1
|
Wu G, Liao J, Zhu X, Zhang Y, Lin Y, Zeng Y, Zhao J, Zhang J, Yao T, Shen X, Li H, Hu L, Zhang W. Shexiang Baoxin Pill enriches Lactobacillus to regulate purine metabolism in patients with stable coronary artery disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155727. [PMID: 38781732 DOI: 10.1016/j.phymed.2024.155727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND It has been clinically confirmed that the Shexiang Baoxin Pill (SBP) dramatically reduces the frequency of angina in patients with stable coronary artery disease (SCAD). However, potential therapeutic mechanism of SBP has not been fully explored. PURPOSE The study explored the therapeutic mechanism of SBP in the treatment of SCAD patients. METHODS We examined the serum metabolic profiles of patients with SCAD following SBP treatment. A rat model of acute myocardial infarction (AMI) was established, and the potential therapeutic mechanism of SBP was explored using metabolomics, transcriptomics, and 16S rRNA sequencing. RESULTS SBP decreased inosine production and improved purine metabolic disorders in patients with SCAD and in animal models of AMI. Inosine was implicated as a potential biomarker for SBP efficacy. Furthermore, SBP inhibited the expression of genes involved in purine metabolism, which are closely associated with thrombosis, inflammation, and platelet function. The regulation of purine metabolism by SBP was associated with the enrichment of Lactobacillus. Finally, the effects of SBP on inosine production and vascular function could be transmitted through the transplantation of fecal microbiota. CONCLUSION Our study reveals a novel mechanism by which SBP regulates purine metabolism by enriching Lactobacillus to exert cardioprotective effects in patients with SCAD. The data also provide previously undocumented evidence indicating that inosine is a potential biomarker for evaluating the efficacy of SBP in the treatment of SCAD.
Collapse
Affiliation(s)
- Gaosong Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jingyu Liao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoyan Zhu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuhao Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuan Lin
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuanyuan Zeng
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Jing Zhao
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Jingfang Zhang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Tingting Yao
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xiaoxu Shen
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Houkai Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Liang Hu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Weidong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
2
|
Wang A, Song Q, Li Y, Fang H, Ma X, Li Y, Wei B, Pan C. Effect of traditional Chinese medicine on metabolism disturbance in ischemic heart diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118143. [PMID: 38583735 DOI: 10.1016/j.jep.2024.118143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic heart diseases (IHD), characterized by metabolic dysregulation, contributes majorly to the global morbidity and mortality. Glucose, lipid and amino acid metabolism are critical energy production for cardiomyocytes, and disturbances of these metabolism lead to the cardiac injury. Traditional Chinese medicine (TCM), widely used for treating IHD, have been demonstrated to effectively and safely regulate the cardiac metabolism reprogramming. AIM OF THE REVIEW This study discussed and analyzed the disturbed cardiac metabolism induced by IHD and development of formulas, extracts, single herb, bioactive compounds of TCM ameliorating IHD injury via metabolism regulation, with the aim of providing a basis for the development of clinical application of therapeutic strategies for TCM in IHD. MATERIALS AND METHODS With "ischemic heart disease", "myocardial infarction", "myocardial ischemia", "metabolomics", "Chinese medicine", "herb", "extracts" "medicinal plants", "glucose", "lipid metabolism", "amino acid" as the main keywords, PubMed, Web of Science, and other online search engines were used for literature retrieval. RESULTS IHD exhibits a close association with metabolism disorders, including but not limited to glycolysis, the TCA cycle, oxidative phosphorylation, branched-chain amino acids, fatty acid β-oxidation, ketone body metabolism, sphingolipid and glycerol-phospholipid metabolism. The therapeutic potential of TCM lies in its ability to regulate these disturbed cardiac metabolisms. Additionally, the active ingredients of TCM have depicted wonderful effects in cardiac metabolism reprogramming in IHD. CONCLUSION Drawing from the principles of TCM, we have pinpointed specific herbal remedies for the treatment of IHD, and leveraged advanced metabolomics technologies to uncover the effect of these TCMs on metabolomics alteration. In the future, further clinical experimental studies should be included to explore whether more TCM medicines can play a therapeutic role in IHD by reversing cardiac metabolism disorders; multi-omics would be conducted to explore more pathways and genes targeting such metabolism reprogramming by TCMs, and to seek more TCM therapies for IHD.
Collapse
Affiliation(s)
- Anpei Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Qiubin Song
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Yi Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Hai Fang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Xiaoji Ma
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Yunxia Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Bo Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China.
| | - Chengxue Pan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
3
|
Zhang X, Liao W, Ding X, Zhang Y, Long C, Zhou Q, Wang Y, Wu H, Tan G. Multiple-matrices metabolomics combined with serum pharmacochemistry for discovering the potential targets and active constituents of Qifu decoction against heart failure. J Pharm Biomed Anal 2024; 244:116114. [PMID: 38522367 DOI: 10.1016/j.jpba.2024.116114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024]
Abstract
Qifu decoction (QFD) is an ancient traditional Chinese medicine (TCM) prescription for the treatment of heart failure. However, the mechanisms and active constituents of QFD are poorly understood. In this study, multi-matrices metabolomics (serum, urine, and myocardial mitochondria) based on ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOFMS), were employed for exploring the mechanisms of QFD against heart failure in rat model. Twenty-one, seventeen, and fifteen endogenous metabolite biomarkers associated with heart failure were identified from serum, urine, and myocardial mitochondria datasets, respectively. Fourteen, twelve, and ten of the identified serum, urine, and mitochondria biomarkers were significantly reversed by QFD, respectively. QFD-targeted pathways were involved in TCA cycle, branched chain amino acids metabolism, fatty acid β-oxidation, sphingolipid metabolism, glycerophospholipid metabolism, arachidonic acid metabolism, tryptophan metabolism, purine metabolism. In addition, QFD-derived constituents in serum were fully analyzed by UHPLC-Q-TOFMS and SUS-plot, and 24 QFD-derived components were identified in serum. Then, the correlation analysis between the QFD-reversed serum biomarkers and QFD-derived constituents in serum was employed to dissect the active constituents of QFD. It was found that eight prototypical components and three metabolites were highly correlated with efficacy and could serve as the active constituents of QFD against heart failure. Finally, neoline and calycosin, which highly correlated with branched-chain amino acid metabolism and fatty acid β-oxidation, were selected to validate in Na2S2O4-induced cell model. It was found that neoline and calycosin provided a significant protective effect against Na2S2O4-induced cell death in a low dose-dependent manner and increased the expressions of the pathway-related protein CPT1B and BCAT2 in the cell model. In conclusions, these findings provided light on the mechanisms and active constituents of QFD against heart failure. Neoline and calycosin could be selected as potential quality-markers of QFD against heart failure.
Collapse
Affiliation(s)
- Xingxing Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, China; School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| | - Wenting Liao
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Ding
- School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| | - Ya Zhang
- School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| | - Cuiping Long
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, China; School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| | - Qian Zhou
- Department of Traditional Chinese Medicine, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Yuwei Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| | - Hong Wu
- School of Pharmacy, Air Force Medical University, Xi'an 710032, China.
| | - Guangguo Tan
- School of Pharmacy, Air Force Medical University, Xi'an 710032, China.
| |
Collapse
|
4
|
Lin W, Chen X, Wang D, Lu R, Zhang C, Niu Z, Chen J, Ruan X, Wang X. Single-nucleus ribonucleic acid-sequencing and spatial transcriptomics reveal the cardioprotection of Shexiang Baoxin Pill (SBP) in mice with myocardial ischemia-reperfusion injury. Front Pharmacol 2023; 14:1173649. [PMID: 37229263 PMCID: PMC10203427 DOI: 10.3389/fphar.2023.1173649] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Aim: The Shexiang Baoxin Pill (SBP) has been extensively used to treat cardiovascular diseases in China for four decades, and its clinical efficacy has been widely approved. However, the mechanism by which this is achieved remains largely unexplored. Research attempting to understand the underlying mechanism is ongoing, but the findings are controversial. Here, we aimed to explore the possible mechanism of SBP in myocardial ischemia-reperfusion (I/R) injury using heart single-nucleus and spatial ribonucleic acid (RNA) sequencing. Methods: We established a murine myocardial I/R injury model in C57BL/6 mice by ligating and recanalizing the left coronary artery anterior descending branch. Subsequently, single-nucleus RNA-seq and spatial transcriptomics were performed on mice cardiac tissue. We initially assessed the status of cell types and subsets in the model administered with or without SBP. Results: We used single-nucleus RNA sequencing to comprehensively analyze cell types in the cardiac tissue of sham, I/R, and SBP mice. Nine samples from nine individuals were analyzed, and 75,546 cells were obtained. We classified the cells into 28 clusters based on their expression characteristics and annotated them into seven cell types: cardiomyocytes, endothelial cells, fibroblasts, myeloid cells, smooth muscle cells, B cells, and T cells. The SBP group had distinct cellular compositions and features than the I/R group. Furthermore, SBP-induced cardioprotection against I/R was associated with enhanced cardiac contractility, reduced endocardial cell injury, increased endocardial-mediated angiogenesis, and inhibited fibroblast proliferation. In addition, macrophages had active properties. Conclusion: SBP improves the early LVEF of I/R mice and has a cardioprotective effect. Through sequencing analysis, we observed that SBP can increase the gene expression of Nppb and Npr3 in the infarct area of the heart. Npr3 is related to vascular generation mediated by endocardial cells and requires further research. In addition, SBP increases the number of fibroblasts, inhibits the expression of genes related to fibroblast activation and proliferation, and increases the transformation of endothelial cells into fibroblasts. These findings will help to indicate directions for further research.
Collapse
Affiliation(s)
- Wenyong Lin
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Chen
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongyuan Wang
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ruixia Lu
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunling Zhang
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenchao Niu
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Chen
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaofen Ruan
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaolong Wang
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Effects of Herbal Therapy on Intestinal Microbiota and Serum Metabolomics in Different Rat Models of Mongolian Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7255780. [PMID: 35677380 PMCID: PMC9170395 DOI: 10.1155/2022/7255780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022]
Abstract
Objective Heyi disease, Xila disease, and Badagan disease are three common diseases in Mongolian medicine. The changes in intestinal microbiota may be associated with the occurrence, development, and treatment of these diseases. This study aimed to investigate the effects of herbal treatment on intestinal microbiota and serum metabolites in rats with these three diseases. Methods Firstly, Heyi, Xila, and Badagan disease model rats were established by environmental, diet, and drug intervention. Then, 16S rRNA gene sequencing and metabolomics analysis were used to analyze the changes in intestinal microbiota and serum metabolites after treatment. PICRUSt analysis was applied to predict the potential functions of intestinal microbiota, and OPLS-DA multivariate model was applied to screen differential serum metabolites. Results 16S rRNA gene sequencing showed that herbal treatment significantly increased the species diversity and changed the composition of intestinal microbiota in Heyi disease and Xila disease rats. After treatment, there were 10, 9, and 3 bacterial biomarkers that were increased in Heyi, Xila, and Badagan disease rats, respectively. In the Heyi disease model, treatment resulted in 45 differential serum metabolites, involving 4 pathways. In the Badagan disease model, treatment resulted in 62 differential serum metabolites, involving 4 pathways. However, there was no significant difference in serum metabolites between TreatB and ConB in the Xila disease model. Conclusions Herbal treatment significantly changed the intestinal microbiota and serum metabolites of rats with three Mongolian medicine diseases.
Collapse
|
6
|
Qin H, Li S, Liu Z. Protective Effect of Shexiang Baoxin Pill on Myocardial Ischemia/Reperfusion Injury in Patients With STEMI. Front Pharmacol 2021; 12:721011. [PMID: 34603032 PMCID: PMC8479593 DOI: 10.3389/fphar.2021.721011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/25/2021] [Indexed: 01/11/2023] Open
Abstract
Background: There is no definite effect in the treatment of myocardial ischemia/reperfusion (I/R) injury in patients with acute ST-segment elevation myocardial infarction (STEMI). We evaluated the protective effect of Shexiang Baoxin Pill (SBP) on I/R injury in STEMI patients. Methods: STEMI patients were randomly divided into a primary percutaneous coronary intervention (PPCI) group (n = 52) and a PPCI + SBP group (n = 51). The area at risk of infarction (AAR) and final infarct size (FIS) were examined by single-photon emission computed tomography (SPECT). I/R injury was assessed using myocardial salvage (MS) and salvage index (SI) calculated from AAR and FIS. Results: The ST-segment resolution (STR) in the PPCI + SBP group was significantly higher than that in the PPCI group (p = 0.036), and the peak value of high-sensitivity troponin T (hsTNT) was lower than that in the PPCI group (p = 0.048). FIS in the PPCI + SBP group was smaller than that in the PPCI group (p = 0.047). MS (p = 0.023) and SI (p = 0.006) in the PPCI + SBP group were larger than those in the PPCI group. The left ventricular ejection fraction (LVEF) in the PPCI + SBP group was higher than that in the PPCI group (p = 0.049), and N-terminal pro-B type natriuretic peptide (NT-proBNP) level in the PPCI + SBP group was lower than that in the PPCI group (p = 0.048). Conclusions: SBP can alleviate I/R injury (MS and SI), decrease myocardial infarction area (peak value of hsTNT and FIS), and improve myocardial reperfusion (MBG and STR) and cardiac function (LVEF and NT-proBNP).
Collapse
Affiliation(s)
- Haixia Qin
- Ordos Central Hospital, Ordos Clinical Medical College, Inner Mongolia Medical University, Ordos, China
| | - Siyuan Li
- Ordos Central Hospital, Ordos Clinical Medical College, Inner Mongolia Medical University, Ordos, China
| | - Zhenbing Liu
- Ordos Central Hospital, Ordos Clinical Medical College, Inner Mongolia Medical University, Ordos, China
| |
Collapse
|
7
|
Qin ZS, Zheng Y, Zhou XD, Shi DD, Cheng D, Shek CS, Zhan CS, Zhang ZJ. Shexiang Baoxin Pill, a Proprietary Multi-Constituent Chinese Medicine, Prevents Locomotor and Cognitive Impairment Caused by Brain Ischemia and Reperfusion Injury in Rats: A Potential Therapy for Neuropsychiatric Sequelae of Stroke. Front Pharmacol 2021; 12:665456. [PMID: 33986688 PMCID: PMC8111446 DOI: 10.3389/fphar.2021.665456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke is a common type of cerebrovascular event and also the leading cause of disability. Post-stroke cognitive impairment occurs frequently in stroke survivors. Shexiang Baoxin Pill (SBP) is a proprietary Chinese medicine, initially used to treat cardiovascular diseases. Herein, we aim to explore the effects of SBP on oxygen glucose deprivation and reoxygenation (OGD/R) in neuronal cells (CATH.a) and cerebral ischemia/reperfusion injury induced post-stroke cognitive impairment in middle cerebral artery occlusion (MCAO) rat model. MCAO rats received two doses of oral SBP treatment (28 or 56 mg/kg) after 1 h of operation and once daily for 2 weeks continuously. Behavioral tests, immunoblotting, and immunofluorescence were examined after 14 days. Current data suggest that SBP enhanced cell viability and downregulated apoptosis via activating the PI3K/Akt signaling pathway in CATH. a cells. Furthermore, 14 days of SBP treatment promoted the recovery of learning and locomotor function in the MCAO rats. SBP up-regulated the expression of p-Akt, p-GSK3β, as well as the expression of NMDAR1, PSD-95, and AMPAR. Also, SBP down-regulated the expression of p-CaMKII. These results indicated that long-term SBP treatment might be a potential option for cognitive impairment induced by the ischemic stroke.
Collapse
Affiliation(s)
- Zong-Shi Qin
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu Zheng
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xi-Dan Zhou
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dong-Dong Shi
- Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Cheng
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chun Shum Shek
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chang-Sen Zhan
- Shanghai Hutchison Pharmaceuticals Ltd., Shanghai, China.,Shanghai Engineering Research Center for Innovation of Solid Preparation of TCM, Shanghai, China
| | - Zhang-Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Choi RJ, Mohamad Zobir SZ, Alexander-Dann B, Sharma N, Ma MK, Lam BY, Yeo GS, Zhang W, Fan TP, Bender A. Combination of Ginsenosides Rb2 and Rg3 Promotes Angiogenic Phenotype of Human Endothelial Cells via PI3K/Akt and MAPK/ERK Pathways. Front Pharmacol 2021; 12:618773. [PMID: 33643049 PMCID: PMC7902932 DOI: 10.3389/fphar.2021.618773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/11/2021] [Indexed: 11/26/2022] Open
Abstract
Shexiang Baoxin Pill (SBP) is an oral formulation of Chinese materia medica for the treatment of angina pectoris. It displays pleiotropic roles in protecting the cardiovascular system. However, the mode of action of SBP in promoting angiogenesis, and in particular the synergy between its constituents is currently not fully understood. The combination of ginsenosides Rb2 and Rg3 were studied in human umbilical vein endothelial cells (HUVECs) for their proangiogenic effects. To understand the mode of action of the combination in more mechanistic detail, RNA-Seq analysis was conducted, and differentially expressed genes (DEGs), pathway analysis and Weighted Gene Correlation Network Analysis (WGCNA) were applied to further identify important genes that a play pivotal role in the combination treatment. The effects of pathway-specific inhibitors were observed to provide further support for the hypothesized mode of action of the combination. Ginsenosides Rb2 and Rg3 synergistically promoted HUVEC proliferation and tube formation under defined culture conditions. Also, the combination of Rb2/Rg3 rescued cells from homocysteine-induced damage. mRNA expression of CXCL8, CYR61, FGF16 and FGFRL1 was significantly elevated by the Rb2/Rg3 treatment, and representative signaling pathways induced by these genes were found. The increase of protein levels of phosphorylated-Akt and ERK42/44 by the Rb2/Rg3 combination supports the notion that it promotes endothelial cell proliferation via the PI3K/Akt and MAPK/ERK signaling pathways. The present study provides the hypothesis that SBP, via ginsenosides Rb2 and Rg3, involves the CXCR1/2 CXCL8 (IL8)-mediated PI3K/Akt and MAPK/ERK signaling pathways in achieving its proangiogenic effects.
Collapse
Affiliation(s)
- Ran Joo Choi
- Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Siti Zuraidah Mohamad Zobir
- Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Ben Alexander-Dann
- Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Nitin Sharma
- Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Marcella K.L. Ma
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome–MRC Institute of Metabolic Science, Genomics and Transcriptomics Core, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Brian Y.H. Lam
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome–MRC Institute of Metabolic Science, Genomics and Transcriptomics Core, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Giles S.H. Yeo
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome–MRC Institute of Metabolic Science, Genomics and Transcriptomics Core, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Weidong Zhang
- Department of Pharmacy, Second Military Medical University, Shanghai, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Andreas Bender
- Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Zhao L, Qiu X, Wang R, Wang D. 1H NMR-based metabolomics study of the dynamic effect of Xue-Fu-Zhu-Yu capsules on coronary heart disease rats induced by high-fat diet, coronary artery ligation. J Pharm Biomed Anal 2020; 195:113869. [PMID: 33401116 DOI: 10.1016/j.jpba.2020.113869] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 01/12/2023]
Abstract
An 1H NMR-based metabolomics approach was conducted to holisticly explore the effect of Xue Fu Zhu Yu (XFZY) capsule (a well-known Chinese herbal medicine) on high-fat diets combined with coronary artery ligation induced coronary heart disease (CHD) model rats. 1H NMR-based metabolomics approach combined with multivariate analysis was performed to explore potential biomarkers, a total of 20 metabolites were confirmed as contributors to the discrimination of model group and sham group. We investigated the dynamic metabolic characteristics of XFZY capsule on CHD rats, lactate, glutamine, pyruvate, citrate, choline and taurine were potential biomarkers of early effect. More potential biomarkers changed after 28 days of medication, XFZY capsules primarily influenced the taurine and hypotaurine metabolism, glycine, serine and threonine metabolism, glyoxylate and dicarboxylate metabolism, purine metabolism, glycolysis/gluconeogenesis, amino sugar and nucleotide sugar metabolism, primary bile acid biosynthesis.
Collapse
Affiliation(s)
- LinLin Zhao
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - XinJian Qiu
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - RuiYi Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - DongSheng Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
10
|
Zhang F, Huang J, He RJ, Wang L, Huo PC, Guan XQ, Fang SQ, Xiang YW, Jia SN, Ge GB. Herb-drug interaction between Styrax and warfarin: Molecular basis and mechanism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 77:153287. [PMID: 32739573 DOI: 10.1016/j.phymed.2020.153287] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Styrax, one of the most famous folk medicines, has been frequently used for the treatment of cardiovascular diseases and skin problems in Asia and Africa. It is unclear whether Styrax or Styrax-related herbal medicines may trigger clinically relevant herb-drug interactions. PURPOSE This study was carried out to investigate the inhibitory effects of Styrax on human cytochrome P450 enzymes (CYPs) and to clarify whether this herb may modulate the pharmacokinetic behavior of the CYP-substrate drug warfarin when co-administered. STUDY DESIGN The inhibitory effects of Styrax on CYPs were assayed in human liver microsomes (HLM), while the pharmacokinetic interactions between Styrax and warfarin were investigated in rats. The bioactive constituents in Styrax with strong CYP3A inhibitory activity were identified and their inhibitory mechanisms were carefully investigated. METHODS The inhibitory effects of Styrax on human CYPs were assayed in vitro, while the pharmacokinetic interactions between Styrax and warfarin were studied in rats. Fingerprinting analysis of Styrax coupled with LC-TOF-MS/MS profiling and CYP inhibition assays were used to identify the constituents with strong CYP3A inhibitory activity. The inhibitory mechanism of oleanonic acid (the most potent CYP3A inhibitor occurring in Styrax) against CYP3A4 was investigated by a panel of inhibition kinetics analyses and in silico analysis. RESULTS In vitro assays demonstrated that Styrax extract strongly inhibited human CYP3A and moderately inhibited six other tested human CYPs, as well as potently inhibited warfarin 10-hydroxylation in liver microsomes from both humans and rats. In vivo assays demonstrated that compared with warfarin given individually in rats, Styrax (100 mg/kg) significantly prolonged the plasma half-life of warfarin by 2.3-fold and increased the AUC(0-inf) of warfarin by 2.7-fold when this herb was co-administrated with warfarin (2 mg/kg) in rats. Two LC fractions were found with strong CYP3A inhibitory activity and the major constituents in these fractions were characterized by LC-TOF-MS/MS. Five pentacyclic triterpenoid acids (including epibetulinic acid, betulinic acid, betulonic acid, oleanonic acid and maslinic acid) present in Styrax were potent CYP3A inhibitors, and oleanonic acid was a competitive inhibitor against CYP3A-mediated testosterone 6β-hydroxylation. CONCLUSION Styrax and the pentacyclic triterpenoid acids occurring in this herb strongly modulate the pharmacokinetic behavior of warfarin via inhibition of CYP3A.
Collapse
Affiliation(s)
- Feng Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Huang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Pharmacology and Toxicology Division, Shanghai Institute of Food and Drug Control, Shanghai, China
| | - Rong-Jing He
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peng-Chao Huo
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Qing Guan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sheng-Quan Fang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200473, China
| | - Yan-Wei Xiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shou-Ning Jia
- Qinghai Hospital of Traditional Chinese Medicine, Xining, China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200473, China.
| |
Collapse
|
11
|
Wu G, Chen L, Gu Y, Hong Y, Ma J, Zheng N, Zhong J, Liu AJ, Sheng L, Zhang W, Li H. Exploring the mechanism underlying the cardioprotective effect of shexiang baoxin pill on acute myocardial infarction rats by comprehensive metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:113001. [PMID: 32464316 DOI: 10.1016/j.jep.2020.113001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shexiang Baoxin Pill (SBP) is a commercial Chinese medicine included in the Chinese Pharmacopoeia with well-established cardiovascular protect effect in clinic. However, the mechanism of SBP underlying protective effect on cardiovascular disease has not been clearly elucidated yet. AIM OF THE STUDY We aimed to investigate the underlying protective mechanisms of SBP on an acute myocardial infarction (AMI) rat model by using comprehensive metabolomics. MATERIALS AND METHODS The rat model of AMI was generated by ligating the left anterior descending coronary artery. After two weeks of treatment with SBP, comprehensive metabolomics and echocardiography index was performed for a therapeutic evaluation. The wiff data were processed using Progenesis QI and metabolites were identified based on the database of HMDB and LIPIDMAPS. Meanwhile, the untargeted metabolomics data from LC-MS combined with correlation analysis to characterize the metabolic alterations. RESULTS The metabolomics profiles of different groups in different biological samples (heart, serum, urine and feces) were significantly different, in which a total of 217 metabolites were identified. AMI caused comprehensive metabolic changes in amino acid metabolism, glycerophospholipid metabolism and pyrimidine metabolism, while SBP reversed more than half of the differential metabolic changes, mainly affecting amino acid metabolism, butanoate metabolism and glycerophospholipid metabolism. Correlation analysis found that SBP could significantly alter the metabolic activity of six key metabolites (5-hydroxyindoleacetic acid, glycerophosphocholine, PS (20:4/0:0), xanthosine, adenosine and L-phenylalanine) related to AMI. The key role of these metabolites was further validated with correlation analysis with echocardiography indexes. CONCLUSION This study demonstrated that SBP was effective for protecting cardiac dysfunction by regulating amino acid, lipid and energy metabolisms. The results also suggested that the modulation on gut microbiota might be involved the cardioprotective effect of SBP.
Collapse
Affiliation(s)
- Gaosong Wu
- Interdisciplinary Science Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Linlin Chen
- Interdisciplinary Science Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu Gu
- Interdisciplinary Science Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Hong
- Interdisciplinary Science Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Junli Ma
- Interdisciplinary Science Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ningning Zheng
- Interdisciplinary Science Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Zhong
- Interdisciplinary Science Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, 313000, China
| | - Ai-Jun Liu
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Lili Sheng
- Interdisciplinary Science Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Weidong Zhang
- Interdisciplinary Science Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Houkai Li
- Interdisciplinary Science Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
12
|
Hu WH, Mak SH, Zheng ZY, Xia YJ, Xu ML, Duan R, Dong TTX, Li SP, Zhan CS, Shang XH, Tsim KWK. Shexiang Baoxin Pill, a Traditional Chinese Herbal Formula, Rescues the Cognitive Impairments in APP/PS1 Transgenic Mice. Front Pharmacol 2020; 11:1045. [PMID: 32765267 PMCID: PMC7381243 DOI: 10.3389/fphar.2020.01045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/26/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Shexiang Baoxin Pill (SBP), a formulated traditional Chinese medicine (TCM), has been widely used to treat cardiovascular diseases for years. This herbal mixture has been shown to promote differentiation of cultured neuronal cells. Here, we aimed to investigate the effects of SBP in attenuating cognitive impairment in APP/PS1 transgenic mice. METHODS Ethanol and water extracts of SBP, denoted as SBPEtOH and SBPwater, were standardized and applied onto cultured rat pheochromocytoma PC12 cells. The potential effect of SBPEtOH extract in attenuating the cognitive impairments in APP/PS1 transgenic mice was shown by following lines of evidence: (i) inhibition of Aβ fibril formation, (ii) suppression of secretions of cytokines, and (iii) improvement of behavioral tests by Morris water maze. RESULTS SBPwater and SBPEtOH inhibited the formation of β-amyloid fibrils and protected the Aβ-induced cytotoxicity in cultured PC12 cells. In APP/PS1 transgenic mice, the treatment of SBPEtOH inhibited expressions of NO, NOS, AChE, as well as aggregation of Aβ. Besides, the levels of pro-inflammatory cytokines were suppressed by SBP treatment in the transgenic mice. Importantly, the behavioral tests by Morris Water maze indicated that SBP attenuated cognitive impairments in APP/PS1 transgenic mice. CONCLUSION The current result has supported the notion that SPB might ameliorate the cognitive impairment through multiple targets, suggesting that SBP could be considered as a promising anti-AD agent.
Collapse
Affiliation(s)
- Wei-Hui Hu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Shing-Hung Mak
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Zhong-Yu Zheng
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Ying-Jie Xia
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Miranda Li Xu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Ran Duan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Tina Ting-Xia Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Shao-Ping Li
- Institute of Chinese Medical Sciences, University of Macau, Macau, Macau
| | - Chang-Sen Zhan
- Shanghai Engineering Research Center for Innovation of Solid Preparation of TCM, Shanghai, China
- Shanghai Hutchison Pharmaceuticals Ltd., Shanghai, China
| | - Xiao-Hui Shang
- Shanghai Engineering Research Center for Innovation of Solid Preparation of TCM, Shanghai, China
- Shanghai Hutchison Pharmaceuticals Ltd., Shanghai, China
| | - Karl Wah-Keung Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Lu L, Qin Y, Chen C, Zhang X, Xu X, Lv C, Wan X, Ruan W, Guo X. The atheroprotective roles of heart-protecting musk pills against atherosclerosis development in apolipoprotein E-deficient mice. ANNALS OF TRANSLATIONAL MEDICINE 2020; 7:714. [PMID: 32042730 DOI: 10.21037/atm.2019.12.22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Heart-protecting musk pill (HMP), derived from Chinese herbal medicines, has been found to possess protective roles against atherosclerosis-related cardiovascular diseases (CVDs), however, the anti-atherosclerotic mechanisms of HMP are still unclear. Here, we investigated the effects of HMP on alleviating atherosclerotic lesion severity in mice and explored the molecular mechanisms. Methods Apolipoprotein E-deficient mice were fed western-type diet supplemented with HMP (25 mg/kg/day) or normal saline gavage for 20 weeks. Then histopathological staining was performed to assess the atheromatous plaque burden. Biochemical kits were used to detect levels of lipid profiles. Moreover, effector factors associated with lipid metabolism in liver and intestinal tissues were investigated by western blot and real-time PCR assays. Levels of signal molecules participating in the mitochondrial-mediated apoptosis pathway were detected by Western blot. Results We found that HMP notably reduced atherosclerotic lesion size (P<0.05) and improved plaque stability (P<0.05). HMP treatment decreased circulating TC (P<0.01), LDL-C (P<0.01) and TG (P<0.05) levels and increased HDL-C (P<0.05) content. HMP was found to suppress SREBP2, HMGCR and PCSK9 expressions (P<0.05), yet promote LDLR expression (P<0.05) in hepatocytes. Moreover, HMP was discovered to activate PPARα/CPT-1A cascade (P<0.05) and inhibit contents of SREBP1c and the lipogenic genes FAS and ACCα (P<0.05). The LBK1/AMPK cascade was also activated after HMP administration (P<0.05). Additionally, HMP was found to facilitate transintestinal cholesterol excretion by increasing ABCG5 and ABCG8 levels and reducing NPC1L1 content (P<0.05). In terms of vasoprotective activities, we observed that HMP decreased cleaved caspase-3 content (P<0.05) in the vascular intima, which might be due to inhibition of mitochondrial-related signaling pathway. Conclusions Altogether, our study indicates that HMP plays anti-atherosclerotic roles via regulating lipid metabolism and improving vascular intimal injury.
Collapse
Affiliation(s)
- Li Lu
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yating Qin
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chen Chen
- Department of Cardiology, The Third People's Hospital of Hubei Province, Wuhan 430030, China
| | - Xinxin Zhang
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangyu Xu
- Department of Cardiology, The Second Hospital of Shandong University, Jinan 250000, China
| | - Chao Lv
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoning Wan
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weibin Ruan
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaomei Guo
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
14
|
Zhang J, Cui Q, Zhao Y, Guo R, Zhan C, Jiang P, Luan P, Zhang P, Wang F, Yang L, Yang X, Xu Y. Mechanism of angiogenesis promotion with Shexiang Baoxin Pills by regulating function and signaling pathway of endothelial cells through macrophages. Atherosclerosis 2019; 292:99-111. [PMID: 31785495 DOI: 10.1016/j.atherosclerosis.2019.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 10/11/2019] [Accepted: 11/12/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND AIMS "Shexiang Baoxin Pill" (SBP), a commonly used traditional Chinese medicine, has been used to treat angina, myocardial infarction and coronary heart disease in China for thirty years. SBP has been proven to promote angiogenesis in a rat model of myocardial infarction (MI). The aim of the present study was to determine the pro-angiogenic effects and mechanism of SBP during inflammation or ischemic pathological conditions and elucidate its regulatory effects on endothelial cell function and signaling pathways mediated by macrophages. METHODS We used a polyvinyl alcohol (PVA) sponge implantation mouse model as an inflammatory angiogenesis model and utilized a mouse femoral artery ligation model as a hind limb ischemia model. We also performed cell proliferation, cell migration and tubule formation in vitro experiments to assess the effects of SBP on endothelial cell function and signaling pathways by stimulating macrophage activity. RESULTS The in vitro experiment results showed that SBP could significantly increase the expression of mRNAs and proteins associated with angiogenesis in endothelial cells by activating macrophages to release pro-angiogenic factors such as Vegf-a. Activation of macrophages by SBP eventually led to endothelial cell proliferation, migration and tubule formation and increased the expression of p-Akt and p-Erk1/2 proteins in the downstream PI3K/Akt and MAPK/Erk1/2 signaling pathways related to angiogenesis, respectively. The in vivo experiment results indicated that SBP had angiogenesis effects in both inflammatory and ischemic angiogenesis models with dose- and time-dependent effects. CONCLUSION Shexiang Baoxin Pills can promote angiogenesis by activating macrophages to regulate endothelial cell function and signal transduction pathways.
Collapse
Affiliation(s)
- Jiange Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200, Cailun Road, Pudong, Shanghai, China.
| | - Qianfei Cui
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Yiran Zhao
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Runan Guo
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Changsen Zhan
- Shanghai Hutchison Pharmaceuticals Co., Ltd, Shanghai, China; Shanghai Engineering Research Center for Innovation of Solid Preparation of Traditional Chinese Medicine, Shanghai, China.
| | - Peng Jiang
- Shanghai Hutchison Pharmaceuticals Co., Ltd, Shanghai, China; Shanghai Engineering Research Center for Innovation of Solid Preparation of Traditional Chinese Medicine, Shanghai, China
| | - Pengwei Luan
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Pei Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200, Cailun Road, Pudong, Shanghai, China
| | - Feiyun Wang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200, Cailun Road, Pudong, Shanghai, China
| | - Liuqing Yang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200, Cailun Road, Pudong, Shanghai, China
| | - Xiyan Yang
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Yulan Xu
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Xu ML, Zheng ZY, Xia YJ, Liu EYL, Chan SKH, Hu WH, Duan R, Dong TTX, Zhan CS, Shang XH, Tsim KWK. Shexiang Baoxin Pill, a Formulated Chinese Herbal Mixture, Induces Neuronal Differentiation of PC12 Cells: A Signaling Triggered by Activation of Protein Kinase A. Front Pharmacol 2019; 10:1130. [PMID: 31649530 PMCID: PMC6794430 DOI: 10.3389/fphar.2019.01130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/30/2019] [Indexed: 01/24/2023] Open
Abstract
Background: Shexiang Baoxin Pill (SBP) is a well-known composite formula of traditional Chinese medicine (TCM), which is commonly used today in treating cardiovascular diseases. SBP consists of seven materials thereof, including Moschus, extract of Ginseng Radix et Rhizoma, Bovis Calculus Artifactus, Cinnamomi Cortex, Styrax, Bufonis Venenum, and Borneolum Syntheticum. Here, we are investigating the potential roles of SBP in inducing neuron differentiation, i.e., seeking possible application in neurodegenerative diseases. Methods: Water and ethanol extracts of SBP, denoted as SBPwater and SBPEtOH, respectively, as well as its individual herbal materials, were standardized and applied onto cultured rat pheochromocytoma PC12 cells. The potential effect of SBP extracts in neuronal differentiation was suggested by following parameters: (i) induction of neurite outgrowth of PC12 cells, (ii) increase of neurofilament expression, and (iii) activation of transcription of neurofilament. Results: The treatments of SBPwater and SBPEtOH, or extracts from individual herbal materials, with or without low concentration of nerve growth factor (NGF), could potentiate the differentiation of cultured PC12 cells. The differentiation was indicated by increase of neurite outgrowth, as well as expression of neurofilaments. In addition, application of H89, a protein kinase A (PKA) inhibitor, suppressed the SBP-induced neurofilament expressions, as well as the phosphorylation of cAMP-responsive element binding protein (CREB) in cultures. Conclusion: SBP is proposed to possess trophic activity in modulating neuronal differentiation of PC12 cells, and this induction is shown to be mediated partly by a cAMP-PKA signaling pathway. These results indicate the neurite-promoting SBP could be useful in developing potential drug in treating or preventing neurodegenerative diseases.
Collapse
Affiliation(s)
- Miranda Li Xu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Zhong-Yu Zheng
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Ying-Jie Xia
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Etta Yun-Le Liu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Stanley Ka-Ho Chan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Wei-Hui Hu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Ran Duan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Tina Ting-Xia Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Chang-Sen Zhan
- Shanghai Hutchison Pharmaceuticals Ltd, Shanghai, China.,Shanghai Engineering Research Center for Innovation of Solid Preparation of TCM, Shanghai, China
| | - Xiao-Hui Shang
- Shanghai Hutchison Pharmaceuticals Ltd, Shanghai, China.,Shanghai Engineering Research Center for Innovation of Solid Preparation of TCM, Shanghai, China
| | - Karl Wah-Keung Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| |
Collapse
|
16
|
Wu G, Zhang W, Li H. Application of metabolomics for unveiling the therapeutic role of traditional Chinese medicine in metabolic diseases. JOURNAL OF ETHNOPHARMACOLOGY 2019; 242:112057. [PMID: 31279867 DOI: 10.1016/j.jep.2019.112057] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/12/2019] [Accepted: 07/03/2019] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional medicine has been practiced for thousands of years in China and some Asian countries. Traditional Chinese Medicine (TCM) is characterized as multi-component and multiple targets in disease therapy, and it is a great challenge for elucidating the mechanisms of TCM. AIM OF THE REVIEW Comprehensively summarize the application of metabolomics in biomarker discovery, stratification of TCM syndromes, and mechanism underlying TCM therapy on metabolic diseases. METHODS This review systemically searched the publications with key words such as metabolomics, traditional Chinese medicine, metabolic diseases, obesity, cardiovascular disease, diabetes mellitus in "Title OR Abstract" in major databases including PubMed, the Web of Science, Google Scholar, Science Direct, CNKI from 2010 to 2019. RESULTS A total of 135 papers was searched and included in this review. An overview of articles indicated that metabolic characteristics may be a hallmark of different syndromes/models of metabolic diseases, which provides a new perspective for disease diagnosis and therapeutic optimization. Moreover, TCM treatment has significantly altered the metabolic perturbations associated with metabolic diseases, which may be an important mechanism for the therapeutic effect of TCM. CONCLUSIONS Until now, many metabolites and differential biomarkers related to the pathogenesis of metabolic diseases and TCM therapy have been discovered through metabolomics research. Unfortunately, the biological role and mechanism of disease-related metabolites were largely unclarified so far, which warrants further investigation.
Collapse
Affiliation(s)
- Gaosong Wu
- Interdisciplinary Science Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Weidong Zhang
- Interdisciplinary Science Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Houkai Li
- Interdisciplinary Science Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
17
|
Yi M, Li Q, Zhao Y, Nie S, Wu N, Wang D. Metabolomics study on the therapeutic effect of traditional Chinese medicine Xue-Fu-Zhu-Yu decoction in coronary heart disease based on LC-Q-TOF/MS and GC-MS analysis. Drug Metab Pharmacokinet 2019; 34:340-349. [PMID: 31474470 DOI: 10.1016/j.dmpk.2019.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 07/07/2019] [Accepted: 07/31/2019] [Indexed: 11/29/2022]
Abstract
The present study aims is to investigate the metabolic mechanism of Xue-Fu-Zhu-Yu decoction (XFZYD) in the treatment of blood-stasis syndrome in Coronary Heart Disease (CHD). To that end, 30 CHD patients with Blood-Stasis Syndrome (BSS) and 20 healthy subjects were enrolled. LC-Q-TOF/MS analysis determined that in comparison between CHD with BSS patients (Group A) and healthy subjects (Group C), 59 significantly differential metabolites in the positive mode and 18 significantly differential metabolites in the negative mode. The metabolite constituents in the plasma of 30 CHD with BSS patients before (group A) and after 30 days of treatment (Group B), and 20 healthy subjects (Group C) were analyzed using LC-Q-TOF/MS and GC-MS. Based on multivariate statistical analysis (PCA, PLS-DA and OPLS-DA), we determined 69 differential metabolites. The levels of hemorheology indexes were significantly down-regulated after treatment. Metabolic pathway attribution analysis showed that lipid metabolism, amino acid metabolism and bile acid metabolism pathways are involved. Our study identifies the metabolic networks of CHD and demonstrates the efficacy of this metabolomics approach to systematically study the therapeutic effect of XFZYC on CHD.
Collapse
Affiliation(s)
- Min Yi
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan, 410008, China
| | - Qiuxia Li
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan, 410008, China
| | - Yuhang Zhao
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan, 410008, China
| | - Shanshan Nie
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan, 410008, China
| | - Ning Wu
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan, 410008, China
| | - Dongsheng Wang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan, 410008, China.
| |
Collapse
|
18
|
Zhao JH, Zhang L, Liu Y, Cheng QL. Effect of Shexiang Baoxin Pill () in Alleviating Early Hypertensive Renal Injury in Rats. Chin J Integr Med 2019; 27:47-53. [PMID: 31187418 DOI: 10.1007/s11655-019-3162-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate the effect of Shexiang Baoxin Pill (, SBP) on early hypertensive renal injury in rats and to explore the possible mechanism. METHODS Twelve-week-old spontaneous hypertensive rats (SHRs) with high-salt diet (dietary containing 8% NaCl) were randomized into the SBP group [40 mg/(kg·d)], losartan potassium group [20 mg/(kg·d)] and saline group by stratified random sampling method, 12 in each group. Blood pressure and urea albumin creatinine ratio were measured. After 10 weeks, the expression levels of serum creatinine (Scr), hypersensitive C-reactive protein (hs-CRP), interleukin (IL)-1 β, IL-6, tumor necrosis factor α (TNF-α), and transforming growth factor β (TGF-β) in serum were assessed. Kidney pathology periodate-schiff staining was performed. Semi-quantitative count of macrophage infiltration was determined by immunochemistry of CD68 staining. Real-time quantitative polymerase chain reaction and Western blot were performed to examine the mRNA and protein expressions of Toll-like receptor 4 (TLR4), nuclear factor κB (NF-κB), monocyte chemokine peptide (MCP-1), inducible nitric oxide synthase (iNOS), and arginase-1 (Arg-1). RESULTS SBP did not affect the mortality of SHR (P<0.05). SBP significantly reduced the level of elevated blood pressure of SHRs, but the effect was less significantly than that of losartan potassium. SBP decreased urine protein (P<0.01) and the expression levels of IL-1 β, IL-6, TNF-α, and TGF-β in serum. The 22-week-old SHRs showed mild proliferation of glomerular endothelial cells, glomerular ischemic lesions, inflammatory cell infiltration in renal tubular interstitium and arteriosclerosis. Both SBP and losartan potassium had alleviated renal pathological change, and significantly reduced the infiltration of macrophage (P<0.05, P<0.01). SBP and losartan potassium decreased the expressions of TLR4, NF-κB, MCP-1, iNOS, and Arg-1. CONCLUSION SBP significantly modified the early hypertensive renal injury by reducing inflammation, and the effect was similar to losartan potassium.
Collapse
Affiliation(s)
- Jia-Hui Zhao
- Department of Geriatric Nephrology, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Lei Zhang
- Department of Geriatric Nephrology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yang Liu
- Department of Geriatric Nephrology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qing-Li Cheng
- Department of Geriatric Nephrology, Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
19
|
Lu L, Sun X, Chen C, Qin Y, Guo X. Shexiang Baoxin Pill, Derived From the Traditional Chinese Medicine, Provides Protective Roles Against Cardiovascular Diseases. Front Pharmacol 2018; 9:1161. [PMID: 30487746 PMCID: PMC6246622 DOI: 10.3389/fphar.2018.01161] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/24/2018] [Indexed: 12/31/2022] Open
Abstract
Shexiang Baoxin Pill (SBP), derived from the traditional Chinese medicine, has been broadly applied for the treatment of cardiovascular diseases including coronary heart disease, heart failure, and hypertension in East Asia for decades. Emerging pharmacological studies have revealed that SBP displays pleiotropic roles in protecting the cardiovascular system, as seen by the promotion of angiogenesis, amelioration of inflammation, improvement of endothelium dysfunction, mitigation of dyslipidemia, repression of vascular smooth muscle cell proliferation, and migration and restraint of cardiac remodeling. In terms of clinical practice, the clinical trials and meta-analyses have proved the efficacy and safety of SBP. In this review, we, for the first time, systematically summarize the cardioprotective effects and underlying mechanisms of SBP and provide novel insights into future research directions of SBP based on the experimental and clinical perspectives.
Collapse
Affiliation(s)
- Li Lu
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaodong Sun
- Department of Orthopedics, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yating Qin
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomei Guo
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Zhang A, Sun H, Wang X. Mass spectrometry-driven drug discovery for development of herbal medicine. MASS SPECTROMETRY REVIEWS 2018; 37:307-320. [PMID: 28009933 DOI: 10.1002/mas.21529] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Herbal medicine (HM) has made a major contribution to the drug discovery process with regard to identifying products compounds. Currently, more attention has been focused on drug discovery from natural compounds of HM. Despite the rapid advancement of modern analytical techniques, drug discovery is still a difficult and lengthy process. Fortunately, mass spectrometry (MS) can provide us with useful structural information for drug discovery, has been recognized as a sensitive, rapid, and high-throughput technology for advancing drug discovery from HM in the post-genomic era. It is essential to develop an efficient, high-quality, high-throughput screening method integrated with an MS platform for early screening of candidate drug molecules from natural products. We have developed a new chinmedomics strategy reliant on MS that is capable of capturing the candidate molecules, facilitating their identification of novel chemical structures in the early phase; chinmedomics-guided natural product discovery based on MS may provide an effective tool that addresses challenges in early screening of effective constituents of herbs against disease. This critical review covers the use of MS with related techniques and methodologies for natural product discovery, biomarker identification, and determination of mechanisms of action. It also highlights high-throughput chinmedomics screening methods suitable for lead compound discovery illustrated by recent successes.
Collapse
Affiliation(s)
- Aihua Zhang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of TCM State Administration, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hui Sun
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of TCM State Administration, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xijun Wang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of TCM State Administration, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
21
|
Chinese patent medicine Xin-Ke-Shu inhibits Ca 2+ overload and dysfunction of fatty acid β -oxidation in rats with myocardial infarction induced by LAD ligation. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1079:85-94. [DOI: 10.1016/j.jchromb.2018.01.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/08/2018] [Accepted: 01/29/2018] [Indexed: 01/06/2023]
|
22
|
Liu J, Liu J, Shen F, Qin Z, Jiang M, Zhu J, Wang Z, Zhou J, Fu Y, Chen X, Huang C, Xiao W, Zheng C, Wang Y. Systems pharmacology analysis of synergy of TCM: an example using saffron formula. Sci Rep 2018; 8:380. [PMID: 29321678 PMCID: PMC5762866 DOI: 10.1038/s41598-017-18764-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/17/2017] [Indexed: 01/13/2023] Open
Abstract
Traditional Chinese medicine (TCM) follows the principle of formulae, in which the pharmacological activity of a single herb can be enhanced or potentiated by addition of other herbs. Nevertheless, the involved synergy mechanisms in formulae remain unknown. Here, a systems-based method is proposed and applied to three representative Chinese medicines in compound saffron formula (CSF): two animal spices (Moschus, Beaver Castoreum), and one herb Crocus sativus which exert synergistic effects for cardiovascular diseases (CVDs). From the formula, 42 ingredients and 66 corresponding targets are acquired based on the ADME evaluation and target fishing model. The network relationships between the compounds and targets are assembled with CVDs pathways to elucidate the synergistic therapeutic effects between the spices and the herbs. The results show that different compounds of the three medicines show similar curative activity in CVDs. Additionally, the active compounds from them shared CVDs-relevant targets (multiple compounds-one target), or functional diversity targets but with clinical relevance (multiple compounds-multiple targets-one disease). Moreover, the targets of them are largely enriched in the same CVDs pathways (multiple targets-one pathway). These results elucidate why animal spices and herbs can have pharmacologically synergistic effects on CVDs, which provides a new way for drug discovery.
Collapse
Affiliation(s)
- Jianling Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Jingjing Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Fengxia Shen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Zonghui Qin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Meng Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Jinglin Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Zhenzhong Wang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, China
| | - Jun Zhou
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, China
| | - Yingxue Fu
- Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, China
| | - Xuetong Chen
- Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, China
| | - Chao Huang
- Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, China.
| | - Chunli Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.
| | - Yonghua Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
23
|
Wu JS, Li YF, Li YY, Dai Y, Li WK, Zheng M, Shi ZC, Shi R, Wang TM, Ma BL, Liu P, Ma YM. Huangqi Decoction Alleviates Alpha-Naphthylisothiocyanate Induced Intrahepatic Cholestasis by Reversing Disordered Bile Acid and Glutathione Homeostasis in Mice. Front Pharmacol 2017; 8:938. [PMID: 29311939 PMCID: PMC5742571 DOI: 10.3389/fphar.2017.00938] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/11/2017] [Indexed: 12/13/2022] Open
Abstract
Intrahepatic cholestasis is a serious symptom of liver disorders with limited therapies. In this study, we investigated the efficacy of Huangqi decoction (HQD), a two-herb classic traditional Chinese medicine (TCM), in the treatment of alpha-naphthylisothiocyanate (ANIT)-induced intrahepatic cholestasis in mice. HQD treatment ameliorated impaired hepatic function and tissue damage. A metabolomics study revealed that the endogenous metabolites significantly affected by HQD were related to bile acid (BA) biosynthesis and glutathione metabolism pathways. HQD treatment decreased the intrahepatic accumulation of cytotoxic BAs, normalized serum BA levels, and increased biliary and urinary BA excretion. Additionally, HQD restored the hepatic glutathione content and suppressed reactive oxygen species (ROS) in cholestatic mice. Protein and gene analysis revealed that HQD increased the expression of the hepatic metabolizing enzymes cytochrome P450 (CYP) 2B10 and UDP glucuronosyltransferase family 1 member A1 (UGT1A1), as well as multidrug resistance-associated protein 2 (Mrp2), Mrp3, and Mrp4, which play crucial roles in BA homeostasis. Further, HQD increased the protein expression of glutamate-cysteine ligase, which is involved in the synthesis of glutathione. Importantly, HQD increased the nuclear expression of nuclear factor-E2-related factor-2 (Nrf2). In conclusion, HQD protects against intrahepatic cholestasis by reversing the disordered homeostasis of BAs and glutathione.
Collapse
Affiliation(s)
- Jia-Sheng Wu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Fei Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan-Yuan Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Dai
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Kai Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Zheng
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng-Chun Shi
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Shi
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-Ming Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing-Liang Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue-Ming Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
24
|
Metabolomics highlights pharmacological bioactivity and biochemical mechanism of traditional Chinese medicine. Chem Biol Interact 2017; 273:133-141. [PMID: 28619388 DOI: 10.1016/j.cbi.2017.06.011] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/13/2017] [Accepted: 06/12/2017] [Indexed: 01/08/2023]
|
25
|
Zhang KJ, Zhu JZ, Bao XY, Zheng Q, Zheng GQ, Wang Y. Shexiang Baoxin Pills for Coronary Heart Disease in Animal Models: Preclinical Evidence and Promoting Angiogenesis Mechanism. Front Pharmacol 2017; 8:404. [PMID: 28701954 PMCID: PMC5487520 DOI: 10.3389/fphar.2017.00404] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/08/2017] [Indexed: 12/18/2022] Open
Abstract
Shexiang Baoxin Pill (SBP) originated from a classical TCM Fufang Suhexiang Pill for chest pain with dyspnea in the Southern Song Dynasty (1107–110 AD). Here, we aimed to evaluate preclinical evidence and possible mechanism of SBP for experimental coronary heart disease (CHD). Studies of SBP in animal models with CHD were identified from 6 databases until April 2016. Study quality for each included article was evaluated according to the CAMARADES 10-item checklist. Outcome measures were myocardial infarction area, vascular endothelial growth factor (VEGF) and microvessel count (MVC). All the data were analyzed by using RevMan 5.1 software. As a consequence, 25 studies with 439 animals were identified. The quality score of studies ranged from 2 to 5, with the median of 3.6. Meta-analysis of seven studies showed more significant effects of SBP on the reduction of the myocardial infarction area than the control (P < 0.01). Meta-analysis of eight studies showed significant effects of SBP for increasing VEGF expression compared with the control (P < 0.01). Meta-analysis of 10 studies indicated that SBP significantly improved MVC compared with the control (P < 0.01). In conclusion, these findings preliminarily demonstrated that SBP can reduce myocardial infarction area, exerting cardioprotective function largely through promoting angiogenesis.
Collapse
Affiliation(s)
- Ke-Jian Zhang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Jia-Zhen Zhu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Xiao-Yi Bao
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Qun Zheng
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Guo-Qing Zheng
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Yan Wang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, China
| |
Collapse
|
26
|
Huang F, Liu Y, Yang X, Che D, Qiu K, Hammock BD, Wang J, Wang MH, Chen J, Huang H. Shexiang Baoxin pills promotes angiogenesis in myocardial infarction rats via up-regulation of 20-HETE-mediated endothelial progenitor cells mobilization. Atherosclerosis 2017. [PMID: 28646793 DOI: 10.1016/j.atherosclerosis.2017.06.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS Therapeutic angiogenesis is a pivotal strategy for ischemic heart disease. The aim of the present study was to determine the effect and molecular mechanism of Shexiang Baoxin pills, a widely-used traditional Chinese medicine for ischemic heart disease, on angiogenesis in a rat model of myocardial infarction (MI). METHODS We used the occlusion of left anterior descending coronary artery of Sprague-Dawley rats as a model of MI. The MI rats were treated with distilled water, Shexiang Baoxin pills, or Shexiang Baoxin pills + HET0016 (a selective blocker of the biosynthesis of 20-hydroxyeicosatetraenoic acid (20-HETE) at 10 mg/kg/day), respectively. Sham-operated rats were used as controls. RESULTS Treatment with Shexiang Baoxin pills increases the level of serum 20-HETE in MI rats, which can be suppressed by HET0016 treatment. Shexiang Baoxin pills shows cardio-protective effects on MI rats, including improving cardiac function, decreasing infarction area, and promoting angiogenesis in peri-infarct area. The protective effects of Shexiang Baoxin pills are partly inhibited by HET0016. Furthermore, Shexiang Baoxin pills enhances the number of circulating endothelial progenitor cells (EPCs) and the expression of the vascular endothelial growth factor (VEGF), based on immunohistochemical analysis, in peri-infarct area of MI rats, which is partly suppressed by HET0016. CONCLUSIONS Shexiang Baoxin pills may partially participate in angiogenesis in MI rats. The protective mechanism of Shexiang Baoxin pills may be mediated via up-regulation of 20-HETE, which promotes EPCs mobilization and VEGF expression.
Collapse
Affiliation(s)
- Feifei Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yang Liu
- Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China; Department of Cardiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Xia Yang
- Department of Biochemistry, Zhongshan School of Medicine, SunYat-sen University, Guangzhou, China; Key Laboratory of Functional Molecules from Marine Microorganisms (Sun Yat-sen University), Department of Education of Guangdong Province, Guangzhou, China
| | - Di Che
- Key Laboratory of Functional Molecules from Marine Microorganisms (Sun Yat-sen University), Department of Education of Guangdong Province, Guangzhou, China; Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Kaifeng Qiu
- Department of Pharmacy, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Research Center, University of California, Davis, USA
| | - Jingfeng Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Mong-Heng Wang
- Department of Physiology, Augusta University, Augusta, GA 30912, USA
| | - Jie Chen
- Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China; Department of Radiation Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Hui Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
27
|
A network-based method for mechanistic investigation of Shexiang Baoxin Pill's treatment of cardiovascular diseases. Sci Rep 2017; 7:43632. [PMID: 28272527 PMCID: PMC5341564 DOI: 10.1038/srep43632] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/26/2017] [Indexed: 12/18/2022] Open
Abstract
Shexiang Baoxin Pill (SBP), a traditional Chinese medicine formula, is commonly used to treat cardiovascular disease (CVD) in China. However, the complexity of composition and targets has deterred our understanding of its mechanism of action. Using network pharmacology-based approaches, we established the mechanism of action for SBP to treat CVD by analyzing protein-protein interactions and pathways. The computational results were confirmed at the gene expression level in microarray-based studies. Two of the SBP’s targets were further confirmed at the protein level by Western blot. In addition, we validated the theory that SBP’s plasma absorbed compounds play major therapeutic role in treating CVD.
Collapse
|
28
|
Prevention of AMI Induced Ventricular Remodeling: Inhibitory Effects of Heart-Protecting Musk Pill on IL-6 and TNF-Alpha. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:3217395. [PMID: 28373886 PMCID: PMC5361051 DOI: 10.1155/2017/3217395] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 11/29/2022]
Abstract
Heart-Protecting Musk Pill (HMP) is a Traditional Chinese Medicine (TCM) that has been used for the prevention and treatment of coronary heart disease in clinic. The current study investigated the effect of HMP on the concentrations of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) and observed the relationship between level changes of inflammatory cytokines and ventricular remodeling in rats with acute myocardial infarction (AMI). Animal models of AMI were made by coronary artery ligation in Sprague-Dawley (SD) rats. AMI rats showed increased levels of IL-6 and TNF-α. Treatment with HMP decreases IL-6 and TNF-α concentrations in rats with AMI. Histopathological and transmission electron microscopic findings were also essentially in agreement with biochemical findings. The results of our study revealed that inflammatory cytokines IL-6 and TNF-α induce cardiac remodeling in rats after AMI; HMP improves cardiac function and ameliorates ventricular remodeling by downregulating the expression of IL-6 and TNF-α and further suppressing the ultrastructural changes of myocardial cells.
Collapse
|
29
|
Nam M, Jung Y, Ryu DH, Hwang GS. A metabolomics-driven approach reveals metabolic responses and mechanisms in the rat heart following myocardial infarction. Int J Cardiol 2017; 227:239-246. [DOI: 10.1016/j.ijcard.2016.11.127] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/06/2016] [Indexed: 02/06/2023]
|
30
|
Bai G, Hou YY, Jiang M, Gao J. Integrated Systems Biology and Chemical Biology Approach to Exploring Mechanisms of Traditional Chinese Medicines. CHINESE HERBAL MEDICINES 2016. [DOI: 10.1016/s1674-6384(16)60017-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
31
|
Systems-Pharmacology Dissection of Traditional Chinese Medicine Compound Saffron Formula Reveals Multi-scale Treatment Strategy for Cardiovascular Diseases. Sci Rep 2016; 6:19809. [PMID: 26813334 PMCID: PMC4728400 DOI: 10.1038/srep19809] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 12/14/2015] [Indexed: 11/22/2022] Open
Abstract
Cardiovascular diseases (CVDs) have been regarding as “the world’s first killer” of human beings in recent years owing to the striking morbidity and mortality, the involved molecular mechanisms are extremely complex and remain unclear. Traditional Chinese medicine (TCM) adheres to the aim of combating complex diseases from an integrative and holistic point of view, which has shown effectiveness in CVDs therapy. However, system-level understanding of such a mechanism of multi-scale treatment strategy for CVDs is still difficult. Here, we developed a system pharmacology approach with the purpose of revealing the underlying molecular mechanisms exemplified by a famous compound saffron formula (CSF) in treating CVDs. First, by systems ADME analysis combined with drug targeting process, 103 potential active components and their corresponding 219 direct targets were retrieved and some key interactions were further experimentally validated. Based on this, the network relationships among active components, targets and diseases were further built to uncover the pharmacological actions of the drug. Finally, a “CVDs pathway” consisted of several regulatory modules was incorporated to dissect the therapeutic effects of CSF in different pathological features-relevant biological processes. All this demonstrates CSF has multi-scale curative activity in regulating CVD-related biological processes, which provides a new potential way for modern medicine in the treatment of complex diseases.
Collapse
|
32
|
Shi J, Cao B, Wang XW, Aa JY, Duan JA, Zhu XX, Wang GJ, Liu CX. Metabolomics and its application to the evaluation of the efficacy and toxicity of traditional Chinese herb medicines. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1026:204-216. [PMID: 26657802 DOI: 10.1016/j.jchromb.2015.10.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/27/2015] [Accepted: 10/14/2015] [Indexed: 12/12/2022]
Abstract
Traditional Chinese herb medicines (TCHMs) have been used in the treatment of a variety of diseases for thousands of years in Asian countries. The active components of TCHMs usually exert combined synergistic therapeutic effects on multiple targets, but with less potential therapeutic effect based on routine indices than Western drugs. These complex effects make the assessment of the efficacy of TCHMs and the clarification of their underlying mechanisms very challenging, and therefore hinder their wider application and acceptance. Metabolomics is a crucial part of systems biology. It allows the quantitative measurement of large numbers of the low-molecular endogenous metabolites involved in metabolic pathways, and thus reflects the fundamental metabolism status of the body. Recently, dozens of metabolomic studies have been devoted to prove the efficacy/safety, explore the underlying mechanisms, and identify the potential biomarkers to access the action targets of TCHMs, with fruitful results. This article presents an overview of these studies, focusing on the progress made in exploring the pharmacology and toxicology of various herbal medicines.
Collapse
Affiliation(s)
- Jian Shi
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, Jiangsu Key laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China; Pharmacy Department, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Bei Cao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, Jiangsu Key laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China; Pharmacy Department, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Xin-Wen Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, Jiangsu Key laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Ji-Ye Aa
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, Jiangsu Key laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China.
| | - Jin-Ao Duan
- Key Lab of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuan-Xuan Zhu
- Key Lab of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guang-Ji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, Jiangsu Key laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Chang-Xiao Liu
- Research Center of New Drug Evaluation, The National Laboratory of Pharmacodynamics and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| |
Collapse
|
33
|
Wu X, Li Y, Xu D, Zhou H, Wang J, Guo X, Zhang Y. Gas chromatography-mass spectrometry and high-performance liquid chromotagraphy analysis of the drug absorption characteristics in the buccal mucosa via a circulating device. Biomed Rep 2014; 3:51-54. [PMID: 25469246 DOI: 10.3892/br.2014.382] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/15/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the characteristics of Su Xiao Jiu Xin dripping pill absorption in the buccal mucosa of healthy volunteers. This pill is a traditional Chinese medicine that is widely used as an emergency treatment for cardiovascular and cerebrovascular diseases. It is sublingually administered and can be absorbed in the buccal mucosa. In the present study, a method was developed to investigate the absorption characteristics in the buccal mucosa of healthy volunteers via a circulating device by gas chromatography-mass spectrometry and high-performance liquid chromatography. The five main efficacy components associated with cardiovascular and cerebrovascular diseases, which are borneol, isoborneol, ligustilide, n-butylphthalide and ferulic acid, were detected and rapidly absorbed. Among these components, four exhibited good absorption, thus confirming that the method developed is efficient for analysis of the absoption characteristics.
Collapse
Affiliation(s)
- Xin Wu
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, P.R. China
| | - Yubo Li
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, P.R. China
| | - Daoqing Xu
- Tianjin Zhongxin Pharmaceutical Group Corporation Limited, Tianjin 300193, P.R. China
| | - Hong Zhou
- No.6 Pharmaceutical Factory of Tianjin Zhongxin Pharmaceutical Co., Qingguang North, Tianjin 300401, P.R. China
| | - Jinlei Wang
- No.6 Pharmaceutical Factory of Tianjin Zhongxin Pharmaceutical Co., Qingguang North, Tianjin 300401, P.R. China
| | - Xuejun Guo
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, P.R. China
| | - Yanjun Zhang
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, P.R. China
| |
Collapse
|
34
|
Yan B, Deng Y, Hou J, Bi Q, Yang M, Jiang B, Liu X, Wu W, Guo D. UHPLC-LTQ-Orbitrap MS combined with spike-in method for plasma metabonomics analysis of acute myocardial ischemia rats and pretreatment effect of Danqi Tongmai tablet. MOLECULAR BIOSYSTEMS 2014; 11:486-96. [PMID: 25418780 DOI: 10.1039/c4mb00529e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Undoubtedly, metabonomics can reveal the comprehensive efficacies of traditional Chinese medicine (TCM) formulae and its complex mechanism at the molecular biological level. In this study, an attempt was made to address the pretreatment effect of a TCM formula. In this case, as a critical point, we should first know how to really reflect the various endogenous metabolites in a disease status before a TCM formula is employed in a therapeutic procedure. Here, we explored an approach that combined high resolution LTQ-Orbitrap mass spectrometry with a spike-in method to characterize endogenous metabolites in acute myocardial ischemia (AMI) rats. As a result, 19 potential biomarkers in rat plasma were identified and 10 related disturbed pathways were perturbed in the early stages of AMI development. Subsequently, the metabonomics method was applied to investigate the pretreatment effect of the TCM formula named the Danqi Tongmai tablet (DQTM). The results revealed that the DQTM pretreatment could reduce the AMI injury and partially regulate the perturbed TCA cycle and amino and nucleotide metabolism, which were presumable related to energy metabolism and myocardial cells apoptosis/necrosis. In conclusion, UHPLC-LTQ-Orbitrap MS combined with a spike-in method were successfully applied to the metabonomics analysis of DQTM, which demonstrated that not only a comprehensive metabolic profile in the early stages of AMI development was achieved, but also that the underlying holistic efficacies were assessed and it was helpful to understand the possible mechanism of pretreatment with DQTM.
Collapse
Affiliation(s)
- Bingpeng Yan
- College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 210009, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Cao H, Zhang A, Zhang H, Sun H, Wang X. The application of metabolomics in traditional Chinese medicine opens up a dialogue between Chinese and Western medicine. Phytother Res 2014; 29:159-66. [PMID: 25331169 DOI: 10.1002/ptr.5240] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 06/09/2014] [Accepted: 08/04/2014] [Indexed: 12/16/2022]
Abstract
Metabolomics provides an opportunity to develop the systematic analysis of the metabolites and has been applied to discovering biomarkers and perturbed pathways which can clarify the action mechanism of traditional Chinese medicines (TCM). TCM is a comprehensive system of medical practice that has been used to diagnose, treat and prevent illnesses more than 3000 years. Metabolomics represents a powerful approach that provides a dynamic picture of the phenotype of biosystems through the study of endogenous metabolites, and its methods resemble those of TCM. Recently, metabolomics tools have been used for facilitating interactional effects of both Western medicine and TCM. We describe a protocol for investigating how metabolomics can be used to open up 'dialogue' between Chinese and Western medicine, and facilitate lead compound discovery and development from TCM. Metabolomics will bridge the cultural gap between TCM and Western medicine and improve development of integrative medicine, and maximally benefiting the human.
Collapse
Affiliation(s)
- Hongxin Cao
- National TCM Key Laboratory of Serum Pharmacochemistry, Key Laboratory of Metabolomics and Chinmedomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China; China Academy of Chinese Medical Science, Southern Street of Dongzhimen No. 16, Beijing, 100700, China
| | | | | | | | | |
Collapse
|
36
|
Liu YT, Peng JB, Jia HM, Cai DY, Zhang HW, Yu CY, Zou ZM. UPLC-Q/TOF MS standardized Chinese formula Xin-Ke-Shu for the treatment of atherosclerosis in a rabbit model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1364-1372. [PMID: 24916703 DOI: 10.1016/j.phymed.2014.05.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/04/2014] [Accepted: 05/11/2014] [Indexed: 06/03/2023]
Abstract
Xin-Ke-Shu (XKS), a patent traditional Chinese medicine (TCM) preparation, has been commonly used for the treatment of coronary heart disease in China. In order to understand its mechanism of action, a metabonomic approach based on ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF MS) was utilized to profile the plasma metabolic fingerprints of atherosclerosis (AS) rabbits with and without XKS treatment. The metabolic profile of model group clearly separated from normal, and that of XKS group was closer to the control group. Metabolites with significant changes during atherosclerosis were characterized as potential biomarkers related to the development of atherosclerosis by using orthogonal partial least-squares-discriminate analysis (OPLS-DA). Twenty potential biomarkers, including l-acetylcarnitine (1), propionylcarnitine (2), unknown (3), phytosphingosine (4), glycoursodeoxycholic acid (5), LPC(14:0) (6), sphinganine (7), LPC(20:5) (8), LPC(16:1) (9), LPC(18:2) (10), LPC(18:3) (11), LPC(22:5) (12), LPC(16:0) (13), LPC(18:1) (14), LPC(22:4) (15), LPC(17:0) (16), LPC(20:2) (17), elaidic carnitine (18), LPC(18:0) (19) and LPC(20:1) (20), were identified by their accurate mass and MS(E) spectra. The derivations of those biomarkers can be regulated by administration of XKS, which suggested that the intervention effect of XKS against AS may involve in regulating the lipid perturbation including fatty acid β-oxidation pathway, sphingolipid metabolism, glycerophospholipid metabolism and bile acid biosynthesis. This study indicated that the UPLC-Q/TOF MS-based metabonomics not only gave a systematic view of the pathomechanism of AS, but also provided a powerful tool to study the efficacy and mechanism of complex TCM prescriptions.
Collapse
Affiliation(s)
- Yue-Tao Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Jing-Bo Peng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Hong-Mei Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Da-Yong Cai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Hong-Wu Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Chang-Yuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Zhong-Mei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China.
| |
Collapse
|
37
|
Zhao L, Wan L, Qiu X, Li R, Liu S, Wang D. A Metabonomics Profiling Study on Phlegm Syndrome and Blood-Stasis Syndrome in Coronary Heart Disease Patients Using Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:385102. [PMID: 25140185 PMCID: PMC4129150 DOI: 10.1155/2014/385102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/20/2014] [Accepted: 05/30/2014] [Indexed: 11/18/2022]
Abstract
A metabonomics approach based on liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-Q-TOF/MS) was utilized to obtain potential biomarkers of coronary heart disease (CHD) patients and investigate the ZHENG types differentiation in CHD patients. The plasma samples of 20 CHD patients with phlegm syndrome, 20 CHD patients with blood-stasis syndrome, and 16 healthy volunteers were collected in the study. 26 potential biomarkers were identified in the plasma of CHD patients and 19 differential metabolites contributed to the discrimination of phlegm syndrome and blood-stasis syndrome in CHD patients (VIP > 1.5; P < 0.05) which mainly involved purine metabolism, pyrimidine metabolism, amino acid metabolism, steroid biosynthesis, and arachidonic acid metabolism. This study demonstrated that metabonomics approach based on LC-MS was useful for studying pathologic changes of CHD patients and interpreting the differentiation of ZHENG types (phlegm and blood-stasis syndrome) in traditional Chinese medicine (TCM).
Collapse
Affiliation(s)
- Linlin Zhao
- Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central south University, Changsha 410008, China
| | - Ling Wan
- Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central south University, Changsha 410008, China
| | - Xinjian Qiu
- Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central south University, Changsha 410008, China
| | - Ruomeng Li
- Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central south University, Changsha 410008, China
| | - Shimi Liu
- Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central south University, Changsha 410008, China
| | - Dongsheng Wang
- Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central south University, Changsha 410008, China
| |
Collapse
|
38
|
Inhibitory effect of cinobufagin on L-type Ca2+ currents, contractility, and Ca2+ homeostasis of isolated adult rat ventricular myocytes. ScientificWorldJournal 2014; 2014:496705. [PMID: 24977199 PMCID: PMC4058228 DOI: 10.1155/2014/496705] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 04/15/2014] [Accepted: 04/23/2014] [Indexed: 11/17/2022] Open
Abstract
Cinobufagin (CBG), a major bioactive ingredient of the bufanolide steroid compounds of Chan Su, has been widely used to treat coronary heart disease. At present, the effect of CBG on the L-type Ca(2+) current (I Ca-L) of ventricular myocytes remains undefined. The aim of the present study was to characterize the effect of CBG on intracellular Ca(2+) ([Ca(2+)]i) handling and cell contractility in rat ventricular myocytes. CBG was investigated by determining its influence on I Ca-L, Ca(2+) transient, and contractility in rat ventricular myocytes using the whole-cell patch-clamp technique and video-based edge-detection and dual-excitation fluorescence photomultiplier systems. The dose of CBG (10(-8) M) decreased the maximal inhibition of CBG by 47.93%. CBG reduced I Ca-L in a concentration-dependent manner with an IC50 of 4 × 10(-10) M, upshifted the current-voltage curve of I Ca-L, and shifted the activation and inactivation curves of I Ca-L leftward. Moreover, CBG diminished the amplitude of the cell shortening and Ca(2+) transients with a decrease in the time to peak (Tp) and the time to 50% of the baseline (Tr). CBG inhibited L-type Ca(2+) channels, and reduced [Ca(2+)]i and contractility in adult rat ventricular myocytes. These findings contribute to the understanding of the cardioprotective efficacy of CBG.
Collapse
|
39
|
Wang X, Meng H, Chen P, Yang N, Lu X, Wang ZM, Gao W, Zhou N, Zhang M, Xu Z, Chen B, Tao Z, Wang L, Yang Z, Zhu T. Beneficial effects of muscone on cardiac remodeling in a mouse model of myocardial infarction. Int J Mol Med 2014; 34:103-11. [PMID: 24807380 PMCID: PMC4072338 DOI: 10.3892/ijmm.2014.1766] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/23/2014] [Indexed: 11/06/2022] Open
Abstract
Musk has been traditionally used in East Asia to alleviate the symptoms of angina pectoris. However, it remains unclear as to whether muscone, the main active ingredient of musk, has any beneficial effects on persistent myocardial ischemia in vivo. The aim of the present study was to investigate whether muscone can improve cardiac function and attenuate myocardial remodeling following myocardial infarction (MI) in mice. Mice were subjected to permanent ligation of the left anterior descending coronary artery to induce MI, and then randomly treated with muscone (2 mg/kg/day) or the vehicle (normal saline) for 3 weeks. Sham-operated mice were used as controls and were also administered the vehicle (normal saline). Treatment with muscone significantly improved cardiac function and exercise tolerance, as evidenced by the decrease in the left ventricular end-systolic diameter, left ventricular end-diastolic diameter, as well as an increase in the left ventricular ejection fraction, left ventricular fractional shortening and time to exhaustion during swimming. Pathological and morphological assessments indicated that treatment with muscone alleviated myocardial fibrosis, collagen deposition and improved the heart weight/body weight ratio. Muscone inhibited the inflammatory response by reducing the expression of transforming growth factor (TGF)‑β1, tumor necrosis factor (TNF)-α, interleukin (IL)-1β and nuclear factor (NF)-κB. Treatment with muscone also reduced myocardial apoptosis by enhancing Bcl-2 and suppressing Bax expression. Muscone also induced the phosphorylation of protein kinase B (Akt) and endothelial nitric oxide synthase (eNOS). Our results demonstrate that muscone ameliorates cardiac remodeling and dysfunction induced by MI by exerting anti-fibrotic, anti-inflammatory and anti-apoptotic effects in the ischemic myocardium.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Haoyu Meng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Pengsheng Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Naiquan Yang
- Department of Cardiology, Huai'an Second People's Hospital Affiliated to Xuzhou Medical College, Huai'an, Jiangsu 223002, P.R. China
| | - Xin Lu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ze-Mu Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wei Gao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ningtian Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Min Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zhihui Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Bo Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zhengxian Tao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Liangsheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zhijian Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Tiebin Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
40
|
Tan Y, Liu X, Lu C, He X, Li J, Xiao C, Jiang M, Yang J, Zhou K, Zhang Z, Zhang W, Lu A. Metabolic profiling reveals therapeutic biomarkers of processed Aconitum carmichaeli Debx in treating hydrocortisone induced kidney-yang deficiency syndrome rats. JOURNAL OF ETHNOPHARMACOLOGY 2014; 152:585-93. [PMID: 24556226 DOI: 10.1016/j.jep.2014.02.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/18/2014] [Accepted: 02/08/2014] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kidney-yang deficiency syndrome (KYDS) is a diagnostic pattern in traditional Chinese medicine (TCM) and clinical data showed that the unbalance in adrenal cortical hormone is the key issue in KYDS patients. The processed Ranunculaceae aconitum carmichaeli debx (bai-fu-pian in Chinese, BFP) is one of the most commonly used Chinese herbs for treating KYDS. The present study was conducted to explore the therapeutic biomarkers of the BFP in treating hydrocortisone administration induced KYDS rats. MATERIALS AND METHODS Thirty male Sprague-Dawley rats were randomly divided into five groups with six in each group. KYDS in rats was induced by i.p. injection of hydrocortisone at the dose of 10mg/kg per day for 15 days as described previously. The rats with KYDS were administered orally, starting from the day of hydrocortisone administration stopped, with BFP extract at the dose of 0.32g/kg, 0.64g/kg and 1.28g/kg per day respectively for 15 days. The blood samples were collected for the liquid chromatography quadruple time-of-flight mass spectrometry (LC-Q-TOF-MS) test, as well as radioimmunoassay to determine the concentrations of cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP) and adrenocorticotrophic hormone (ACTH). The metabolic responses to BFP administration were investigated by using the principal components analysis (PCA) and orthogonal partial least squares analysis (OPLS). Bioinformatics analyses were performed by using the Ingenuity Pathway Analysis (IPA). Variance analysis and linear regression analysis were used in this study. RESULTS The signs and concentrations of cAMP, cGMP and ACTH in the model rats were similar to those previously described about KYDS rats and BFP treatment can reverse the changes. Seventeen significantly changed metabolites among different groups were identified. Thirteen metabolites were identified in the KYDS rats comparing to healthy rats with nine up-regulated and four down-regulated. After BFP treatment at three dosages, five up-regulated metabolites including phosphate, betaine, (4-hydroxyphenyl) acetaldehyde, 5-hydroxyindol-3-acetic acid and 5'-phosphoribosyl-N-formylglycinamide were dose-dependently reversed. The network analysis with IPA showed that four canonical pathways including superpathway of methionine degradation, purine nucleotides de novo biosynthesis II, tyrosine synthesis and serotonin receptor signaling involved the therapeutic mechanism of BFP in treating the KYDS rats. CONCLUSIONS Five therapeutic biomarkers (phosphate, betaine, (4-hydroxyphenyl) acetaldehyde, 5-hydroxyindol-3-acetic acid and 5'-phosphoribosyl-N-formylglycinamide) and two corresponding canonical pathways (amino acid metabolism and purine nucleotide metabolism) were identified to be involved in the therapeutic mechanism of BFP treating the KYDS.
Collapse
Affiliation(s)
- Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xinru Liu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jian Li
- Beijing University of Chinese Medicine, Beijing 100700, China
| | - Cheng Xiao
- China-Japan Friendship Hospital, Beijing 100030, China
| | - Miao Jiang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jing Yang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ke Zhou
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhongxiao Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Weidong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Aiping Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong.
| |
Collapse
|
41
|
Metabolomic strategy for studying the intervention and the synergistic effects of the shexiang baoxin pill for treating myocardial infarction in rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:823121. [PMID: 23533524 PMCID: PMC3603319 DOI: 10.1155/2013/823121] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 01/03/2013] [Accepted: 01/17/2013] [Indexed: 12/19/2022]
Abstract
A metabolomic approach has been developed for evaluating the therapeutic effects of the bioactive components and the synergistic efficacy of the Shexiang Baoxin Pill (SBP) on myocardial infarction (MI) in rats. The MI rats were administered the SBP, muscone, cinnamic acid, bufalin, ginsenoside Re, ginsenoside Rb1, cholic acid, borneol, and a combined version of these bioactive components (SFSBP). Liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-Q-TOF/MS) was used to obtain the mass data from the rats' serum. The number of biomarkers that were reversed by SFSBP was greater than any of the monotherapy groups. The PLS-DA score plots demonstrated that the SFSBP group results were located closer to the sham group than any of the monotherapy groups and that the SBP group was located closer to the sham group than the SFSBP treatment group. The reversing results observed with SFSBP showed synergistic effects when compared with those of the individual bioactive components that were used as monotherapy. Meanwhile, the SBP displayed superior regulation efficacy to SFSBP in MI rats, indicating that there must be other active components in the SBP that were responsible for the treatment of MI that were not included in the SFSBP treatment.
Collapse
|
42
|
Liu YT, Jia HM, Chang X, Ding G, Zhang HW, Zou ZM. The metabolic disturbances of isoproterenol induced myocardial infarction in rats based on a tissue targeted metabonomics. MOLECULAR BIOSYSTEMS 2013; 9:2823-34. [DOI: 10.1039/c3mb70222g] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|