1
|
Mukherjee S, Kim B, Cheng LY, Doerfert MD, Li J, Hernandez A, Liang L, Jarvis MI, Rios PD, Ghani S, Joshi I, Isa D, Ray T, Terlier T, Fell C, Song P, Miranda RN, Oberholzer J, Zhang DY, Veiseh O. Screening hydrogels for antifibrotic properties by implanting cellularly barcoded alginates in mice and a non-human primate. Nat Biomed Eng 2023; 7:867-886. [PMID: 37106151 PMCID: PMC10593184 DOI: 10.1038/s41551-023-01016-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 02/27/2023] [Indexed: 04/29/2023]
Abstract
Screening implantable biomaterials for antifibrotic properties is constrained by the need for in vivo testing. Here we show that the throughput of in vivo screening can be increased by cellularly barcoding a chemically modified combinatorial library of hydrogel formulations. The method involves the implantation of a mixture of alginate formulations, each barcoded with human umbilical vein endothelial cells from different donors, and the association of the identity and performance of each formulation by genotyping single nucleotide polymorphisms of the cells via next-generation sequencing. We used the method to screen 20 alginate formulations in a single mouse and 100 alginate formulations in a single non-human primate, and identified three lead hydrogel formulations with antifibrotic properties. Encapsulating human islets with one of the formulations led to long-term glycaemic control in a mouse model of diabetes, and coating medical-grade catheters with the other two formulations prevented fibrotic overgrowth. High-throughput screening of barcoded biomaterials in vivo may help identify formulations that enhance the long-term performance of medical devices and of biomaterial-encapsulated therapeutic cells.
Collapse
Affiliation(s)
- Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston, TX, USA
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Boram Kim
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Lauren Y Cheng
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | - Jiaming Li
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | - Lily Liang
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Maria I Jarvis
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | | | | | | | - Trisha Ray
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Tanguy Terlier
- SIMS Laboratory, Shared Equipment Authority, Rice University, Houston, TX, USA
| | - Cody Fell
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Ping Song
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Roberto N Miranda
- Department of Hematopathology, Division of Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jose Oberholzer
- Division of Transplant Surgery, University of Virginia, Charlottesville, VA, USA
| | - David Yu Zhang
- Department of Bioengineering, Rice University, Houston, TX, USA.
- NuProbe USA, Houston, TX, USA.
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
2
|
Kung TA, Chen PJ. Exploring specific biomarkers regarding neurobehavioral toxicity of lead dioxide nanoparticles in medaka fish in different water matrices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159268. [PMID: 36208768 DOI: 10.1016/j.scitotenv.2022.159268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Nano-scale lead dioxide (nPbO2) is an industrial metal oxide nanoparticle that can be also formed as a corrosion by-product from chlorination of Pb-containing plumbing materials. nPbO2 governs release of toxic lead ion in drinking water and receiving organisms; however, its modes of toxic action regarding neurobehavioral toxicity remain unclear. This study evaluated the toxicity mechanism of nPbO2 (10 and 20 mg/L) versus its released Pb(II)aq (100 μg/L) in terms of aqueous chemistry, bioavailability and neurobehavioral toxicity to medaka fish in different water matrices. In very hard water (VHW), dissolved salts enhanced the aggregation and sedimentation of nPbO2, resulting in higher bioavailability and altered locomotion of treated fish than those fish exposed to nPbO2 in soft water with humic acid (SW + HA). Transcriptomic results identified six differentially expressed genes with greater altered expression with nPbO2 than the control or Pb(II)aq exposure. With VHW exposure, nPbO2 caused greater altered expression of genes involved in cell adhesion (nlgn1 and epd), cell cytoskeleton (α1-tubulin), and relevant apoptosis (c-fos, birc5.1-a and casp3), as compared with SW + HA or Pb(II)aq exposure. This study provides novel molecular mechanistic insights into the neurobehavioral nanotoxicity using nPbO2 and medaka fish as surrogates, suggesting nPbO2 promotes neurobehavioral dysfunction, leading to adverse outcomes from gene alteration to the organismal level. The identified biomarkers responded specifically to the nPbO2-induced neurotoxicity in different water matrices can be used for evaluating toxicity risks of small metal oxide particulates on human or aquatic life under environmentally relevant exposures.
Collapse
Affiliation(s)
- Te-An Kung
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan; Institute of Food Safety Management, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Pei-Jen Chen
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
3
|
Curtis BJ, Niemuth NJ, Bennett E, Schmoldt A, Mueller O, Mohaimani AA, Laudadio ED, Shen Y, White JC, Hamers RJ, Klaper RD. Cross-species transcriptomic signatures identify mechanisms related to species sensitivity and common responses to nanomaterials. NATURE NANOTECHNOLOGY 2022; 17:661-669. [PMID: 35393598 DOI: 10.1038/s41565-022-01096-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Physico-chemical characteristics of engineered nanomaterials are known to be important in determining the impact on organisms but effects are equally dependent upon the characteristics of the organism exposed. Species sensitivity may vary by orders of magnitude, which could be due to differences in the type or magnitude of the biochemical response, exposure or uptake of nanomaterials. Synthesizing conclusions across studies and species is difficult as multiple species are not often included in a study, and differences in batches of nanomaterials, the exposure duration and media across experiments confound comparisons. Here three model species, Danio rerio, Daphnia magna and Chironomus riparius, that differ in sensitivity to lithium cobalt oxide nanosheets are found to differ in immune-response, iron-sulfur protein and central nervous system pathways, among others. Nanomaterial uptake and dissolution does not fully explain cross-species differences. This comparison provides insight into how biomolecular responses across species relate to the varying sensitivity to nanomaterials.
Collapse
Affiliation(s)
- Becky J Curtis
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Nicholas J Niemuth
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Evan Bennett
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Angela Schmoldt
- Great Lakes Genomics Center, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Olaf Mueller
- Great Lakes Genomics Center, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Aurash A Mohaimani
- Great Lakes Genomics Center, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Elizabeth D Laudadio
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Argonne National Laboratory, Lemont, IL, USA
| | - Yu Shen
- Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Jason C White
- Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Robert J Hamers
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Rebecca D Klaper
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
- Great Lakes Genomics Center, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
4
|
Morel E, Dozois J, Slaveykova VI, Wilkinson KJ. Distinguishing the effects of Ce nanoparticles from their dissolution products: identification of transcriptomic biomarkers that are specific for ionic Ce in Chlamydomonas reinhardtii. Metallomics 2020; 13:6029132. [PMID: 33570134 DOI: 10.1093/mtomcs/mfaa005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 11/05/2020] [Accepted: 12/04/2020] [Indexed: 11/12/2022]
Abstract
Cerium (Ce) is a rare earth element that is incorporated in numerous consumer products, either in its cationic form or as engineered nanoparticles (ENPs). Given the propensity of small oxide particles to dissolve, it is unclear whether biological responses induced by ENPs will be due to the nanoparticles themselves or rather due to their dissolution. This study provides the foundation for the development of transcriptomic biomarkers that are specific for ionic Ce in the freshwater alga, Chlamydomonas reinhardtii, exposed either to ionic Ce or to two different types of small Ce ENPs (uncoated, ∼10 nm, or citrate-coated, ∼4 nm). Quantitative reverse transcription PCR was used to analyse mRNA levels of four ionic Ce-specific genes (Cre17g.737300, MMP6, GTR12, and HSP22E) that were previously identified by whole transcriptome analysis in addition to two oxidative stress biomarkers (APX1 and GPX5). Expression was characterized for exposures to 0.03-3 µM Ce, for 60-360 min and for pH 5.0-8.0. Near-linear concentration-response curves were obtained for the ionic Ce and as a function of exposure time. Some variability in the transcriptomic response was observed as a function of pH, which was attributed to the formation of metastable Ce species in solution. Oxidative stress biomarkers analysed at transcriptomic and cellular levels confirmed that different effects were induced for dissolved Ce in comparison to Ce ENPs. The measured expression levels confirmed that changes in Ce speciation and the dissolution of Ce ENPs greatly influence Ce bioavailability.
Collapse
Affiliation(s)
- Elise Morel
- Biophysical Environmental Chemistry Group, University of Montreal, PO Box 6128, Succ. Centre-Ville, Montreal, QC, Canada
| | - Jessica Dozois
- Biophysical Environmental Chemistry Group, University of Montreal, PO Box 6128, Succ. Centre-Ville, Montreal, QC, Canada
| | - Vera I Slaveykova
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, School of Earth and Environmental Sciences, Faculty of Science, University of Geneva, Uni Carl Vogt, 66, boulevard Carl-Vogt, CH-1211 Genève 4, Switzerland
| | - Kevin J Wilkinson
- Biophysical Environmental Chemistry Group, University of Montreal, PO Box 6128, Succ. Centre-Ville, Montreal, QC, Canada
| |
Collapse
|
5
|
Klaper RD. The Known and Unknown about the Environmental Safety of Nanomaterials in Commerce. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000690. [PMID: 32407002 DOI: 10.1002/smll.202000690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
The widespread nanomaterial use in commercial products has fed significant concern over environmental health and safety ramifications. Initially, little was known as to how these highly reactive particulates interacted with biological systems. Nanomaterials have introduced complexities not normally considered in traditional safety assessments of chemicals and therefore have generated uncertainty in the reliability of standard tests of safety. Advances in understanding the potential impacts of nanomaterials have occurred since their introduction, particularly for those used in the greatest quantities in commerce. The impact of characteristics such as charge, size, surface functionalization, chemical composition, and certain transformations on the potential effect of nanomaterials in the environment continue to move the field forward. However, generalizations of risk based on any one factor across nanomaterials is not possible. Estimating risk also remains difficult due to the introduction of materials that are new and more complex, minimal information on the specific molecular interactions of nanomaterials and organisms, and the need for more tools for measuring the dynamics of nanomaterial state and fate in complex matrices. Finally, exposure estimates are difficult due to difficulty of environmental monitoring which may be exacerbated by lack of information on nanomaterials in products and new uses in the marketplace.
Collapse
Affiliation(s)
- Rebecca D Klaper
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 East Greenfield Ave., Milwaukee, Wisconsin, 53204, USA
| |
Collapse
|
6
|
Friedersdorf LE, Bjorkland R, Klaper RD, Sayes CM, Wiesner MR. Fifteen years of nanoEHS research advances science and fosters a vibrant community. NATURE NANOTECHNOLOGY 2019; 14:996-998. [PMID: 31695147 DOI: 10.1038/s41565-019-0574-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
| | - Rhema Bjorkland
- National Nanotechnology Coordination Office, Alexandria, VA, USA
| | - Rebecca D Klaper
- School of Freshwater Sciences, University of Wisconsin Milwaukee, Milwaukee, WI, USA
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Mark R Wiesner
- Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC, USA
| |
Collapse
|
7
|
Koehle-Divo V, Sohm B, Giamberini L, Pauly D, Flayac J, Devin S, Auffan M, Mouneyrac C, Pain-Devin S. A sub-individual multilevel approach for an integrative assessment of CuO nanoparticle effects on Corbicula fluminea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112976. [PMID: 31404732 DOI: 10.1016/j.envpol.2019.112976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/17/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
Because they are widely used, copper oxide nanoparticles (CuO NPs) are likely to enter the aquatic environment and then reach the sediment. We have examined the effect of CuO NPs in the freshwater endobenthic bivalve Corbicula fluminea. Some previous studies have investigated effects at biochemical and physiological levels, but molecular endpoints are still poorly studied despite they are sensitive in early detection of NPs effect. In the present study, we have investigated short-term effects (96 h) of CuO NP (12, 30 nm; 0, 20 and 100 μg/L) using molecular endpoints as well as more conventional biochemical and physiological markers. The expression of antioxidant (CuZnSOD, MnSOD, Cat, Se-GPx, Trxr) and antitoxic (GST-Pi, HSP70, MT, Pgp, MRP1) related genes was measured at the mRNA level while antioxidant (SOD, TAC) and antitoxic (GST, ACP) defenses, energetic reserves and metabolism (ETS, Tri, LDH), and cellular damages (LPO) were assessed using a biochemical approach. The filtration rate measured at 96 h provided information at the physiological scale. Gene expression and filtration rate were responsive to CuO NPs but the effects differed according to the NP size. The results suggest that defense mechanisms may have been set up following 30 nm-NP exposure. The response to 12 nm-NP was lower but still showed that exposure to 12 nm-NP led to activation of cellular elimination mechanisms. The lowering of the filtration rate may have protected the organisms from the contamination. However, this raised the question of further repercussions on organism biology. Together, the results (i) indicate that CuO NP may exert effects at different levels even after a short-term exposure and (ii) point out the precocity of molecular response.
Collapse
Affiliation(s)
| | - Bénédicte Sohm
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | | | - Danièle Pauly
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Justine Flayac
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Simon Devin
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Mélanie Auffan
- CEREGE, CNRS, Aix Marseille Univ, IRD, INRA, Coll France, Aix-en-Provence, France
| | - Catherine Mouneyrac
- Université Catholique de l'Ouest, Laboratoire Mer, Molécules et Santé (MMS, EA2160), 3 Place André Leroy, F-49000 Angers Cedex 01, France
| | | |
Collapse
|
8
|
Yazdimamaghani M, Moos PJ, Ghandehari H. Time- and dose-dependent gene expression analysis of macrophage response as a function of porosity of silica nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102041. [PMID: 31228603 DOI: 10.1016/j.nano.2019.102041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 10/26/2022]
Abstract
There is a limited amount of information available on gene expression regulation of macrophages in response to changing the time of exposure, concentration, and physicochemical properties of nanomaterials. In this study, RAW264.7 macrophages were treated with spherical nonporous and mesoporous silica nanoparticles of similar size at different incubation times and concentrations. RNA-sequencing was used to study transcriptional profiles. Bioinformatics analyses, functional annotation clustering, and network analyses were employed to understand signaling pathways of cellular response as a function of porosity, incubation time, and concentration. Porosity introduced drastic changes to the genomic response of macrophages at equitoxic concentrations and incubation times. Direct relations between increases in time and concentration with an increased number of differentially expressed genes were observed.
Collapse
Affiliation(s)
- Mostafa Yazdimamaghani
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Philip J Moos
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT 84112, USA; Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA.
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
9
|
Koehlé-Divo V, Pain-Devin S, Bertrand C, Devin S, Mouneyrac C, Giambérini L, Sohm B. Corbicula fluminea gene expression modulated by CeO 2 nanomaterials and salinity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:15174-15186. [PMID: 30924045 DOI: 10.1007/s11356-019-04927-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Cerium dioxide nanomaterials (CeO2 NMs) are used in different fields and incorporated in daily products. Several studies highlighted their effects on organism physiology, although molecular studies remain scarce. NM behavior is strongly dependent on the environment but few data are available using complex exposure media, raising the question of its environmental impacts. The aim of the present work was to assess the toxic potential of three CeO2 NMs in Corbicula fluminea at a molecular level by RT-qPCR under a more realistic scenario of exposure, in a multistress context at two different salinities (1.5 and 15 psu). C. fluminea was exposed for 28 days to pulses of the three selected NMs (reference, manufactured, and aged manufactured). In bivalves, the gills and digestive gland are two key organs used for ecotoxicological studies. The expression change of 12 genes was measured in control organisms after 28 days in both organs, allowing us to clearly separate the responses for both organs and salinities. As gills come in contact with the environment first, we monitored gene the expression at intermediate time points (7, 14, and 21 days) for this organ in order to highlight clams responses to NM and salinity. Two genes (Se-GPx, MnSOD) had a salinity-dependent level of expression. HSP70, Se-GPx, and Trxr mRNAs presented significant changes in their expressions in the presence of NM. This study was completed using an integrated statistical approach. The exposed organisms differed more from control at field salinity than those exposed to hyper-saline conditions. At 15 psu, salinity pressure seems to cause the first molecular impact. At 1.5 psu, gene expression patterns allowed the effect of each NM to separate clearly. These results confirmed the usefulness of gene expression studies. Moreover, we highlighted the necessity to assess the environmental toxicity of the different forms of manufactured NM.
Collapse
Affiliation(s)
- Vanessa Koehlé-Divo
- Université de Lorraine, CNRS, LIEC, F-57000 Campus Bridoux, Rue du Général Delestraint, 57070, Metz, France.
| | - Sandrine Pain-Devin
- Université de Lorraine, CNRS, LIEC, F-57000 Campus Bridoux, Rue du Général Delestraint, 57070, Metz, France
| | - Carole Bertrand
- Université de Lorraine, CNRS, LIEC, F-57000 Campus Bridoux, Rue du Général Delestraint, 57070, Metz, France
- Laboratoire Mer, Molécules et Santé (MMS, EA2160), Université Catholique de l'Ouest, 3 Place André Leroy, F-49000, Angers Cedex 01, France
| | - Simon Devin
- Université de Lorraine, CNRS, LIEC, F-57000 Campus Bridoux, Rue du Général Delestraint, 57070, Metz, France
| | - Catherine Mouneyrac
- Laboratoire Mer, Molécules et Santé (MMS, EA2160), Université Catholique de l'Ouest, 3 Place André Leroy, F-49000, Angers Cedex 01, France
| | - Laure Giambérini
- Université de Lorraine, CNRS, LIEC, F-57000 Campus Bridoux, Rue du Général Delestraint, 57070, Metz, France
| | - Bénédicte Sohm
- Université de Lorraine, CNRS, LIEC, F-57000 Campus Bridoux, Rue du Général Delestraint, 57070, Metz, France
| |
Collapse
|
10
|
Hajimohammadjafartehrani M, Hosseinali SH, Dehkohneh A, Ghoraeian P, Ale-Ebrahim M, Akhtari K, Shahpasand K, Saboury AA, Attar F, Falahati M. The effects of nickel oxide nanoparticles on tau protein and neuron-like cells: Biothermodynamics and molecular studies. Int J Biol Macromol 2019; 127:330-339. [DOI: 10.1016/j.ijbiomac.2019.01.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/26/2018] [Accepted: 01/11/2019] [Indexed: 12/13/2022]
|
11
|
Schulte P, Leso V, Niang M, Iavicoli I. Biological monitoring of workers exposed to engineered nanomaterials. Toxicol Lett 2018; 298:112-124. [PMID: 29920308 PMCID: PMC6239923 DOI: 10.1016/j.toxlet.2018.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/29/2018] [Accepted: 06/08/2018] [Indexed: 12/27/2022]
Abstract
As the number of nanomaterial workers increase there is need to consider whether biomonitoring of exposure should be used as a routine risk management tool. Currently, no biomonitoring of nanomaterials is mandated by authoritative or regulatory agencies. However, there is a growing knowledge base to support such biomonitoring, but further research is needed as are investigations of priorities for biomonitoring. That research should be focused on validation of biomarkers of exposure and effect. Some biomarkers of effect are generally nonspecific. These biomarkers need further interpretation before they should be used. Overall biomonitoring of nanomaterial workers may be important to supplement risk assessment and risk management efforts.
Collapse
Affiliation(s)
- P Schulte
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1090 Tusculum Avenue, MS C-14, Cincinnati, OH 45226, USA.
| | - V Leso
- Department of Public Health, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - M Niang
- University of Cincinnati, Cincinnati, OH, USA
| | - I Iavicoli
- Department of Public Health, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| |
Collapse
|
12
|
Domínguez GA, Torelli MD, Buchman JT, Haynes CL, Hamers RJ, Klaper RD. Size dependent oxidative stress response of the gut of Daphnia magna to functionalized nanodiamond particles. ENVIRONMENTAL RESEARCH 2018; 167:267-275. [PMID: 30077134 DOI: 10.1016/j.envres.2018.07.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/21/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
Nanodiamonds are a type of engineered nanomaterial with high surface area that is highly tunable and are being proposed for use as a material for medical imaging or drug delivery to composites. With their potential for widespread use they may potentially be released into the aquatic environment as are many chemicals used for these purposes. It is generally thought that nanodiamonds are innocuous, but toxicity may occur due to surface functionalization. This study investigated the potential oxidative stress and antioxidant response of enterocytes in a freshwater invertebrate, Daphnia magna, a common aquatic invertebrate for ecotoxicological studies, in response to two types of functionalized nanodiamonds (polyallylamine and oxidized). We also examined how the size of the nanomaterial may influence toxicity by testing two different sizes (5 nm and 15 nm) of nanodiamonds with the same functionalization. Adults of Daphnia magna were exposed to three concentrations of each of the nanodiamonds for 24 h. We found that both 5 and 15 nm polyallylamine nanodiamond and oxidized nanodiamond induced the production of reactive oxygen species in tissues. The smaller 5 nm nanodiamond induced a significant change in the expression of heat shock protein 70 and glutathione-S-transferase. This may suggest that daphnids mounted an antioxidant response to the oxidative effects of 5 nm nanodiamonds but not the comparative 15 nm nanodiamonds with either surface chemistry. Outcomes of this study reveal that functionalized nanodiamond may cause oxidative stress and may potentially initiate lipid peroxidation of enterocyte cell membranes in freshwater organisms, but the impact of the exposure depends on the particle size.
Collapse
Affiliation(s)
- Gustavo A Domínguez
- University of Wisconsin-Milwaukee, School of Freshwater Sciences, Milwaukee, WI 53204, United States
| | - Marco D Torelli
- University of Wisconsin-Madison, Department of Chemistry, Madison WI 53706, United States
| | - Joseph T Buchman
- University of Minnesota-Twin Cities, Department of Chemistry, 207 Pleasant Street SE, Minneapolis, MN 55455, United States
| | - Christy L Haynes
- University of Minnesota-Twin Cities, Department of Chemistry, 207 Pleasant Street SE, Minneapolis, MN 55455, United States
| | - Robert J Hamers
- University of Wisconsin-Madison, Department of Chemistry, Madison WI 53706, United States
| | - Rebecca D Klaper
- University of Wisconsin-Milwaukee, School of Freshwater Sciences, Milwaukee, WI 53204, United States.
| |
Collapse
|
13
|
Nymark P, Kohonen P, Hongisto V, Grafström RC. Toxic and Genomic Influences of Inhaled Nanomaterials as a Basis for Predicting Adverse Outcome. Ann Am Thorac Soc 2018; 15:S91-S97. [PMID: 29676641 DOI: 10.1513/annalsats.201706-478mg] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
An immense variety of different types of engineered nanomaterials are currently being developed and increasingly applied to consumer products. Importantly, engineered nanomaterials may pose unexplored adverse health effects because of their small size. Particularly in occupational settings, the dustiness of certain engineered nanomaterials involves risk of inhalation and influences on lung function. These facts call for quick and cost-effective safety testing practices, such as that obtained through multiparametric high-throughput screening using cultured human lung cells. The predictive value of such in vitro-based testing depends partly on the effectiveness of coverage of the mechanisms underlying toxicity effects. The concept of adverse outcome pathways covers the array of causative effects starting from a molecular initiating event via cellular-, organ-, individual-, and population-level effects. Screening for adverse outcome pathway-related effects that drive the eventual toxic outcome provides a good basis for developing predictive testing methods and data-driven integrated testing strategies for hazard and risk assessment. Temporal and inherited genomic changes are likely to drive many adverse responses to engineered nanomaterials, such as multiwalled carbon nanotubes, of which one specific form has recently been evaluated as possibly carcinogenic. Here, we briefly describe current state-of-the-art strategies for analyzing and understanding genomic influences of engineered nanomaterial exposure, including the selected focus on lung disease, and strategies for using mechanistic knowledge to predict and prevent adverse outcome.
Collapse
Affiliation(s)
- Penny Nymark
- 1 Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; and
- 2 Division of Toxicology, Misvik Biology, Turku, Finland
| | - Pekka Kohonen
- 1 Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; and
- 2 Division of Toxicology, Misvik Biology, Turku, Finland
| | - Vesa Hongisto
- 2 Division of Toxicology, Misvik Biology, Turku, Finland
| | - Roland C Grafström
- 1 Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; and
- 2 Division of Toxicology, Misvik Biology, Turku, Finland
| |
Collapse
|
14
|
Ruotolo R, Maestri E, Pagano L, Marmiroli M, White JC, Marmiroli N. Plant Response to Metal-Containing Engineered Nanomaterials: An Omics-Based Perspective. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2451-2467. [PMID: 29377685 DOI: 10.1021/acs.est.7b04121] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The increasing use of engineered nanomaterials (ENMs) raises questions regarding their environmental impact. Improving the level of understanding of the genetic and molecular basis of the response to ENM exposure in biota is necessary to accurately assess the true risk to sensitive receptors. The aim of this Review is to compare the plant response to several metal-based ENMs widely used, such as quantum dots, metal oxides, and silver nanoparticles (NPs), integrating available "omics" data (transcriptomics, miRNAs, and proteomics). Although there is evidence that ENMs can release their metal components into the environment, the mechanistic basis of both ENM toxicity and tolerance is often distinct from that of metal ions and bulk materials. We show that the mechanisms of plant defense against ENM stress include the modification of root architecture, involvement of specific phytohormone signaling pathways, and activation of antioxidant mechanisms. A critical meta-analysis allowed us to identify relevant genes, miRNAs, and proteins involved in the response to ENMs and will further allow a mechanistic understanding of plant-ENM interactions.
Collapse
Affiliation(s)
| | - Elena Maestri
- Interdepartmental Centre for Food Safety, Technologies and Innovation for Agri-food (SITEIA.PARMA) , Parma 43124 , Italy
| | | | | | - Jason C White
- Department of Analytical Chemistry , The Connecticut Agricultural Experiment Station (CAES) , New Haven , Connecticut 06504 , United States
| | - Nelson Marmiroli
- Interdepartmental Centre for Food Safety, Technologies and Innovation for Agri-food (SITEIA.PARMA) , Parma 43124 , Italy
| |
Collapse
|
15
|
Yazdimamaghani M, Moos PJ, Ghandehari H. Global gene expression analysis of macrophage response induced by nonporous and porous silica nanoparticles. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2018; 14:533-545. [PMID: 29203145 PMCID: PMC6050981 DOI: 10.1016/j.nano.2017.11.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/10/2017] [Accepted: 11/17/2017] [Indexed: 01/01/2023]
Abstract
Little is known about the global gene expression profile of macrophages in response to changes in size and porosity of silica nanoparticles (SNPs). Spherical nonporous SNPs of two different diameters, and mesoporous spherical SNPs with comparable size were characterized. Reactive oxygen species, mitochondrial membrane potential, lysosome degradation capacity, and lysosome pH were measured to evaluate the influence of nonporous and mesoporous SNPs on mitochondrial and lysosomal function. RNA-sequencing was utilized to generate transcriptional profiles of RAW264.7 macrophages exposed to non-toxic SNP doses. DESeq2, limma, and BinReg2 software were used to analyze the data based on both unsupervised and supervised strategies to identify genes with greatest differences among NP treatments. Utilizing GATHER and DAVID software, possible induced pathways were studied. We found that mesoporous silica nanoparticles are capable of altering gene expression in macrophages at doses that do not elicit acute cytotoxicity, while gene transcription was minimally affected by nonporous SNPs.
Collapse
Affiliation(s)
- Mostafa Yazdimamaghani
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Philip J Moos
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA; Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA.
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
16
|
Li Y, Wang J, Zhao F, Bai B, Nie G, Nel AE, Zhao Y. Nanomaterial libraries and model organisms for rapid high-content analysis of nanosafety. Natl Sci Rev 2017. [DOI: 10.1093/nsr/nwx120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract
Safety analysis of engineered nanomaterials (ENMs) presents a formidable challenge regarding environmental health and safety, due to their complicated and diverse physicochemical properties. Although large amounts of data have been published regarding the potential hazards of these materials, we still lack a comprehensive strategy for their safety assessment, which generates a huge workload in decision-making. Thus, an integrated approach is urgently required by government, industry, academia and all others who deal with the safe implementation of nanomaterials on their way to the marketplace. The rapid emergence and sheer number of new nanomaterials with novel properties demands rapid and high-content screening (HCS), which could be performed on multiple materials to assess their safety and generate large data sets for integrated decision-making. With this approach, we have to consider reducing and replacing the commonly used rodent models, which are expensive, time-consuming, and not amenable to high-throughput screening and analysis. In this review, we present a ‘Library Integration Approach’ for high-content safety analysis relevant to the ENMs. We propose the integration of compositional and property-based ENM libraries for HCS of cells and biologically relevant organisms to be screened for mechanistic biomarkers that can be used to generate data for HCS and decision analysis. This systematic approach integrates the use of material and biological libraries, automated HCS and high-content data analysis to provide predictions about the environmental impact of large numbers of ENMs in various categories. This integrated approach also allows the safer design of ENMs, which is relevant to the implementation of nanotechnology solutions in the pharmaceutical industry.
Collapse
Affiliation(s)
- Yiye Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Bai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - André E Nel
- Division of NanoMedicine, Department of Medicine, and California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Joseph P. Transcriptomics in toxicology. Food Chem Toxicol 2017; 109:650-662. [PMID: 28720289 PMCID: PMC6419952 DOI: 10.1016/j.fct.2017.07.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/12/2017] [Accepted: 07/14/2017] [Indexed: 12/11/2022]
Abstract
Xenobiotics, of which many are toxic, may enter the human body through multiple routes. Excessive human exposure to xenobiotics may exceed the body's capacity to defend against the xenobiotic-induced toxicity and result in potentially fatal adverse health effects. Prevention of the adverse health effects, potentially associated with human exposure to the xenobiotics, may be achieved by detecting the toxic effects at an early, reversible and, therefore, preventable stage. Additionally, an understanding of the molecular mechanisms underlying the toxicity may be helpful in preventing and/or managing the ensuing adverse health effects. Human exposures to a large number of xenobiotics are associated with hepatotoxicity or pulmonary toxicity. Global gene expression changes taking place in biological systems, in response to exposure to xenobiotics, may represent the early and mechanistically relevant cellular events contributing to the onset and progression of xenobiotic-induced adverse health outcomes. Hepatotoxicity and pulmonary toxicity resulting from exposure to xenobiotics are discussed as specific examples to demonstrate the potential application of transcriptomics or global gene expression analysis in the prevention of adverse health effects associated with exposure to xenobiotics.
Collapse
Affiliation(s)
- Pius Joseph
- Molecular Carcinogenesis Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA.
| |
Collapse
|
18
|
Kumar A, Tan A, Wong J, Spagnoli JC, Lam J, Blevins BD, G N, Thorne L, Ashkan K, Xie J, Liu H. Nanotechnology for Neuroscience: Promising Approaches for Diagnostics, Therapeutics and Brain Activity Mapping. ADVANCED FUNCTIONAL MATERIALS 2017; 27:1700489. [PMID: 30853878 PMCID: PMC6404766 DOI: 10.1002/adfm.201700489] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Unlocking the secrets of the brain is a task fraught with complexity and challenge - not least due to the intricacy of the circuits involved. With advancements in the scale and precision of scientific technologies, we are increasingly equipped to explore how these components interact to produce a vast range of outputs that constitute function and disease. Here, an insight is offered into key areas in which the marriage of neuroscience and nanotechnology has revolutionized the industry. The evolution of ever more sophisticated nanomaterials culminates in network-operant functionalized agents. In turn, these materials contribute to novel diagnostic and therapeutic strategies, including drug delivery, neuroprotection, neural regeneration, neuroimaging and neurosurgery. Further, the entrance of nanotechnology into future research arenas including optogenetics, molecular/ion sensing and monitoring, and piezoelectric effects is discussed. Finally, considerations in nanoneurotoxicity, the main barrier to clinical translation, are reviewed, and direction for future perspectives is provided.
Collapse
Affiliation(s)
- Anil Kumar
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Aaron Tan
- UCL Medical School, University College London (UCL), London, United Kingdom
| | - Joanna Wong
- Imperial College School of Medicine, Imperial College London,London, United Kingdom
| | - Jonathan Clayton Spagnoli
- Department of Chemistry, Bio-Imaging Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - James Lam
- UCL Medical School, University College London (UCL), London, United Kingdom
| | - Brianna Diane Blevins
- Department of Chemistry, Bio-Imaging Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Natasha G
- UCL Medical School, University College London (UCL), London, United Kingdom
| | - Lewis Thorne
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| | - Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, King's College London, London, United Kingdom
| | - Jin Xie
- Department of Chemistry, Bio-Imaging Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
19
|
Effects on human bronchial epithelial cells following low-dose chronic exposure to nanomaterials: A 6-month transformation study. Toxicol In Vitro 2017; 44:230-240. [PMID: 28746895 DOI: 10.1016/j.tiv.2017.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 07/16/2017] [Accepted: 07/19/2017] [Indexed: 12/14/2022]
Abstract
The most plausible exposure route to manufactured nanomaterials (MNM) remains pulmonary inhalation. Yet, few studies have attempted to assess carcinogenic properties in vitro following long-term exposure of human pulmonary cells to low and occupationally relevant doses. The most advanced in vitro tests for carcinogenicity, the cell transformation assay (CTA), rely mostly on rodent cells and short-term exposure. We hypothesized that long-term exposure of human bronchial epithelial cells with a normal phenotype could be a valuable assay for testing carcinogenicity of nanomaterials. Therefore, this study (performed within the framework of the FP7-NANoREG project) assessed carcinogenic potential of chronic exposure (up to 6months) to low doses of multi-walled carbon nanotubes (MWCNT, NM-400 and NM-401) and TiO2 materials (NM62002 and KC7000). In order to harmonize and standardize the experiments, standard operating protocols of MNM dispersion (NANOGENOTOX) were used by three different NANoREG project partners. All nanomaterials showed low cytotoxicity in short-term tests for the tested doses (0.96 and 1.92μg/cm2). During long-term exposure, however, NM-401 clearly affected cell proliferation. In contrast, no cell transformation was observed for NM-401 by any of the partners. NM-400 and NM62002 formed some colonies after 3months. We conclude that agglomerated NM-401 in low doses affect cell proliferation but do not cause cell transformation in the CTA assay used.
Collapse
|
20
|
Clemente Z, Castro VLSS, Franqui LS, Silva CA, Martinez DST. Nanotoxicity of graphene oxide: Assessing the influence of oxidation debris in the presence of humic acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:118-128. [PMID: 28363143 DOI: 10.1016/j.envpol.2017.03.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/01/2017] [Accepted: 03/15/2017] [Indexed: 05/27/2023]
Abstract
This study sought to evaluate the toxicological effects of graphene oxide (GO) through tests with Danio rerio (zebrafish) embryos, considering the influence of the base washing treatment and the interaction with natural organic matter (i.e., humic acid, HA). A commercial sample of GO was refluxed with NaOH to remove oxidation debris (OD) byproducts, which resulted in a base washed GO sample (bw-GO). This process decreased the total oxygenated groups in bw-GO and its stability in water compared to GO. When tested in the presence of HA, both GO and bw-GO stabilities were enhanced in water. Although the embryo exposure showed no acute toxicity or malformation, the larvae exposed to GO showed a reduction in their overall length and acetylcholinesterase activity. In the presence of HA, GO also inhibited acid phosphatase activity. Our findings indicate a mitigation of material toxicity after OD removal. The difference in the biological effects may be related to the materials' bioavailability and biophysicochemical interactions. This study reports for the first time the critical influence of OD on the GO material biological reactivity and HA interaction, providing new data for nanomaterial environmental risk assessment and sustainable nanotechnology.
Collapse
Affiliation(s)
- Zaira Clemente
- Laboratory of Ecotoxicology and Biosafety, Brazilian Agricultural Research Corporation (Embrapa Environment), Jaguariúna, SP, Brazil; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil.
| | - Vera Lúcia S S Castro
- Laboratory of Ecotoxicology and Biosafety, Brazilian Agricultural Research Corporation (Embrapa Environment), Jaguariúna, SP, Brazil
| | - Lidiane S Franqui
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Cristiane A Silva
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Diego Stéfani T Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| |
Collapse
|
21
|
Châtel A, Mouneyrac C. Signaling pathways involved in metal-based nanomaterial toxicity towards aquatic organisms. Comp Biochem Physiol C Toxicol Pharmacol 2017; 196:61-70. [PMID: 28344012 DOI: 10.1016/j.cbpc.2017.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/10/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
Abstract
Environmental risk assessment of engineered nanomaterials (ENMs) is an emergent field since nanotechnology industry is rapidly growing due to the interesting physicochemical properties of nanomaterials. Metal-based nanomaterials are among the most rapidly commercialized materials and their toxicity towards aquatic animals has been investigated at different levels of the biological organization. The objective of this synthesis review is to give an overview of the signaling molecules that have a key role in metal-based NM mediated cytotoxicity in both marine and freshwater organisms. Since toxicity of metal-based NMs could be (partly) due to metal dissolution, this review only highlights studies that showed a specific nano-effect. From this bibliographic study, three mechanisms (detoxification, immunomodulation and genotoxicity) have been selected as they represent the major cell defense mechanisms and the most studied ones following ENM exposure. This better understanding of NM-mediated cytotoxicity may provide a sound basis for designing environmentally safer nanomaterials.
Collapse
Affiliation(s)
- Amélie Châtel
- Université Catholique de l'Ouest, UBL, MMS EA 2160, 3 Place André Leroy, 49000 Angers, France.
| | - Catherine Mouneyrac
- Université Catholique de l'Ouest, UBL, MMS EA 2160, 3 Place André Leroy, 49000 Angers, France
| |
Collapse
|
22
|
Rodd AL, Messier NJ, Vaslet CA, Kane AB. A 3D fish liver model for aquatic toxicology: Morphological changes and Cyp1a induction in PLHC-1 microtissues after repeated benzo(a)pyrene exposures. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 186:134-144. [PMID: 28282620 PMCID: PMC5436724 DOI: 10.1016/j.aquatox.2017.02.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 05/12/2023]
Abstract
To identify the potential environmental impacts of aquatic pollutants, rapid and sensitive screening tools are needed to assess adaptive and toxic responses. This study characterizes a novel fish liver microtissue model, produced with the cell line PLHC-1, as an in vitro aquatic toxicity testing platform. These 3D microtissues remain viable and stable throughout the 8-day testing period and relative to 2D monolayers, show increased basal expression of the xenobiotic metabolizing enzyme cytochrome P450 1A (Cyp1a). To evaluate pulsed, low-dose exposures at environmentally relevant concentrations, microtissue responsiveness to the model toxicant benzo(a)pyrene was assessed after single and repeated exposures for determination of both immediate and persistent effects. Significant induction of Cyp1a gene and protein expression was detected after a single 24h exposure to as little as 1nM benzo(a)pyrene, and after a 24h recovery period, Cyp1a expression declined in a dose-dependent manner. However, cell death continued to increase during the recovery period and alterations in microtissue architecture occurred at higher concentrations. To evaluate a pulsed or repeated exposure scenario, microtissues were exposed to benzo(a)pyrene, allowed to recover, then exposed a second time for 24h. Following pre-exposure to benzo(a)pyrene, cyp1a expression remained equally inducible and the pattern and level of Cyp1a protein response to a second exposure were comparable. However, pre-exposure to 1μM or 5μM of benzo(a)pyrene resulted in increased cell death, greater disruption of microtissue architecture, and alterations in cell morphology. Together, this study demonstrates the capabilities of this PLHC-1 microtissue model for sensitive assessment of liver toxicants over time and following single and repeated exposures.
Collapse
Affiliation(s)
- April L Rodd
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI 02912, USA.
| | - Norma J Messier
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Charles A Vaslet
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Agnes B Kane
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI 02912, USA
| |
Collapse
|
23
|
Iavicoli I, Fontana L, Leso V, Corbi M, Marinaccio A, Leopold K, Schindl R, Lucchetti D, Calapà F, Sgambato A. Subchronic exposure to palladium nanoparticles affects serum levels of cytokines in female Wistar rats. Hum Exp Toxicol 2017; 37:309-320. [PMID: 28387145 DOI: 10.1177/0960327117702952] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recently, palladium nanoparticles (PdNPs) have been increasingly used in many industrial sectors, and this has led to a significant release of nano-sized palladium particles into the environment. However, despite the increase in occupational and general population exposure, information on the potential adverse effects of these PdNPs is still limited and their impact on the immune system constitutes a major health concern. Therefore, the aim of this study was to investigate the potential adverse effects induced by subchronic intravenous administration of PdNPs on the immune system of female Wistar rats by evaluating alterations in Interleukin (IL)-1α, IL-2, IL-4, IL-6, IL-10, IL-12, granulocyte-macrophage colony-stimulating factor (GM-CSF), Interferon (INF)-γ, and Tumor Necrosis Factor (TNF)-α serum levels. Exposed and control animals were randomly divided into five groups (0, 0.012, 0.12, 1.2, and 12 μg PdNPs per kg body weight) which were treated with repeated intravenous injections of vehicle or PdNPs (on day 1, 30, and 60). Subchronic exposure to PdNPs induced a decreasing trend in serum levels in most of the cytokines investigated, with the highest concentration (12 μg/kg) determining significant inhibitory effects. Overall, these results showed that PdNPs are able to alter cytokine serum levels in subchronically treated Wistar rats, suggesting a possible impact of these xenobiotics on the immune system after long-term exposures.
Collapse
Affiliation(s)
- I Iavicoli
- 1 Department of Public Health, University of Naples Federico II, Naples, Italy
| | - L Fontana
- 2 Institute of Public Health, Section of Occupational Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - V Leso
- 2 Institute of Public Health, Section of Occupational Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - M Corbi
- 3 Institute of General Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - A Marinaccio
- 4 Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Unit of Occupational and Environmental Epidemiology, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - K Leopold
- 5 Institute of Analytical and Bioanalytical Chemistry, University of Ulm, Ulm, Germany
| | - R Schindl
- 5 Institute of Analytical and Bioanalytical Chemistry, University of Ulm, Ulm, Germany
| | - D Lucchetti
- 3 Institute of General Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - F Calapà
- 3 Institute of General Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - A Sgambato
- 3 Institute of General Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
24
|
Umbright C, Sellamuthu R, Roberts JR, Young SH, Richardson D, Schwegler-Berry D, McKinney W, Chen B, Gu JK, Kashon M, Joseph P. Pulmonary toxicity and global gene expression changes in response to sub-chronic inhalation exposure to crystalline silica in rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:1349-1368. [PMID: 29165057 DOI: 10.1080/15287394.2017.1384773] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/22/2017] [Indexed: 06/07/2023]
Abstract
Exposure to crystalline silica results in serious adverse health effects, most notably, silicosis. An understanding of the mechanism(s) underlying silica-induced pulmonary toxicity is critical for the intervention and/or prevention of its adverse health effects. Rats were exposed by inhalation to crystalline silica at a concentration of 15 mg/m3, 6 hr/day, 5 days/week for 3, 6 or 12 weeks. Pulmonary toxicity and global gene expression profiles were determined in lungs at the end of each exposure period. Crystalline silica was visible in lungs of rats especially in the 12-week group. Pulmonary toxicity, as evidenced by an increase in lactate dehydrogenase (LDH) activity and albumin content and accumulation of macrophages and neutrophils in the bronchoalveolar lavage (BAL), was seen in animals depending upon silica exposure duration. The most severe histological changes, noted in the 12-week exposure group, consisted of chronic active inflammation, type II pneumocyte hyperplasia, and fibrosis. Microarray analysis of lung gene expression profiles detected significant differential expression of 38, 77, and 99 genes in rats exposed to silica for 3-, 6-, or 12-weeks, respectively, compared to time-matched controls. Among the significantly differentially expressed genes (SDEG), 32 genes were common in all exposure groups. Bioinformatics analysis of the SDEG identified enrichment of functions, networks and canonical pathways related to inflammation, cancer, oxidative stress, fibrosis, and tissue remodeling in response to silica exposure. Collectively, these results provided insights into the molecular mechanisms underlying pulmonary toxicity following sub-chronic inhalation exposure to crystalline silica in rats.
Collapse
Affiliation(s)
- Christina Umbright
- a Toxicology and Molecular Biology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Rajendran Sellamuthu
- a Toxicology and Molecular Biology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Jenny R Roberts
- a Toxicology and Molecular Biology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Shih-Houng Young
- a Toxicology and Molecular Biology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Diana Richardson
- a Toxicology and Molecular Biology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Diane Schwegler-Berry
- a Toxicology and Molecular Biology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Walter McKinney
- a Toxicology and Molecular Biology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Bean Chen
- a Toxicology and Molecular Biology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Ja Kook Gu
- a Toxicology and Molecular Biology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Michael Kashon
- a Toxicology and Molecular Biology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Pius Joseph
- a Toxicology and Molecular Biology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| |
Collapse
|
25
|
Caballero-Díaz E, Valcárcel Cases M. Analytical methodologies for nanotoxicity assessment. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Iavicoli I, Fontana L, Nordberg G. The effects of nanoparticles on the renal system. Crit Rev Toxicol 2016; 46:490-560. [DOI: 10.1080/10408444.2016.1181047] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ivo Iavicoli
- Section of Occupational Medicine, Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Luca Fontana
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene INAIL-Italian Workers’ Compensation Authority, Monte Porzio Catone (Rome), Italy
| | - Gunnar Nordberg
- Occupational and Environmental Medicine, Department of Public Health and Clinical Medicine, Umea University, Umea, Sweden
| |
Collapse
|
27
|
Insights into the impact of silver nanoparticles on human keratinocytes metabolism through NMR metabolomics. Arch Biochem Biophys 2016; 589:53-61. [DOI: 10.1016/j.abb.2015.08.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/10/2015] [Accepted: 08/28/2015] [Indexed: 01/19/2023]
|
28
|
Ma K, Zhang S, Ye B, Ouyang J, Yue GH. A new view of graphene oxide biosafety in a water environment using an eatable fish as a model. RSC Adv 2016. [DOI: 10.1039/c5ra26026d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A comprehensive evaluation on the biosafety of graphene oxide (GO) was developed by combining 16S rRNA sequencing, gene expression detection, histology and a scanning electron microscope assay on fish.
Collapse
Affiliation(s)
- Keyi Ma
- Molecular Population Genetics and Breeding Group
- Temasek Life Sciences Laboratory
- National University of Singapore
- Singapore
- Singapore
| | - Shupeng Zhang
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing
- P. R. China
- Department of Materials Science and Engineering
| | - Baoqing Ye
- Molecular Population Genetics and Breeding Group
- Temasek Life Sciences Laboratory
- National University of Singapore
- Singapore
- Singapore
| | - Jianyong Ouyang
- Department of Materials Science and Engineering
- National University of Singapore
- Singapore
| | - Gen Hua Yue
- Molecular Population Genetics and Breeding Group
- Temasek Life Sciences Laboratory
- National University of Singapore
- Singapore
- Singapore
| |
Collapse
|
29
|
Hu W, Culloty S, Darmody G, Lynch S, Davenport J, Ramirez-Garcia S, Dawson K, Lynch I, Doyle H, Sheehan D. Neutral red retention time assay in determination of toxicity of nanoparticles. MARINE ENVIRONMENTAL RESEARCH 2015; 111:158-161. [PMID: 26065811 DOI: 10.1016/j.marenvres.2015.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/11/2015] [Accepted: 05/15/2015] [Indexed: 06/04/2023]
Abstract
The neutral red retention time (NRRT) assay is useful for detecting decreased lysosomal membrane stability in haemocytes sampled from bivalves, a phenomenon often associated with exposure to environmental pollutants including nanomaterials. Bivalves are popular sentinel species in ecotoxicology and use of NRRT in study of species in the genus Mytilus is widespread in environmental monitoring. The NRRT assay has been used as an in vivo test for toxicity of carbon nanoparticles (Moore MN, Readman JAJ, Readman JW, Lowe DM, Frickers PE, Beesley A. 2009. Lysosomal cytotoxicity of carbon nanoparticles in cells of the molluscan immune system: An in vivo study. Nanotoxicology. 3 (1), 40-45). We here report application of this assay adapted to a microtitre plate format to a panel of metal and metal oxide nanoparticles (2 ppm). This showed that copper, chromium and cobalt nanoparticles are toxic by this criterion while gold and titanium nanoparticles are not. As the former three nanoparticles are often reported to be cytotoxic while the latter two are thought to be non-cytotoxic, these data support use of NRRT as a general in vitro assay in nanotoxicology.
Collapse
Affiliation(s)
- Wentao Hu
- Environmental Research Institute and School of Biochemistry and Cell Biology, University College Cork, Ireland
| | - Sarah Culloty
- Aquaculture and Fisheries Development Centre, School of Biological, Earth and Environmental Sciences, University College Cork, Ireland
| | - Grainne Darmody
- Aquaculture and Fisheries Development Centre, School of Biological, Earth and Environmental Sciences, University College Cork, Ireland
| | - Sharon Lynch
- Aquaculture and Fisheries Development Centre, School of Biological, Earth and Environmental Sciences, University College Cork, Ireland
| | - John Davenport
- Aquaculture and Fisheries Development Centre, School of Biological, Earth and Environmental Sciences, University College Cork, Ireland
| | - Sonia Ramirez-Garcia
- Centre for BioNano Interactions and Department of Physical Chemistry, University College Dublin, Ireland
| | - Kenneth Dawson
- Centre for BioNano Interactions and Department of Physical Chemistry, University College Dublin, Ireland
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B 15 2TT, UK
| | - Hugh Doyle
- Tyndall National Laboratory, University College Cork, Ireland
| | - David Sheehan
- Environmental Research Institute and School of Biochemistry and Cell Biology, University College Cork, Ireland.
| |
Collapse
|
30
|
Abstract
Nanomaterials are commonly defined as engineered structures with at least one dimension of 100 nm or less. Investigations of their potential toxicological impact on biological systems and the environment have yet to catch up with the rapid development of nanotechnology and extensive production of nanoparticles. High-throughput methods are necessary to assess the potential toxicity of nanoparticles. The omics techniques are well suited to evaluate toxicity in both in vitro and in vivo systems. Besides genomic, transcriptomic and proteomic profiling, metabolomics holds great promises for globally evaluating and understanding the molecular mechanism of nanoparticle–organism interaction. This manuscript presents a general overview of metabolomics techniques, summarizes its early application in nanotoxicology and finally discusses opportunities and challenges faced in nanotoxicology.
Collapse
|
31
|
Murphy CJ, Vartanian A. Biological Responses to Engineered Nanomaterials: Needs for the Next Decade. ACS CENTRAL SCIENCE 2015; 1:117-23. [PMID: 27162961 PMCID: PMC4827556 DOI: 10.1021/acscentsci.5b00182] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Indexed: 05/20/2023]
Abstract
The interaction of nanomaterials with biomolecules, cells, and organisms is an enormously vital area of current research, with applications in nanoenabled diagnostics, imaging agents, therapeutics, and contaminant removal technologies. Yet the potential for adverse biological and environmental impacts of nanomaterial exposure is considerable and needs to be addressed to ensure sustainable development of nanomaterials. In this Outlook four research needs for the next decade are outlined: (i) measurement of the chemical nature of nanomaterials in dynamic, complex aqueous environments; (ii) real-time measurements of nanomaterial-biological interactions with chemical specificity; (iii) delineation of molecular modes of action for nanomaterial effects on living systems as functions of nanomaterial properties; and (iv) an integrated systems approach that includes computation and simulation across orders of magnitude in time and space.
Collapse
Affiliation(s)
- Catherine J. Murphy
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Ariane
M. Vartanian
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
32
|
Garduño-Balderas LG, Urrutia-Ortega IM, Medina-Reyes EI, Chirino YI. Difficulties in establishing regulations for engineered nanomaterials and considerations for policy makers: avoiding an unbalance between benefits and risks. J Appl Toxicol 2015; 35:1073-85. [DOI: 10.1002/jat.3180] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Luis Guillermo Garduño-Balderas
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala; Universidad Nacional Autónoma de México; CP 54090 Estado de México México
| | - Ismael Manuel Urrutia-Ortega
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala; Universidad Nacional Autónoma de México; CP 54090 Estado de México México
- Programa de Posgrado en Ciencias Biomédicas; Universidad Nacional Autónoma de México
| | - Estefany Ingrid Medina-Reyes
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala; Universidad Nacional Autónoma de México; CP 54090 Estado de México México
- Programa de Posgrado en Ciencias Biomédicas; Universidad Nacional Autónoma de México
| | - Yolanda Irasema Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala; Universidad Nacional Autónoma de México; CP 54090 Estado de México México
| |
Collapse
|
33
|
Dominguez GA, Lohse SE, Torelli MD, Murphy CJ, Hamers RJ, Orr G, Klaper RD. Effects of charge and surface ligand properties of nanoparticles on oxidative stress and gene expression within the gut of Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 162:1-9. [PMID: 25734859 DOI: 10.1016/j.aquatox.2015.02.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/17/2015] [Accepted: 02/20/2015] [Indexed: 05/04/2023]
Abstract
Concern has been raised regarding the current and future release of engineered nanomaterials into aquatic environments from industry and other sources. However, not all nanomaterials may cause an environmental impact and identifying which nanomaterials may be of greatest concern has been difficult. It is thought that the surface groups of a functionalized nanoparticles (NPs) may play a significant role in determining their interactions with aquatic organisms, but the way in which surface properties of NPs impact their toxicity in whole organisms has been minimally explored. A major point of interaction of NPs with aquatic organisms is in the gastrointestinal tract as they ingest particulates from the water column or from the sediment. The main goal of this study was to use model gold NP (AuNPs) to evaluate the potential effects of the different surfaces groups on NPs on the gut of an aquatic model organism, Daphnia magna. In this study, we exposed daphnids to a range of AuNPs concentrations and assessed the impact of AuNP exposure in the daphnid gut by measuring reactive oxygen species (ROS) production and expression of genes associated with oxidative stress and general cellular stress: glutathione S-transferase (gst), catalase (cat), heat shock protein 70 (hsp70), and metallothionein1 (mt1). We found ROS formation and gene expression were impacted by both charge and the specific surface ligand used. We detected some degree of ROS production in all NP exposures, but positively charged AuNPs induced a greater ROS response. Similarly, we observed that, compared to controls, both positively charged AuNPs and only one negatively AuNP impacted expression of genes associated with cellular stress. Finally, ligand-AuNP exposures showed a different toxicity and gene expression profile than the ligand alone, indicating a NP specific effect.
Collapse
Affiliation(s)
- Gustavo A Dominguez
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave., Milwaukee, WI 53204, USA
| | - Samuel E Lohse
- Department of Chemistry, University of Illinois, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - Marco D Torelli
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - Robert J Hamers
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA
| | - Galya Orr
- Environmental Molecular Sciences Lab, Pacific Northwest National Laboratory, 3335 Innovation Blvd., Richland, WA 99352, USA
| | - Rebecca D Klaper
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave., Milwaukee, WI 53204, USA.
| |
Collapse
|
34
|
Makumire S, Revaprasadu N, Shonhai A. DnaK protein alleviates toxicity induced by citrate-coated gold nanoparticles in Escherichia coli. PLoS One 2015; 10:e0121243. [PMID: 25837593 PMCID: PMC4383610 DOI: 10.1371/journal.pone.0121243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/30/2015] [Indexed: 11/18/2022] Open
Abstract
A number of previously reported studies suggest that synthetic gold nanoparticles (AuNPs) are capable of stabilising proteins against heat stress in vitro. However, it remains to be understood if AuNPs confer stability to proteins against cellular stress in vivo. Heat shock proteins (Hsps) are conserved molecules whose main role is to facilitate folding of other proteins (chaperone function). Hsp70 (called DnaK in prokaryotes) is one of the most prominent molecular chaperones. Since gold nanoparticles exhibit chaperone-like function in vitro, we investigated the effect of citrate-coated gold nanoparticles on the growth of E. coli BB1553 cells that possess a deleted dnaK gene. We further investigated the effects of the AuNPs on the solubility of the E. coli BB1553 proteome. E. coli BB1553 cells exposed to AuNPs exhibited cellular defects such as filamentation and plasma membranes pulled off the cell wall. The toxic effects of the AuNPs were alleviated by transforming the E. coli BB1553 cells with a construct expressing DnaK. We also noted that cells in which DnaK was restored exhibited distinct zones to which the nanoparticles were restricted. Our study suggests a role for DnaK in alleviating nanoparticle induced stress in E. coli.
Collapse
Affiliation(s)
- Stanley Makumire
- Department of Biochemistry, School of Mathematics & Natural Sciences, University of Venda, Thohoyandou, South Africa
- Department of Biochemistry & Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | | | - Addmore Shonhai
- Department of Biochemistry, School of Mathematics & Natural Sciences, University of Venda, Thohoyandou, South Africa
- Department of Biochemistry & Microbiology, University of Zululand, KwaDlangezwa, South Africa
- * E-mail:
| |
Collapse
|
35
|
Feliu N, Kohonen P, Ji J, Zhang Y, Karlsson HL, Palmberg L, Nyström A, Fadeel B. Next-generation sequencing reveals low-dose effects of cationic dendrimers in primary human bronchial epithelial cells. ACS NANO 2015; 9:146-63. [PMID: 25530437 DOI: 10.1021/nn5061783] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Gene expression profiling has developed rapidly in recent years with the advent of deep sequencing technologies such as RNA sequencing (RNA Seq) and could be harnessed to predict and define mechanisms of toxicity of chemicals and nanomaterials. However, the full potential of these technologies in (nano)toxicology is yet to be realized. Here, we show that systems biology approaches can uncover mechanisms underlying cellular responses to nanomaterials. Using RNA Seq and computational approaches, we found that cationic poly(amidoamine) dendrimers (PAMAM-NH2) are capable of triggering down-regulation of cell-cycle-related genes in primary human bronchial epithelial cells at doses that do not elicit acute cytotoxicity, as demonstrated using conventional cell viability assays, while gene transcription was not affected by neutral PAMAM-OH dendrimers. The PAMAMs were internalized in an active manner by lung cells and localized mainly in lysosomes; amine-terminated dendrimers were internalized more efficiently when compared to the hydroxyl-terminated dendrimers. Upstream regulator analysis implicated NF-κB as a putative transcriptional regulator, and subsequent cell-based assays confirmed that PAMAM-NH2 caused NF-κB-dependent cell cycle arrest. However, PAMAM-NH2 did not affect cell cycle progression in the human A549 adenocarcinoma cell line. These results demonstrate the feasibility of applying systems biology approaches to predict cellular responses to nanomaterials and highlight the importance of using relevant (primary) cell models.
Collapse
Affiliation(s)
- Neus Feliu
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, and ‡Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet , Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Montalti M, Cantelli A, Battistelli G. Nanodiamonds and silicon quantum dots: ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging. Chem Soc Rev 2015; 44:4853-921. [DOI: 10.1039/c4cs00486h] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ultra-stability and low-toxicity of silicon quantum dots and fluorescent nanodiamonds for long-termin vitroandin vivobioimaging are demonstrated.
Collapse
Affiliation(s)
- M. Montalti
- Department of Chemistry “G. Ciamician”
- University of Bologna
- Bologna
- Italy
| | - A. Cantelli
- Department of Chemistry “G. Ciamician”
- University of Bologna
- Bologna
- Italy
| | - G. Battistelli
- Department of Chemistry “G. Ciamician”
- University of Bologna
- Bologna
- Italy
| |
Collapse
|
37
|
Snyder-Talkington BN, Dong C, Zhao X, Dymacek J, Porter DW, Wolfarth MG, Castranova V, Qian Y, Guo NL. Multi-walled carbon nanotube-induced gene expression in vitro: concordance with in vivo studies. Toxicology 2014; 328:66-74. [PMID: 25511174 DOI: 10.1016/j.tox.2014.12.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 11/26/2022]
Abstract
There is a current interest in reducing the in vivo toxicity testing of nanomaterials in animals by increasing toxicity testing using in vitro cellular assays; however, toxicological results are seldom concordant between in vivo and in vitro models. This study compared global multi-walled carbon nanotube (MWCNT)-induced gene expression from human lung epithelial and microvascular endothelial cells in monoculture and coculture with gene expression from mouse lungs exposed to MWCNT. Using a cutoff of 10% false discovery rate and 1.5 fold change, we determined that there were more concordant genes (gene expression both up- or downregulated in vivo and in vitro) expressed in both cell types in coculture than in monoculture. When reduced to only those genes involved in inflammation and fibrosis, known outcomes of in vivo MWCNT exposure, there were more disease-related concordant genes expressed in coculture than monoculture. Additionally, different cellular signaling pathways are activated in response to MWCNT dependent upon culturing conditions. As coculture gene expression better correlated with in vivo gene expression, we suggest that cellular cocultures may offer enhanced in vitro models for nanoparticle risk assessment and the reduction of in vivo toxicological testing.
Collapse
Affiliation(s)
- Brandi N Snyder-Talkington
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Chunlin Dong
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506-9300, USA
| | - Xiangyi Zhao
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506-9300, USA
| | - Julian Dymacek
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506-6070, USA
| | - Dale W Porter
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Michael G Wolfarth
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Vincent Castranova
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA; Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | - Yong Qian
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA.
| | - Nancy L Guo
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506-9300, USA.
| |
Collapse
|
38
|
Khorasani AA, Weaver JL, Salvador-Morales C. Closing the gap: accelerating the translational process in nanomedicine by proposing standardized characterization techniques. Int J Nanomedicine 2014; 9:5729-51. [PMID: 25525356 PMCID: PMC4268909 DOI: 10.2147/ijn.s72479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
On the cusp of widespread permeation of nanomedicine, academia, industry, and government have invested substantial financial resources in developing new ways to better treat diseases. Materials have unique physical and chemical properties at the nanoscale compared with their bulk or small-molecule analogs. These unique properties have been greatly advantageous in providing innovative solutions for medical treatments at the bench level. However, nanomedicine research has not yet fully permeated the clinical setting because of several limitations. Among these limitations are the lack of universal standards for characterizing nanomaterials and the limited knowledge that we possess regarding the interactions between nanomaterials and biological entities such as proteins. In this review, we report on recent developments in the characterization of nanomaterials as well as the newest information about the interactions between nanomaterials and proteins in the human body. We propose a standard set of techniques for universal characterization of nanomaterials. We also address relevant regulatory issues involved in the translational process for the development of drug molecules and drug delivery systems. Adherence and refinement of a universal standard in nanomaterial characterization as well as the acquisition of a deeper understanding of nanomaterials and proteins will likely accelerate the use of nanomedicine in common practice to a great extent.
Collapse
Affiliation(s)
- Ali A Khorasani
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA, USA
- Bioengineering Department, George Mason University, Fairfax, VA, USA
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| | - James L Weaver
- Division of Applied Regulatory Science, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Carolina Salvador-Morales
- Bioengineering Department, George Mason University, Fairfax, VA, USA
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| |
Collapse
|
39
|
Rodd A, Creighton MA, Vaslet CA, Rangel-Mendez JR, Hurt RH, Kane AB. Effects of surface-engineered nanoparticle-based dispersants for marine oil spills on the model organism Artemia franciscana. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:6419-27. [PMID: 24823274 PMCID: PMC4046867 DOI: 10.1021/es500892m] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/10/2014] [Accepted: 05/13/2014] [Indexed: 05/22/2023]
Abstract
Fine particles are under active consideration as alternatives to chemical dispersants for large-scale petroleum spills. Fine carbon particles with engineered surface chemistry have been shown to stabilize oil-in-water emulsions, but the environmental impacts of large-scale particle introduction to the marine environment are unknown. Here we study the impact of surface-engineered carbon-black materials on brine shrimp (Artemia franciscana) as a model marine microcrustacean. Mortality was characterized at 50-1000 mg/L, and levels of heat shock protein 70 (hsp70) were characterized at sublethal particle concentrations (25-50 mg/L). Functionalized carbon black (CB) nanoparticles were found to be nontoxic at all concentrations, while hydrophobic (annealed) and as-produced CB induced adverse effects at high concentrations. CB was also shown to adsorb benzene, a model hydrocarbon representing the more soluble and toxic low-molecular weight aromatic fraction of petroleum, but the extent of adsorption was insufficient to mitigate benzene toxicity to Artemia in coexposure experiments. At lower benzene concentrations (25-75 mg/L), coexposure with annealed and as-produced CB increased hsp70 protein levels. This study suggests that surface functionalization for increased hydrophilicity can not only improve the performance of CB-based dispersants but also reduce their adverse environmental impacts on marine organisms.
Collapse
Affiliation(s)
- April
L. Rodd
- Department
of Pathology and Laboratory Medicine, Brown
University, Providence, Rhode Island 02912, United States
| | - Megan A. Creighton
- School
of Engineering and Institute for Molecular and Nanoscale Innovation, Brown University, Providence, Rhode Island 02912, United States
| | - Charles A. Vaslet
- Department
of Pathology and Laboratory Medicine, Brown
University, Providence, Rhode Island 02912, United States
| | - J. Rene Rangel-Mendez
- Division
of Environmental Sciences, Instituto Potosino
de Investigación Científica y Tecnológica, San Luis Potosí 78216, San Luis Potosí, Mexico
| | - Robert H. Hurt
- School
of Engineering and Institute for Molecular and Nanoscale Innovation, Brown University, Providence, Rhode Island 02912, United States
| | - Agnes B. Kane
- Department
of Pathology and Laboratory Medicine, Brown
University, Providence, Rhode Island 02912, United States
| |
Collapse
|