1
|
She W, Su J, Ma W, Ma G, Li J, Zhang H, Qiu C, Li X. Natural products protect against spinal cord injury by inhibiting ferroptosis: a literature review. Front Pharmacol 2025; 16:1557133. [PMID: 40248093 PMCID: PMC12003294 DOI: 10.3389/fphar.2025.1557133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/10/2025] [Indexed: 04/19/2025] Open
Abstract
Spinal cord injury (SCI) is a severe traumatic condition that frequently results in various neurological disabilities, including significant sensory, motor, and autonomic dysfunctions. Ferroptosis, a recently identified non-apoptotic form of cell death, is characterized by the accumulation of reactive oxygen species (ROS), intracellular iron overload, and lipid peroxidation, ultimately culminating in cell death. Recent studies have demonstrated that ferroptosis plays a critical role in the pathophysiology of SCI, contributing significantly to neural cell demise. Three key cellular enzymatic antioxidants such as glutathione peroxidase 4 (GPX4), ferroptosis suppressor protein 1 (FSP1), and dihydroorotate dehydrogenase (DHODH), have been elucidated as crucial components in the defense against ferroptosis. Natural products, which are bioactive compounds mostly derived from plants, have garnered considerable attention for their potential therapeutic effects. Numerous studies have reported that several natural products can effectively mitigate neural cell death and alleviate SCI symptoms. This review summarizes fifteen natural products containing (-)-Epigallocatechin-3-gallate (EGCG), Proanthocyanidin, Carnosic acid, Astragaloside IV, Trehalose, 8-gingerol, Quercetin, Resveratrol, Albiflorin, Alpha-tocopherol, Celastrol, Hispolon, Dendrobium Nobile Polysaccharide, Silibinin, and Tetramethylpyrazine that have shown promise in treating SCI by inhibiting ferroptosis. Additionally, this review provides an overview of the mechanisms involved in these studies and proposes several perspectives to guide future research directions.
Collapse
Affiliation(s)
- Wei She
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Orthopaedic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Junxiao Su
- Department of Orthopaedic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Wenji Ma
- Department of Orthopaedic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Guohai Ma
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jianfu Li
- Department of Orthopaedic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Hui Zhang
- Department of Orthopaedic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Cheng Qiu
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xingyong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Orthopaedic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Ortiz-Barroso G, Ramírez-Orozco RE, Esparza-Villalpando V, Macedo-Mendoza M, Barrios-García T, Pulido-Hornedo NA. Antioxidants against oxidative stress induced by sodium fluoride toxicity in murine models: A systematic review. J Trace Elem Med Biol 2025; 88:127619. [PMID: 40020477 DOI: 10.1016/j.jtemb.2025.127619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/21/2025] [Accepted: 02/10/2025] [Indexed: 03/03/2025]
Abstract
INTRODUCTION Fluorosis, a condition resulting from excessive fluoride intake, leads to dental, skeletal, and soft tissue alterations through mechanisms that induce oxidative stress. With its potential to significantly impact the field, this review aims to assess the efficacy of antioxidant agents in murine models exhibiting fluorosis-induced toxicity. By transferring electrons to oxidizing agents, antioxidants can attenuate oxidation reactions and mitigate cellular damage. METHODOLOGY This systematic review adheres to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, encompassing articles investigating the impact of antioxidant substances on murine fluorosis models, explicitly focusing on oxidative stress markers and antioxidant levels across various tissues. RESULTS A qualitative synthesis of 79 articles highlights antioxidant agents such as vitamin C, vitamin E, selenium, carotenoids, polyphenolic compounds (including flavonoids and polyphenolic acids), amino acids, and others among animals with fluorosis induction showed variations in oxidative stress markers and antioxidant activity levels under different administration protocols compared to those receiving prophylactic, concomitant concurrent, or therapeutic antioxidant treatments. CONCLUSION Fluoride administration across diverse doses and durations elicits heightened oxidative stress markers in multiple rodent tissues. The current evidence suggests that some antioxidants are effective as a prophylactic and concurrent in murine models of fluorosis. However, the methodological differences between studies prevent the establishment of a protocol for potential standardized use.
Collapse
Affiliation(s)
- Gladys Ortiz-Barroso
- Health Sciences Center in the Autonomous University of Aguascalientes, Av. Universidad No. 940, C.P. 20100. Aguascalientes, Ags, Mexico
| | - Ricardo E Ramírez-Orozco
- Health Sciences Center, Nutrition Department in the Autonomous University of Aguascalientes, Av. Universidad No. 940, C.P. 20100. Aguascalientes, Ags, Mexico
| | - Vicente Esparza-Villalpando
- Health Sciences Center, Dentistry Department in the Autonomous University of Aguascalientes, Av. Universidad No. 940, C.P. 20100. Aguascalientes, Ags, Mexico.
| | - Mayra Macedo-Mendoza
- Health Sciences Center, Nutrition Department in the Autonomous University of Aguascalientes, Av. Universidad No. 940, C.P. 20100. Aguascalientes, Ags, Mexico
| | - Tonatiuh Barrios-García
- Health Sciences Center, Nutrition Department in the Autonomous University of Aguascalientes, Av. Universidad No. 940, C.P. 20100. Aguascalientes, Ags, Mexico
| | - Nayeli Amalinalli Pulido-Hornedo
- Department of Morphology, Histology and Embryology Laboratory, Basic Sciences Center, in the Autonomous University of Aguascalientes, Av. Universidad No. 940, C.P. 20100. Aguascalientes, Ags., Mexico
| |
Collapse
|
3
|
Liu Q, Wang J, Gu Z, Ouyang T, Gao H, Kan H, Yang Y. Comprehensive Exploration of the Neuroprotective Mechanisms of Ginkgo biloba Leaves in Treating Neurological Disorders. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1053-1086. [PMID: 38904550 DOI: 10.1142/s0192415x24500435] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Neurological disorders (NDs) are diseases that seriously affect the health of individuals worldwide, potentially leading to a significant reduction in the quality of life for patients and their families. Herbal medicines have been widely used in the treatment of NDs due to their multi-target and multi-pathway features. Ginkgo biloba leaves (GBLs), one of the most popular herbal medicines in the world, have been demonstrated to present therapeutic effects on NDs. However, the pharmacological mechanisms of GBLs in the treatment of neurological disorders have not been systematically summarized. This study aimed to summarize the molecular mechanism of GBLs in treating NDs from the cell models, animal models, and clinical trials of studies. Four databases, i.e., PubMed, Google Scholar, CNKI, and Web of Science were searched using the following keywords: "Ginkgo biloba", "Ginkgo biloba extract", "Ginkgo biloba leaves", "Ginkgo biloba leaves extract", "Neurological disorders", "Neurological diseases", and "Neurodegenerative diseases". All items meeting the inclusion criteria on the treatment of NDs with GBLs were extracted and summarized. Additionally, PRISMA 2020 was performed to independently evaluate the screening methods. Out of 1385 records in the database, 52 were screened in relation to the function of GBLs in the treatment of NDs; of these 52 records, 39 were preclinical trials and 13 were clinical studies. Analysis of pharmacological studies revealed that GBLs can improve memory, cognition, behavior, and psychopathology of NDs and that the most frequently associated GBLs are depression, followed by Alzheimer's disease, stroke, Huntington's disease, and Parkinson's disease. Additionally, the clinical studies of depression, AD, and stroke are the most common, and most of the remaining ND data are available from in vitro or in vivo animal studies. Moreover, the possible mechanisms of GBLs in treating NDs are mainly through free radical scavenging, anti-oxidant activity, anti-inflammatory response, mitochondrial protection, neurotransmitter regulation, and antagonism of PAF. This is the first paper to systematically and comprehensively investigate the pharmacological effects and neuroprotective mechanisms of GBLs in the treatment of NDs thus far. All findings contribute to a better understanding of the efficacy and complexity of GBLs in treating NDs, which is of great significance for the further clinical application of this herbal medicine.
Collapse
Affiliation(s)
- Qiwei Liu
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| | - Zongyun Gu
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| | - Ting Ouyang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| | - Honglei Gao
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| | - Hongxing Kan
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
- Anhui Computer Application Research Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Hefei, P. R. China
| | - Yinfeng Yang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| |
Collapse
|
4
|
Rahim A, Sibaoueih M, Essamadi A, El Amiri B. An interventional clinical trial investigating the effects of Spirulina platensis on dental fluorosis and antioxidant system in lambs reared in endemic areas. Sci Rep 2023; 13:16858. [PMID: 37803131 PMCID: PMC10558506 DOI: 10.1038/s41598-023-44058-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023] Open
Abstract
This study aimed to evaluate the protective effect of Spirulina platensis primary against dental fluorosis and secondary against oxidative stress in lambs reared in endemic fluorosis areas. Forty-eight lambs aged 5 months were divided into four equal groups (each one including 6 males and 6 females). Groups I and II served as controls belonging respectively to fluorosis-free (Settat) and endemic fluorosis (El Fokra) areas, while the other two Groups III and IV (belonging to El Fokra) received respectively a fixed daily intake of 250 and 500 mg/kg bodyweight (BW) of Spirulina platensis. The experiment was carried out for 13 months until the adult incisors appeared for all animals. According to the Dean's Fluorosis Index (DFI), 500 mg/kg BW/day of Spirulina platensis (Group IV) protected against dental fluorosis. Moreover, in both male and female lambs, this dose significantly (p < 0.0001) reduced the plasmatic levels of fluoride, proteins, GSH, and MDA compared to the Group II. Furthermore, enzymatic activities of catalase and SOD increased significantly (p < 0.0001) in male and female lambs of the Group IV as compared to Group II. In conclusion, our findings support the potential use of Spirulina platensis as a valuable solution for addressing fluorosis in sheep, warranting further clinical trials.
Collapse
Affiliation(s)
- Abdellatif Rahim
- Animal Production Unit, Regional Center Agricultural Research of Settat, National Institute for Agricultural Research (INRA), Avenue EnnasrRabat Principal, P.O. Box 415, 10090, Rabat, Morocco
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Techniques, Hassan First University of Settat, P.O. Box 577, 26000, Settat, Morocco
| | - Mounia Sibaoueih
- Animal Production Unit, Regional Center Agricultural Research of Settat, National Institute for Agricultural Research (INRA), Avenue EnnasrRabat Principal, P.O. Box 415, 10090, Rabat, Morocco
| | - Adekhalid Essamadi
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Techniques, Hassan First University of Settat, P.O. Box 577, 26000, Settat, Morocco
| | - Bouchra El Amiri
- Animal Production Unit, Regional Center Agricultural Research of Settat, National Institute for Agricultural Research (INRA), Avenue EnnasrRabat Principal, P.O. Box 415, 10090, Rabat, Morocco.
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), 70000, Laayoune, Morocco.
| |
Collapse
|
5
|
Bhattacharya S. A Review on Experimentally Proven Medicinal Plants and Their Constituents against Fluoride Toxicity. J Environ Pathol Toxicol Oncol 2023; 42:51-64. [PMID: 36734952 DOI: 10.1615/jenvironpatholtoxicoloncol.2022043545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Fluoride toxicity, principally by polluted groundwater, is regarded as a momentous global public health risk, as there is no particular and proven treatment for chronic fluoride toxicity i.e., fluorosis which leads to several serious health complications. Scientific literature reveals several medicinal plants and natural products alleviate experimentally induced fluoride toxicity. The present review attempts to collate those experimental studies on medicinal plants and plant derived natural products with fluoride toxicity ameliorative effects. Literature scrutiny was performed by using online bibliographic databases and the studies for the last 15 years were considered. Minerals and semi-synthetic or synthetic analogs of natural products were excluded. Literature study revealed that 25 medicinal plants and 17 natural products exhibited significant protection from fluoride toxicity in experimental animal models i.e., preclinical studies. Two clinical studies on medicinal plants were also found in literature showing beneficial yet poorly correlated outcome. Relevant research in this field could lead to development of a potentially useful agent in therapeutic management of fluoride toxicity in humans.
Collapse
Affiliation(s)
- Sanjib Bhattacharya
- West Bengal Medical Services Corporation Ltd., GN 29, Sector V, Salt Lake City, Kolkata 700091, West Bengal, India
| |
Collapse
|
6
|
Santos AL, Sinha S. Ageing, Metabolic Dysfunction, and the Therapeutic Role of Antioxidants. Subcell Biochem 2023; 103:341-435. [PMID: 37120475 DOI: 10.1007/978-3-031-26576-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The gradual ageing of the world population has been accompanied by a dramatic increase in the prevalence of obesity and metabolic diseases, especially type 2 diabetes. The adipose tissue dysfunction associated with ageing and obesity shares many common physiological features, including increased oxidative stress and inflammation. Understanding the mechanisms responsible for adipose tissue dysfunction in obesity may help elucidate the processes that contribute to the metabolic disturbances that occur with ageing. This, in turn, may help identify therapeutic targets for the treatment of obesity and age-related metabolic disorders. Because oxidative stress plays a critical role in these pathological processes, antioxidant dietary interventions could be of therapeutic value for the prevention and/or treatment of age-related diseases and obesity and their complications. In this chapter, we review the molecular and cellular mechanisms by which obesity predisposes individuals to accelerated ageing. Additionally, we critically review the potential of antioxidant dietary interventions to counteract obesity and ageing.
Collapse
Affiliation(s)
- Ana L Santos
- IdISBA - Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain.
| | | |
Collapse
|
7
|
Yang H, Xu S, Tang L, Gong J, Fang H, Wei J, Su D. Targeting of non-apoptotic cancer cell death mechanisms by quercetin: Implications in cancer therapy. Front Pharmacol 2022; 13:1043056. [PMID: 36467088 PMCID: PMC9708708 DOI: 10.3389/fphar.2022.1043056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2023] Open
Abstract
The ultimate goal of cancer treatment is to kill cancer cells, based on the use of various therapeutic agents, such as chemotherapy, radiotherapy, or targeted therapy drugs. Most drugs exert their therapeutic effects on cancer by targeting apoptosis. However, alterations in apoptosis-related molecules and thus assisting cells to evade death, eventually lead to tumor cell resistance to therapeutic drugs. The increased incidence of non-apoptotic cell death modes such as induced autophagy, mitotic catastrophe, senescence, and necrosis is beneficial to overcoming multidrug resistance mediated by apoptosis resistance in tumor cells. Therefore, investigating the function and mechanism of drug-induced non-apoptotic cell death modes has positive implications for the development of new anti-cancer drugs and therapeutic strategies. Phytochemicals show strong potential as an alternative or complementary medicine for alleviating various types of cancer. Quercetin is a flavonoid compound widely found in the daily diet that demonstrates a significant role in inhibiting numerous human cancers. In addition to direct pro-tumor cell apoptosis, both in vivo and in vitro experiments have shown that quercetin exerts anti-tumor properties by triggering diverse non-apoptotic cell death modes. This review summarized the current status of research on the molecular mechanisms and targets through which quercetin-mediated non-apoptotic mode of cancer cell death, including autophagic cell death, senescence, mitotic catastrophe, ferroptosis, necroptosis, etc.
Collapse
Affiliation(s)
- Hao Yang
- Department of Pharmacy, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Shan Xu
- Department of Pharmacy, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Lidan Tang
- Department of Pharmacy, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Jinhong Gong
- Department of Pharmacy, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Hufeng Fang
- Department of Pharmacy, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Jifu Wei
- Department of Pharmacy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacy, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Dan Su
- Department of Pharmacy, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
8
|
Mahdiani S, Omidkhoda N, Heidari S, Hayes AW, Karimi G. Protective effect of luteolin against chemical and natural toxicants by targeting NF-κB pathway. Biofactors 2022; 48:744-762. [PMID: 35861671 DOI: 10.1002/biof.1876] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/27/2022] [Indexed: 12/20/2022]
Abstract
Humans are continuously exposed to environmental, occupational, consumer and household products, food, and pharmaceutical substances. Luteolin, a flavone from the flavonoids family of compounds, is found in different fruits and vegetables. LUT is a strong anti-inflammatory (via inhibition of NF-κB, ERK1/2, MAPK, JNK, IL-6, IL-8, and TNF-α) and antioxidant agent (reducing ROS and enhancement of endogenous antioxidants). LUT can chelate transition metal ions responsible for ROS generation and consequently repress lipoxygenase. It has been proven that NF-κB, as a commom cellular pathway plays a considerable role in the progression of inflammatory process and stimulates the expression of genes encoding inducible pro-inflammatory enzymes (iNOS and COX-2) and cytokines including IL-1β, IL-6, and TNF-α. This review summarizes the available literature discussing LUT and its potential protective role against pharmaceuticals-, metals-, and environmental compounds-induced toxicities. Furthermore, the review explains the involved protective mechanisms, especially inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Sina Mahdiani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Omidkhoda
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shadi Heidari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Michigan State University, East Lansing, Michigan, USA
- University of South Florida, Tampa, Florida, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Komuroglu AU, Seckin H, Ertaş M, Meydan I. Metagenomic Analysis of Intestinal Microbiota in Florated Rats. Biol Trace Elem Res 2022; 200:3275-3283. [PMID: 34786660 DOI: 10.1007/s12011-021-03003-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Changes in gut microbiota have shown that it plays an important role in animal health and metabolic diseases. The intestinal microbiota is a complex structure that functions as an organ system with the presence of trillions of microorganisms. In this study, changes in the intestinal microbiota of Wistar rats with high fluorine were evaluated. Water containing 100 ppm NaF was given to 14 male Wistar albino rats as drinking water for 12 weeks. Fluorine is known to be an inducer of protein oxidation, lipid peroxidation, modulation of intracellular redox homeostasis, and oxidative stress. In this study, it was determined that the level of MDA (molandialdehyde), one of the oxidative stress parameters, increased significantly in the intestinal tissue after fluorine intoxication. The decrease in CAT (catalase) and SOD (superoxide dismutase) enzyme activities was found to be statistically significant. Intestinal tissues were taken under aseptic conditions and microorganisms found in flora were replicated by V3-V4 16S rRNA gene-specific primers. As a result of the sequence analysis, a statistical comparison of the control group and the fluorine applied group was made. The study we have done showed that there was a significant difference in species diversity in the intestinal microbiota of mice treated with fluorine. As a result, the composition of the intestinal microflora, especially Lactobacillus species, was significantly changed in rats with high fluorine.
Collapse
Affiliation(s)
- Ahmet Ufuk Komuroglu
- Health Services Vocational High School, Yuzuncu Yil University, Tuşba, Van, Turkey
| | - Hamdullah Seckin
- Health Services Vocational High School, Yuzuncu Yil University, Tuşba, Van, Turkey
| | - Metin Ertaş
- Department of Plant and Animal Production, Hakkari University, Hakkari, Turkey.
- Hakkari University Biological Diversity Application and Research Center, Hakkari, Turkey.
| | - Ismet Meydan
- Health Services Vocational High School, Yuzuncu Yil University, Tuşba, Van, Turkey
| |
Collapse
|
10
|
Varışlı B, Darendelioğlu E, Caglayan C, Kandemir FM, Ayna A, Genç A, Kandemir Ö. Hesperidin Attenuates Oxidative Stress, Inflammation, Apoptosis, and Cardiac Dysfunction in Sodium Fluoride-Induced Cardiotoxicity in Rats. Cardiovasc Toxicol 2022; 22:727-735. [PMID: 35606666 DOI: 10.1007/s12012-022-09751-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/30/2022] [Indexed: 01/08/2023]
Abstract
Excessive fluoride intake has been reported to cause toxicities to brain, thyroid, kidney, liver and testis tissues. Hesperidin (HSP) is an antioxidant that possesses anti-allergenic, anti-carcinogenic, anti-oxidant and anti-inflammatory activities. Presently, the studies focusing on the toxic effects of sodium fluoride (NaF) on heart tissue at biochemical and molecular level are limited. This study was designed to evaluate the ameliorative effects of HSP on toxicity of NaF on the heart of rats in vivo by observing the alterations in oxidative injury markers (MDA, SOD, CAT, GPX and GSH), pro-inflammatory markers (NF-κB, IL-1β, TNF-α), expressions of apoptotic genes (caspase-3, -6, -9, Bax, Bcl-2, p53, cytochrome c), levels of autophagic markers (Beclin 1, LC3A, LC3B), expression levels of PI3K/Akt/mTOR and cardiac markers. HSP treatment attenuated the NaF-induced heart tissue injury by increasing activities of SOD, CAT and GPx and levels of GSH, and suppressing lipid peroxidation. In addition, HSP reversed the changes in expression of apoptotic (caspase-3, -6, -9, Bax, Bcl-2, p53, cytochrome c), levels of autophagic and inflammatory parameters (Beclin 1, LC3A, LC3B, NF-κB, IL-1β, TNF-α), in the NaF-induced cardiotoxicity. HSP also modulated the gene expression levels of PI3K/Akt/mTOR signaling pathway and levels of cardiac markers (LDH, CK-MB). Overall, these findings reveal that HSP treatment can be used for the treatment of NaF-induced cardiotoxicity.
Collapse
Affiliation(s)
- Behçet Varışlı
- Vocational School of Health Sevices, Final International University, Kazafani, Cyprus
| | - Ekrem Darendelioğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Bingol University, 12000, Bingol, Turkey
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000, Bingol, Turkey.
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey.
| | - Adnan Ayna
- Department of Chemistry, Faculty of Science and Literature, Bingol University, 12000, Bingol, Turkey
| | - Aydın Genç
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000, Bingol, Turkey
| | - Özge Kandemir
- Technical Sciences Vocatinal School, Aksaray University, Aksaray, Turkey
| |
Collapse
|
11
|
D'Arcy MS. A review of biologically active flavonoids as inducers of autophagy and apoptosis in neoplastic cells and as cytoprotective agents in non-neoplastic cells. Cell Biol Int 2022; 46:1179-1195. [PMID: 35544782 DOI: 10.1002/cbin.11813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 12/13/2022]
Abstract
Phytochemicals are a diverse group of compounds found in various fruits, vegetables, nuts, and legumes. Many phytochemicals have been observed to possess health benefits. Some have been found to be chemoprotective or can act as chemotherapeutics by inducing autophagy, apoptosis, or otherwise regulating the cell cycle. Many also act as potent antioxidants. Flavonoids are a subclass of bioactive phytochemicals consisting of two phenolic benzene rings, joined together by a heterocyclic pyran or pyrone. It has been observed in multiple studies that there is a correlation between diets rich in flavonoids and a reduction in cancer levels, heart disease, neurodegenerative diseases, and other pathologies. As foods containing flavonoids are widely consumed, and their mechanisms of action are still only partially understood, this review was compiled to compare the effects and mechanisms of action of some of the most widely characterized and publicized flavonoids. The flavonoids silibinin, quercetin, isorhamnetin, luteolin, curcumin genkwanin, and acacetin, together with flavonoid extracts from papaw and Tephroseris kirilowii (Turcz) Holub, a member of the Daisy family, were found to be potent regulators of the cell cycle. The decision to overview these specific flavonoids was based on their therapeutic effects, and/or their potential effects. The sparsity of data comparing these flavonoids was also a key consideration. These flavonoids all modulated to some extent the pathways of autophagy and/or apoptosis and regulated the cell cycle, inflammation, and free radical levels. This explains why they are protective of healthy or moderately damaged cells, but toxic to neoplastic or pre-cancerous cells.
Collapse
Affiliation(s)
- Mark S D'Arcy
- Depatment of Life Sciences, Hertfordshire International College, Hatfield, UK
| |
Collapse
|
12
|
Angwa LM, Jiang Y, Pei J, Sun D. Antioxidant Phytochemicals for the Prevention of Fluoride-Induced Oxidative Stress and Apoptosis: a Review. Biol Trace Elem Res 2022; 200:1418-1441. [PMID: 34003450 DOI: 10.1007/s12011-021-02729-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Fluorosis is a major public health problem globally. The non-availability of specific treatment and the irreversible nature of dental and skeletal lesions poses a challenge in the management of fluorosis. Oxidative stress is known to be one of the most important mechanisms of fluoride toxicity. Fluoride promotes the accumulation of reactive oxygen species by inhibiting the activity of antioxidant enzymes, resulting in the excessive production of reactive oxygen species at the cellular level which further leads to activation of cell death processes such as apoptosis. Phytochemicals that act as antioxidants have the potential to protect cells from oxidative stress. Evidence confirms that clinical symptoms of fluorosis can be mitigated to some extent or prevented by long-term intake of antioxidants and plant products. The primary purpose of this review is to examine recent findings that focus on the amelioration of fluoride-induced oxidative stress and apoptosis by natural and synthetic phytochemicals and their molecular mechanisms of action.
Collapse
Affiliation(s)
- Linet M Angwa
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China
- Department of Clinical Medicine, Kabarak University, Nakuru, 20157, Kenya
| | - Yuting Jiang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China
| | - Junrui Pei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
13
|
Sotiropoulou M, Katsaros I, Vailas M, Lidoriki I, Papatheodoridis GV, Kostomitsopoulos NG, Valsami G, Tsaroucha A, Schizas D. Nonalcoholic fatty liver disease: The role of quercetin and its therapeutic implications. Saudi J Gastroenterol 2021; 27:319-330. [PMID: 34810376 PMCID: PMC8656328 DOI: 10.4103/sjg.sjg_249_21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/29/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease, affecting almost one-third of the general population and 75% of obese patients with type 2 diabetes. The aim of this article is to review the current evidence concerning the role of quercetin, a natural compound and flavonoid, and its possible therapeutic effects on this modern-day disease. Despite the fact that the exact pathophysiological mechanisms through which quercetin has a hepatoprotective effect on NAFLD are still not fully elucidated, this review clearly demonstrates that this flavonoid has potent antioxidative stress action and inhibitory effects on hepatocyte apoptosis, inflammation, and generation of reactive oxygen species, factors which are linked to the development of the disease. NAFLD is closely associated with increased dietary fat consumption, especially in Western countries. The hepatoprotective effect of quercetin against NAFLD merits serious consideration and further validation by future studies.
Collapse
Affiliation(s)
- Maria Sotiropoulou
- Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Ioannis Katsaros
- Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Michail Vailas
- Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Irene Lidoriki
- Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - George V Papatheodoridis
- Department of Gastroenterology, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Nikolaos G Kostomitsopoulos
- Center of Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Georgia Valsami
- Department of Pharmacy, Laboratory of Biopharmaceutics-Pharmacokinetics, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandra Tsaroucha
- Laboratory of Experimental Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dimitrios Schizas
- Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| |
Collapse
|
14
|
Zygmuntowicz A, Markiewicz W, Grabowski T, Burmańczuk A, Vyniarska A, Jaroszewski JJ. Quercetin affects uterine smooth muscle contractile activity in gilts. PLoS One 2021; 16:e0252438. [PMID: 34270573 PMCID: PMC8284652 DOI: 10.1371/journal.pone.0252438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/17/2021] [Indexed: 11/18/2022] Open
Abstract
Quercetin is a polyphenolic flavonoid occurring in leaves, stems, flowers and fruits of many plants. In traditional Chinese medicine, it is used as a natural therapeutic agent with a broad spectrum of activities (antioxidant, neuroprotective, anti-inflammatory, anticancer, antibacterial and antiviral). Moreover, quercetin affects function of the reproductive tract, however the knowledge of this activity is still fragmentary. Therefore, this study aimed to determine the influence of quercetin on the contractile activity of the porcine myometrium collected from immature (n = 6), cyclic (n = 6) and early pregnant (n = 6) gilts. Strips of the myometrium (comprising longitudinal and circular layer) were resected from the middle part of the uterine horns and the isometric contractions were recorded. After 60-90 min of preincubation, the strips were stimulated with quercetin in increasing (10-13-10-1 M) concentrations and the changes in the tension amplitude and frequency of contractions were measured. Quercetin decreased (P<0.01-0.001) the amplitude of contractions at concentrations 10-11-10-1 M and 10-10-10-1 M in cyclic and early pregnant groups, respectively. The frequency of contractions decreased in all groups but was the highest (at concentrations 10-11-10-1 M; P<0.05-0.001) in the cyclic group and the lowest (at concentrations 10-5-10-1 M; P<0.01) in the immature group. The tension decreased only in the cyclic group after quercetin administration in high concentrations (10-6-10-1 M; P<0.05-0.01). The results indicate that quercetin causes relaxation of the porcine uterine smooth muscle but this activity is strongly related to the physiological status of the gilts.
Collapse
Affiliation(s)
- Aleksandra Zygmuntowicz
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Włodzimierz Markiewicz
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | | - Artur Burmańczuk
- Department of Pharmacology Toxicology and Environmental Protection, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - Alla Vyniarska
- Department of Pharmacology and Toxicology, Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies, Lviv, Ukraine
| | - Jerzy Jan Jaroszewski
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
15
|
Bhat IUH, Bhat R. Quercetin: A Bioactive Compound Imparting Cardiovascular and Neuroprotective Benefits: Scope for Exploring Fresh Produce, Their Wastes, and By-Products. BIOLOGY 2021; 10:586. [PMID: 34206761 PMCID: PMC8301140 DOI: 10.3390/biology10070586] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022]
Abstract
Quercetin, a bioactive secondary metabolite, holds incredible importance in terms of bioactivities, which has been proved by in vivo and in vitro studies. The treatment of cardiovascular and neurological diseases by quercetin has been extensively investigated over the past decade. Quercetin is present naturally in appreciable amounts in fresh produce (fruits and vegetables). However, today, corresponding to the growing population and global demand for fresh fruits and vegetables, a paradigm shift and focus is laid towards exploring industrial food wastes and/or byproducts as a new resource to obtain bioactive compounds such as quercetin. Based on the available research reports over the last decade, quercetin has been suggested as a reliable therapeutic candidate for either treating or alleviating health issues, mainly those of cardiovascular and neurological diseases. In the present review, we have summarized some of the critical findings and hypotheses of quercetin from the available databases foreseeing its future use as a potential therapeutic agent to treat cardiovascular and neurological diseases. It is anticipated that this review will be a potential reference material for future research activities to be undertaken on quercetin obtained from fresh produce as well as their respective processing wastes/byproducts that rely on the circular concept.
Collapse
Affiliation(s)
- Irshad Ul Haq Bhat
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, 51006 Tartu, Estonia;
| | | |
Collapse
|
16
|
Bai M, Liu H, Wang S, Shu Q, Xu K, Zhou J, Xiong X, Huang R, Deng J, Yin Y, Liu Z. Dietary Moutan Cortex Radicis Improves Serum Antioxidant Capacity and Intestinal Immunity and Alters Colonic Microbiota in Weaned Piglets. Front Nutr 2021; 8:679129. [PMID: 34222303 PMCID: PMC8247480 DOI: 10.3389/fnut.2021.679129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background:Moutan cortex radicis (MCR), as a common traditional Chinese medicine, has been widely used as an antipyretic, antiseptic, and anti-inflammatory agent in China. Objectives: This study aimed to investigate the effects of dietary MCR supplementation on the antioxidant capacity and intestinal health of the pigs and to explore whether MCR exerts positive effects on intestinal health via regulating nuclear factor kappa-B (NF-κB) signaling pathway and intestinal microbiota. Methods: MCR powder was identified by LC-MS analysis. Selected 32 weaned piglets (21 d of age, 6.37 ± 0.10 kg average BW) were assigned (8 pens/diet, 1 pig/pen) to 4 groups and fed with a corn-soybean basal diet supplemented with 0, 2,000, 4,000, and 8,000 mg/kg MCR for 21 d. After the piglets were sacrificed, antioxidant indices, histomorphology examination, and inflammatory signaling pathway expression were assessed. The 16s RNA sequencing was used to analyze the effects of MCR on the intestinal microbiota structure of piglets. Results: Supplemental 4,000 mg/kg MCR significantly increased (P < 0.05) the average daily weight gain (ADG), average daily feed intake (ADFI), total antioxidative capability, colonic short-chain fatty acids (SCFA) concentrations, and the crypt depth in the jejunum but decreased (P < 0.05) the mRNA expression levels of interferon γ, tumor necrosis factor-α, interleukin-1β, inhibiting kappa-B kinase β (IKKβ), inhibiting nuclear factor kappa-B (IκBα), and NF-κB in the jejunum and ileum. Microbiota sequencing identified that MCR supplementation significantly increased the microbial richness indices (Chao1, ACE, and observed species, P < 0.05) and the relative abundances of Firmicutes and Lactobacillus (P < 0.05), decreased the relative abundances of Bacteroides, Parabacteroides, unidentified_Lachnospiraceae, and Enterococcus (P < 0.05) and had no significant effects on the diversity indices (Shannon and Simpson, P > 0.05). Microbial metabolic phenotypes analysis also showed that the richness of aerobic bacteria and facultative anaerobic bacteria, oxidative stress tolerance, and biofilm forming were significantly increased (P < 0.05), and the richness of anaerobic bacteria and pathogenic potential of gut microbiota were reduced (P < 0.05) by MCR treatment. Regression analysis showed that the optimal MCR supplemental level for growth performance, serum antioxidant capacity, and intestinal health of weaned piglets was 3,420 ~ 4,237 mg/kg. Conclusions: MCR supplementation improved growth performance and serum antioxidant capacity, and alleviated intestinal inflammation by inhibiting the IKKβ/IκBα/NF-κB signaling pathway and affecting intestinal microbiota in weaned piglets.
Collapse
Affiliation(s)
- Miaomiao Bai
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hongnan Liu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Shanshan Wang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qingyan Shu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Kang Xu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jian Zhou
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xia Xiong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Ruilin Huang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jinping Deng
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zheng'an Liu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Iside C, Scafuro M, Nebbioso A, Altucci L. SIRT1 Activation by Natural Phytochemicals: An Overview. Front Pharmacol 2020; 11:1225. [PMID: 32848804 PMCID: PMC7426493 DOI: 10.3389/fphar.2020.01225] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022] Open
Abstract
Sirtuins are class III histone deacetylases, whose enzymatic activity is dependent on NAD+ as a cofactor. Sirtuins are reported to modulate numerous activities by controlling gene expression, DNA repair, metabolism, oxidative stress response, mitochondrial function, and biogenesis. Deregulation of their expression and/or action may lead to tissue-specific degenerative events involved in the development of several human pathologies, including cancer, neurodegeneration, and cardiovascular disease. The most studied member of this class of enzymes is sirtuin 1 (SIRT1), whose expression is associated with increasing insulin sensitivity. SIRT1 has been implicated in both tumorigenic and anticancer processes, and is reported to regulate essential metabolic pathways, suggesting that its activation might be beneficial against disorders of the metabolism. Via regulation of p53 deacetylation and modulation of autophagy, SIRT1 is implicated in cellular response to caloric restriction and lifespan extension. In recent years, scientific interest focusing on the identification of SIRT1 modulators has led to the discovery of novel small molecules targeting SIRT1 activity. This review will examine compounds of natural origin recently found to upregulate SIRT1 activity, such as polyphenolic products in fruits, vegetables, and plants including resveratrol, fisetin, quercetin, and curcumin. We will also discuss the potential therapeutic effects of these natural compounds in the prevention and treatment of human disorders, with particular emphasis on their metabolic impact.
Collapse
Affiliation(s)
- Concetta Iside
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marika Scafuro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
18
|
Gašić U, Ćirić I, Pejčić T, Radenković D, Djordjević V, Radulović S, Tešić Ž. Polyphenols as Possible Agents for Pancreatic Diseases. Antioxidants (Basel) 2020; 9:antiox9060547. [PMID: 32585831 PMCID: PMC7346180 DOI: 10.3390/antiox9060547] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/26/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is very aggressive and it is estimated that it kills nearly 50% of patients within the first six months. The lack of symptoms specific to this disease prevents early diagnosis and treatment. Today, gemcitabine alone or in combination with other cytostatic agents such as cisplatin (Cis), 5-fluorouracil (5-FU), irinotecan, capecitabine, or oxaliplatin (Oxa) is used in conventional therapy. Outgoing literature provides data on the use of polyphenols, biologically active compounds, in the treatment of pancreatic cancer and the prevention of acute pancreatitis. Therefore, the first part of this review gives a brief overview of the state of pancreatic disease as well as the procedures for its treatment. The second part provides a detailed overview of the research regarding the anticancer effects of both pure polyphenols and their plant extracts. The results regarding the antiproliferative, antimetastatic, as well as inhibitory effects of polyphenols against PC cell lines as well as the prevention of acute pancreatitis are presented in detail. Finally, particular emphasis is given to the polyphenolic profiles of apples, berries, cherries, sour cherries, and grapes, given the fact that these fruits are rich in polyphenols and anthocyanins. Polyphenolic profiles, the content of individual polyphenols, and their relationships are discussed. Based on this, significant data can be obtained regarding the amount of fruit that should be consumed daily to achieve a therapeutic effect.
Collapse
Affiliation(s)
- Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia;
| | - Ivanka Ćirić
- Innovation Center, University of Belgrade—Faculty of Chemistry, P.O. Box 51, 11158 Belgrade, Serbia;
| | - Tomislav Pejčić
- Clinic of Urology, Clinical Centre of Serbia, Pasterova 2, 11000 Belgrade, Serbia;
| | - Dejan Radenković
- University of Belgrade—Faculty of Medicine, dr Subotića 8, 11000 Belgrade, Serbia;
- First Surgical Clinic, Clinical Center of Serbia, Koste Todorovića 6, 11000 Belgrade, Serbia;
| | - Vladimir Djordjević
- First Surgical Clinic, Clinical Center of Serbia, Koste Todorovića 6, 11000 Belgrade, Serbia;
| | - Siniša Radulović
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Živoslav Tešić
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, P.O. Box 51, 11158 Belgrade, Serbia
- Correspondence: ; Tel.: +381-113336733
| |
Collapse
|
19
|
Role of polyphenols and nonpolyphenols against toxicity induced by fluoride: a comprehensive review. Eur J Cancer Prev 2019; 28:109-114. [DOI: 10.1097/cej.0000000000000424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
20
|
Pharmacological Effect of Quercetin in Hypertension and Its Potential Application in Pregnancy-Induced Hypertension: Review of In Vitro, In Vivo, and Clinical Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7421489. [PMID: 30622610 PMCID: PMC6304490 DOI: 10.1155/2018/7421489] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/25/2018] [Accepted: 11/08/2018] [Indexed: 01/27/2023]
Abstract
Since improving maternal and child health is a public health priority worldwide, the main aim of treatment of hypertension in pregnant women is to prevent complications during pregnancy, labor, and postpartum. In consequence, much attention is paid to the use of antihypertensive drugs that can be used safely during pregnancy. Several side effects of methyldopa, which is currently the most commonly used antihypertensive drug in pregnant women, mean that the search for an effective and safe alternative still continues. Flavonoid compounds present in medicinal plants, vegetables, and fruits may be a promising source of new drugs. In this aspect, quercetin, a well-known flavonoid due to its antihypertensive action, may be considered a prototype for safe antihypertensive drugs. This review focuses on the selective activity of quercetin. Based on recent studies, a few problems were discussed, including (1) pathology of pregnancy-induced hypertension; (2) search for new pharmacological treatments of pregnancy-induced hypertension; (3) issues with the use of herbal extracts during pregnancy; (4) flavonoids as natural active chemical compounds; (5) quercetin: its action during pregnancy, in vitro and in vivo pharmacological activities, clinical trials, and meta-analysis; (6) quercetin intake during pregnancy; (7) other natural compounds tested during pregnancy; (8) potential problems with the use of quercetin; (9) safety profile of quercetin. Various studies have shown a beneficial effect of quercetin on vascular endothelial function and its antioxidative and anti-inflammatory activity on cellular and tissue level. It is known that in animal models quercetin affects positively the development of embryo, fetus, and placenta. Because this flavonoid did not have teratogenic and abortive effect, it is generally recognized as safe. For this reason it should be appreciated and studied in the aspect of its potential use in the prevention and treatment of pregnancy-induced hypertension among women in this risk group.
Collapse
|
21
|
Oyagbemi AA, Omobowale TO, Ola-Davies OE, Asenuga ER, Ajibade TO, Adejumobi OA, Afolabi JM, Ogunpolu BS, Falayi OO, Saba AB, Adedapo AA, Yakubu MA. Luteolin-mediated Kim-1/NF-kB/Nrf2 signaling pathways protects sodium fluoride-induced hypertension and cardiovascular complications. Biofactors 2018; 44:518-531. [PMID: 30474894 DOI: 10.1002/biof.1449] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
The use of sodium fluoride (NaF) as a major ingredient for tooth paste, mouth wash, and mouth rinse has become inevitable in our day-to-day life. However, flavonoids such as Luteolin might be of great value in the prevention of toxicity associated with accidental or inevitable ingestion of NaF. In the study, 40 male Wistar albino rats were randomly divided into four groups with 10 rats in a group. Group A was the control group and received normal saline, Group B was exposed to NaF at 300 ppm (300 mg/L) in drinking water daily for a week, Groups C and D were exposed to 300 ppm (300 mg/L) of NaF and coadministered with Luteolin orally daily at a dosage of 100 mg/kg and 200 mg/kg for the same time point. Our results indicated that NaF caused significant increases in systolic blood pressure, diastolic blood pressure, mean arterial pressure, malondialdehyde, protein carbonyl, myeloperoxidase, advanced oxidative protein products, together with significant reductions in glutathione peroxidase, superoxide dismutase, catalase, glutathione reductase, reduced glutathione, and nitric oxide (NO) bioavailability. The electrocardiogram results showed that NaF alone caused significant prolongation of QT and QTc intervals. Immunohistochemistry revealed that NaF caused increase expressions of Kidney injury marker 1 (Kim-1), nuclear factor kappa bet (NF-κB), nuclear factor erythroid 2-related factors 2 (Nrf2), and cardiac troponin I (CTnI). Together, Luteolin coadministration with NaF improved NO bioavailability, reduced high blood pressure, markers of oxidative stress, reversed prolongation of QT and QTc intervals, and lowered the expressions of Kim-1, NF-κB, and CTnI. © 2018 BioFactors, 44(6):518-531, 2018.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebunoluwa Racheal Asenuga
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Benin, Benin City, Nigeria
| | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olumuyiwa Abiola Adejumobi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Blessing Seun Ogunpolu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Olubunmi Falayi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adebowale Bernard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Momoh Audu Yakubu
- Department of Environmental and Interdisciplinary Sciences, College of Science, Engineering and Technology, NSB303, Sr. Scientist & Head, Vascular Biology Unit, Center for Cardiovascular Diseases, COPHS, Texas Southern University, Houston, TX, USA
| |
Collapse
|
22
|
Khatun S, Mandi M, Rajak P, Roy S. Interplay of ROS and behavioral pattern in fluoride exposed Drosophila melanogaster. CHEMOSPHERE 2018; 209:220-231. [PMID: 29936113 DOI: 10.1016/j.chemosphere.2018.06.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/08/2018] [Accepted: 06/10/2018] [Indexed: 06/08/2023]
Abstract
Reactive oxygen species (ROS) is known to be associated with the process of aging and other health hazards. Organisms are compelled to compromise with body homeostasis when exposed to toxic substances. In the present study sodium fluoride (NaF) exposure (10-100 μgmL-1) to Drosophila melanogaster in the parental (P) generation leads to increase in adult mortality and alteration in male-female ratio in the P and F1 (1st Filial) generation. Post-treatment alterations in selected behavioral traits (crawling, embedding and climbing) were observed in larvae and adults. Altered behavioral pattern was found to be associated with reduced mitochondrial activity and decreased number of viable brain cells in treated individuals. Interestingly, higher cholinesterase activities in treated males in comparison to females demonstrate a definite sex bias in NaF-induced response. Hyper-activation of antioxidant enzyme like catalase and reduced superoxide dismutase (SOD) and glutathione-s-transferase (GST) activity indicate a shift in the oxidative status after fluoride exposure. Additionally, increase in lipid peroxidation suggests enhancement in ROS which is further validated through increment in protein carbonyl content. Hence, the observations of the present study propose behavioral alterations resulting from increased ROS after chronic exposure to sub-lethal concentrations of NaF in D. melanogaster.
Collapse
Affiliation(s)
- Salma Khatun
- Toxicology Research Unit, Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan-713104, West Bengal, India.
| | - Moutushi Mandi
- Toxicology Research Unit, Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan-713104, West Bengal, India
| | - Prem Rajak
- Post-Graduate Department of Zoology, A.B.N. Seal College, Cooch Behar, India
| | - Sumedha Roy
- Toxicology Research Unit, Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan-713104, West Bengal, India.
| |
Collapse
|
23
|
Oyagbemi AA, Omobowale TO, Ola-Davies OE, Asenuga ER, Ajibade TO, Adejumobi OA, Arojojoye OA, Afolabi JM, Ogunpolu BS, Falayi OO, Hassan FO, Ochigbo GO, Saba AB, Adedapo AA, Yakubu MA. Quercetin attenuates hypertension induced by sodium fluoride via reduction in oxidative stress and modulation of HSP 70/ERK/PPARγ signaling pathways. Biofactors 2018; 44:465-479. [PMID: 30171731 DOI: 10.1002/biof.1445] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022]
Abstract
Hypertension is one of the silent killers in the world with high mortality and morbidity. The exposure of humans and animals to fluoride and/or fluoride containing compounds is almost inevitable. This study investigated the modulatory effects of quercetin on sodium fluoride (NaF)-induced hypertension and cardiovascular complications. Forty male rats were randomly separated into four groups (n =10). Group A animals served as the control, rats in Group B were exposed to 300 ppm of NaF, Groups C and D animals were exposed to 300 ppm of NaF along with quercetin orally at 50 mg/kg and 100 mg/kg orally by gavage, while NaF was administered in drinking water, respectively, for a week. Administration of NaF caused severe hypertension as indicated with significant increases in the systolic, diastolic, and mean arterial blood pressure, together with prolonged ventricular depolarization (QRS) and the time between the start of the Q wave and the end of the T wave in the heart's electrical cycle (QT) intervals when compared with controls. NaF significantly decreased the activities of antioxidant enzymes, caused increase in markers of oxidative stress and renal damage when compared with controls. Immunohistochemical staining revealed lower expressions of Hsp70, ERK, and PPARγ in the heart, kidney, and aorta of rats-administered NaF relative to the controls. Together, quercetin co-treatment with NaF restored blood pressure, normalized QRS interval, and improved antioxidant defense system. © 2018 BioFactors, 44(5):465-479, 2018.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebunoluwa Racheal Asenuga
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Benin, Benin, Nigeria
| | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olumuyiwa Abiola Adejumobi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Jeremiah Moyinoluwa Afolabi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
- Cell Biology & Physiology track, Integrated Biomedical Sciences PhD, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Blessing Seun Ogunpolu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Olubunmi Falayi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Fasilat Oluwakemi Hassan
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Grace Onyeche Ochigbo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adebowale Benard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Momoh Audu Yakubu
- Department of Environmental and Interdisciplinary Sciences, College of Science, Engineering and Technology, Vascular Biology Unit, Center for Cardiovascular Diseases, COPHS, Texas Southern University, Houston, TX, USA
| |
Collapse
|
24
|
Sri Charitha G, Sudhakar K, Reddy KP. Protective Effects of Selenium Against Sodium Fluoride Induced Behavioral, Anti-Oxidant and Neurohistological Alterations in Wistar Rats. ACTA ACUST UNITED AC 2018. [DOI: 10.13005/bbra/2652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Fluoride naturally occurs in the earth’s crust and ground water and it causes fluorosis when it is consumed in high levels. The fluorosis also affects soft tissues like liver, kidney, heart, brain etc., in addition to skeletal and dental systems. The present study reports the protective effects of selenium against sodium fluoride induced neurotoxic effects. Three months old (around 250 – 280 g weight) wistar rats were randomly categorized into four groups viz. Group I (control) which received normal tap water, Group II (sodium fluoride, NaF) treated with 20 ppm of fluoride through IP, Group III treated with (NaF 20 ppm) + Selenium (5 mgkg-1 body wt./day/rat) and Group IV treated with Selenium (5 mgkg-1 body wt./day/rat) alone. The doses were continued for a period of 15 days and after that they were used for recording behavioral (rota rod, hot plate), anti-oxidant (LPO, SOD, CAT and GSH-Px) and histological (Golgi cox staining) observations. The rats treated with NaF showed the decreased motor coordination, thermal pain response, decreased CAT and SOD activity and increased LPO levels and GSH-Px activity with compared to control group. Moreover, NaF received rats also showed the decreased number of dendrites, synaptic connections and neural networks. These all alterations were reversed on administration of selenium towards fluoride toxicity and the results were significant (p<0.01). The results of selenium alone treated group of rats is comparable to control group. Based on these observed results, the present study evidenced the protective role of selenium against fluoride induced neurotoxicity.
Collapse
Affiliation(s)
- Gorantla Sri Charitha
- Department of Zoology, University college of Science, Osmania University, Hyderabad -500007, Telangana, India
| | - Kurmeti Sudhakar
- Department of Zoology, University college of Science, Osmania University, Hyderabad -500007, Telangana, India
| | - K. Pratap Reddy
- Department of Zoology, University college of Science, Osmania University, Hyderabad -500007, Telangana, India
| |
Collapse
|
25
|
Warnsmann V, Hainbuch S, Osiewacz HD. Quercetin-Induced Lifespan Extension in Podospora anserina Requires Methylation of the Flavonoid by the O-Methyltransferase PaMTH1. Front Genet 2018; 9:160. [PMID: 29780405 PMCID: PMC5945814 DOI: 10.3389/fgene.2018.00160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/17/2018] [Indexed: 12/12/2022] Open
Abstract
Quercetin is a flavonoid that is ubiquitously found in vegetables and fruits. Like other flavonoids, it is active in balancing cellular reactive oxygen species (ROS) levels and has a cyto-protective function. Previously, a link between ROS balancing, aging, and the activity of O-methyltransferases was reported in different organisms including the aging model Podospora anserina. Here we describe a role of the S-adenosylmethionine-dependent O-methyltransferase PaMTH1 in quercetin-induced lifespan extension. We found that effects of quercetin treatment depend on the methylation state of the flavonoid. Specifically, we observed that quercetin treatment increases the lifespan of the wild type but not of the PaMth1 deletion mutant. The lifespan increasing effect is not associated with effects of quercetin on mitochondrial respiration or ROS levels but linked to the induction of the PaMth1 gene. Overall, our data demonstrate a novel role of O-methyltransferase in quercetin-induced longevity and identify the underlying pathway as part of a network of longevity assurance pathways with the perspective to intervene into mechanisms of biological aging.
Collapse
Affiliation(s)
- Verena Warnsmann
- Molecular Developmental Biology, Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, Department of Biosciences, J. W. Goethe University, Frankfurt, Germany
| | - Saskia Hainbuch
- Molecular Developmental Biology, Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, Department of Biosciences, J. W. Goethe University, Frankfurt, Germany
| | - Heinz D Osiewacz
- Molecular Developmental Biology, Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, Department of Biosciences, J. W. Goethe University, Frankfurt, Germany
| |
Collapse
|
26
|
Lu Y, Luo Q, Cui H, Deng H, Kuang P, Liu H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Sodium fluoride causes oxidative stress and apoptosis in the mouse liver. Aging (Albany NY) 2018; 9:1623-1639. [PMID: 28657544 PMCID: PMC5509460 DOI: 10.18632/aging.101257] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 12/25/2022]
Abstract
The current study was conducted to investigate the effect of sodium fluoride (NaF) on the oxidative stress and apoptosis as well as their relationship in the mouse liver by using methods of flow cytometry, quantitative real-time polymerase chain reaction (qRT-PCR), western blot, biochemistry and experimental pathology. 240 four-week-old ICR mice were randomly divided into 4 groups and exposed to different concentration of NaF (0 mg/kg, 12 mg/kg, 24 mg/kg and 48 mg/kg) for a period of 42 days. The results showed that NaF caused oxidative stress and apoptosis. NaF-caused oxidative stress was accompanied by increasing reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and decreasing mRNA expression levels and activities of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GSH-PX) and glutathione-s-transferase (GST). NaF induced apoptosis via tumor necrosis factor recpter-1 (TNF-R1) signaling pathway, which was characterized by significantly increasing mRNA and protein expression levels of TNF-R1, Fas associated death domain (FADD), TNFR-associated death domain (TRADD), cysteine aspartate specific protease-8 (caspase-8) and cysteine aspartate specific protease-3 (caspase-3) in dose- and time-dependent manner. Oxidative stress is involved in the process of apoptotic occurrence, and can be triggered by promoting ROS production and reducing antioxidant function. NaF-caused oxidative stress and apoptosis finally impaired hepatic function, which was strongly supported by the histopathological lesions and increased serum alanine amino transferase (ALT), aspartic acid transferase (AST), alkaline phosphatase (AKP) activities and TBIL contents.
Collapse
Affiliation(s)
- Yujiao Lu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Qin Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Ping Kuang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Huan Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Xun Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| |
Collapse
|
27
|
Nabavi SM, Nabavi SF, Sureda A, Caprioli G, Iannarelli R, Sokeng AJT, Braidy N, Khanjani S, Moghaddam AH, Atanasov AG, Daglia M, Maggi F. The water extract of tutsan (Hypericum androsaemum L.) red berries exerts antidepressive-like effects and in vivo antioxidant activity in a mouse model of post-stroke depression. Biomed Pharmacother 2018; 99:290-298. [DOI: 10.1016/j.biopha.2018.01.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 10/18/2022] Open
|
28
|
Miltonprabu S, Tomczyk M, Skalicka-Woźniak K, Rastrelli L, Daglia M, Nabavi SF, Alavian SM, Nabavi SM. Hepatoprotective effect of quercetin: From chemistry to medicine. Food Chem Toxicol 2017; 108:365-374. [DOI: 10.1016/j.fct.2016.08.034] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/04/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022]
|
29
|
AlDrak N, Abudawood M, Hamed SS, Ansar S. Effect of rutin on proinflammatory cytokines and oxidative stress in toxin-mediated hepatotoxicity. TOXIN REV 2017. [DOI: 10.1080/15569543.2017.1354305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Noura AlDrak
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Manal Abudawood
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sherifa S. Hamed
- Zoology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
- Zoology Department, Faculty of Science, University of Alexandria, Alexandria, Egypt
| | - Sabah Ansar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
30
|
Faggio C, Sureda A, Morabito S, Sanches-Silva A, Mocan A, Nabavi SF, Nabavi SM. Flavonoids and platelet aggregation: A brief review. Eur J Pharmacol 2017; 807:91-101. [DOI: 10.1016/j.ejphar.2017.04.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/04/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022]
|
31
|
Momtaz S, Niaz K, Maqbool F, Abdollahi M, Rastrelli L, Nabavi SM. STAT3 targeting by polyphenols: Novel therapeutic strategy for melanoma. Biofactors 2017; 43:347-370. [PMID: 27896891 DOI: 10.1002/biof.1345] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/17/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023]
Abstract
Melanoma or malignant melanocytes appear with the low incidence rate, but very high mortality rate worldwide. Epidemiological studies suggest that polyphenolic compounds contribute for prevention or treatment of several cancers particularly melanoma. Such findings motivate to dig out novel therapeutic strategies against melanoma, including research toward the development of new chemotherapeutic and biologic agents that can target the tumor cells by different mechanisms. Recently, it has been found that signal transducer and activator of transcription 3 (STAT3) is activated in many cancer cases surprisingly. Different evidences supply the aspect that STAT3 activation plays a vital role in the metastasis, including proliferation of cells, survival, invasion, migration, and angiogenesis. This significant feature plays a vital role in various cellular processes, such as cell proliferation and survival. Here, we reviewed the mechanisms of the STAT3 pathway regulation and their role in promoting melanoma. Also, we have evaluated the emerging data on polyphenols (PPs) specifically their contribution in melanoma therapies with an emphasis on their regulatory/inhibitory actions in relation to STAT3 pathway and current progress in the development of phytochemical therapeutic techniques. An understanding of targeting STAT3 by PPs brings an opportunity to melanoma therapy. © 2016 BioFactors, 43(3):347-370, 2017.
Collapse
Affiliation(s)
- Saeideh Momtaz
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Kamal Niaz
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Faheem Maqbool
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Luca Rastrelli
- Dipartimento di Farmacia, University of Salerno, Fisciano, SA, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Nabavi SF, Tejada S, Setzer WN, Gortzi O, Sureda A, Braidy N, Daglia M, Manayi A, Nabavi SM. Chlorogenic Acid and Mental Diseases: From Chemistry to Medicine. Curr Neuropharmacol 2017; 15:471-479. [PMID: 27012954 PMCID: PMC5543670 DOI: 10.2174/1570159x14666160325120625] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/08/2016] [Accepted: 05/16/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND At present, much attention has been focused on the beneficial effects of natural products on the human health due to their high efficacy and low adverse effects. Among them, polyphenolic compounds are known as one of the most important and common classes of natural products, which possess multiple range of health-promotion effects including anti-inflammatory and antioxidant activities. A plethora of scientific evidence has shown that polyphenolic compounds possess beneficial effects on the central nervous system. METHODS Data were collected from Web of Science (ISI Web of Knowledge), Medline, Pubmed, Scopus, Embase, and BIOSIS Previews (from 1950 to 2015), through searching of these keywords: "chlorogenic acid and mental diseases" and "chlorogenic acid and neuroprotection". RESULTS Chlorogenic acid is known as one of the most common polyphenolic compounds, and is found in different types of fruits and vegetables, spices, wine, olive oil, as well as coffee. The potential neuroprotective effects of chlorogenic acid have been highlighted in several in vitro and in vivo studies. This review critically analyses the available scientific evidence regarding the neuroprotective effects of chlorogenic acid, and its neuropharmacological mechanisms of action. In addition, we also discuss its biosynthesis, sources, bioavailability and metabolism, to provide a broad perspective of the therapeutic implications of this compound in brain health and disease. CONCLUSION The present review showed that chlorogenic acid possesses neuroprotective effects under the both in vitro and in vivo models.
Collapse
Affiliation(s)
- Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Silvia Tejada
- Experimental Laboratory, Research Unit, Son Llàtzer Hospital, IUNICS, Ctra. Manacor km 4, E-07198, Palma de Mallorca, Balearic Islands, Spain
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Alabama 35899, Huntsville, USA
| | - Olga Gortzi
- Department of Food Technology, Technological Educational Institution of Thessaly Terma N. Temponera Str. Greece
| | - Antoni Sureda
- Grup de Nutrició Comunitària i Estrès Oxidatiu (IUNICS) and CIBERobn Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydneyy, Australia
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| | - Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Tanshinones and mental diseases: from chemistry to medicine. Rev Neurosci 2016; 27:777-791. [DOI: 10.1515/revneuro-2016-0012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/03/2016] [Indexed: 11/15/2022]
Abstract
AbstractThe prevalence of mental diseases, especially neurodegenerative disorders, is ever-increasing, while treatment options for such disorders are limited and insufficient. In this scarcity of available medication, it is a feasible strategy to search for potential drugs among natural compounds, such as those found in plants. One such plant source is the root of Chinese sage, Salvia miltiorrhiza Bunge (Labiatae), which contains several compounds reported to possess neuroprotective activities. The most important of these compounds are tanshinones, which have been reported to possess ameliorative activity against a myriad of mental diseases such as Alzheimer’s disease, cerebral ischemia/reperfusion injury, and glioma, along with promoting neuronal differentiation and manifesting antinociceptive and anticonvulsant outcomes. This review offers a critical evaluation of the utility of tanshinones to treat mental illnesses, and sheds light on the underlying mechanisms through which these naturally occurring compounds confer neuroprotection.
Collapse
|
34
|
Rameshrad M, Razavi BM, Hosseinzadeh H. Protective effects of green tea and its main constituents against natural and chemical toxins: A comprehensive review. Food Chem Toxicol 2016; 100:115-137. [PMID: 27915048 DOI: 10.1016/j.fct.2016.11.035] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/24/2016] [Accepted: 11/30/2016] [Indexed: 01/26/2023]
Abstract
Toxins are natural or chemical poisonous substances with severe side effects on health. Humans are generally exposed by widespread toxic contaminations via air, soil, water, food, fruits and vegetables. Determining a critical antidote agent with extensive effects on different toxins is an ultimate goal for all toxicologists. Traditional medicine is currently perceived as a safe and natural approach against toxins. In this regard, we focused on the protective effects of green tea (Camellia sinensis) and its main components such as catechin, epicatechin, epicatechin gallate, gallocatechin, epigallocatechin and epigallocatechin gallate as a principal source of antioxidants against both natural and chemical toxins. This literate review demonstrates that protective effects of green tea and its constituents were mainly attributed to their anti-oxidative, radical scavenging, chelating, anti-apoptotic properties and modulating inflammatory responses. Although, some studies reveal they have protective effects by increasing toxin metabolism and neutralizing PLA2, proteases, hyaluronidase and l-amino acid oxidase enzymes.
Collapse
Affiliation(s)
- Maryam Rameshrad
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
35
|
Bustos PS, Deza-Ponzio R, Páez PL, Albesa I, Cabrera JL, Virgolini MB, Ortega MG. Protective effect of quercetin in gentamicin-induced oxidative stress in vitro and in vivo in blood cells. Effect on gentamicin antimicrobial activity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 48:253-264. [PMID: 27846408 DOI: 10.1016/j.etap.2016.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 11/01/2016] [Accepted: 11/06/2016] [Indexed: 05/20/2023]
Abstract
We have evaluated the effect of gentamicin and gentamicin plus quercetin on ROS production, endogenous antioxidant defenses (SOD and CAT) and lipid peroxidation in vitro on human leukocytes and in vivo on whole rat blood. Gentamicin generated ROS production in human leukocytes, produced a dual effect on both enzymes dosage-dependent and generated an increase in lipid peroxidation. Quercetin, in leukocytes stimulated by gentamicin, showed more inhibitory capacity in ROS production than the reference inhibitor (vitaminC) in mononuclear cells and a similar protective behavior at this inhibitor in polymorphonuclear cells. Quercetin, in both cellular systems, tend to level SOD and CAT activities, reaching basal values and could prevent lipidic peroxidation induced by gentamicin. The results in Wistar rats confirmed that therapeutic doses of gentamicin can induce oxidative stress in whole blood and that the gentamicin treatment plus quercetin can suppress ROS generation, collaborate with SOD and CAT and diminish lipid peroxidation. Finally, flavonoid and antibiotic association was evaluated on the antimicrobial activity in S. aureus and E. coli, showing that changes were not generated in the antibacterial activity of gentamicin against E. coli strains, while for strains of S. aureus a beneficial effect observes. Therefore, we have demonstrated that gentamicin could induce oxidative stress in human leukocytes and in whole blood of Wistar rats at therapeutic doses and that quercetin may to produce a protective effect on this oxidative stress generated without substantially modifying the antibacterial activity of gentamicin against E. coli strains, and it contributes to this activity against S. aureus strains.
Collapse
Affiliation(s)
- Pamela Soledad Bustos
- Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| | - Romina Deza-Ponzio
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| | - Paulina Laura Páez
- Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Unidad de Tecnología Farmacéutica (UNITEFA-CONICET), Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| | - Ines Albesa
- Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| | - José Luis Cabrera
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| | - Miriam Beatriz Virgolini
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| | - María Gabriela Ortega
- Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| |
Collapse
|
36
|
Lian JJ, Cheng BF, Gao YX, Xue H, Wang L, Wang M, Yang HJ, Feng ZW. Protective effect of kaempferol, a flavonoid widely present in varieties of edible plants, on IL-1β-induced inflammatory response via inhibiting MAPK, Akt, and NF-κB signalling in SW982 cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
37
|
Du G, Zhao Z, Chen Y, Li Z, Tian Y, Liu Z, Liu B, Song J. Quercetin attenuates neuronal autophagy and apoptosis in rat traumatic brain injury model via activation of PI3K/Akt signaling pathway. Neurol Res 2016; 38:1012-1019. [PMID: 27690831 DOI: 10.1080/01616412.2016.1240393] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Neuronal autophagy and apoptosis play an irreplaceable role in brain injury pathogenesis and may represent a hopeful target for treatment. Previous studies have demonstrated that administration of quercetin-attenuated brain damage in a variety of brain injury models including traumatic brain injury (TBI). However, whether PI3K/Akt signaling pathway mediates the neuroprotection of quercetin following TBI is not well clarified. We sought to propose a hypothesis that quercetin could attenuate neuronal autophagy and apoptosis via enhancing PI3K/Akt signaling. METHODS All rats were randomly arranged into four groups as follows: sham group (n = 25), TBI group (n = 25), TBI + quercetin group (n = 25), TBI + quercetin + LY294002 group (n = 25). Quercetin (Sigma, USA, dissolved in 0.9% saline solution) was administered intraperitoneally at a dose of 50 mg/kg at 30 min, 12 h, and 24 h after TBI. The neurological impairment and spatial cognitive function was assessed by the neurologic severity score and Morris water maze, respectively. Immunohistochemistry staining and western blotting was used to evaluate the expression of LC3, p-Akt, caspase-3, Bcl-2, and Bax. RESULTS Quercetin treatment significantly attenuated TBI-induced neurological impairment (1-3 days, p < 0.05) and improved cognitive function (5-8 days, p < 0.05). Double immunolabeling demonstrated that quercetin significantly reduced the LC3-positive cells co-labeled with NeuN, whereas significantly enhanced p-Akt-positive cells co-labeled with NeuN. Furthermore, quercetin treatment reduced the expression of LC3、caspase-3 and Bax levels induced following TBI (p < 0.05), and increased the expression of p-Akt and Bcl-2 at 48 h (p < 0.05). CONCLUSION In conclusion, our observations indicate that post-injury treatment with quercetin could inhibit neuronal autophagy and apoptosis in the hippocampus in a rat model of TBI. The neuroprotective effects of quercetin may be related to modulation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Guoliang Du
- a Department of Neurosurgery , Central Hospital of Cangzhou , Cangzhou , People's Republic of China
| | - Zongmao Zhao
- b Department of Neurosurgery , Second Hospital of Hebei Medical University , Shijiazhuang , People's Republic of China
| | - Yonghan Chen
- a Department of Neurosurgery , Central Hospital of Cangzhou , Cangzhou , People's Republic of China
| | - Zonghao Li
- a Department of Neurosurgery , Central Hospital of Cangzhou , Cangzhou , People's Republic of China
| | - Yaohui Tian
- a Department of Neurosurgery , Central Hospital of Cangzhou , Cangzhou , People's Republic of China
| | - Zhifeng Liu
- a Department of Neurosurgery , Central Hospital of Cangzhou , Cangzhou , People's Republic of China
| | - Bin Liu
- a Department of Neurosurgery , Central Hospital of Cangzhou , Cangzhou , People's Republic of China
| | - Jianqiang Song
- a Department of Neurosurgery , Central Hospital of Cangzhou , Cangzhou , People's Republic of China
| |
Collapse
|
38
|
Kasi PD, Tamilselvam R, Skalicka-Woźniak K, Nabavi SF, Daglia M, Bishayee A, Pazoki-toroudi H, Nabavi SM. Molecular targets of curcumin for cancer therapy: an updated review. Tumour Biol 2016; 37:13017-13028. [DOI: 10.1007/s13277-016-5183-y] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 07/13/2016] [Indexed: 01/27/2023] Open
|
39
|
Zhao X, Wang Q, Yang S, Chen C, Li X, Liu J, Zou Z, Cai D. Quercetin inhibits angiogenesis by targeting calcineurin in the xenograft model of human breast cancer. Eur J Pharmacol 2016; 781:60-8. [DOI: 10.1016/j.ejphar.2016.03.063] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 12/20/2022]
|
40
|
Habibian M, Moosavi SJ, Farzanegi P. Regular Exercise Combined With Curcumin Supplementation: Protective Effects against Lead-Induced Cerebellar Oxidative Damage in an Animal Model. NEUROPHYSIOLOGY+ 2016. [DOI: 10.1007/s11062-016-9564-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Marchese A, Orhan IE, Daglia M, Barbieri R, Di Lorenzo A, Nabavi SF, Gortzi O, Izadi M, Nabavi SM. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem 2016; 210:402-14. [PMID: 27211664 DOI: 10.1016/j.foodchem.2016.04.111] [Citation(s) in RCA: 443] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/27/2016] [Accepted: 04/25/2016] [Indexed: 12/22/2022]
Abstract
Thymol (2-isopropyl-5-methylphenol) is the main monoterpene phenol occurring in essential oils isolated from plants belonging to the Lamiaceae family (Thymus, Ocimum, Origanum, and Monarda genera), and other plants such as those belonging to the Verbenaceae, Scrophulariaceae, Ranunculaceae, and Apiaceae families. These essential oils are used in the food industry for their flavouring and preservative properties, in commercial mosquito repellent formulations for their natural repellent effect, in aromatherapy, and in traditional medicine for the treatment of headaches, coughs, and diarrhea. Many different activities of thymol such as antioxidant, anti-inflammatory, local anaesthetic, antinociceptive, cicatrizing, antiseptic, and especially antibacterial and antifungal properties have been shown. This review aims to critically evaluate the available literature regarding the antibacterial and antifungal effects of thymol.
Collapse
Affiliation(s)
- Anna Marchese
- Microbiology Unit, IRCCS-San Martino-IST and DISC, University of Genoa, Italy
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Ramona Barbieri
- Microbiology Unit, IRCCS-San Martino-IST and DISC, University of Genoa, Italy
| | - Arianna Di Lorenzo
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Olga Gortzi
- Department of Food Technology, Technological Educational Institution of Thessaly, Terma N. Temponera Str., Greece
| | - Morteza Izadi
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Russo M, Russo GL, Daglia M, Kasi PD, Ravi S, Nabavi SF, Nabavi SM. Understanding genistein in cancer: The "good" and the "bad" effects: A review. Food Chem 2016; 196:589-600. [PMID: 26593532 DOI: 10.1016/j.foodchem.2015.09.085] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/29/2015] [Accepted: 09/23/2015] [Indexed: 02/07/2023]
Abstract
Nowadays, diet and specific dietary supplements are seen as potential adjuvants to prevent different chronic diseases, including cancer, or to ameliorate pharmacological therapies. Soybean is one of the most important food components in Asian diet. A plethora of evidence supports the in vitro and in vivo anticancer effects of genistein, a soybean isoflavone. Major tumors affected by genistein here reviewed are breast, prostate, colon, liver, ovarian, bladder, gastric, brain cancers, neuroblastoma and chronic lymphocytic leukemia. However, it is not always clear if and when genistein is beneficial against tumors (the "good" effects), or the opposite, when the same molecule exerts adverse effects (the "bad" effects), favouring cancer cell proliferation. This review will critically evaluate this concept in the light of the different molecular mechanisms of genistein which occur when the molecule is administered at low doses (chemopreventive effects), or at high doses (pharmacological effects).
Collapse
Affiliation(s)
- Maria Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy.
| | - Gian Luigi Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, 27100 Pavia, Italy
| | - Pandima Devi Kasi
- Department of Biotechnology, Alagappa University, Karaikudi 630 004, Tamil Nadu, India.
| | - Sakthivel Ravi
- Department of Biotechnology, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Warner EF, Zhang Q, Raheem KS, O'Hagan D, O'Connell MA, Kay CD. Common Phenolic Metabolites of Flavonoids, but Not Their Unmetabolized Precursors, Reduce the Secretion of Vascular Cellular Adhesion Molecules by Human Endothelial Cells. J Nutr 2016; 146:465-73. [PMID: 26843586 PMCID: PMC4763483 DOI: 10.3945/jn.115.217943] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/20/2015] [Accepted: 12/29/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Flavonoids have been implicated in the prevention of cardiovascular disease; however, their mechanisms of action have yet to be elucidated, possibly because most previous in vitro studies have used supraphysiological concentrations of unmetabolized flavonoids, overlooking their more bioavailable phenolic metabolites. OBJECTIVE We aimed to explore the effects of phenolic metabolites and their precursor flavonoids at physiologically achievable concentrations, in isolation and combination, on soluble vascular cellular adhesion molecule-1 (sVCAM-1). METHOD Fourteen phenolic acid metabolites and 6 flavonoids were screened at 1 μM for their relative effects on sVCAM-1 secretion by human umbilical vein endothelial cells stimulated with tumor necrosis factor alpha (TNF-α). The active metabolites were further studied for their response at different concentrations (0.01 μM-100 μM), structure-activity relationships, and effect on vascular cellular adhesion molecule (VCAM)-1 mRNA expression. In addition, the additive activity of the metabolites and flavonoids was investigated by screening 25 unique mixtures at cumulative equimolar concentrations of 1 μM. RESULTS Of the 20 compounds screened at 1 μM, inhibition of sVCAM-1 secretion was elicited by 4 phenolic metabolites, of which protocatechuic acid (PCA) was the most active (-17.2%, P = 0.05). Investigations into their responses at different concentrations showed that PCA significantly reduced sVCAM-1 15.2-36.5% between 1 and 100 μM, protocatechuic acid-3-sulfate and isovanillic acid reduced sVCAM-1 levels 12.2-54.7% between 10 and 100 μM, and protocatechuic acid-4-sulfate and isovanillic acid-3-glucuronide reduced sVCAM-1 secretion 27.6% and 42.8%, respectively, only at 100 μM. PCA demonstrated the strongest protein response and was therefore explored for its effect on VCAM-1 mRNA, where 78.4% inhibition was observed only after treatment with 100 μM PCA. Mixtures of the metabolites showed no activity toward sVCAM-1, suggesting no additive activity at 1 μM. CONCLUSIONS The present findings suggest that metabolism of flavonoids increases their vascular efficacy, resulting in a diversity of structures of varying bioactivity in human endothelial cells.
Collapse
Affiliation(s)
| | - Qingzhi Zhang
- School of Chemistry, University of St. Andrews, St. Andrews, United Kingdom; and
| | - K Saki Raheem
- School of Chemistry, University of St. Andrews, St. Andrews, United Kingdom; and Department of Life Sciences, Faculty of Science and Technology, University of Westminster, London, United Kingdom
| | - David O'Hagan
- School of Chemistry, University of St. Andrews, St. Andrews, United Kingdom; and
| | - Maria A O'Connell
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Colin D Kay
- Department of Nutrition, Norwich Medical School, and
| |
Collapse
|
44
|
Nabavi SF, Barber AJ, Spagnuolo C, Russo GL, Daglia M, Nabavi SM, Sobarzo-Sánchez E. Nrf2 as molecular target for polyphenols: A novel therapeutic strategy in diabetic retinopathy. Crit Rev Clin Lab Sci 2016; 53:293-312. [PMID: 26926494 DOI: 10.3109/10408363.2015.1129530] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetic retinopathy is a microvascular complication of diabetes that is considered one of the leading causes of blindness among adults. More than 4.4 million people suffer from this disorder throughout the world. Growing evidence suggests that oxidative stress plays a crucial role in the pathophysiology of diabetic retinopathy. Nuclear factor erythroid 2-related factor 2 (Nrf2), a redox sensitive transcription factor, plays an essential protective role in regulating the physiological response to oxidative and electrophilic stress via regulation of multiple genes encoding antioxidant proteins and phase II detoxifying enzymes. Many studies suggest that dozens of natural compounds, including polyphenols, can supress oxidative stress and inflammation through targeting Nrf2 and consequently activating the antioxidant response element-related cytoprotective genes. Therefore, Nrf2 may provide a new therapeutic target for treatment of diabetic retinopathy. In the present article, we will focus on the role of Nrf2 in diabetic retinopathy and the ability of polyphenols to target Nrf2 as a therapeutic strategy.
Collapse
Affiliation(s)
- Seyed Fazel Nabavi
- a Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Alistair J Barber
- b Department of Ophthalmology , Penn State Hershey Eye Center, Penn State Hershey College of Medicine , Hershey , PA , USA
| | - Carmela Spagnuolo
- c Institute of Food Sciences, National Research Council , Avellino , Italy
| | - Gian Luigi Russo
- c Institute of Food Sciences, National Research Council , Avellino , Italy
| | - Maria Daglia
- d Department of Drug Sciences , Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia , Pavia , Italy , and
| | - Seyed Mohammad Nabavi
- a Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Eduardo Sobarzo-Sánchez
- e Laboratory of Pharmaceutical Chemistry , Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago De Compostela , Santiago De Compostela , Spain
| |
Collapse
|
45
|
Nabavi SF, Braidy N, Orhan IE, Badiee A, Daglia M, Nabavi SM. Rhodiola rosea L. and Alzheimer's Disease: From Farm to Pharmacy. Phytother Res 2016; 30:532-9. [PMID: 27059687 DOI: 10.1002/ptr.5569] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/07/2015] [Accepted: 12/12/2015] [Indexed: 12/22/2022]
Abstract
Rhodiola rosea L. (roseroot) is a common member of the family Crassulaceae, known as one of the most important popular medicinal plants in the northern region of Europe. The roots of R. rosea possess a wide range of pharmacological activities such as antioxidant, antiinflammatory, anticancer, cardioprotective, and neuroprotective effects that are because of the presence of different phytochemicals such as phenols and flavonoids. In addition, the presence of salidroside, rosavins, and p-tyrosol are responsible for its beneficial effects for the treatment of on depression, fatigue, and cognitive dysfunction. A plethora of studies report that R. rosea has potent neuroprotective effects through the suppression of oxidative stress, neuroinflammation, and excitotoxicity in brain tissues and antagonism of oncogenic p21-activated kinase. However, to our knowledge, no review articles have been published addressing the neuroprotective effects of R. rosea. Therefore, the present article aims at critically reviewing the available literature on the beneficial effects of R. rosea on as a therapeutic strategy for the treatment of Alzheimer's disease and other neurodegenerative diseases where oxidative stress plays a major role in disease development and progression. We also discuss the cultivation, phytochemistry, clinical impacts, and adverse effects of R. rosea to provide a broader insight on the therapeutic potential for this plant.
Collapse
Affiliation(s)
- Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Arash Badiee
- Deputy of Food and Drug, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Hussain SA, Sulaiman AA, Alhaddad H, Alhadidi Q. Natural polyphenols: Influence on membrane transporters. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2016; 5:97-104. [PMID: 27069731 PMCID: PMC4805155 DOI: 10.5455/jice.20160118062127] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/18/2016] [Indexed: 02/02/2023]
Abstract
Accumulated evidence has focused on the use of natural polyphenolic compounds as nutraceuticals since they showed a wide range of bioactivities and exhibited protection against variety of age-related disorders. Polyphenols have variable potencies to interact, and hence alter the activities of various transporter proteins, many of them classified as anion transporting polypeptide-binding cassette transporters like multidrug resistance protein and p-glycoprotein. Some of the efflux transporters are, generally, linked with anticancer and antiviral drug resistance; in this context, polyphenols may be beneficial in modulating drug resistance by increasing the efficacy of anticancer and antiviral drugs. In addition, these effects were implicated to explain the influence of dietary polyphenols on drug efficacy as result of food-drug interactions. However, limited data are available about the influence of these components on uptake transporters. Therefore, the objective of this article is to review the potential efficacies of polyphenols in modulating the functional integrity of uptake transporter proteins, including those terminated the effect of neurotransmitters, and their possible influence in neuropharmacology.
Collapse
Affiliation(s)
- Saad Abdulrahman Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Amal Ajaweed Sulaiman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Hasan Alhaddad
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Qasim Alhadidi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| |
Collapse
|
47
|
Di Lorenzo A, Nabavi SF, Sureda A, Moghaddam AH, Khanjani S, Arcidiaco P, Nabavi SM, Daglia M. Antidepressive-like effects and antioxidant activity of green tea and GABA green tea in a mouse model of post-stroke depression. Mol Nutr Food Res 2015; 60:566-79. [PMID: 26626862 DOI: 10.1002/mnfr.201500567] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/19/2015] [Accepted: 11/23/2015] [Indexed: 11/08/2022]
Abstract
SCOPE Growing evidence suggests that oxidative stress plays a role in the development of chronic diseases such as cardiovascular disease and some psychiatric disorders. Tea consumption exerts beneficial effects against damage induced by cerebral ischemia-reperfusion in ischemic stroke and depressive symptoms in depression. The aim of this study was to evaluate, in vivo, the protective activity of green tea (GT) and GABA green tea (GGT) against post-stroke depression (PSD), a common consequence of stroke. METHODS AND RESULTS The antidepressive-like effects of GT and GGT were determined by behavioral tests in a mouse model of post-stroke depression. The antioxidant activity was evaluated by GSH, SOD, and TBARS measurements on mouse brain. The chemical composition of tea extracts was characterized through chromatographic methods. GGT and GT resulted active in the modulation of depressive symptoms and the reduction of oxidative stress, restoring normal behavior, and at least in part, antioxidant endogenous defenses. The higher polyphenol, theanine, glutamine, and caffeine content may justify the higher activity found in GGT. CONCLUSIONS This work represents the first attempt to demonstrate the positive effect of tea, and especially GGT, on post-stroke depression and to correlate this effect with the antioxidant activity and phytochemical composition of tea.
Collapse
Affiliation(s)
- Arianna Di Lorenzo
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, Pavia University, Viale Taramelli 12, Pavia, Italy
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Grup de Nutrició Comunitària i Estrès Oxidatiu (IUNICS) and CIBEROBN (Physiopathology of Obesity and Nutrition) Universitat de les Illes Balears, Palma de Mallorca, Spain
| | | | - Sedigheh Khanjani
- Department of Biology, Faculty of Basic Sciences, University of Mazandaran, Iran
| | | | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, Pavia University, Viale Taramelli 12, Pavia, Italy
| |
Collapse
|
48
|
Nabavi SM, Daglia M, Braidy N, Nabavi SF. Natural products, micronutrients, and nutraceuticals for the treatment of depression: A short review. Nutr Neurosci 2015; 20:180-194. [DOI: 10.1080/1028415x.2015.1103461] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Nabavi SF, Sureda A, Habtemariam S, Nabavi SM. Ginsenoside Rd and ischemic stroke; a short review of literatures. J Ginseng Res 2015; 39:299-303. [PMID: 26869821 PMCID: PMC4593783 DOI: 10.1016/j.jgr.2015.02.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/08/2015] [Indexed: 01/05/2023] Open
Abstract
Panax ginseng is a well-known economic medical plant that is widely used in Chinese traditional medicine. This species contains a unique class of natural products-ginsenosides. Recent clinical and experimental studies have presented numerous lines of evidence on the promising role of ginsenosides on different diseases including neurodegenerative diseases, cardiovascular diseases, and certain types of cancer. Nowadays, most of the attention has focused on ginsenoside Rd as a neuroprotective agent to attenuate ischemic stroke damages. Some of the evidence showed that ginsenoside Rd ameliorates ischemic stroke-induced damages through the suppression of oxidative stress and inflammation. Ginsenoside Rd can prolong neural cells' survival through the upregulation of the endogenous antioxidant system, phosphoinositide-3-kinase/AKT and extracellular signal-regulated protein kinase 1/2 pathways, preservation of mitochondrial membrane potential, suppression of the nuclear factor-kappa B, transient receptor potential melastatin, acid sensing ion channels 1a, poly(ADP-ribose) polymerase-1, protein tyrosine kinase activation, as well as reduction of cytochrome c-releasing and apoptosis-inducing factor. In the current work, we review the available reports on the promising role of ginsenoside Rd on ischemic stroke. We also discuss its chemistry, source, and the molecular mechanism underlying this effect.
Collapse
Affiliation(s)
- Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, and CIBERobn (Physiopathology of Obesity and Nutrition), Palma de Mallorca, Balearic Islands, Spain
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories, Medway School of Science, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, UK
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
D'Andrea G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia 2015; 106:256-71. [PMID: 26393898 DOI: 10.1016/j.fitote.2015.09.018] [Citation(s) in RCA: 482] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 12/17/2022]
Abstract
Great interest is currently centered on the biologic activities of quercetin a polyphenol belonging to the class of flavonoids, natural products well known for their beneficial effects on health, long before their biochemical characterization. In particular, quercetin is categorized as a flavonol, one of the five subclasses of flavonoid compounds. Although flavonoids occur as either glycosides (with attached glycosyl groups) or as aglycones, most altogether of the dietary intake concerning quercetin is in the glycoside form. Following chewing, digestion, and absorption sugar moieties can be released from quercetin glycosides. Several organs contribute to quercetin metabolism, including the small intestine, the kidneys, the large intestine, and the liver, giving rise to glucuronidated, methylated, and sulfated forms of quercetin; moreover, free quercetin (such as aglycone) is also found in plasma. Quercetin is now largely utilized as a nutritional supplement and as a phytochemical remedy for a variety of diseases like diabetes/obesity and circulatory dysfunction, including inflammation as well as mood disorders. Owing to its basic chemical structure themost obvious feature of quercetin is its strong antioxidant activity which potentially enables it to quench free radicals from forming resonance-stabilized phenoxyl radicals. In this review the molecular, cellular, and functional bases of therapy will be emphasized taking strictly into account data appearing in the peer-reviewed literature and summarizing the main therapeutic applications of quercetin; furthermore, the drug metabolism and the main drug interaction as well as the potential toxicity will be also spotlighted.
Collapse
Affiliation(s)
- Gabriele D'Andrea
- University of L'Aquila, Dept. of Biotechnological and Applied Clinical Sciences, Via Vetoio, Coppito 2, 67100 L'Aquila, Italy.
| |
Collapse
|