic Drivers of Long-Term Changes of Mercury and Feeding Ecology in Arctic Beluga ( Delphinapterus leucas) Populations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:271-281. [PMID: 34914363 DOI: 10.1021/acs.est.1c05389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We assessed long-term changes in the feeding ecology and mercury (Hg) accumulation in Eastern High Arctic-Baffin Bay beluga (Delphinapterus leucas) using total Hg and stable isotope (δ13C, δ15N) assays in teeth samples from historical (1854-1905) and modern (1985-2000) populations. Mean δ13C values in teeth declined significantly over time, from -13.01 ± 0.55‰ historically to -14.41 ± 0.28‰ in 2000, while no consistent pattern was evident for δ15N due to high individual variability within each period. The temporal shift in isotopic niche is consistent with beluga feeding ecology changing in recent decades to a more pelagic and less isotopically diverse diet or an ecosystem wide change in isotope profiles. Mercury concentrations in modern beluga teeth were 3-5 times higher on average than those in historical beluga. These results are similar to the long-term trends of Hg and feeding ecology reported in other beluga populations and in other Arctic marine predators. Similar feeding ecology shifts across regions and species indicate a consistent increased pelagic diet response to climate change as the Arctic Ocean progressively warmed and lost sea ice. Previously, significant temporal Hg increase in beluga and other Arctic animals was attributed solely to direct inputs of anthropogenic Hg from long-range sources. Recent advances in understanding the Arctic marine Hg cycle suggest an additional, complementary possibility─increased inputs of terrestrial Hg of mixed anthropogenic-natural origin, mobilized from permafrost and other Arctic soils by climate warming. At present, it is not possible to assign relative importance to the two processes in explaining the rise of Hg concentrations in modern Arctic marine predators.
Collapse
Affiliation(s)
- Jean-Pierre Desforges
- Department of Environmental Studies and Sciences, University of Winnipeg, Winnipeg, Manitoba R3B 2E9, Canada
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Peter Outridge
- Geological Survey of Canada, Natural Resources Canada, Ottawa, Ontario K1A 0E8, Canada
- Centre for Earth Observation Science, University of Manitoba, Winnipeg, Manitoba R3T 2N6, Canada
| | - Keith A Hobson
- Environment and Climate Change Canada, Saskatoon, Saskatchewan S7N 0X4, Canada
- Department of Biology, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | | | - Rune Dietz
- Department of Bioscience, Arctic Research Centre, Aarhus University, DK-4000 Roskilde, Denmark
| |
Collapse
|
10
|
Dietz R, Desforges JP, Rigét FF, Aubail A, Garde E, Ambus P, Drimmie R, Heide-Jørgensen MP, Sonne C. Analysis of narwhal tusks reveals lifelong feeding ecology and mercury exposure. Curr Biol 2021; 31:2012-2019.e2. [PMID: 33705717 DOI: 10.1016/j.cub.2021.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 02/09/2021] [Indexed: 11/29/2022]
Abstract
The ability of animals to respond to changes in their environment is critical to their persistence. In the Arctic, climate change and mercury exposure are two of the most important environmental threats for top predators.1-3 Rapid warming is causing precipitous sea-ice loss, with consequences on the distribution, composition, and dietary ecology of species4-7 and, thus, exposure to food-borne mercury.8 Current understanding of global change and pollution impacts on Arctic wildlife relies on single-time-point individual data representing a snapshot in time. These data often lack comprehensive temporal resolution and overlook the cumulative lifelong nature of stressors as well as individual variation. To overcome these challenges, we explore the unique capacity of narwhal tusks to characterize chronological lifetime biogeochemical profiles, allowing for investigations of climate-induced dietary changes and contaminant trends. Using temporal patterns of stable isotopes (δ13C and δ15N) and mercury concentrations in annually deposited dentine growth layer groups in 10 tusks from Northwest Greenland (1962-2010), we show surprising plasticity in narwhal feeding ecology likely resulting from climate-induced changes in sea-ice cover, biological communities, and narwhal migration. Dietary changes consequently impacted mercury exposure primarily through trophic magnification effects. Mercury increased log-linearly over the study period, albeit with an unexpected rise in recent years, likely caused by increased emissions and/or greater bioavailability in a warmer, ice-free Arctic. Our findings are consistent with an emerging pattern in the Arctic of reduced sea-ice leading to changes in the migration, habitat use, food web, and contaminant exposure in Arctic top predators.
Collapse
Affiliation(s)
- Rune Dietz
- Department of Bioscience, Arctic Research Centre, Aarhus University, Aarhus 4000, Denmark.
| | - Jean-Pierre Desforges
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Frank F Rigét
- Department of Bioscience, Arctic Research Centre, Aarhus University, Aarhus 4000, Denmark
| | - Aurore Aubail
- Department of Bioscience, Arctic Research Centre, Aarhus University, Aarhus 4000, Denmark; Littoral Environnement et Sociétés, UMR 7266 CNRS/Université de La Rochelle, La Rochelle 17042, France
| | - Eva Garde
- Greenland Institute of Natural Resources, Nuuk 3900, Greenland
| | - Per Ambus
- Department of Geosciences and Natural Resource Management, Center for Permafrost (Cenperm), Copenhagen K 1350, Denmark
| | - Robert Drimmie
- Environmental Isotope Laboratory, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | | - Christian Sonne
- Department of Bioscience, Arctic Research Centre, Aarhus University, Aarhus 4000, Denmark
| |
Collapse
|
11
|
Loria A, Archambault P, Burt A, Ehrman A, Grant C, Power M, Stern GA. Mercury and stable isotope (δ13C and δ15N) trends in decapods of the Beaufort Sea. Polar Biol 2020. [DOI: 10.1007/s00300-020-02646-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Kershaw JL, Hall AJ. Mercury in cetaceans: Exposure, bioaccumulation and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133683. [PMID: 31394330 DOI: 10.1016/j.scitotenv.2019.133683] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 05/27/2023]
Abstract
The fate and transportation of mercury in the marine environment are driven by a combination of anthropogenic atmospheric and aquatic sources, as well as natural geological inputs. Mercury biomagnifies up the food chain, resulting in the bioaccumulation of toxic concentrations in higher trophic organisms even when concentrations in their habitat remain below the threshold level for direct toxicity. As a result, mercury exposure has been recognised as a health concern for both humans and top marine predators, including cetaceans. There appears to be no overall trend in the global measured concentrations reported in cetaceans between 1975 and 2010, although differences between areas show that the highest concentrations in recent decades have been measured in the tissues of Mediterranean odontocetes. There is increasing concern for the impacts of mercury on the Arctic marine ecosystem with changes in water temperatures, ocean currents, and prey availability, all predicted to affect exposure. The accumulation of mercury in various tissues has been linked to renal and hepatic damage as well as reported neurotoxic, genotoxic, and immunotoxic effects. These effects have been documented through studies on stranded and by-caught cetaceans as well as in vitro cell culture experiments. Demethylation of methylmercury and protection by selenium have been suggested as possible mercury detoxification mechanisms in cetaceans that may explain the very high concentrations measured in tissues of some species with no apparent acute toxicity. Thus, the ratio of selenium to mercury is of importance when aiming to determine the impact of the contaminant load at an individual level. The long-term population level effects of mercury exposure are unknown, and continued monitoring of odontocete populations in particular is advised in order to predict the consequences of mercury uptake on marine food chains in the future.
Collapse
Affiliation(s)
- Joanna L Kershaw
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews KY16 8LB, UK.
| | - Ailsa J Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews KY16 8LB, UK
| |
Collapse
|
13
|
Hallanger IG, Fuglei E, Yoccoz NG, Pedersen ÅØ, König M, Routti H. Temporal trend of mercury in relation to feeding habits and food availability in arctic foxes (Vulpes lagopus) from Svalbard, Norway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:1125-1132. [PMID: 31018428 DOI: 10.1016/j.scitotenv.2019.03.239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
We investigated the temporal trend of mercury (Hg) in arctic foxes from Svalbard, Norway sampled in the period 1997-2014 (n = 109, from 11 trapping seasons). We used linear models to investigate the effect of trapping season, feeding habits (δ13C), food availability from marine and terrestrial ecosystems (reindeer carcasses and sea ice cover), sex, age and body condition on liver total Hg (THg) levels. Liver THg levels increased in arctic foxes with 7.2% (95% CI: 2.3, 9.6) per year when the concentrations were adjusted for variation of δ13C, sea ice cover, and reindeer carcasses, whereas the raw annual trend was 3.5% (CI: -0.11, 7.2). However, the THg levels in arctic foxes from Svalbard are still lower than other marine mammals. We also demonstrate that arctic fox terrestrial food consumption is important for lowering the overall THg levels in this species.
Collapse
Affiliation(s)
- Ingeborg G Hallanger
- Norwegian Polar Institute, Fram Centre, P.O. Box 6606, Langnes, NO-9296 Tromsø, Norway; UiT - The Arctic University of Norway, Dept. of Arctic & Marine Biology, NO-9037 Tromsø, Norway.
| | - Eva Fuglei
- Norwegian Polar Institute, Fram Centre, P.O. Box 6606, Langnes, NO-9296 Tromsø, Norway.
| | - Nigel G Yoccoz
- UiT - The Arctic University of Norway, Dept. of Arctic & Marine Biology, NO-9037 Tromsø, Norway.
| | - Åshild Ø Pedersen
- Norwegian Polar Institute, Fram Centre, P.O. Box 6606, Langnes, NO-9296 Tromsø, Norway.
| | - Max König
- Norwegian Polar Institute, Fram Centre, P.O. Box 6606, Langnes, NO-9296 Tromsø, Norway
| | - Heli Routti
- Norwegian Polar Institute, Fram Centre, P.O. Box 6606, Langnes, NO-9296 Tromsø, Norway.
| |
Collapse
|
14
|
Routti H, Atwood TC, Bechshoft T, Boltunov A, Ciesielski TM, Desforges JP, Dietz R, Gabrielsen GW, Jenssen BM, Letcher RJ, McKinney MA, Morris AD, Rigét FF, Sonne C, Styrishave B, Tartu S. State of knowledge on current exposure, fate and potential health effects of contaminants in polar bears from the circumpolar Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:1063-1083. [PMID: 30901781 DOI: 10.1016/j.scitotenv.2019.02.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 05/03/2023]
Abstract
The polar bear (Ursus maritimus) is among the Arctic species exposed to the highest concentrations of long-range transported bioaccumulative contaminants, such as halogenated organic compounds and mercury. Contaminant exposure is considered to be one of the largest threats to polar bears after the loss of their Arctic sea ice habitat due to climate change. The aim of this review is to provide a comprehensive summary of current exposure, fate, and potential health effects of contaminants in polar bears from the circumpolar Arctic required by the Circumpolar Action Plan for polar bear conservation. Overall results suggest that legacy persistent organic pollutants (POPs) including polychlorinated biphenyls, chlordanes and perfluorooctane sulfonic acid (PFOS), followed by other perfluoroalkyl compounds (e.g. carboxylic acids, PFCAs) and brominated flame retardants, are still the main compounds in polar bears. Concentrations of several legacy POPs that have been banned for decades in most parts of the world have generally declined in polar bears. Current spatial trends of contaminants vary widely between compounds and recent studies suggest increased concentrations of both POPs and PFCAs in certain subpopulations. Correlative field studies, supported by in vitro studies, suggest that contaminant exposure disrupts circulating levels of thyroid hormones and lipid metabolism, and alters neurochemistry in polar bears. Additionally, field and in vitro studies and risk assessments indicate the potential for adverse impacts to polar bear immune functions from exposure to certain contaminants.
Collapse
Affiliation(s)
- Heli Routti
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway.
| | - Todd C Atwood
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK 99508, USA
| | - Thea Bechshoft
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Andrei Boltunov
- Marine Mammal Research and Expedition Center, 36 Nahimovskiy pr., Moscow 117997, Russia
| | - Tomasz M Ciesielski
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Jean-Pierre Desforges
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | | | - Bjørn M Jenssen
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Department of Arctic Technology, University Centre in Svalbard, PO Box 156, NO-9171 Longyearbyen, Norway
| | - Robert J Letcher
- Ecotoxicology and Wildlife Heath Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario K1A 0H3, Canada
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Ste.-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Adam D Morris
- Ecotoxicology and Wildlife Heath Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario K1A 0H3, Canada
| | - Frank F Rigét
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Bjarne Styrishave
- Toxicology and Drug Metabolism Group, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen OE, Denmark
| | - Sabrina Tartu
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway
| |
Collapse
|
15
|
Wang K, Munson KM, Beaupré-Laperrière A, Mucci A, Macdonald RW, Wang F. Subsurface seawater methylmercury maximum explains biotic mercury concentrations in the Canadian Arctic. Sci Rep 2018; 8:14465. [PMID: 30262886 PMCID: PMC6160454 DOI: 10.1038/s41598-018-32760-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/12/2018] [Indexed: 01/04/2023] Open
Abstract
Mercury (Hg) is a contaminant of major concern in Arctic marine ecosystems. Decades of Hg observations in marine biota from across the Canadian Arctic show generally higher concentrations in the west than in the east. Various hypotheses have attributed this longitudinal biotic Hg gradient to regional differences in atmospheric or terrestrial inputs of inorganic Hg, but it is methylmercury (MeHg) that accumulates and biomagnifies in marine biota. Here, we present high-resolution vertical profiles of total Hg and MeHg in seawater along a transect from the Canada Basin, across the Canadian Arctic Archipelago (CAA) and Baffin Bay, and into the Labrador Sea. Total Hg concentrations are lower in the western Arctic, opposing the biotic Hg distributions. In contrast, MeHg exhibits a distinctive subsurface maximum at shallow depths of 100–300 m, with its peak concentration decreasing eastwards. As this subsurface MeHg maximum lies within the habitat of zooplankton and other lower trophic-level biota, biological uptake of subsurface MeHg and subsequent biomagnification readily explains the biotic Hg concentration gradient. Understanding the risk of MeHg to the Arctic marine ecosystem and Indigenous Peoples will thus require an elucidation of the processes that generate and maintain this subsurface MeHg maximum.
Collapse
Affiliation(s)
- Kang Wang
- Centre for Earth Observation Science, and Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Kathleen M Munson
- Centre for Earth Observation Science, and Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Alexis Beaupré-Laperrière
- GEOTOP, and Department of Earth and Planetary Sciences, McGill University, Montreal, Quebec, H3A 0E8, Canada
| | - Alfonso Mucci
- GEOTOP, and Department of Earth and Planetary Sciences, McGill University, Montreal, Quebec, H3A 0E8, Canada
| | - Robie W Macdonald
- Centre for Earth Observation Science, and Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.,Institute of Ocean Sciences, Department of Fisheries and Oceans, Sidney, British Columbia, V8L 4B2, Canada
| | - Feiyue Wang
- Centre for Earth Observation Science, and Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| |
Collapse
|
16
|
Brown TM, Macdonald RW, Muir DCG, Letcher RJ. The distribution and trends of persistent organic pollutants and mercury in marine mammals from Canada's Eastern Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:500-517. [PMID: 29145101 DOI: 10.1016/j.scitotenv.2017.11.052] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/03/2017] [Accepted: 11/04/2017] [Indexed: 05/15/2023]
Abstract
Arctic contaminant research in the marine environment has focused on organohalogen compounds and mercury mainly because they are bioaccumulative, persistent and toxic. This review summarizes and discusses the patterns and trends of persistent organic pollutants (POPs) and mercury in ringed seals (Pusa hispida) and polar bears (Ursus maritimus) in the Eastern Canadian Arctic relative to the rest of the Canadian Arctic. The review provides explanations for these trends and looks at the implications of climate-related changes on contaminants in these marine mammals in a region that has been reviewed little. Presently, the highest levels of total mercury (THg) and the legacy pesticide HCH in ringed seals and polar bears are found in the Western Canadian Arctic relative to other locations. Whereas, highest levels of some legacy contaminants, including ∑PCBs, PCB 153, ∑DDTs, p,p'-DDE, ∑CHLs, ClBz are found in the east (i.e., Ungava Bay and Labrador) and in the Beaufort Sea relative to other locations. The highest levels of recent contaminants, including PBDEs and PFOS are found at lower latitudes. Feeding ecology (e.g., feeding at a higher trophic position) is shaping the elevated levels of THg and some legacy contaminants in the west compared to the east. Spatial and temporal trends for POPs and THg are underpinned by historical loadings of surface ocean reservoirs including the Western Arctic Ocean and the North Atlantic Ocean. Trends set up by the distribution of water masses across the Canadian Arctic Archipelago are then acted upon locally by on-going atmospheric deposition, which is the dominant contributor for more recent contaminants. Warming and continued decline in sea ice are likely to result in further shifts in food web structure, which are likely to increase contaminant burdens in marine mammals. Monitoring of seawater and a range of trophic levels would provide a better basis to inform communities about contaminants in traditionally harvested foods, allow us to understand the causes of contaminant trends in marine ecosystems, and to track environmental response to source controls instituted under international conventions.
Collapse
Affiliation(s)
- Tanya M Brown
- Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada.
| | - Robie W Macdonald
- Fisheries, Oceans and the Canadian Coast Guard, Institute of Ocean Sciences, Sidney, British Columbia V8L 4B2, Canada; Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Derek C G Muir
- Environment Canada, Canada Centre for Inland Waters, 867 Lakeshore Road, Burlington, Ontario L7R 4A6, Canada
| | - Robert J Letcher
- Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Raven Road, Ottawa, Ontario K1A 0H3, Canada
| |
Collapse
|
17
|
McKinney MA, Atwood TC, Pedro S, Peacock E. Ecological Change Drives a Decline in Mercury Concentrations in Southern Beaufort Sea Polar Bears. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7814-7822. [PMID: 28612610 DOI: 10.1021/acs.est.7b00812] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We evaluated total mercury (THg) concentrations and trends in polar bears from the southern Beaufort Sea subpopulation from 2004 to 2011. Hair THg concentrations ranged widely among individuals from 0.6 to 13.3 μg g-1 dry weight (mean: 3.5 ± 0.2 μg g-1). Concentrations differed among sex and age classes: solitary adult females ≈ adult females with cubs ≈ subadults > adult males ≈ yearlings > cubs-of-the-year ≈ 2 year old dependent cubs. No variation was observed between spring and fall samples. For spring-sampled adults, THg concentrations declined by 13% per year, contrasting recent trends observed for other Western Hemispheric Arctic biota. Concentrations also declined by 15% per year considering adult males only, while a slower, nonsignificant decrease of 4.4% per year was found for adult females. Lower THg concentrations were associated with higher body mass index (BMI) and higher proportions of lower trophic position food resources consumed. Because BMI and diet were related, and the relationship to THg was strongest for BMI, trends were re-evaluated adjusting for BMI as the covariate. The adjusted annual decline was not significant. These findings indicate that changes in foraging ecology, not declining environmental concentrations of mercury, are driving short-term declines in THg concentrations in southern Beaufort Sea polar bears.
Collapse
Affiliation(s)
- Melissa A McKinney
- Wildlife and Fisheries Conservation Center, Department of Natural Resources and the Environment and Center for Environmental Sciences and Engineering, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Todd C Atwood
- United States Geological Survey, Alaska Science Center , Anchorage, Alaska 99508, United States
| | - Sara Pedro
- Wildlife and Fisheries Conservation Center, Department of Natural Resources and the Environment and Center for Environmental Sciences and Engineering, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Elizabeth Peacock
- United States Geological Survey, Alaska Science Center , Anchorage, Alaska 99508, United States
| |
Collapse
|
18
|
Bechshoft T, Derocher AE, Richardson E, Mislan P, Lunn NJ, Sonne C, Dietz R, Janz DM, St Louis VL. Mercury and cortisol in Western Hudson Bay polar bear hair. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:1315-1321. [PMID: 26044932 DOI: 10.1007/s10646-015-1506-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/30/2015] [Indexed: 06/04/2023]
Abstract
Non-invasive methods of assessing animal health and life history are becoming increasingly popular in wildlife research; hair samples from polar bears (Ursus maritimus), are being used to study an ever broader range of anthropogenic and endocrine compounds. A number of contaminants are known to disrupt endocrine function in polar bears. However, the relationship between mercury and cortisol remains unknown, although mercury is an endocrine disruptor in other species. Here, we examine the relationship between concentrations of cortisol and total mercury (THg) analyzed in guard hair from 378 polar bears (184 females, 194 males) sampled in Western Hudson Bay, 2004-2012. The difference in mean cortisol concentration between female (0.8 ± 0.6 pg/mg) and male (0.7 ± 0.5 pg/mg) polar bears bordered on significance (p = 0.054). However, mean mercury concentration was significantly greater (p = 0.009) in females (4.7 ± 1.4 μg/g) than males (4.3 ± 1.2 μg/g). Hair cortisol in males was significantly influenced by mercury, age, and fatness, as well as interactions between mercury and year, mercury and fatness, and year and fatness (all: p < 0.03) (multiple regression analysis, whole model: r(2) = 0.14, F(7,185) = 4.43, p = 0.0001). Fatness was the only significant variable in the multiple regression analysis for females (r(2) = 0.06, F(1,182) = 13.0, p = 0.0004). In conclusion, a significant, but complex, relationship was found between mercury and cortisol concentrations in hair from male, but not female, polar bears.
Collapse
Affiliation(s)
- T Bechshoft
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada,
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Krey A, Ostertag SK, Chan HM. Assessment of neurotoxic effects of mercury in beluga whales (Delphinapterus leucas), ringed seals (Pusa hispida), and polar bears (Ursus maritimus) from the Canadian Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 509-510:237-247. [PMID: 24958011 DOI: 10.1016/j.scitotenv.2014.05.134] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 05/19/2014] [Accepted: 05/27/2014] [Indexed: 06/03/2023]
Abstract
Marine mammals are indicator species of the Arctic ecosystem and an integral component of the traditional Inuit diet. The potential neurotoxic effects of increased mercury (Hg) in beluga whales (Delphinapterus leucas), ringed seals (Pusa hispida), and polar bears (Ursus maritimus) are not clear. We assessed the risk of Hg-associated neurotoxicity to these species by comparing their brain Hg concentrations with threshold concentrations for toxic endpoints detected in laboratory animals and field observations: clinical symptoms (>6.75 mg/kg wet weight (ww)), neuropathological signs (>4 mg/kg ww), neurochemical changes (>0.4 mg/kg ww), and neurobehavioral changes (>0.1mg/kg ww). The total Hg (THg) concentrations in the cerebellum and frontal lobe of ringed seals and polar bears were <0.5mg/kg ww, whereas the average concentration in beluga whale brain was >3mg/kg ww. Our results suggest that brain THg levels in polar bears are below levels that induce neurobehavioral effects as reported in the literature, while THg concentrations in ringed seals are within the range that elicit neurobehavioral effects and individual ringed seals exceed the threshold for neurochemical changes. The relatively high THg concentration in beluga whales exceeds all of the neurotoxicity thresholds assessed. High brain selenium (Se):Hg molar ratios were observed in all three species, suggesting that Se could protect the animals from Hg-associated neurotoxicity. This assessment was limited by several factors that influence neurotoxic effects in animals, including: animal species; form of Hg in the brain; and interactions with modifiers of Hg-associated toxicity, such as Se. Comparing brain Hg concentrations in wildlife with concentrations of appropriate laboratory studies can be used as a tool for risk characterization of the neurotoxic effects of Hg in Arctic marine mammals.
Collapse
Affiliation(s)
- Anke Krey
- Natural Resources and Environmental Studies, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9, Canada.
| | - Sonja K Ostertag
- Natural Resources and Environmental Studies, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9, Canada.
| | - Hing Man Chan
- Center for Advanced Research in Environmental Genomics, University of Ottawa, 20 Marie-Curie, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
20
|
Braune B, Chételat J, Amyot M, Brown T, Clayden M, Evans M, Fisk A, Gaden A, Girard C, Hare A, Kirk J, Lehnherr I, Letcher R, Loseto L, Macdonald R, Mann E, McMeans B, Muir D, O'Driscoll N, Poulain A, Reimer K, Stern G. Mercury in the marine environment of the Canadian Arctic: review of recent findings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 509-510:67-90. [PMID: 24953756 DOI: 10.1016/j.scitotenv.2014.05.133] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 05/09/2014] [Accepted: 05/27/2014] [Indexed: 06/03/2023]
Abstract
This review summarizes data and information which have been generated on mercury (Hg) in the marine environment of the Canadian Arctic since the previous Canadian Arctic Contaminants Assessment Report (CACAR) was released in 2003. Much new information has been collected on Hg concentrations in marine water, snow and ice in the Canadian Arctic. The first measurements of methylation rates in Arctic seawater indicate that the water column is an important site for Hg methylation. Arctic marine waters were also found to be a substantial source of gaseous Hg to the atmosphere during the ice-free season. High Hg concentrations have been found in marine snow as a result of deposition following atmospheric mercury depletion events, although much of this Hg is photoreduced and re-emitted back to the atmosphere. The most extensive sampling of marine sediments in the Canadian Arctic was carried out in Hudson Bay where sediment total Hg (THg) concentrations were low compared with other marine regions in the circumpolar Arctic. Mass balance models have been developed to provide quantitative estimates of THg fluxes into and out of the Arctic Ocean and Hudson Bay. Several recent studies on Hg biomagnification have improved our understanding of trophic transfer of Hg through marine food webs. Over the past several decades, Hg concentrations have increased in some marine biota, while other populations showed no temporal change. Marine biota also exhibited considerable geographic variation in Hg concentrations with ringed seals, beluga and polar bears from the Beaufort Sea region having higher Hg concentrations compared with other parts of the Canadian Arctic. The drivers of these variable patterns of Hg bioaccumulation, both regionally and temporally, within the Canadian Arctic remain unclear. Further research is needed to identify the underlying processes including the interplay between biogeochemical and food web processes and climate change.
Collapse
Affiliation(s)
- Birgit Braune
- Environment Canada, National Wildlife Research Centre, Carleton University, Raven Road, Ottawa, Ontario, Canada K1A 0H3.
| | - John Chételat
- Environment Canada, National Wildlife Research Centre, Carleton University, Raven Road, Ottawa, Ontario, Canada K1A 0H3
| | - Marc Amyot
- Département de sciences biologiques, Université de Montréal, CP 6128, Succ. Centre-Ville Pavillon Marie-Victorin, Montreal, Quebec, Canada H3C 3 J7
| | - Tanya Brown
- Fisheries and Oceans Canada, Institute of Ocean Sciences, 9860 West Saanich Road, PO Box 6000, Sidney, British Columbia, Canada V8L 4B2; Royal Military College of Canada, PO Box 17000, Station Forces, Kingston, Ontario, Canada K7K 7B4
| | - Meredith Clayden
- Canadian Rivers Institute and Biology Department, University of New Brunswick, Saint John, New Brunswick, Canada E2L 4L5
| | - Marlene Evans
- Environment Canada, National Water Research Institute, 11 Innovation Blvd., Saskatoon, Saskatchewan, Canada S7N 3H5
| | - Aaron Fisk
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave., Windsor, Ontario, Canada N9B 3P4
| | - Ashley Gaden
- Centre for Earth Observation Science, 497 Wallace Bldg., University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Catherine Girard
- Département de sciences biologiques, Université de Montréal, CP 6128, Succ. Centre-Ville Pavillon Marie-Victorin, Montreal, Quebec, Canada H3C 3 J7
| | - Alex Hare
- Centre for Earth Observation Science, 497 Wallace Bldg., University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Jane Kirk
- Environment Canada, Canada Centre for Inland Waters, 867 Lakeshore Road, Burlington, Ontario, Canada L7R 4A6
| | - Igor Lehnherr
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - Robert Letcher
- Environment Canada, National Wildlife Research Centre, Carleton University, Raven Road, Ottawa, Ontario, Canada K1A 0H3
| | - Lisa Loseto
- Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, Manitoba, Canada R3T 2N6
| | - Robie Macdonald
- Fisheries and Oceans Canada, Institute of Ocean Sciences, 9860 West Saanich Road, PO Box 6000, Sidney, British Columbia, Canada V8L 4B2
| | - Erin Mann
- Department of Environmental Science, Acadia University, Wolfville, Nova Scotia, Canada B4P 2R6
| | - Bailey McMeans
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave., Windsor, Ontario, Canada N9B 3P4
| | - Derek Muir
- Environment Canada, Canada Centre for Inland Waters, 867 Lakeshore Road, Burlington, Ontario, Canada L7R 4A6
| | - Nelson O'Driscoll
- Department of Environmental Science, Acadia University, Wolfville, Nova Scotia, Canada B4P 2R6
| | - Alexandre Poulain
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
| | - Ken Reimer
- Royal Military College of Canada, PO Box 17000, Station Forces, Kingston, Ontario, Canada K7K 7B4
| | - Gary Stern
- Centre for Earth Observation Science, 497 Wallace Bldg., University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2; Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, Manitoba, Canada R3T 2N6
| |
Collapse
|
21
|
Scheuhammer A, Braune B, Chan HM, Frouin H, Krey A, Letcher R, Loseto L, Noël M, Ostertag S, Ross P, Wayland M. Recent progress on our understanding of the biological effects of mercury in fish and wildlife in the Canadian Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 509-510:91-103. [PMID: 24935263 DOI: 10.1016/j.scitotenv.2014.05.142] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/29/2014] [Accepted: 05/29/2014] [Indexed: 05/24/2023]
Abstract
This review summarizes our current state of knowledge regarding the potential biological effects of mercury (Hg) exposure on fish and wildlife in the Canadian Arctic. Although Hg in most freshwater fish from northern Canada was not sufficiently elevated to be of concern, a few lakes in the Northwest Territories and Nunavut contained fish of certain species (e.g. northern pike, Arctic char) whose muscle Hg concentrations exceeded an estimated threshold range (0.5-1.0 μg g(-1) wet weight) within which adverse biological effects begin to occur. Marine fish species generally had substantially lower Hg concentrations than freshwater fish; but the Greenland shark, a long-lived predatory species, had mean muscle Hg concentrations exceeding the threshold range for possible effects on health or reproduction. An examination of recent egg Hg concentrations for marine birds from the Canadian Arctic indicated that mean Hg concentration in ivory gulls from Seymour Island fell within the threshold range associated with adverse effects on reproduction in birds. Mercury concentrations in brain tissue of beluga whales and polar bears were generally lower than levels associated with neurotoxicity in mammals, but were sometimes high enough to cause subtle neurochemical changes that can precede overt neurotoxicity. Harbour seals from western Hudson Bay had elevated mean liver Hg concentrations along with comparatively high muscle Hg concentrations indicating potential health effects from methylmercury (MeHg) exposure on this subpopulation. Because current information is generally insufficient to determine with confidence whether Hg exposure is impacting the health of specific fish or wildlife populations in the Canadian Arctic, biological effects studies should comprise a major focus of future Hg research in the Canadian Arctic. Additionally, studies on cellular interactions between Hg and selenium (Se) are required to better account for potential protective effects of Se on Hg toxicity, especially in large predatory Arctic fish, birds, and mammals.
Collapse
Affiliation(s)
- Anton Scheuhammer
- Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - Birgit Braune
- Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada.
| | - Hing Man Chan
- Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Héloïse Frouin
- Jasco Research, 4464 Markam St., Victoria, BC V8Z 7X8, Canada
| | - Anke Krey
- Natural Resources and Environmental Studies, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
| | - Robert Letcher
- Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - Lisa Loseto
- Fisheries and Oceans Canada, National Centre for Arctic Aquatic Research Excellence, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada
| | - Marie Noël
- School of Earth and Ocean Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Sonja Ostertag
- Natural Resources and Environmental Studies, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
| | - Peter Ross
- Fisheries and Oceans Canada, Institute of Ocean Sciences, Sidney, BC V8L 4B2, Canada
| | - Mark Wayland
- Environment Canada, Canadian Wildlife Service, 115 Perimeter Rd., Saskatoon, Saskatchewan S7N 0X4, Canada
| |
Collapse
|
22
|
Dietz R, Sonne C, Basu N, Braune B, O'Hara T, Letcher RJ, Scheuhammer T, Andersen M, Andreasen C, Andriashek D, Asmund G, Aubail A, Baagøe H, Born EW, Chan HM, Derocher AE, Grandjean P, Knott K, Kirkegaard M, Krey A, Lunn N, Messier F, Obbard M, Olsen MT, Ostertag S, Peacock E, Renzoni A, Rigét FF, Skaare JU, Stern G, Stirling I, Taylor M, Wiig Ø, Wilson S, Aars J. What are the toxicological effects of mercury in Arctic biota? THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 443:775-90. [PMID: 23231888 DOI: 10.1016/j.scitotenv.2012.11.046] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 11/07/2012] [Accepted: 11/10/2012] [Indexed: 05/12/2023]
Abstract
This review critically evaluates the available mercury (Hg) data in Arctic marine biota and the Inuit population against toxicity threshold values. In particular marine top predators exhibit concentrations of mercury in their tissues and organs that are believed to exceed thresholds for biological effects. Species whose concentrations exceed threshold values include the polar bears (Ursus maritimus), beluga whale (Delphinapterus leucas), pilot whale (Globicephala melas), hooded seal (Cystophora cristata), a few seabird species, and landlocked Arctic char (Salvelinus alpinus). Toothed whales appear to be one of the most vulnerable groups, with high concentrations of mercury recorded in brain tissue with associated signs of neurochemical effects. Evidence of increasing concentrations in mercury in some biota in Arctic Canada and Greenland is therefore a concern with respect to ecosystem health.
Collapse
Affiliation(s)
- Rune Dietz
- Aarhus University, Department for Bioscience, Arctic Research Centre, P.O. Box 358, Roskilde, DK-4000, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Routti H, Letcher RJ, Born EW, Branigan M, Dietz R, Evans TJ, McKinney MA, Peacock E, Sonne C. Influence of carbon and lipid sources on variation of mercury and other trace elements in polar bears (Ursus maritimus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:2739-2747. [PMID: 22987581 DOI: 10.1002/etc.2005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/13/2012] [Accepted: 07/01/2012] [Indexed: 06/01/2023]
Abstract
In the present study, the authors investigated the influence of carbon and lipid sources on regional differences in liver trace element (As, Cd, Cu, total Hg, Mn, Pb, Rb, Se, and Zn) concentrations measured in polar bears (Ursus maritimus) (n = 121) from 10 Alaskan, Canadian Arctic, and East Greenland subpopulations. Carbon and lipid sources were assessed using δ(13) C in muscle tissue and fatty acid (FA) profiles in subcutaneous adipose tissue as chemical tracers. A negative relationship between total Hg and δ(13) C suggested that polar bears feeding in areas with higher riverine inputs of terrestrial carbon accumulate more Hg than bears feeding in areas with lower freshwater input. Mercury concentrations were also positively related to the FA 20:1n-9, which is biosynthesized in large amounts in Calanus copepods. This result raises the hypothesis that Calanus glacialis are an important link in the uptake of Hg in the marine food web and ultimately in polar bears. Unadjusted total Hg, Se, and As concentrations showed greater geographical variation among polar bear subpopulations compared with concentrations adjusted for carbon and lipid sources. The Hg concentrations adjusted for carbon and lipid sources in Bering-Chukchi Sea polar bear liver tissue remained the lowest among subpopulations. Based on these findings, the authors suggest that carbon and lipid sources for polar bears should be taken into account when one is assessing spatial and temporal trends of long-range transported trace elements.
Collapse
Affiliation(s)
- Heli Routti
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario
| | | | | | | | | | | | | | | | | |
Collapse
|