1
|
Samuel C, Narsimhulu G, Bangar G, Kumar Dasari SH, Rajaraman G, Baskar V. Silver-π Interaction: A Diverse Approach to Hybrid Material and Its Efficacy in Electrocatalytic Reduction of Nitrate to Ammonia. Inorg Chem 2024; 63:21670-21678. [PMID: 39225499 DOI: 10.1021/acs.inorgchem.4c02578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Inspired by the intriguing nature of the metal-π interaction in organometallic chemistry, a novel 1D hybrid material has been designed. Herein, a functionalized tellurium allyl macrocycle (TAM) acts as a molecular building block and is knit together via silver-π interaction to obtain Ag-TAM. Ag is coordinated to two allyl groups and a phenyl ring in η2 mode. Instead of the conventional polymerization strategy, a metal-π interaction is employed to interlink macrocycles. TAM and Ag-TAM showed electrocatalytic capability for the conversion of nitrate to ammonia. Ag-TAM showed an NH3 yield rate 2-fold greater than TAM with a high faradaic efficiency of 94.6% with good durability, proving that interlinking of macrocycles via metal-π interaction improves the catalytic activity. Detailed periodic density functional theory (DFT) calculations unveil novel mechanistic insights, suggesting cooperative catalysis between neighboring Ag sites and contributing to the enhanced efficiency.
Collapse
Affiliation(s)
- Calvin Samuel
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Gujju Narsimhulu
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Garima Bangar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | |
Collapse
|
2
|
Ke Q, Xiong F, Fang G, Chen J, Niu X, Pan P, Cui G, Xing H, Lu H. The Reinforced Separation of Intractable Gas Mixtures by Using Porous Adsorbents. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408416. [PMID: 39161083 DOI: 10.1002/adma.202408416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Indexed: 08/21/2024]
Abstract
This review focuses on the mechanism and driving force in the intractable gas separation using porous adsorbents. A variety of intractable mixtures have been discussed, including air separation, carbon capture, and hydrocarbon purification. Moreover, the separation systems are categorized according to distinctly biased modes depending on the minor differences in the kinetic diameter, dipole/quadruple moment, and polarizability of the adsorbates, or sorted by the varied separation occasions (e.g., CO2 capture from flue gas or air) and driving forces (thermodynamic and kinetic separation, molecular sieving). Each section highlights the functionalization strategies for porous materials, like synthesis condition optimization and organic group modifications for porous carbon materials, cation exchange and heteroatom doping for zeolites, and metal node-organic ligand adjustments for MOFs. These functionalization strategies are subsequently associated with enhanced adsorption performances (capacity, selectivity, structural/thermal stability, moisture resistance, etc.) toward the analog gas mixtures. Finally, this review also discusses future challenges and prospects for using porous materials in intractable gas separation. Therein, the combination of theoretical calculation with the synthesis condition and adsorption parameters optimization of porous adsorbents may have great potential, given its fast targeting of candidate adsorbents and deeper insights into the adsorption forces in the confined pores and cages.
Collapse
Affiliation(s)
- Quanli Ke
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Feng Xiong
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Guonan Fang
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jing Chen
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xiaopo Niu
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Pengyun Pan
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Guokai Cui
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Huabin Xing
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hanfeng Lu
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
3
|
Peng L, Duan J, Liang Y, Zhang H, Duan C, Liu S. Recent Advances in Metal-Organic Frameworks and Their Derivatives for Adsorption of Radioactive Iodine. Molecules 2024; 29:4170. [PMID: 39275018 PMCID: PMC11397681 DOI: 10.3390/molecules29174170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/16/2024] Open
Abstract
Radioactive iodine (131I) with a short half-life of ~8.02 days is one of the most commonly used nuclides in nuclear medicine. However, 131I easily poses a significant risk to human health and ecological environment. Therefore, there is an urgent need to develop a secure and efficient strategy to capture and store radioactive iodine. Metal-organic frameworks (MOFs) are a new generation of sorbents with outstanding physical and chemical properties, rendering them attractive candidates for the adsorption and immobilization of iodine. This review focuses on recent research advancements in mechanisms underlying iodine adsorption over MOFs and their derivatives, including van der Waals interactions, complexing interactions, and chemical precipitation. Furthermore, this review concludes by outlining the challenges and opportunities for the safe disposal of radioactive iodine from the perspective of the material design and system evaluation based on our knowledge. Thus, this paper aims to offer necessary information regarding the large-scale production of MOFs for iodine adsorption.
Collapse
Affiliation(s)
- Li Peng
- Department of Radiology, School of Medicine, Yangtze University, Jingzhou 434023, China
| | - Jiali Duan
- School of Materials Science and Hydrogen Engineering, Foshan University, Foshan 528231, China
| | - Yu Liang
- School of Materials Science and Hydrogen Engineering, Foshan University, Foshan 528231, China
| | - Haiqi Zhang
- School of Materials Science and Hydrogen Engineering, Foshan University, Foshan 528231, China
- School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Chongxiong Duan
- School of Materials Science and Hydrogen Engineering, Foshan University, Foshan 528231, China
| | - Sibin Liu
- Department of Radiology, School of Medicine, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
4
|
Li L, Chen L, Guo L, Zheng F, Zhang Z, Yang Q, Yang Y, Su B, Ren Q, Li J, Bao Z. Supramolecular Assembly of One-Dimensional Coordination Polymers for Efficient Separation of Xenon and Krypton. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41438-41446. [PMID: 37616467 DOI: 10.1021/acsami.3c04037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Efficient separation and purification of xenon (Xe) from krypton (Kr) represent an industrially crucial but challenging process. While the adsorption-based separation of these atomic gases represents an energy-efficient process, achieving highly selective adsorbents remains a difficult task. Here, we demonstrate a supramolecular assembly of coordination polymers, termed as M(II)-dhbq (M = Mg, Mn, Co, and Zn; dhbq = 2,5-dihydroxy-1,4-benzoquinone), with high-density open metal sites (5.3 nm-3) and optimal pore size (5.5 Å), which are able to selectively capture Xe among other chemically inert gases including Kr, Ar, N2, and O2. Among M(II)-dhbq materials, Mn-dhbq exhibits the highest Xe uptake capacity of 3.1 mmol/g and a Xe/Kr selectivity of 11.2 at 298 K and 1.0 bar, outperforming many state-of-the-art adsorbents reported so far. Remarkably, the adsorption selectivity of Mn-dhbq for Xe/O2, Xe/N2, and Xe/Ar at ambient conditions reaches as high as 70.0, 139.3, and 64.0, respectively. Direct breakthrough experiments further confirm that all M(II)-dhbq materials can efficiently discriminate Xe atoms from other inert gases. It is revealed from the density functional theory calculations that the strong affinity between Xe and the coordination polymer is mainly attributed to the polarization by open metal sites.
Collapse
Affiliation(s)
- Liangying Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
- Hangzhou Hangyang Co., Ltd., Hangzhou, Zhejiang Province 310014, P. R. China
| | - Lihang Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 324000, P. R. China
| | - Lidong Guo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Fang Zheng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 324000, P. R. China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 324000, P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 324000, P. R. China
| | - Yiwen Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 324000, P. R. China
| | - Baogen Su
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 324000, P. R. China
| | - Jing Li
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 324000, P. R. China
| |
Collapse
|
5
|
Guo S, Huang X, Situ Y, Huang Q, Guan K, Huang J, Wang W, Bai X, Liu Z, Wu Y, Qiao Z. Interpretable Machine-Learning and Big Data Mining to Predict Gas Diffusivity in Metal-Organic Frameworks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301461. [PMID: 37166040 PMCID: PMC10375163 DOI: 10.1002/advs.202301461] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/14/2023] [Indexed: 05/12/2023]
Abstract
For gas separation and catalysis by metal-organic frameworks (MOFs), gas diffusion has a substantial impact on the process' overall rate, so it is necessary to determine the molecular diffusion behavior within the MOFs. In this study, an interpretable machine learing (ML) model, light gradient boosting machine (LGBM), is trained to predict the molecular diffusivity and selectivity of 9 gases (Kr, Xe, CH4 , N2 , H2 S, O2 , CO2 , H2 , and He). For these 9 gases, LGBM displays high accuracy (average R2 = 0.962) and superior extrapolation for the diffusivity of C2 H6 . And this model calculation is five orders of magnitude faster than molecular dynamics (MD) simulations. Subsequently, using the trained LGBM model, an interactive desktop application is developed that can help researchers quickly and accurately calculate the diffusion of molecules in porous crystal materials. Finally, the authors find the difference in the molecular polarizability (ΔPol) is the key factor governing the diffusion selectivity by combining the trained LGBM model with the Shapley additive explanation (SHAP). By the calculation of interpretable ML, the optimal MOFs are selected for separating binary gas mixtures and CO2 methanation. This work provides a new direction for exploring the structure-property relationships of MOFs and realizing the rapid calculation of molecular diffusivity.
Collapse
Affiliation(s)
- Shuya Guo
- Guangzhou Key Laboratory for New Energy and Green CatalysisSchool of Chemistry and Chemical EngineeringGuangzhou UniversityGuangzhou510006China
| | - Xiaoshan Huang
- Guangzhou Key Laboratory for New Energy and Green CatalysisSchool of Chemistry and Chemical EngineeringGuangzhou UniversityGuangzhou510006China
| | - Yizhen Situ
- Guangzhou Key Laboratory for New Energy and Green CatalysisSchool of Chemistry and Chemical EngineeringGuangzhou UniversityGuangzhou510006China
| | - Qiuhong Huang
- Guangzhou Key Laboratory for New Energy and Green CatalysisSchool of Chemistry and Chemical EngineeringGuangzhou UniversityGuangzhou510006China
| | - Kexin Guan
- Guangzhou Key Laboratory for New Energy and Green CatalysisSchool of Chemistry and Chemical EngineeringGuangzhou UniversityGuangzhou510006China
| | - Jiaxin Huang
- Guangzhou Key Laboratory for New Energy and Green CatalysisSchool of Chemistry and Chemical EngineeringGuangzhou UniversityGuangzhou510006China
| | - Wei Wang
- Guangzhou Key Laboratory for New Energy and Green CatalysisSchool of Chemistry and Chemical EngineeringGuangzhou UniversityGuangzhou510006China
| | - Xiangning Bai
- Guangzhou Key Laboratory for New Energy and Green CatalysisSchool of Chemistry and Chemical EngineeringGuangzhou UniversityGuangzhou510006China
| | - Zili Liu
- Guangzhou Key Laboratory for New Energy and Green CatalysisSchool of Chemistry and Chemical EngineeringGuangzhou UniversityGuangzhou510006China
| | - Yufang Wu
- Guangzhou Key Laboratory for New Energy and Green CatalysisSchool of Chemistry and Chemical EngineeringGuangzhou UniversityGuangzhou510006China
| | - Zhiwei Qiao
- Guangzhou Key Laboratory for New Energy and Green CatalysisSchool of Chemistry and Chemical EngineeringGuangzhou UniversityGuangzhou510006China
- Joint Institute of Guangzhou University & Institute of Corrosion Science and TechnologyGuangzhou UniversityGuangzhou510006China
| |
Collapse
|
6
|
Gong W, Xie Y, Wang X, Kirlikovali KO, Idrees KB, Sha F, Xie H, Liu Y, Chen B, Cui Y, Farha OK. Programmed Polarizability Engineering in a Cyclen-Based Cubic Zr(IV) Metal-Organic Framework to Boost Xe/Kr Separation. J Am Chem Soc 2023; 145:2679-2689. [PMID: 36652593 DOI: 10.1021/jacs.2c13171] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Efficient separation of xenon (Xe) and krypton (Kr) mixtures through vacuum swing adsorption (VSA) is considered the most attractive route to reduce energy consumption, but discriminating between these two gases is difficult due to their similar properties. In this work, we report a cubic zirconium-based MOF (Zr-MOF) platform, denoted as NU-1107, capable of achieving selective separation of Xe/Kr by post-synthetically engineering framework polarizability in a programmable manner. Specifically, the tetratopic linkers in NU-1107 feature tetradentate cyclen cores that are capable of chelating a variety of transition-metal ions, affording a sequence of metal-docked cationic isostructural Zr-MOFs. NU-1107-Ag(I), which features the strongest framework polarizability among this series, achieves the best performance for a 20:80 v/v Xe/Kr mixture at 298 K and 1.0 bar with an ideal adsorbed solution theory (IAST) predicted selectivity of 13.4, placing it among the highest performing MOF materials reported to date. Notably, the Xe/Kr separation performance for NU-1107-Ag(I) is significantly better than that of the isoreticular, porphyrin-based MOF-525-Ag(II), highlighting how the cyclen core can generate relatively stronger framework polarizability through the formation of low-valent Ag(I) species and polarizable counteranions. Density functional theory (DFT) calculations corroborate these experimental results and suggest strong interactions between Xe and exposed Ag(I) sites in NU-1107-Ag(I). Finally, we validated this framework polarizability regulation approach by demonstrating the effectiveness of NU-1107-Ag(I) toward C3H6/C3H8 separation, indicating that this generalizable strategy can facilitate the bespoke synthesis of polarized porous materials for targeted separations.
Collapse
Affiliation(s)
- Wei Gong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.,Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Yi Xie
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Kent O Kirlikovali
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Karam B Idrees
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Fanrui Sha
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Haomiao Xie
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
7
|
Boosting Xe/Kr separation by a Mixed-linker strategy in Radiation-Resistant Aluminum-Based Metal−Organic Frameworks. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Data-mining based assembly of promising metal-organic frameworks on Xe/Kr separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Mebs S, Beckmann J. In silico capture of noble gas atoms with a light atom molecule. Phys Chem Chem Phys 2022; 24:20968-20979. [PMID: 36053150 DOI: 10.1039/d2cp02517e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Noble gas atoms (Ng = He, Ne, Ar, and Kr) can be captured in silico with a light atom molecule containing only C, H, Si, O, and B atoms. Extensive density functional theory (DFT) calculations on series of peri-substituted scaffolds indicate that confined spaces (voids) capable to energy efficiently encapsulate and bind Ng atoms are accessible by design of a tripodal peri-substituted ligand, namely, [(5-Ph2B-xan-4-)3Si]H (xan = xanthene) comprising (after hydride abstraction) four Lewis acidic sites within the cationic structure [(5-Ph2B-xan-4-)3Si]+. The host (ligand system) thereby provides an adoptive environment for the guest (Ng atom) to accommodate for its particular size. Whereas considerable chemical interactions are detectable between the ligand system and the heavier Ng atoms Kr and Ar in the host guest complex [(5-Ph2B-xan-4-)3Si·Ng]+, the lighter Ng atoms Ne and He are rather tolerated by the ligand system instead of being chemically bound to it, nicely highlighting the gradual onset of (weak) chemical bonding along the series He to Kr. A variety of real-space bonding indicators (RSBIs) derived from the calculated electron and pair densities provides valuable insight to the situation of an "isolated atom in a molecule" in case of He, uncovering its size and shape, whereas minute charge rearrangements caused by polarization of the outer electron shell of the larger Ng atoms results in formation of polarized interactions for Ar and Kr with non-negligible covalent bond contributions for Kr. The present study shows that noble gas atoms can be trapped by small light-atom molecules without the forceful conditions necessary using cage structures such as fullerenes, boranes and related compounds or by using super-electrophilic sites like [B12(CN)11]- if the chelating effect of several Lewis acidic sites within one molecule is employed.
Collapse
Affiliation(s)
- Stefan Mebs
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| | - Jens Beckmann
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Straße 7, 28359 Bremen, Germany
| |
Collapse
|
10
|
Guo L, Zheng F, Xu Q, Chen R, Sun H, Chen L, Zhang Z, Yang Q, Yang Y, Ren Q, Bao Z. Double-Accessible Open Metal Sites in Metal–Organic Frameworks with Suitable Pore Size for Efficient Xe/Kr Separation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lidong Guo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fang Zheng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qianqian Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, China
| | - Rundao Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Haoran Sun
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lihang Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Yiwen Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| |
Collapse
|
11
|
Balancing uptake and selectivity in a copper-based metal–organic framework for xenon and krypton separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Wang X, Ma F, Xiong S, Bai Z, Zhang Y, Li G, Chen J, Yuan M, Wang Y, Dai X, Chai Z, Wang S. Efficient Xe/Kr Separation Based on a Lanthanide-Organic Framework with One-Dimensional Local Positively Charged Rhomboid Channels. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22233-22241. [PMID: 35507505 DOI: 10.1021/acsami.2c05258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Efficient xenon/krypton (Xe/Kr) separation has played an important role in industry due to the wide application of high-purity Xe and with regard to the safe disposal of radioactive noble gases (85Kr and 133Xe). A less energy-demanding separation technology, adsorptive separation using porous solid materials, has been proposed to replace the traditional cryogenic distillation with intensive energy consumption. As a cutting-edge class of porous materials, metal-organic frameworks (MOFs) featuring permanent porosity, designable chemical functionalities, and tunable pore sizes hold great promise for Xe/Kr separation. Here, we report a two-dimensional (2D) lanthanide-organic framework (termed LPC-MOF, [Eu(Ccbp)(NO3)(HCOO)]·DMF0.3(H2O)2.5) with one-dimensional (1D) local positively charged rhomboid channels whose size matches well with the kinetic diameter of Xe, leading to its superior Xe/Kr separation performance. Column breakthrough experiments demonstrate that LPC-MOF exhibits a high Xe/Kr selectivity of 12.4 and an Xe adsorption amount of 3.39 mmol kg-1 under simulated conditions for real used nuclear fuel (UNF)-reprocessing plants. Furthermore, density functional theory (DFT) calculations elucidate not only the intrinsic mechanisms of Xe/Kr separation at the molecular level but also the detailed influence of the local positive charge (N+) on the performance of Xe/Kr separation in the MOF system.
Collapse
Affiliation(s)
- Xia Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Fuyin Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shunshun Xiong
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
| | - Zhuanling Bai
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Yugang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Guodong Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Junchang Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Mengjia Yuan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yanlong Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xing Dai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
13
|
Pei J, Gu XW, Liang CC, Chen B, Li B, Qian G. Robust and Radiation-Resistant Hofmann-Type Metal-Organic Frameworks for Record Xenon/Krypton Separation. J Am Chem Soc 2022; 144:3200-3209. [PMID: 35138086 DOI: 10.1021/jacs.1c12873] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The discovery of high-performance adsorbents for highly efficient separation of xenon from krypton is an important but challenging task in the chemical industry due to their similar size and inert spherical nature. Herein, we report two robust and radiation-resistant Hofmann-type MOFs, Co(pyz)[Ni(CN)4] and Co(pyz)[Pd(CN)4] (termed as ZJU-74a-Ni and ZJU-74a-Pd), featuring oppositely adjacent open metal sites and perfect pore sizes (4.1 and 3.8 Å) comparable to the kinetic diameter of xenon (4.047 Å), affording the benchmark binding affinity for polarizable Xe gas. These materials thus exhibit both record-high Xe uptake capacities (89.3 and 98.4 cm3 cm-3 at 296 K and 0.2 bar) and Xe/Kr selectivities (74.1 and 103.4) at ambient conditions, all of which are the highest among all the state-of-the-art materials reported so far. The locations of Xe molecules within ZJU-74a-Ni have been visualized by single-crystal X-ray diffraction studies, in which two oppositely adjacent metal centers combined with the right aperture size can construct a unique sandwich-like binding site to offer unprecedented and ultrastrong Ni2+-Xe-Ni2+ interactions with xenon, thus leading to the record Xe capture capacity and selectivity. The excellent separation capacity of ZJU-74a-Pd was verified by breakthrough experiments for Xe/Kr gas mixtures, providing both unprecedentedly high xenon uptake capacity (4.63 mmol cm-3) and krypton productivity (214 cm3 g-1).
Collapse
Affiliation(s)
- Jiyan Pei
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiao-Wen Gu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Cong-Cong Liang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Bin Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guodong Qian
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
14
|
Soltani S, Akhbari K, Phuruangrat A. Incorporation of Silver Nanoparticles on Cu‐BTC Metal‐Organic‐Framework under the Influence of Reaction Conditions and Investigation of Their Antibacterial Activity. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sajjad Soltani
- School of Chemistry, College of Science University of Tehran Tehran Iran
| | - Kamran Akhbari
- School of Chemistry, College of Science University of Tehran Tehran Iran
| | - Anukorn Phuruangrat
- Department of Materials Science and Technology, Faculty of Science Prince of Songkla University Hat Yai, Songkhla Thailand
| |
Collapse
|
15
|
Deng X, Yu B, Wu H, He Z, Wang M, Xiao D. High-efficiency radon adsorption by nickel nanoparticles supported on activated carbon. NEW J CHEM 2022. [DOI: 10.1039/d2nj00862a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nickel nanoparticles supported on AC (Ni/AC) composites, combining abundant micropores with open metal sites, are rationally designed for adsorbing Rn.
Collapse
Affiliation(s)
- Xiangyuan Deng
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, Hunan, China
- Radon Key Laboratory of Hunan Province, University of South China, Hengyang 421001, Hunan, China
- School of Mathematics and Physics, University of South China, Hengyang 421001, Hunan, China
| | - Bo Yu
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, Hunan, China
- Radon Key Laboratory of Hunan Province, University of South China, Hengyang 421001, Hunan, China
| | - Haibiao Wu
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, Hunan, China
- Radon Key Laboratory of Hunan Province, University of South China, Hengyang 421001, Hunan, China
| | - Zhengzhong He
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, Hunan, China
- Radon Key Laboratory of Hunan Province, University of South China, Hengyang 421001, Hunan, China
| | - Meng Wang
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, Hunan, China
| | - Detao Xiao
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, Hunan, China
- Radon Key Laboratory of Hunan Province, University of South China, Hengyang 421001, Hunan, China
| |
Collapse
|
16
|
Guo L, Chen S, Yu YL, Wang JH. A Smartphone Optical Device for Point-of-Care Testing of Glucose and Cholesterol Using Ag NPs/UiO-66-NH 2-Based Ratiometric Fluorescent Probe. Anal Chem 2021; 93:16240-16247. [PMID: 34813276 DOI: 10.1021/acs.analchem.1c04126] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Point-of-care testing (POCT) with the advantages of simplicity, rapidity, portability, and low-cost is of great importance to improve healthcare, especially in resource-limited settings and home healthcare settings. Moreover, it is a great challenge to quantitative POCT of multiplexed biomarkers within a single accessible assay but provides enhanced diagnostic accuracy and improved diagnostic efficiency. Herein, a smartphone optical device has been designed for POCT of glucose and cholesterol in metabolic syndrome patients using a ratiometric fluorescent sensor. The sensing system of Ag NPs/UiO-66-NH2 and o-phenylenediamine presents a dual-emission response to H2O2 (the main product of glucose and cholesterol catalyzed by glucose oxidase and cholesterol oxidase) on account of the inner filter effect, resulting in an increase in the response of the fluorescence intensity ratio (F555 nm/F425 nm) accompanied by a distinguishable color transition from blue to yellow green. After compositing probes with a flexible substrate, the obtained test strip can be integrated with a smartphone-based portable platform to read RGB values for accurate testing of glucose and cholesterol with both detection limits of 10 μmol L-1, which are hundreds of times lower than their concentrations in human serum. With the advantages of low-cost, ease of operation, and broad adaptability, this smartphone optical device holds great potential for portable detection of numerous targets in personalized healthcare and clinical diagnosis.
Collapse
Affiliation(s)
- Lan Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Shuai Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
17
|
Management of carbon dioxide released from spent nuclear fuel through voloxidation. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07972-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Liu J, Thallapally PK, Blake TA. Understanding the Adsorption of Noble Gases in Metal–Organic Frameworks Using Diffuse Reflectance Infrared Fourier Transform Spectroscopy. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jian Liu
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Praveen K. Thallapally
- Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Thomas A. Blake
- Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
19
|
Usman M, Iqbal N, Noor T, Zaman N, Asghar A, Abdelnaby MM, Galadima A, Helal A. Advanced strategies in Metal-Organic Frameworks for CO 2 Capture and Separation. CHEM REC 2021; 22:e202100230. [PMID: 34757694 DOI: 10.1002/tcr.202100230] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/17/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022]
Abstract
The continuous carbon dioxide (CO2 ) gas emissions associated with fossil fuel production, valorization, and utilization are serious challenges to the global environment. Therefore, several developments of CO2 capture, separation, transportation, storage, and valorization have been explored. Consequently, we documented a comprehensive review of the most advanced strategies adopted in metal-organic frameworks (MOFs) for CO2 capture and separation. The enhancements in CO2 capture and separation are generally achieved due to the chemistry of MOFs by controlling pore window, pore size, open-metal sites, acidity, chemical doping, post or pre-synthetic modifications. The chemistry of defects engineering, breathing in MOFs, functionalization in MOFs, hydrophobicity, and topology are the salient advanced strategies, recently reported in MOFs for CO2 capture and separation. Therefore, this review summarizes MOF materials' advancement explaining different strategies and their role in the CO2 mitigations. The study also provided useful insights into key areas for further investigations.
Collapse
Affiliation(s)
- Muhammad Usman
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Naseem Iqbal
- U. S. Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Neelam Zaman
- U. S. Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Aisha Asghar
- U. S. Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Mahmoud M Abdelnaby
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Ahmad Galadima
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Aasif Helal
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
20
|
Mandani S, Rezaei B, Ensafi AA, Rezaei P. Ultrasensitive electrochemical molecularly imprinted sensor based on AuE/Ag-MOF@MC for determination of hemoglobin using response surface methodology. Anal Bioanal Chem 2021; 413:4895-4906. [PMID: 34236471 DOI: 10.1007/s00216-021-03453-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/30/2021] [Accepted: 06/02/2021] [Indexed: 10/20/2022]
Abstract
Considering the importance of determining the levels of hemoglobin (Hb) as a vital protein in red blood cells, in this work a highly sensitive electrochemical sensor was developed based on a gold electrode (AuE) modified with Ag metal-organic framework mesoporous carbon (Ag-MOF@MC) and molecularly imprinted polymers (MIPs). To that end, the MIP layer was formed on the Ag-MOF@MC by implanting Hb as the pattern molecule during the polymerization. The modified electrode was designed using electrochemical approaches including differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). Using a response level experimental design method, the most important parameters affecting the reaction of the sensing system including pH, incubation time, and scanning rate were optimized. Following the same route, the Hb concentration, pH, temperature, and elution times were optimized to prepare the imprinted polymer layer on the Ag-MOF@MC surface. By exploiting DPV techniques based on the optimal parameters, the electrochemical response of the AuE/Ag-MOF@MC-MIPs for Hb determination was recorded in a wide linear dynamic range (LDR) of 0.2 pM to 1000 nM, with a limit of detection (LOD) of 0.09 pM. Moreover, the Ag-MOF@MC-MIP sensing system showed good stability, high selectivity, and acceptable reproducibility for Hb determination. The sensing system was successfully applied for Hb determination in real blood samples, and the results were compared with those of the standard methods for Hb determination. Acceptable recovery (99.0%) and RDS% (4.6%) confirmed the applicability and reliability of the designed Hb sensing system.
Collapse
Affiliation(s)
- Sudabe Mandani
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Behzad Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Ali Asghar Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Parisa Rezaei
- Department of Medical Laboratory Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81745-33871, Iran
| |
Collapse
|
21
|
Tailoring Pore Structure and Morphologies in Covalent Organic Frameworks for Xe/Kr Capture and Separation. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1064-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Cheng S, Xin Y, Hu J, Feng W, Ahn D, Zeller M, He J, Xu Z. Invisible Silver Guests Boost Order in a Framework That Cyclizes and Deposits Ag 3Sb Nanodots. Inorg Chem 2021; 60:5757-5763. [PMID: 33787239 DOI: 10.1021/acs.inorgchem.1c00012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The infusion of metal guests into (i.e., metalating) the porous medium of metal-organic frameworks (MOFs) is a topical approach to wide-ranging functionalization purposes. We report the notable interactions of AgSbF6 guests with the designer MOF host ZrL1 [Zr6O4(OH)7(L1)4.5(H2O)4]. (1) The heavy-atom guests of AgSbF6 induce order in the MOF host to allow the movable alkyne side arm to be fully located by X-ray diffraction, but they themselves curiously remain highly disordered and absent in the strucutral model. The enhanced order of the framework can be generally ascribed to interaction of the silver guests with the host alkyne and thioether functions, while the invisible heavy-atom guest represents a new phenomenon in the metalation of open framework materials. (2) The AgSbF6 guests also participate in the thermocyclization of the vicinal alkyne units of the L1 linker (at 450 °C) and form the rare nanoparticle of Ag3Sb supported on the concomitantly formed nanographene network. The resulted composite exhibits high electrical conductivity (1.0 S/cm) as well as useful, mitigated catalytic activity for selectively converting nitroarenes into the industrially important azo compounds, i.e., without overshooting to form the amine side products. The heterogeneous/cyclable catalysis entails only the cheap reducing reagents of NaBH4, ethanol, and water, with yields being generally close to 90%.
Collapse
Affiliation(s)
- Shengxian Cheng
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yinger Xin
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jieying Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.,Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Weijin Feng
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Dohyun Ahn
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Matthias Zeller
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhengtao Xu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
23
|
Protesescu L, Calbo J, Williams K, Tisdale W, Walsh A, Dincă M. Colloidal nano-MOFs nucleate and stabilize ultra-small quantum dots of lead bromide perovskites. Chem Sci 2021; 12:6129-6135. [PMID: 33996009 PMCID: PMC8098656 DOI: 10.1039/d1sc00282a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/19/2021] [Indexed: 11/23/2022] Open
Abstract
The development of synthetic routes to access stable, ultra-small (i.e. <5 nm) lead halide perovskite (LHP) quantum dots (QDs) is of fundamental and technological interest. The considerable challenges include the high solubility of the ionic LHPs in polar solvents and aggregation to form larger particles. Here, we demonstrate a simple and effective host-guest strategy for preparing ultra-small lead bromide perovskite QDs through the use of nano-sized MOFs that function as nucleating and host sites. Cr3O(OH)(H2O)2(terephthalate)3 (Cr-MIL-101), made of large mesopore-sized pseudo-spherical cages, allows fast and efficient diffusion of perovskite precursors within its pores, and promotes the formation of stable, ∼3 nm-wide lead bromide perovskite QDs. CsPbBr3, MAPbBr3 (MA+ = methylammonium), and (FA)PbBr3 (FA+ = formamidinium) QDs exhibit significantly blue-shifted emission maxima at 440 nm, 446 nm, and 450 nm, respectively, as expected for strongly confined perovskite QDs. Optical characterization and composite modelling confirm that the APbBr3 (A = Cs, MA, FA) QDs owe their stability within the MIL-101 nanocrystals to both short- and long-range interfacial interactions with the MOF pore walls.
Collapse
Affiliation(s)
- Loredana Protesescu
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge Massachusetts 02139 USA
| | - Joaquín Calbo
- Department of Materials, Imperial College London London SW7 2AZ UK
| | - Kristopher Williams
- Department of Chemical Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge Massachusetts 02139 USA
| | - William Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge Massachusetts 02139 USA
| | - Aron Walsh
- Department of Materials, Imperial College London London SW7 2AZ UK
- Department of Materials Science and Engineering, Yonsei University Seoul 03722 Korea
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge Massachusetts 02139 USA
| |
Collapse
|
24
|
He Y, Wang Z, Wang H, Wang Z, Zeng G, Xu P, Huang D, Chen M, Song B, Qin H, Zhao Y. Metal-organic framework-derived nanomaterials in environment related fields: Fundamentals, properties and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213618] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
25
|
Chen F, Ding J, Guo K, Yang L, Zhang Z, Yang Q, Yang Y, Bao Z, He Y, Ren Q. CoNi Alloy Nanoparticles Embedded in Metal-Organic Framework-Derived Carbon for the Highly Efficient Separation of Xenon and Krypton via a Charge-Transfer Effect. Angew Chem Int Ed Engl 2021; 60:2431-2438. [PMID: 33459453 DOI: 10.1002/anie.202011778] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Indexed: 11/10/2022]
Abstract
Separation of Xe and Kr is one of the greatest challenges in the gas industries owing to their close molecular structure and similar properties. Energy-effective adsorption-based separation using chemically stable carbon adsorbents is a promising technology. We propose a strategy for Xe/Kr separation using MOF-derived metallic carbon adsorbents. M-Gallate (M=Ni, Co) were used as precursors to fabricate CoNi alloy nanoparticles embedded carbon adsorbents by one-step auto-reduction pyrolysis. The optimal NiCo@C-700 exhibits record-high IAST selectivity (24.1) and Henry's selectivity (20.1) of Xe/Kr among reported carbon adsorbents. DFT calculations, local density of states calculation, charge density difference, and Bader charge analysis reveal the great affinity with Xe benefits from the presence of Ni or CoNi nanoparticles as a result of more charge transfer from Xe than Kr to metal, thus providing higher binding energy. Breakthrough experiments further verify NiCo@C-700 a promising candidate for Xe/Kr separation.
Collapse
Affiliation(s)
- Fuqiang Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Jiaqi Ding
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Kaiqing Guo
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou, 324000, P. R. China
| | - Liu Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou, 324000, P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou, 324000, P. R. China
| | - Yiwen Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou, 324000, P. R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou, 324000, P. R. China
| | - Yi He
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou, 324000, P. R. China
| |
Collapse
|
26
|
Jin K, Lee B, Park J. Metal-organic frameworks as a versatile platform for radionuclide management. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213473] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Chen F, Ding J, Guo K, Yang L, Zhang Z, Yang Q, Yang Y, Bao Z, He Y, Ren Q. CoNi Alloy Nanoparticles Embedded in Metal–Organic Framework‐Derived Carbon for the Highly Efficient Separation of Xenon and Krypton via a Charge‐Transfer Effect. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fuqiang Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University 38 Zheda Road Hangzhou 310027 P. R. China
| | - Jiaqi Ding
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University 38 Zheda Road Hangzhou 310027 P. R. China
| | - Kaiqing Guo
- Institute of Zhejiang University-Quzhou 78 Jiuhua Boulevard North Quzhou 324000 P. R. China
| | - Liu Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University 38 Zheda Road Hangzhou 310027 P. R. China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University 38 Zheda Road Hangzhou 310027 P. R. China
- Institute of Zhejiang University-Quzhou 78 Jiuhua Boulevard North Quzhou 324000 P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University 38 Zheda Road Hangzhou 310027 P. R. China
- Institute of Zhejiang University-Quzhou 78 Jiuhua Boulevard North Quzhou 324000 P. R. China
| | - Yiwen Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University 38 Zheda Road Hangzhou 310027 P. R. China
- Institute of Zhejiang University-Quzhou 78 Jiuhua Boulevard North Quzhou 324000 P. R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University 38 Zheda Road Hangzhou 310027 P. R. China
- Institute of Zhejiang University-Quzhou 78 Jiuhua Boulevard North Quzhou 324000 P. R. China
| | - Yi He
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University 38 Zheda Road Hangzhou 310027 P. R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University 38 Zheda Road Hangzhou 310027 P. R. China
- Institute of Zhejiang University-Quzhou 78 Jiuhua Boulevard North Quzhou 324000 P. R. China
| |
Collapse
|
28
|
Riley BJ, Chong S, Kuang W, Varga T, Helal AS, Galanek M, Li J, Nelson ZJ, Thallapally PK. Metal-Organic Framework-Polyacrylonitrile Composite Beads for Xenon Capture. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45342-45350. [PMID: 32910854 DOI: 10.1021/acsami.0c13717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mechanically robust forms of HKUST-1 metal-organic frameworks (MOFs) were fabricated by embedding the MOF crystals in a passive polyacrylonitrile (PAN) matrix at different MOF loadings of 10-90 mass %. PAN is highly porous and acts as a scaffold that holds the active MOF adsorbent in place. These MOF-PAN composites were then evaluated for capturing Xe. Data presented herein show that the PAN matrix does not notably interfere with the Xe capture process, where the Xe capacities scale somewhat linearly with the increase in MOF loadings within the composites. Also, γ radiation exposures to the composites revealed that they are highly tolerant to these types of radiation fields.
Collapse
Affiliation(s)
- Brian J Riley
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| | - Saehwa Chong
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| | - Wenbin Kuang
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| | - Tamas Varga
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| | - Ahmed S Helal
- Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mitchell Galanek
- Office of Environment, Health & Safety, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ju Li
- Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Zayne J Nelson
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| | - Praveen K Thallapally
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| |
Collapse
|
29
|
Du K, Zemerov SD, Hurtado Parra S, Kikkawa JM, Dmochowski IJ. Paramagnetic Organocobalt Capsule Revealing Xenon Host-Guest Chemistry. Inorg Chem 2020; 59:13831-13844. [PMID: 32207611 PMCID: PMC7672707 DOI: 10.1021/acs.inorgchem.9b03634] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We investigated Xe binding in a previously reported paramagnetic metal-organic tetrahedral capsule, [Co4L6]4-, where L2- = 4,4'-bis[(2-pyridinylmethylene)amino][1,1'-biphenyl]-2,2'-disulfonate. The Xe-inclusion complex, [XeCo4L6]4-, was confirmed by 1H NMR spectroscopy to be the dominant species in aqueous solution saturated with Xe gas. The measured Xe dissociation rate in [XeCo4L6]4-, koff = 4.45(5) × 102 s-1, was at least 40 times greater than that in the analogous [XeFe4L6]4- complex, highlighting the capability of metal-ligand interactions to tune the capsule size and guest permeability. The rapid exchange of 129Xe nuclei in [XeCo4L6]4- produced significant hyperpolarized 129Xe chemical exchange saturation transfer (hyper-CEST) NMR signal at 298 K, detected at a concentration of [XeCo4L6]4- as low as 100 pM, with presaturation at -89 ppm, which was referenced to solvated 129Xe in H2O. The saturation offset was highly temperature-dependent with a slope of -0.41(3) ppm/K, which is attributed to hyperfine interactions between the encapsulated 129Xe nucleus and electron spins on the four CoII centers. As such, [XeCo4L6]4- represents the first example of a paramagnetic hyper-CEST (paraHYPERCEST) sensor. Remarkably, the hyper-CEST 129Xe NMR resonance for [XeCo4L6]4- (δ = -89 ppm) was shifted 105 ppm upfield from the diamagnetic analogue [XeFe4L6]4- (δ = +16 ppm). The Xe inclusion complex was further characterized in the crystal structure of (C(NH2)3)4[Xe0.7Co4L6]·75 H2O (1). Hydrogen bonding between capsule-linker sulfonate groups and exogenous guanidinium cations, (C(NH2)3)+, stabilized capsule-capsule interactions in the solid state and also assisted in trapping a Xe atom (∼42 Å3) in the large (135 Å3) cavity of 1. Magnetic susceptibility measurements confirmed the presence of four noninteracting, magnetically anisotropic high-spin CoII centers in 1. Furthermore, [Co4L6]4- was found to be stable toward aggregation and oxidation, and the CEST performance of [XeCo4L6]4- was unaffected by biological macromolecules in H2O. These results recommend metal-organic capsules for fundamental investigations of Xe host-guest chemistry as well as applications with highly sensitive 129Xe-based sensors.
Collapse
|
30
|
Chakraborty D, Nandi S, Maity R, Motkuri RK, Han KS, Collins S, Humble P, Hayes JC, Woo TK, Vaidhyanathan R, Thallapally PK. An Ultra-Microporous Metal-Organic Framework with Exceptional Xe Capacity. Chemistry 2020; 26:12544-12548. [PMID: 32428326 DOI: 10.1002/chem.202002331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 11/05/2022]
Abstract
Molecular confinement plays a significant effect on trapped gas and solvent molecules. A fundamental understanding of gas adsorption within the porous confinement provides information necessary to design a material with improved selectivity. In this regard, metal-organic framework (MOF) adsorbents are ideal candidate materials to study confinement effects for weakly interacting gas molecules, such as noble gases. Among the noble gases, xenon (Xe) has practical applications in the medical, automotive and aerospace industries. In this Communication, we report an ultra-microporous nickel-isonicotinate MOF with exceptional Xe uptake and selectivity compared to all benchmark MOF and porous organic cage materials. The selectivity arises because of the near perfect fit of the atomic Xe inside the porous confinement. Notably, at low partial pressure, the Ni-MOF interacts very strongly with Xe compared to the closely related Krypton gas (Kr) and more polarizable CO2 . Further 129 Xe NMR suggests a broad isotropic chemical shift due to the reduced motion as a result of confinement.
Collapse
Affiliation(s)
- Debanjan Chakraborty
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Maharashtra, 411008, India
| | - Shyamapada Nandi
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Maharashtra, 411008, India
| | - Rahul Maity
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Maharashtra, 411008, India
| | - Radha Kishan Motkuri
- Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| | - Kee Sung Han
- Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| | - Sean Collins
- Centre for Catalysis Research and Innovation, & Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Paul Humble
- Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| | - James C Hayes
- Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| | - Tom K Woo
- Centre for Catalysis Research and Innovation, & Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Ramanathan Vaidhyanathan
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Maharashtra, 411008, India
| | | |
Collapse
|
31
|
Tao Y, Fan Y, Xu Z, Feng X, Krishna R, Luo F. Boosting Selective Adsorption of Xe over Kr by Double-Accessible Open-Metal Site in Metal-Organic Framework: Experimental and Theoretical Research. Inorg Chem 2020; 59:11793-11800. [PMID: 32799512 DOI: 10.1021/acs.inorgchem.0c01766] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Obtaining highly valuable Xe from air or other sources is highly important but still seriously restricted by its inherent inert nature and the great difficulty in separation from other inert gases, especially for Xe and Kr that show comparable size. In this work, we show both experimental and theoretical research of how to boost the selective adsorption of Xe over Kr by double-accessible open-metal site in metal-organic framework (MOF). The MOF, namely, UTSA-74, shows a high Xe uptake up to 2.7 mmol/g and a lower Kr uptake of 0.58 mmol/g at 298 K and 1 bar, leading to a high selectivity of 8.4. The effective Xe/Kr separation was further confirmed by both transient breakthrough simulation and experimental breakthrough. The separation mechanism, as unveiled by the grand canonical Monte Carlo simulation and dispersion-corrected density functional theory calculation, is due to the unique double-accessible open-metal site in UTSA-74 that affords stronger interaction toward Xe than Kr.
Collapse
Affiliation(s)
- Yuan Tao
- State Key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Yaling Fan
- State Key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Zhenzhen Xu
- State Key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Xuefeng Feng
- State Key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Feng Luo
- State Key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| |
Collapse
|
32
|
Pejman M, Dadashi Firouzjaei M, Aghapour Aktij S, Das P, Zolghadr E, Jafarian H, Arabi Shamsabadi A, Elliott M, Sadrzadeh M, Sangermano M, Rahimpour A, Tiraferri A. In Situ Ag-MOF Growth on Pre-Grafted Zwitterions Imparts Outstanding Antifouling Properties to Forward Osmosis Membranes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36287-36300. [PMID: 32677425 PMCID: PMC8009475 DOI: 10.1021/acsami.0c12141] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 07/17/2020] [Indexed: 05/28/2023]
Abstract
In this study, a polyamide forward osmosis membrane was functionalized with zwitterions followed by the in situ growth of metal-organic frameworks with silver as a metal core (Ag-MOFs) to improve its antibacterial and antifouling activity. First, 3-bromopropionic acid was grafted onto the membrane surface after its activation with N,N-diethylethylenediamine. Then, the in situ growth of Ag-MOFs was achieved by a simple membrane immersion sequentially in a silver nitrate solution and in a ligand solution (2-methylimidazole), exploiting the underlying zwitterions as binding sites for the metal. The successful membrane functionalization and the enhanced surface wettability were verified through an array of characterization techniques. When evaluated in forward osmosis tests, the modified membranes exhibited high performance and improved permeability compared to pristine membranes. Static antibacterial experiments, evaluated by confocal microscopy and colony-forming unit plate count, resulted in a 77% increase in the bacterial inhibition rate due to the activity of the Ag-MOFs. Microscopy micrographs of the Escherichia coli bacteria suggested the deterioration of the biological cells. The antifouling properties of the functionalized membranes translated into a significantly lower flux decline in forward osmosis filtrations. These modified surfaces displayed negligible depletion of silver ions over 30 days, confirming the stable immobilization of Ag-MOFs on their surface.
Collapse
Affiliation(s)
- Mehdi Pejman
- Department of Environment,
Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Mostafa Dadashi Firouzjaei
- Department of Civil,
Construction and Environmental Engineering, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Sadegh Aghapour Aktij
- Department of Mechanical Engineering, 10-367
Donadeo Innovation Center for Engineering, Advanced Water Research
Lab (AWRL), University of Alberta, Edmonton, AB T6G 1H9, Canada
- Department
of Chemical & Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Parnab Das
- Department of Civil,
Construction and Environmental Engineering, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Ehsan Zolghadr
- Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Hesam Jafarian
- Department of Mining and Metallurgical
Engineering, Amirkabir University of Technology, Tehran 159163-4311, Iran
| | - Ahmad Arabi Shamsabadi
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mark Elliott
- Department of Civil,
Construction and Environmental Engineering, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering, 10-367
Donadeo Innovation Center for Engineering, Advanced Water Research
Lab (AWRL), University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Marco Sangermano
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
| | - Ahmad Rahimpour
- Department of Environment,
Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Department of Chemical
Engineering, Babol Noshirvani University
of Technology, Shariati Avenue, Babol Mazandaran, 4714871167, Iran
| | - Alberto Tiraferri
- Department of Environment,
Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
33
|
Krishna R. Metrics for Evaluation and Screening of Metal-Organic Frameworks for Applications in Mixture Separations. ACS OMEGA 2020; 5:16987-17004. [PMID: 32724867 PMCID: PMC7379136 DOI: 10.1021/acsomega.0c02218] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/01/2020] [Indexed: 05/29/2023]
Abstract
For mixture separations, metal-organic frameworks (MOFs) are of practical interest. Such separations are carried out in fixed bed adsorption devices that are commonly operated in a transient mode, utilizing the pressure swing adsorption (PSA) technology, consisting of adsorption and desorption cycles. The primary objective of this article is to provide an assessment of the variety of metrics that are appropriate for screening and ranking MOFs for use in fixed bed adsorbers. By detailed analysis of several mixture separations of industrial significance, it is demonstrated that besides the adsorption selectivity, the performance of a specific MOF in PSA separation technologies is also dictated by a number of factors that include uptake capacities, intracrystalline diffusion influences, and regenerability. Low uptake capacities often reduce the efficacy of separations of MOFs with high selectivities. A combined selectivity-capacity metric, Δq, termed as the separation potential and calculable from ideal adsorbed solution theory, quantifies the maximum productivity of a component that can be recovered in either the adsorption or desorption cycle of transient fixed bed operations. As a result of intracrystalline diffusion limitations, the transient breakthroughs have distended characteristics, leading to diminished productivities in a number of cases. This article also highlights the possibility of harnessing intracrystalline diffusion limitations to reverse the adsorption selectivity; this strategy is useful for selective capture of nitrogen from natural gas.
Collapse
Affiliation(s)
- Rajamani Krishna
- Van ‘t Hoff Institute for Molecular
Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
34
|
Elsaidi SK, Mohamed MH, Helal AS, Galanek M, Pham T, Suepaul S, Space B, Hopkinson D, Thallapally PK, Li J. Radiation-resistant metal-organic framework enables efficient separation of krypton fission gas from spent nuclear fuel. Nat Commun 2020; 11:3103. [PMID: 32555193 PMCID: PMC7303119 DOI: 10.1038/s41467-020-16647-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/30/2020] [Indexed: 11/09/2022] Open
Abstract
Capture and storage of volatile radionuclides that result from processing of used nuclear fuel is a major challenge. Solid adsorbents, in particular ultra-microporous metal-organic frameworks, could be effective in capturing these volatile radionuclides, including 85Kr. However, metal-organic frameworks are found to have higher affinity for xenon than for krypton, and have comparable affinity for Kr and N2. Also, the adsorbent needs to have high radiation stability. To address these challenges, here we evaluate a series of ultra-microporous metal-organic frameworks, SIFSIX-3-M (M = Zn, Cu, Ni, Co, or Fe) for their capability in 85Kr separation and storage using a two-bed breakthrough method. These materials were found to have higher Kr/N2 selectivity than current benchmark materials, which leads to a notable decrease in the nuclear waste volume. The materials were systematically studied for gamma and beta irradiation stability, and SIFSIX-3-Cu is found to be the most radiation resistant.
Collapse
Affiliation(s)
- Sameh K Elsaidi
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA. .,Oak Ridge Institute for Science and Education, Pittsburgh, PA, 15236, USA. .,DOE National Energy and Technology Laboratory (NETL), Pittsburgh, PA, 15236, USA.
| | - Mona H Mohamed
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, USA.,Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria, 21321, Egypt
| | - Ahmed S Helal
- Nuclear Materials Authority, P.O. Box 540, El Maadi, Cairo, Egypt.,Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mitchell Galanek
- Office of Environment, Health & Safety, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Tony Pham
- Department of Chemistry, Biochemistry, and Physics, The University of Tampa, 401 West Kennedy Boulevard, Tampa, FL, 33606-1490, USA.,Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE205, Tampa, FL, 33620, USA
| | - Shanelle Suepaul
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE205, Tampa, FL, 33620, USA
| | - Brian Space
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE205, Tampa, FL, 33620, USA
| | - David Hopkinson
- DOE National Energy and Technology Laboratory (NETL), Pittsburgh, PA, 15236, USA
| | - Praveen K Thallapally
- Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Ju Li
- Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
35
|
Meng J, Liu X, Niu C, Pang Q, Li J, Liu F, Liu Z, Mai L. Advances in metal-organic framework coatings: versatile synthesis and broad applications. Chem Soc Rev 2020; 49:3142-3186. [PMID: 32249862 DOI: 10.1039/c9cs00806c] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metal-organic frameworks (MOFs) as a new kind of porous crystalline materials have attracted much interest in many applications due to their high porosity, diverse structures, and controllable chemical structures. However, the specific geometrical morphologies, limited functions and unsatisfactory performances of pure MOFs hinder their further applications. In recent years, an efficient approach to synthesize new composites to overcome the above issues has been achieved, by integrating MOF coatings with other functional materials, which have synergistic advantages in many potential applications, including batteries, supercapacitors, catalysis, gas storage and separation, sensors, drug delivery/cytoprotection and so on. Nevertheless, the systemic synthesis strategies and the relationships between their structures and application performances have not been reviewed comprehensively yet. This review emphasizes the recent advances in versatile synthesis strategies and broad applications of MOF coatings. A comprehensive discussion of the fundamental chemistry, classifications and functions of MOF coatings is provided first. Next, by modulating the different states (e.g. solid, liquid, and gas) of metal ion sources and organic ligands, the synthesis methods for MOF coatings on functional materials are systematically summarized. Then, many potential applications of MOF coatings are highlighted and their structure-property correlations are discussed. Finally, the opportunities and challenges for the future research of MOF coatings are proposed. This review on the deep understanding of MOF coatings will bring better directions into the rational design of high-performance MOF-based materials and open up new opportunities for MOF applications.
Collapse
Affiliation(s)
- Jiashen Meng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Xiong Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Chaojiang Niu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Quan Pang
- Department of Energy and Resources Engineering, and Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Jiantao Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Fang Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Ziang Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
36
|
Yan Z, Gong Y, Chen B, Wu X, liu Q, Cui L, Xiong S, Peng S. Methyl functionalized Zr-Fum MOF with enhanced Xenon adsorption and separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116514] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Uptake and separation of Xe and Kr by a zeolitic imidazolate framework with a desirable pore window. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07147-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Campanella AJ, Trump BA, Gosselin AJ, Bloch ED, Brown CM. Neutron diffraction structural study of CO 2 binding in mixed-metal CPM-200 metal-organic frameworks. Chem Commun (Camb) 2020; 56:2574-2577. [PMID: 32010906 PMCID: PMC7874966 DOI: 10.1039/c9cc09904b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic frameworks featuring open metal coordination sites have been widely studied for the separation of gas mixtures. For CO2/N2 separations, these materials have shown considerable promise. Herein, we report the characterization of a subset of the well-known PCN-250 class of frameworks upon CO2 adsorption via powder neutron diffraction methods. Noteably, in contrast to previously reported data, they display only moderate CO2 adsorption enthalpies, based on metal cation-CO2 interactions. Further, we show charge balance in these materials is likely achieved via ligand vacancies rather than the presence of μ3-OH groups in the trimetallic cluster that comprises them.
Collapse
Affiliation(s)
- Anthony J Campanella
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716, USA.
| | - Benjamin A Trump
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Aeri J Gosselin
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716, USA.
| | - Eric D Bloch
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716, USA.
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Craig M Brown
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
39
|
Tong P, Liang J, Jiang X, Li J. Research Progress on Metal-Organic Framework Composites in Chemical Sensors. Crit Rev Anal Chem 2019; 50:376-392. [DOI: 10.1080/10408347.2019.1642732] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Peihong Tong
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Junyu Liang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Xinxin Jiang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Jianping Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
40
|
Singh M, Solanki P, Patel P, Mondal A, Neogi S. Highly Active Ultrasmall Ni Nanoparticle Embedded Inside a Robust Metal–Organic Framework: Remarkably Improved Adsorption, Selectivity, and Solvent-Free Efficient Fixation of CO2. Inorg Chem 2019; 58:8100-8110. [DOI: 10.1021/acs.inorgchem.9b00833] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Manpreet Singh
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSMCRI), Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CSMCRI, G. B. Marg, Bhavnagar, Gujarat 364 002, India
| | - Pratik Solanki
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSMCRI), Bhavnagar, Gujarat 364002, India
| | - Parth Patel
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSMCRI), Bhavnagar, Gujarat 364002, India
| | - Aniruddha Mondal
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSMCRI), Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CSMCRI, G. B. Marg, Bhavnagar, Gujarat 364 002, India
| | - Subhadip Neogi
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSMCRI), Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CSMCRI, G. B. Marg, Bhavnagar, Gujarat 364 002, India
| |
Collapse
|
41
|
Li L, Guo L, Zhang Z, Yang Q, Yang Y, Bao Z, Ren Q, Li J. A Robust Squarate-Based Metal–Organic Framework Demonstrates Record-High Affinity and Selectivity for Xenon over Krypton. J Am Chem Soc 2019; 141:9358-9364. [DOI: 10.1021/jacs.9b03422] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Liangying Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Lidong Guo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
- Institute of Zhejiang University−Quzhou, Quzhou 324000, People’s Republic of China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
- Institute of Zhejiang University−Quzhou, Quzhou 324000, People’s Republic of China
| | - Yiwen Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
- Institute of Zhejiang University−Quzhou, Quzhou 324000, People’s Republic of China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
- Institute of Zhejiang University−Quzhou, Quzhou 324000, People’s Republic of China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
- Institute of Zhejiang University−Quzhou, Quzhou 324000, People’s Republic of China
| | - Jing Li
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
42
|
Chakraborty D, Nandi S, Sinnwell MA, Liu J, Kushwaha R, Thallapally PK, Vaidhyanathan R. Hyper-Cross-linked Porous Organic Frameworks with Ultramicropores for Selective Xenon Capture. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13279-13284. [PMID: 30888146 DOI: 10.1021/acsami.9b01619] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Exceptionally stable ultramicroporous C-C-bonded porous organic frameworks (IISERP-POF6, 7, 8) have been prepared using simple Friedel-Crafts reaction. These polymers exhibit permanent porosity with a Brunauer-Emmett-Teller surface area of 645-800 m2/g. Xe/Kr adsorptive separation has been carried out with these polymers, and they display selective Xe capture ( s(Xe/Kr) = 6.7, 6.3, and 6.3) at 298 K and 1 bar pressure. Interestingly, these polymers also show remarkable Xe/N2 ( s(Xe/N2) = 200, 180, and 160 at 298 K and 1 bar) and Xe/CO2 selectivity ( s(Xe/CO2) = 5.6, 7.4, and 5.6) for a 1:99 composition of Xe-N2/Xe-CO2. Selective removal of Xe at such low concentrations is extremely challenging; the observed selectivities are higher compared to those observed in porous carbons and metal-organic frameworks. Breakthrough studies were performed using the composition relevant to the nuclear off-gas mixture with the polymers, and we find that the polymers hold Xe for a longer time in the column, which illustrates the Xe/Kr separation performance under dynamic conditions.
Collapse
Affiliation(s)
| | | | - Michael A Sinnwell
- Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Jian Liu
- Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | | | | | | |
Collapse
|
43
|
Lee WG, Yoon TU, Bae YS, Kim KS, Baek SB. Selective separation of Xe/Kr and adsorption of water in a microporous hydrogen-bonded organic framework. RSC Adv 2019; 9:36808-36814. [PMID: 35539057 PMCID: PMC9075172 DOI: 10.1039/c9ra08184d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/05/2019] [Indexed: 01/01/2023] Open
Abstract
We have studied the adsorption properties of Xe and Kr in a highly microporous hydrogen-bonded organic framework based on 1,3,5-tris(4-carboxyphenyl)benzene, named HOF-BTB. HOF-BTB can reversibly adsorb both noble gases, and it shows a higher affinity for Xe than Kr. At 1 bar, the adsorption amounts of Xe were 3.37 mmol g−1 and 2.01 mmol g−1 at 273 K and 295 K, respectively. Ideal adsorbed solution theory (IAST) calculation predicts selective separation of Xe over Kr from an equimolar binary Xe/Kr mixture, and breakthrough experiments demonstrate the efficient separation of Xe from the Xe/Kr mixture under a dynamic flow condition. Consecutive breakthrough experiments with simple regeneration treatment at 298 K reveal that HOF-BTB would be an energy-saving adsorbent in an adsorptive separation process, which could be attributed to the relatively low isosteric heat (Qst) of adsorption of Xe. The activated HOF-BTB is very stable in both water and aqueous acidic solutions for more than one month, and it also shows a well-preserved crystallinity and porosity upon water/acid treatment. Besides, HOF-BTB adsorbs about 30.5 wt%, the highest value for HOF materials, of water vapor during the adsorption–desorption cycles, with a 19% decrease in adsorption amounts of water vapor after five cycles. A highly robust microporous hydrogen-bonded organic framework selectively separates Xe from Kr, as well as efficiently adsorbs water vapor.![]()
Collapse
Affiliation(s)
- Wang-Geun Lee
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| | - Tae-Ung Yoon
- Department of Chemical and Biomolecular Engineering
- Yonsei University
- Seoul 03722
- Republic of Korea
| | - Youn-Sang Bae
- Department of Chemical and Biomolecular Engineering
- Yonsei University
- Seoul 03722
- Republic of Korea
| | - Kwang S. Kim
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| | - Seung Bin Baek
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| |
Collapse
|
44
|
Chen S, Lucier BEG, Luo W, Xie X, Feng K, Chan H, Terskikh VV, Sun X, Sham TK, Workentin MS, Huang Y. Loading across the Periodic Table: Introducing 14 Different Metal Ions To Enhance Metal-Organic Framework Performance. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30296-30305. [PMID: 30124282 DOI: 10.1021/acsami.8b08496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Loading metal guests within metal-organic frameworks (MOFs) via secondary functional groups is a promising route for introducing or enhancing MOF performance in various applications. In this work, 14 metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ba2+, Zn2+, Co2+, Mn2+, Ag+, Cd2+, La3+, In3+, and Pb2+) have been successfully introduced within the MIL-121 MOF using a cost-efficient route involving free carboxylic groups on the linker. The local and long-range structure of the metal-loaded MOFs is characterized using multinuclear solid-state NMR and X-ray diffraction methods. Li/Mg/Ca-loaded MIL-121 and Ag nanoparticle-loaded MIL-121 exhibit enhanced H2 and CO2 adsorption; Ag nanoparticle-loaded MIL-121 also demonstrates remarkable catalytic activity in the reduction of 4-nitrophenol.
Collapse
Affiliation(s)
- Shoushun Chen
- Department of Chemistry , University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | - Bryan E G Lucier
- Department of Chemistry , University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | - Wilson Luo
- Department of Chemistry , University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | - Xinkai Xie
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM) & Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Jiangsu 215123 , P. R. China
| | - Kun Feng
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM) & Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Jiangsu 215123 , P. R. China
| | - Hendrick Chan
- Department of Chemistry , University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | - Victor V Terskikh
- Department of Chemistry , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | - Xuhui Sun
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM) & Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Jiangsu 215123 , P. R. China
| | - Tsun-Kong Sham
- Department of Chemistry , University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | - Mark S Workentin
- Department of Chemistry , University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | - Yining Huang
- Department of Chemistry , University of Western Ontario , London , Ontario N6A 5B7 , Canada
| |
Collapse
|
45
|
Kapelewski MT, Oktawiec J, Runčevski T, Gonzalez MI, Long JR. Separation of Xenon and Krypton in the Metal-Organic Frameworks M2
(m-dobdc) (M=Co, Ni). Isr J Chem 2018. [DOI: 10.1002/ijch.201800117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Matthew T. Kapelewski
- Department of Chemistry; University of California; Berkeley, Berkeley, California 94720 USA
| | - Julia Oktawiec
- Department of Chemistry; University of California; Berkeley, Berkeley, California 94720 USA
| | - Tomče Runčevski
- Department of Chemistry; University of California; Berkeley, Berkeley, California 94720 USA
| | - Miguel I. Gonzalez
- Department of Chemistry; University of California; Berkeley, Berkeley, California 94720 USA
| | - Jeffrey R. Long
- Department of Chemistry; University of California; Berkeley, Berkeley, California 94720 USA
- Department of Chemical Engineering; University of California; Berkeley, Berkeley, California 94720 USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory; Berkeley, California 94720 USA
| |
Collapse
|
46
|
Antimicrobial Activities of Green Synthesized Ag Nanoparticles @ Ni-MOF Nanosheets. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0950-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
47
|
Jia Y, Zhao Y, Zhao M, Wang Z, Chen X, Wang M. Core–shell indium (III) sulfide@metal-organic framework nanocomposite as an adsorbent for the dispersive solid-phase extraction of nitro-polycyclic aromatic hydrocarbons. J Chromatogr A 2018; 1551:21-28. [DOI: 10.1016/j.chroma.2018.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/28/2018] [Accepted: 04/01/2018] [Indexed: 12/26/2022]
|
48
|
Zhao X, Shimazu MS, Chen X, Bu X, Feng P. Homo‐Helical Rod Packing as a Path Toward the Highest Density of Guest‐Binding Metal Sites in Metal–Organic Frameworks. Angew Chem Int Ed Engl 2018; 57:6208-6211. [DOI: 10.1002/anie.201802267] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/17/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Xiang Zhao
- Department of Chemistry University of California, Riverside CA 92521 USA
| | - Matthew S. Shimazu
- Department of Chemistry and Biochemistry California State University Long Beach 1250 Bellflower Boulevard Long Beach CA 90840 USA
| | - Xitong Chen
- Department of Chemistry University of California, Riverside CA 92521 USA
| | - Xianhui Bu
- Department of Chemistry and Biochemistry California State University Long Beach 1250 Bellflower Boulevard Long Beach CA 90840 USA
| | - Pingyun Feng
- Department of Chemistry University of California, Riverside CA 92521 USA
| |
Collapse
|
49
|
Zhao X, Shimazu MS, Chen X, Bu X, Feng P. Homo‐Helical Rod Packing as a Path Toward the Highest Density of Guest‐Binding Metal Sites in Metal–Organic Frameworks. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiang Zhao
- Department of Chemistry University of California, Riverside CA 92521 USA
| | - Matthew S. Shimazu
- Department of Chemistry and Biochemistry California State University Long Beach 1250 Bellflower Boulevard Long Beach CA 90840 USA
| | - Xitong Chen
- Department of Chemistry University of California, Riverside CA 92521 USA
| | - Xianhui Bu
- Department of Chemistry and Biochemistry California State University Long Beach 1250 Bellflower Boulevard Long Beach CA 90840 USA
| | - Pingyun Feng
- Department of Chemistry University of California, Riverside CA 92521 USA
| |
Collapse
|
50
|
Guo C, Zhang Y, Guo Y, Zhang L, Zhang Y, Wang J. A general and efficient approach for tuning the crystal morphology of classical MOFs. Chem Commun (Camb) 2018; 54:252-255. [DOI: 10.1039/c7cc07698c] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The size/morphology-controlled synthesis of classical MOFs with 2-methylimidazole (2-MI) as a coordination modulator.
Collapse
Affiliation(s)
- Changyan Guo
- Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education & Xinjiang Uygur Autonomous Region
- College of Chemistry and Chemical Engineering
- Xinjiang University
- Urumqi
| | - Yonghong Zhang
- Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education & Xinjiang Uygur Autonomous Region
- College of Chemistry and Chemical Engineering
- Xinjiang University
- Urumqi
| | - Yuan Guo
- Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education & Xinjiang Uygur Autonomous Region
- College of Chemistry and Chemical Engineering
- Xinjiang University
- Urumqi
| | - Liugen Zhang
- Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education & Xinjiang Uygur Autonomous Region
- College of Chemistry and Chemical Engineering
- Xinjiang University
- Urumqi
| | - Yi Zhang
- Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education & Xinjiang Uygur Autonomous Region
- College of Chemistry and Chemical Engineering
- Xinjiang University
- Urumqi
| | - Jide Wang
- Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education & Xinjiang Uygur Autonomous Region
- College of Chemistry and Chemical Engineering
- Xinjiang University
- Urumqi
| |
Collapse
|