1
|
Alhodieb FS, Rahman MA, Barkat MA, Alanezi AA, Barkat HA, Hadi HA, Harwansh RK, Mittal V. Nanomedicine-driven therapeutic interventions of autophagy and stem cells in the management of Alzheimer's disease. Nanomedicine (Lond) 2023; 18:145-168. [PMID: 36938800 DOI: 10.2217/nnm-2022-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Drug-loaded, brain-targeted nanocarriers could be a promising tool in overcoming the challenges associated with Alzheimer's disease therapy. These nanocargoes are enormously flexible to functionalize and facilitate the delivery of drugs to brain cells by bridging the blood-brain barrier and into brain cells. To date, modifications have included nanoparticles (NPs) coating with tunable surfactants/phospholipids, covalently attaching polyethylene glycol chains (PEGylation), and tethering different targeting ligands to cell-penetrating peptides in a manner that facilitates their entry across the BBB and downregulates various pathological hallmarks as well as intra- and extracellular signaling pathways. This review provides a brief update on drug-loaded, multifunctional nanocarriers and the therapeutic intervention of autophagy and stem cells in the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Fahad Saad Alhodieb
- Department of Clinical Nutrition, College of Applied Health Sciences in Arras, Qassim University, Ar Rass, 51921, Saudi Arabia
| | | | - Muhammad Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al Batin, 39524, Saudi Arabia
| | - Abdulkareem A Alanezi
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al Batin, 39524, Saudi Arabia
| | - Harshita Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al Batin, 39524, Saudi Arabia.,Dermatopharmaceutics Research Group, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, 25200, Malaysia
| | - Hazrina Ab Hadi
- Dermatopharmaceutics Research Group, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, 25200, Malaysia
| | - Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
2
|
Benedetti B, Couillard-Despres S. Why Would the Brain Need Dormant Neuronal Precursors? Front Neurosci 2022; 16:877167. [PMID: 35464307 PMCID: PMC9026174 DOI: 10.3389/fnins.2022.877167] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/11/2022] [Indexed: 12/13/2022] Open
Abstract
Dormant non-proliferative neuronal precursors (dormant precursors) are a unique type of undifferentiated neuron, found in the adult brain of several mammalian species, including humans. Dormant precursors are fundamentally different from canonical neurogenic-niche progenitors as they are generated exquisitely during the embryonic development and maintain a state of protracted postmitotic immaturity lasting up to several decades after birth. Thus, dormant precursors are not pluripotent progenitors, but to all effects extremely immature neurons. Recently, transgenic models allowed to reveal that with age virtually all dormant precursors progressively awaken, abandon the immature state, and become fully functional neurons. Despite the limited common awareness about these cells, the deep implications of recent discoveries will likely lead to revisit our understanding of the adult brain. Thus, it is timely to revisit and critically assess the essential evidences that help pondering on the possible role(s) of these cells in relation to cognition, aging, and pathology. By highlighting pivoting findings as well as controversies and open questions, we offer an exciting perspective over the field of research that studies these mysterious cells and suggest the next steps toward the answer of a crucial question: why does the brain need dormant neuronal precursors?
Collapse
Affiliation(s)
- Bruno Benedetti
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- *Correspondence: Sebastien Couillard-Despres,
| |
Collapse
|
3
|
Sharma HS, Sharma A. Preface. PROGRESS IN BRAIN RESEARCH 2021; 266:xxi-xxx. [PMID: 34689868 DOI: 10.1016/s0079-6123(21)00197-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Nanotechnology shaping stem cell therapy: Recent advances, application, challenges, and future outlook. Biomed Pharmacother 2021; 137:111236. [PMID: 33486201 DOI: 10.1016/j.biopha.2021.111236] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 01/10/2023] Open
Abstract
Currently, stem cell nanotechnology is one of the novel and exciting fields. Certain experimental studies conducted on the interaction of stem cells with nanostructures or nanomaterials have made significant progress. The significance of nanostructures, nanotechnology, and nanomaterials in the development of stem cell-based therapies for degenerative diseases and injuries has been well established. Specifically, the structure and properties of nanomaterials affecting the propagation and differentiation of stem cells have become a new interdisciplinary frontier in material science and regeneration medicines. In the current review, we highlight the recent major progress in this field, explore the application prospects, and discuss the issues, approaches, and challenges, to improve the applications of nanotechnology in the research and development of stem cells.
Collapse
|
5
|
Torfeh A, Abdolmaleki Z, Nazarian S, Shirazi Beheshtiha SH. Modafinil-coated nanoparticle increases expressions of brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor and neuronal nuclear protein, and protects against middle cerebral artery occlusion-induced neuron apoptosis in the rat hippocampus. Anat Rec (Hoboken) 2020; 304:2032-2043. [PMID: 33345406 DOI: 10.1002/ar.24581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/04/2020] [Accepted: 11/30/2020] [Indexed: 11/08/2022]
Abstract
The present study investigates the neuroprotective effects of modafinil-coated nanoparticle in rats' hippocampal CA1 region. Male Wistar rats (n = 48) were randomly divided into four groups. Then middle cerebral artery occlusion (MCAO) was performed by inserting a silicone coat filament in the right internal carotid artery via the external carotid artery until it reached the anterior cerebral artery. Modafinil (100 mg/kg) or modafinil-coated nanoparticle (100 mg/kg) was given to the rats as an oral gavage once a day. Infarct volume, brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), neuronal nuclear protein (NeuN) and Caspase-3 and, Caspase-8 as apoptotic genes were measured in the hippocampal CA1 region. Cresyl violet staining revealed that modafinil nanoparticle significantly decreased the neurodegeneration. Reverse transcription polymerase chain reaction results showed that modafinil nanoparticle use significantly increased the expression of neurotrophic factors (even more than modafinil alone group; p = .01). Moreover, the apoptotic markers were significantly decreased in nanoparticle modafinil (MN group); p < .05). The western blot analysis and Immunohistochemistry results confirmed the neuroprotective and anti-apoptotic effects of modafinil nanoparticle. This study's results showed that the use of modafinil-coated nanoparticle has neuroprotective effects by increasing neurotrophic factors and reducing apoptosis after MCAO in the CA1 area of the hippocampus. However, further studies are needed especially, in human samples.
Collapse
Affiliation(s)
- Alireza Torfeh
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Zohreh Abdolmaleki
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Sepideh Nazarian
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | |
Collapse
|
6
|
Thangudu S, Cheng FY, Su CH. Advancements in the Blood-Brain Barrier Penetrating Nanoplatforms for Brain Related Disease Diagnostics and Therapeutic Applications. Polymers (Basel) 2020; 12:E3055. [PMID: 33419339 PMCID: PMC7766280 DOI: 10.3390/polym12123055] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
Noninvasive treatments to treat the brain-related disorders have been paying more significant attention and it is an emerging topic. However, overcoming the blood brain barrier (BBB) is a key obstacle to most of the therapeutic drugs to enter into the brain tissue, which significantly results in lower accumulation of therapeutic drugs in the brain. Thus, administering the large quantity/doses of drugs raises more concerns of adverse side effects. Nanoparticle (NP)-mediated drug delivery systems are seen as potential means of enhancing drug transport across the BBB and to targeted brain tissue. These systems offer more accumulation of therapeutic drugs at the tumor site and prolong circulation time in the blood. In this review, we summarize the current knowledge and advancements on various nanoplatforms (NF) and discusses the use of nanoparticles for successful cross of BBB to treat the brain-related disorders such as brain tumors, Alzheimer's disease, Parkinson's disease, and stroke.
Collapse
Affiliation(s)
- Suresh Thangudu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Fong-Yu Cheng
- Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan
| | - Chia-Hao Su
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei 112, Taiwan
| |
Collapse
|
7
|
Zheng Y, Mao YR, Yuan TF, Xu DS, Cheng LM. Multimodal treatment for spinal cord injury: a sword of neuroregeneration upon neuromodulation. Neural Regen Res 2020; 15:1437-1450. [PMID: 31997803 PMCID: PMC7059565 DOI: 10.4103/1673-5374.274332] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 04/28/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022] Open
Abstract
Spinal cord injury is linked to the interruption of neural pathways, which results in irreversible neural dysfunction. Neural repair and neuroregeneration are critical goals and issues for rehabilitation in spinal cord injury, which require neural stem cell repair and multimodal neuromodulation techniques involving personalized rehabilitation strategies. Besides the involvement of endogenous stem cells in neurogenesis and neural repair, exogenous neural stem cell transplantation is an emerging effective method for repairing and replacing damaged tissues in central nervous system diseases. However, to ensure that endogenous or exogenous neural stem cells truly participate in neural repair following spinal cord injury, appropriate interventional measures (e.g., neuromodulation) should be adopted. Neuromodulation techniques, such as noninvasive magnetic stimulation and electrical stimulation, have been safely applied in many neuropsychiatric diseases. There is increasing evidence to suggest that neuromagnetic/electrical modulation promotes neuroregeneration and neural repair by affecting signaling in the nervous system; namely, by exciting, inhibiting, or regulating neuronal and neural network activities to improve motor function and motor learning following spinal cord injury. Several studies have indicated that fine motor skill rehabilitation training makes use of residual nerve fibers for collateral growth, encourages the formation of new synaptic connections to promote neural plasticity, and improves motor function recovery in patients with spinal cord injury. With the development of biomaterial technology and biomechanical engineering, several emerging treatments have been developed, such as robots, brain-computer interfaces, and nanomaterials. These treatments have the potential to help millions of patients suffering from motor dysfunction caused by spinal cord injury. However, large-scale clinical trials need to be conducted to validate their efficacy. This review evaluated the efficacy of neural stem cells and magnetic or electrical stimulation combined with rehabilitation training and intelligent therapies for spinal cord injury according to existing evidence, to build up a multimodal treatment strategy of spinal cord injury to enhance nerve repair and regeneration.
Collapse
Affiliation(s)
- Ya Zheng
- Rehabilitation Section, Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Ye-Ran Mao
- Rehabilitation Section, Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Dong-Sheng Xu
- Rehabilitation Section, Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education of the People's Republic of China, Tongji University, Shanghai, China
| | - Li-Ming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education of the People's Republic of China, Tongji University, Shanghai, China
- Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Application of Nanotechnology in Stem-Cell-Based Therapy of Neurodegenerative Diseases. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144852] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In addition to adverse health outcomes, neurological disorders have serious societal and economic impacts on patients, their family and society as a whole. There is no definite treatment for these disorders, and current available drugs only slow down the progression of the disease. In recent years, application of stem cells has been widely advanced due to their potential of self-renewal and differentiation to different cell types which make them suitable candidates for cell therapy. In particular, this approach offers great opportunities for the treatment of neurodegenerative disorders. However, some major issues related to stem-cell therapy, including their tumorigenicity, viability, safety, metastases, uncontrolled differentiation and possible immune response have limited their application in clinical scales. To address these challenges, a combination of stem-cell therapy with nanotechnology can be a solution. Nanotechnology has the potential of improvement of stem-cell therapy by providing ideal substrates for large scale proliferation of stem cells. Application of nanomaterial in stem-cell culture will be also beneficial to modulation of stem-cell differentiation using nanomedicines. Nanodelivery of functional compounds can enhance the efficiency of neuron therapy by stem cells and development of nanobased techniques for real-time, accurate and long-lasting imaging of stem-cell cycle processes. However, these novel techniques need to be investigated to optimize their efficiency in treatment of neurologic diseases.
Collapse
|
9
|
Balasubramanian V, Domanskyi A, Renko JM, Sarparanta M, Wang CF, Correia A, Mäkilä E, Alanen OS, Salonen J, Airaksinen AJ, Tuominen R, Hirvonen J, Airavaara M, Santos HA. Engineered antibody-functionalized porous silicon nanoparticles for therapeutic targeting of pro-survival pathway in endogenous neuroblasts after stroke. Biomaterials 2019; 227:119556. [PMID: 31670035 DOI: 10.1016/j.biomaterials.2019.119556] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 01/04/2023]
Abstract
Generation of new neurons by utilizing the regenerative potential of adult neural stem cells (NSCs) and neuroblasts is an emerging therapeutic strategy to treat various neurodegenerative diseases, including neuronal loss after stroke. Committed to neuronal lineages, neuroblasts are differentiated from NSCs and have a lower proliferation rate. In stroke the proliferation of the neuroblasts in the neurogenic areas is increased, but the limiting factor for regeneration is the poor survival of migrating neuroblasts. Survival of neuroblasts can be promoted by small molecules; however, new drug delivery methods are needed to specifically target these cells. Herein, to achieve specific targeting, we have engineered biofunctionalized porous silicon nanoparticles (PSi NPs) conjugated with a specific antibody against polysialylated neural cell adhesion molecule (PSA-NCAM). The PSi NPs loaded with a small molecule drug, SC-79, were able to increase the activity of the Akt signaling pathway in doublecortin positive neuroblasts both in cultured cells and in vivo in the rat brain. This study opens up new possibilities to target drug effects to migrating neuroblasts and facilitate differentiation, maturation and survival of developing neurons. The conjugated PSi NPs are a novel tool for future studies to develop new therapeutic strategies aiming at regenerating functional neurocircuitry after stoke.
Collapse
Affiliation(s)
- Vimalkumar Balasubramanian
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Finland.
| | - Andrii Domanskyi
- Institute of Biotechnology, HiLIFE, University of Helsinki, FI-00014, Finland.
| | - Juho-Matti Renko
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, FI-00014, Finland
| | - Mirkka Sarparanta
- Department of Chemistry, Radiochemistry, University of Helsinki, FI-00014, Finland
| | - Chang-Fang Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Finland.
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Finland
| | - Ermei Mäkilä
- Department of Physics and Astronomy, Laboratory of Industrial Physics, University of Turku, FI-20520, Finland
| | - Osku S Alanen
- Department of Chemistry, Radiochemistry, University of Helsinki, FI-00014, Finland
| | - Jarno Salonen
- Department of Chemistry, Radiochemistry, University of Helsinki, FI-00014, Finland
| | - Anu J Airaksinen
- Department of Chemistry, Radiochemistry, University of Helsinki, FI-00014, Finland
| | - Raimo Tuominen
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, FI-00014, Finland
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Finland
| | - Mikko Airavaara
- Institute of Biotechnology, HiLIFE, University of Helsinki, FI-00014, Finland.
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Finland; Helsinki Institute of Life Sciences, HiLIFE, University of Helsinki, FI-00014 Finland.
| |
Collapse
|
10
|
Praça C, Rai A, Santos T, Cristovão AC, Pinho SL, Cecchelli R, Dehouck MP, Bernardino L, Ferreira LS. A nanoformulation for the preferential accumulation in adult neurogenic niches. J Control Release 2018; 284:57-72. [DOI: 10.1016/j.jconrel.2018.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/05/2018] [Accepted: 06/09/2018] [Indexed: 02/08/2023]
|
11
|
Pinho S, Macedo MH, Rebelo C, Sarmento B, Ferreira L. Stem cells as vehicles and targets of nanoparticles. Drug Discov Today 2018; 23:1071-1078. [DOI: 10.1016/j.drudis.2018.01.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/22/2017] [Accepted: 01/07/2018] [Indexed: 12/16/2022]
|
12
|
Khatoon M, Shah KU, Din FU, Shah SU, Rehman AU, Dilawar N, Khan AN. Proniosomes derived niosomes: recent advancements in drug delivery and targeting. Drug Deliv 2017; 24:56-69. [PMID: 29130758 PMCID: PMC8812579 DOI: 10.1080/10717544.2017.1384520] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vesicular drug delivery systems have gained wide attention in the field of nanotechnology. Among them proniosomes become the superior over other vesicular carriers. Proniosomes are dry formulations of water soluble nonionic surfactant coated carrier system which immediately forms niosomes upon hydration. They have the capability to overcome the instability problems associated with niosomes and liposomes and have the potential to improve solubility, bioavailability, and absorption of various drugs. Furthermore, they offer versatile drug delivery concept for enormous number of hydrophilic and hydrophobic drugs. They have the potential to deliver drugs effectively through different routes at specific site of action to achieve controlled release action and reduce toxic effects associated with drugs. This review discusses the general preparation techniques of proniosomes and mainly focus on the applications of proniosomes in drug delivery and targeting. Moreover, this review demonstrates critical appraisal of the literature for proniosomes. Additionally, this review extensively explains the potential of proniosomes in delivering drugs via different routes, such as oral, parenteral, dermal and transdermal, ocular, oral mucosal, vaginal, pulmonary, and intranasal. Finally, the comparison of proniosomes with niosomes manifests the clear distinction between them. Moreover, proniosomes need to be explored for proteins and peptide delivery and in the field of nutraceuticals and develop pilot plant scale up studies to investigate them in industrial set up.
Collapse
Affiliation(s)
- Maryam Khatoon
- Department of Pharmacy, Quaid-e-Azam University, Islamabad, Pakistan
| | | | - Fakhar Ud Din
- Department of Pharmacy, Quaid-e-Azam University, Islamabad, Pakistan
| | - Shefaat Ullah Shah
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, D.I. Khan, Pakistan
| | - Asim Ur Rehman
- Department of Pharmacy, Quaid-e-Azam University, Islamabad, Pakistan
| | - Naz Dilawar
- Department of Pharmacy, Quaid-e-Azam University, Islamabad, Pakistan
| | - Ahmad Nawaz Khan
- School of Chemical and materials Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
13
|
Saraiva C, Ferreira L, Bernardino L. Traceable microRNA-124 loaded nanoparticles as a new promising therapeutic tool for Parkinson's disease. NEUROGENESIS 2016; 3:e1256855. [PMID: 28405588 DOI: 10.1080/23262133.2016.1256855] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/22/2016] [Accepted: 11/01/2016] [Indexed: 01/09/2023]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder characterized by the selective degeneration of the nigrostriatal dopaminergic pathway, is a major socio-economic burden in modern society. While there is presently no cure for PD, enhancing the number of neural stem cells (NSCs) and/or stimulating their differentiation into new neurons are promising therapeutic strategies. Many proneurogenic factors have been implicated in controlling NSCs activity, including the microRNA (miR)-124. However, current strategies described for the intracellular delivery of miR involve mostly unspecific or inefficient platforms. In Saraiva et al. we developed miR-124 loaded nanoparticles (NPs) able to efficiently deliver miR-124 into neural stem/progenitor cells and boost neuronal differentiation and maturation in vitro. In vivo, the intracerebroventricular injection of miR-124 NPs increased the number of new neurons in the olfactory bulb of healthy and 6-hydroxidopamine (6-OHDA) lesioned mice, a model for PD. Importantly, miR-124 NPs enhanced the migration of new neurons into the 6-OHDA lesioned striatum, culminating in motor function improvement. Given the recent advent of clinical trials for miR-based therapies and the theranostic applications of our NPs, we expect to support the clinical translation of our delivery platform in the context of PD and other neurodegenerative diseases which may benefit from enhancing miR levels.
Collapse
Affiliation(s)
- Cláudia Saraiva
- Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior , Covilhã, Portugal
| | - Lino Ferreira
- CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal; Biocant - Center of Innovation in Biotechnology, Cantanhede, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal
| | - Liliana Bernardino
- Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior , Covilhã, Portugal
| |
Collapse
|
14
|
Niosomal approach to brain delivery: Development, characterization and in vitro toxicological studies. Int J Pharm 2016; 511:969-82. [PMID: 27498282 DOI: 10.1016/j.ijpharm.2016.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/30/2016] [Accepted: 08/02/2016] [Indexed: 01/15/2023]
Abstract
The majority of active agents do not readily permeate into brain due to the presence of the blood-brain barrier and blood-cerebrospinal fluid barrier. Currently, the most innovative and promising non-invasive strategy in brain delivery is the design and preparation of nanocarriers, which can move through the brain endothelium. Niosomes can perform brain delivery, in fact polysorbates, can act as an anchor for apolipoprotein E from blood plasma. The particles mimic LDL and interact with the LDL receptor leading to the endothelial cells uptake. The efficacy of niosomes for anticancer therapeutic applications was correlated to their physicochemical and drug delivery properties. Dimensions and ζ-potential were characterized using dynamic light scattering and asymmetric flow-field fractionation system. Lipid bilayer was characterized measuring the fluidity, polarity and microviscosity by fluorescent probe spectra evaluation. Morphology and homogeneity were characterized using atomic force microscopy. Physicochemical stability and serum stability (45% v/v fetal bovine and human serum) were evaluated as a function of time using dynamic light scattering. U87-MG human glioblastoma cells were used to evaluate vesicle cytotoxicity and internalisation efficiency. From the obtained data, the systems appear useful to perform a prolonged (modified) release of biological active substances to the central nervous system.
Collapse
|
15
|
Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases. J Control Release 2016; 235:34-47. [DOI: 10.1016/j.jconrel.2016.05.044] [Citation(s) in RCA: 813] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022]
|
16
|
Saraiva C, Paiva J, Santos T, Ferreira L, Bernardino L. MicroRNA-124 loaded nanoparticles enhance brain repair in Parkinson's disease. J Control Release 2016; 235:291-305. [PMID: 27269730 DOI: 10.1016/j.jconrel.2016.06.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/29/2016] [Accepted: 06/02/2016] [Indexed: 01/17/2023]
Abstract
Modulation of the subventricular zone (SVZ) neurogenic niche can enhance brain repair in several disorders including Parkinson's disease (PD). Herein, we used biocompatible and traceable polymeric nanoparticles (NPs) containing perfluoro-1,5-crown ether (PFCE) and coated with protamine sulfate to complex microRNA-124 (miR-124), a neuronal fate determinant. The ability of NPs to efficiently deliver miR-124 and prompt SVZ neurogenesis and brain repair in PD was evaluated. In vitro, miR-124 NPs were efficiently internalized by neural stem/progenitors cells and neuroblasts and promoted their neuronal commitment and maturation. The expression of Sox9 and Jagged1, two miR-124 targets and stemness-related genes, were also decreased upon miR-124 NP treatment. In vivo, the intracerebral administration of miR-124 NPs increased the number of migrating neuroblasts that reached the granule cell layer of the olfactory bulb, both in healthy and in a 6-hydroxydopamine (6-OHDA) mouse model for PD. MiR-124 NPs were also able to induce migration of neurons into the lesioned striatum of 6-OHDA-treated mice. Most importantly, miR-124 NPs proved to ameliorate motor symptoms of 6-OHDA mice, monitored by the apomorphine-induced rotation test. Altogether, we provide clear evidences to support the use of miR-124 NPs as a new therapeutic approach to boost endogenous brain repair mechanisms in a setting of neurodegeneration.
Collapse
Affiliation(s)
- C Saraiva
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - J Paiva
- CNC-Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal; Biocant - Center of Innovation in Biotechnology, 3060-197 Cantanhede, Portugal
| | - T Santos
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - L Ferreira
- CNC-Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal; Biocant - Center of Innovation in Biotechnology, 3060-197 Cantanhede, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
| | - L Bernardino
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal.
| |
Collapse
|
17
|
Delivery of differentiation factors by mesoporous silica particles assists advanced differentiation of transplanted murine embryonic stem cells. Stem Cells Transl Med 2013. [PMID: 24089415 DOI: 10.5966/sctm.2013-0072] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Stem cell transplantation holds great hope for the replacement of damaged cells in the nervous system. However, poor long-term survival after transplantation and insufficiently robust differentiation of stem cells into specialized cell types in vivo remain major obstacles for clinical application. Here, we report the development of a novel technological approach for the local delivery of exogenous trophic factor mimetics to transplanted cells using specifically designed silica nanoporous particles. We demonstrated that delivering Cintrofin and Gliafin, established peptide mimetics of the ciliary neurotrophic factor and glial cell line-derived neurotrophic factor, respectively, with these particles enabled not only robust functional differentiation of motor neurons from transplanted embryonic stem cells but also their long-term survival in vivo. We propose that the delivery of growth factors by mesoporous nanoparticles is a potentially versatile and widely applicable strategy for efficient differentiation and functional integration of stem cell derivatives upon transplantation.
Collapse
|
18
|
Santos T, Ferreira R, Maia J, Agasse F, Xapelli S, Cortes L, Bragança J, Malva JO, Ferreira L, Bernardino L. Polymeric nanoparticles to control the differentiation of neural stem cells in the subventricular zone of the brain. ACS NANO 2012; 6:10463-10474. [PMID: 23176155 DOI: 10.1021/nn304541h] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Herein, we report the use of retinoic acid-loaded polymeric nanoparticles as a potent tool to induce the neuronal differentiation of subventricular zone neural stem cells. The intracellular delivery of retinoic acid by the nanoparticles activated nuclear retinoic acid receptors, decreased stemness, and increased proneurogenic gene expression. Importantly, this work reports for the first time a nanoparticle formulation able to modulate in vivo the subventricular zone neurogenic niche. The work further compares the dynamics of initial stages of differentiation between SVZ cells treated with retinoic acid-loaded polymeric nanoparticles and solubilized retinoic acid. The nanoparticle formulation developed here may ultimately offer new perspectives to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Tiago Santos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|