1
|
Feng Y, Liao Z, Li M, Zhang H, Li T, Qin X, Li S, Wu C, You F, Liao X, Cai L, Yang H, Liu Y. Mesoporous Silica Nanoparticles-Based Nanoplatforms: Basic Construction, Current State, and Emerging Applications in Anticancer Therapeutics. Adv Healthc Mater 2022:e2201884. [PMID: 36529877 DOI: 10.1002/adhm.202201884] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/13/2022] [Indexed: 12/23/2022]
Abstract
In recent years, researchers are developing novel nanoparticles for diagnostic applications using imaging techniques and for therapeutic purposes through drug delivery techniques. The unique physical and chemical properties of mesoporous silica nanoparticles (MSNs) make it possible to integrate a variety of commonly used therapeutic and imaging agents to construct a multimodal synergistic anticancer drug delivery system. Herein, recent advances in MSNs synthesis for drug delivery and smart response applications are reviewed. First, synthetic strategies for the fabrication of ordered MSNs, hollow MSNs, core-shell structured MSNs, dendritic MSNs, and biodegradable MSNs are outlined. Then, the recent research progress in designing functional MSN materials with various controlled release mechanisms in anticancer therapy is discussed, and new properties are introduced to suggest the latest design requirements as drug delivery materials. The review also highlights significant achievements in bioimaging using MSNs and their multifunctional counterparts as delivery vehicles. Finally, personal views on key directions for future work in this area are presented.
Collapse
Affiliation(s)
- Yi Feng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Zhen Liao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Mengyue Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Hanxi Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Tingting Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Xiang Qin
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Shun Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Chunhui Wu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610072, P. R. China
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Lulu Cai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Hong Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Yiyao Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610072, P. R. China
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| |
Collapse
|
2
|
Moehl GE, Nasir T, Han Y, Noori YJ, Huang R, Beanland R, Bartlett PN, Hector AL. AC-assisted deposition of aggregate free silica films with vertical pore structure. NANOSCALE 2022; 14:5404-5411. [PMID: 35320330 DOI: 10.1039/d1nr08253a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Silica thin films with vertical nanopores are useful to control access to electrode surfaces and may act as templates for growth of nanomaterials. The most effective method to produce these films, electrochemically assisted surfactant assembly, also produces aggregates of silica particles. This paper shows that growth with an AC signal superimposed onto the potential avoids the aggregates and only very small numbers of single particles are found. This finding is linked to better control of the diffusion field of hydroxide ions that are responsible for particle growth. The resultant films are smooth, with very well-ordered hexagonal pore structures.
Collapse
Affiliation(s)
- Gilles E Moehl
- School of Chemistry, University of Southampton, SO17 1BJ, UK.
| | - Tauqir Nasir
- School of Chemistry, University of Southampton, SO17 1BJ, UK.
| | - Yisong Han
- Department of Physics, University of Warwick, CV4 7AL, UK
| | - Yasir J Noori
- School of Electronics and Computer Science, University of Southampton, SO17 1BJ, UK
| | - Ruomeng Huang
- School of Electronics and Computer Science, University of Southampton, SO17 1BJ, UK
| | | | | | - Andrew L Hector
- School of Chemistry, University of Southampton, SO17 1BJ, UK.
| |
Collapse
|
3
|
Kaur H, Kesharwani P. Advanced nanomedicine approaches applied for treatment of skin carcinoma. J Control Release 2021; 337:589-611. [PMID: 34364919 DOI: 10.1016/j.jconrel.2021.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022]
Abstract
Skin-cancer is the commonest malignancy affecting huge proportion of the population, reaching heights in terms of morbidity. The treatment strategies are presently focusing on surgery, radiation and chemotherapy, which eventually cause destruction to unaffected cells. To overcome this limitation, wide range of nanoscaled materials have been recognized as potential carriers for delivering selective response to cancerous cells and neoplasms. Nanotechnological approach has been tremendously exploited in several areas, owing to their functional nanometric dimensions. The alarming incidence of skin cancer engenders burdensome effects worldwide, which is further awakening innovational medicinal approaches, accompanying target specific drug delivery tools for coveted benefits to provide reduced toxicity and tackle proliferative episodes of skin cancer. The developed nanosystems for anti-cancer agents include liposomes, ethosomes, nanofibers, solid lipid nanoparticles and metallic nanoparticles, which exhibit pronounced outcomes for skin carcinoma. In this review, skin cancer with its sub-types is explained in nutshell, followed by compendium of specific nanotechnological tools presented, in addition to therapeutic applications of drug-loaded nano systems for skin cancer.
Collapse
Affiliation(s)
- Harsimran Kaur
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
4
|
Zhao C, Tian S, Liu Q, Xiu K, Lei I, Wang Z, Ma PX. Biodegradable nanofibrous temperature-responsive gelling microspheres for heart regeneration. ADVANCED FUNCTIONAL MATERIALS 2020. [PMID: 33071711 DOI: 10.1002/adfm.201909539] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Myocardial infarction (heart attack) is the number one killer of heart patients. Existing treatments for heart attack do not address the underlying problem of cardiomyocyte (CM) loss and cannot regenerate the myocardium. Introducing exogenous cardiac cells is required for heart regeneration due to the lack of resident progenitor cells and very limited proliferative potential of adult CMs. Poor retention of transplanted cells is the critical bottleneck of heart regeneration. Here, we report the invention of a poly(l-lactic acid)-b-poly(ethylene glycol)-b-poly(N-Isopropylacrylamide) copolymer and its self-assembly into nanofibrous gelling microspheres (NF-GMS). The NF-GMS undergo thermally responsive transition to form not only a 3D hydrogel after injection in vivo, but also exhibit architectural and structural characteristics mimicking the native extracellular matrix (ECM) of nanofibrous proteins and gelling proteoglycans or polysaccharides. By integrating the ECM-mimicking features, injectable form, and the capability of maintaining 3D geometry after injection, the transplantation of hESC-derived CMs carried by NF-GMS led to a striking 10-fold graft size increase over direct CM injection in an infarcted rat model, which is the highest reported engraftment to date. Furthermore, NF-GMS carried CM transplantation dramatically reduced infarct size, enhanced integration of transplanted CMs, stimulated vascularization in the infarct zone, and led to a substantial recovery of cardiac function. The NF-GMS may also serve as advanced injectable and integrative biomaterials for cell/biomolecule delivery in a variety of biomedical applications.
Collapse
Affiliation(s)
- Chao Zhao
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Shuo Tian
- Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109
| | - Qihai Liu
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Kemao Xiu
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Ienglam Lei
- Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109
| | - Zhong Wang
- Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109
| | - Peter X Ma
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
5
|
Mehmood Y, Khan IU, Shahzad Y, Khan RU, Iqbal MS, Khan HA, Khalid I, Yousaf AM, Khalid SH, Asghar S, Asif M, Hussain T, Shah SU. In-Vitro and In-Vivo Evaluation of Velpatasvir- Loaded Mesoporous Silica Scaffolds. A Prospective Carrier for Drug Bioavailability Enhancement. Pharmaceutics 2020; 12:E307. [PMID: 32231052 PMCID: PMC7238066 DOI: 10.3390/pharmaceutics12040307] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022] Open
Abstract
The limited aqueous solubility of many active pharmaceutical ingredients (APIs) is responsible for their poor performance and low drug levels in blood and at target sites. Various approaches have been adopted to tackle this issue. Most recently, mesoporous silica nanoparticles (MSN) have gained attention of pharmaceutical scientists for bio-imaging, bio-sensing, gene delivery, drug solubility enhancement, and controlled and targeted drug release. Here, we have successfully incorporated the poorly water soluble antiviral drug velpatasvir (VLP) in MSN. These spherical particles were 186 nm in diameter with polydispersity index of 0.244. Blank MSN have specific surface area and pore diameter of 602.5 ± 0.7 m2/g and 5.9 nm, respectively, which reduced after successful incorporation of drug. Drug was in amorphous form in synthesized VLP-loaded silica particles (VLP-MSN) with no significant interaction with carrier. Pure VLP showed poor dissolution with progressive increment in pH of dissolution media which could limit its availability in systemic circulation after oral administration. After VLP loading in silica carriers, drug released rapidly over a wide range of pH values, i.e., 1.2 to 6.8, thus indicating an improvement in the solubility profile of VLP. These particles were biocompatible, with an LD50 of 448 µg/mL, and in-vivo pharmacokinetic results demonstrated that VLP-MSN significantly enhanced the bioavailability as compared to pure drug. The above results clearly demonstrate satisfactory in-vitro performance, biocompatibility, non-toxicity and in-vivo bioavailability enhancement with VLP-MSN.
Collapse
Affiliation(s)
- Yasir Mehmood
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Yasser Shahzad
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Rizwan Ullah Khan
- Department of Pathology, Prince Faisal Cancer Centre, Buraydah Al Qassim 51431, Saudi Arabia
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11492, Saudi Arabia
| | - Haseeb Ahmad Khan
- Department of Pathology, FMH College of Medicine and Dentistry, Lahore 54000, Pakistan
| | - Ikrima Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Abid Mehmood Yousaf
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Syed Haroon Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sajid Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Asif
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Talib Hussain
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Shefaat Ullah Shah
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| |
Collapse
|
6
|
Jahns M, Warwas DP, Krey MR, Nolte K, König S, Fröba M, Behrens P. Nanoporous hybrid core–shell nanoparticles for sequential release. J Mater Chem B 2020; 8:776-786. [DOI: 10.1039/c9tb01846h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Silica inside – organosilica outside, and nanoporous throughout: Drug molecules to be released sequentially from novel core–shell nanoparticles select their location (core/shell) autonomously.
Collapse
Affiliation(s)
- Mandy Jahns
- Institute for Inorganic Chemistry
- Gottfried Wilhelm Leibniz University Hannover
- 30167 Hannover
- Germany
- Cluster of Excellence Hearing4all
| | - Dawid Peter Warwas
- Institute for Inorganic Chemistry
- Gottfried Wilhelm Leibniz University Hannover
- 30167 Hannover
- Germany
| | - Marc Robert Krey
- Institute for Inorganic Chemistry
- Gottfried Wilhelm Leibniz University Hannover
- 30167 Hannover
- Germany
| | - Katharina Nolte
- Institute for Inorganic Chemistry
- Gottfried Wilhelm Leibniz University Hannover
- 30167 Hannover
- Germany
| | - Sandra König
- Institute of Inorganic and Applied Chemistry
- University of Hamburg
- 20146 Hamburg
- Germany
| | - Michael Fröba
- Institute of Inorganic and Applied Chemistry
- University of Hamburg
- 20146 Hamburg
- Germany
| | - Peter Behrens
- Institute for Inorganic Chemistry
- Gottfried Wilhelm Leibniz University Hannover
- 30167 Hannover
- Germany
- Cluster of Excellence Hearing4all
| |
Collapse
|
7
|
Tuning of TiO2 nanoparticles incorporation in poly methyl methacrylate for synthesis of polymer nanocomposites for promising biomedical application. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.matpr.2020.05.202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Wu PH, Mäkie P, Odén M, Björk EM. Growth and Functionalization of Particle-Based Mesoporous Silica Films and Their Usage in Catalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E562. [PMID: 30959939 PMCID: PMC6523614 DOI: 10.3390/nano9040562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 11/16/2022]
Abstract
We report the formation of mesoporous films consisting of SBA-15 particles grown directly onto substrates and their usage as catalysts in esterification of acetic acid and ethanol. The film thickness was altered between 80 nm and 750 nm by adding NH₄F to the synthesis solution. The salt also affects the formation rate of the particles, and substrates must be added during the formation of the siliceous network in the solution. Various substrate functionalizations were tested and hydrophobic substrates are required for a successful film growth. We show that large surfaces (> 75 cm²), as well as 3D substrates, can be homogenously coated. Further, the films were functionalized, either with acetic acid through co-condensation, or by coating the films with a thin carbon layer through exposure to furfuryl alcohol fumes followed by carbonization and sulfonation with H₂SO₄. The carbon-coated film was shown to be an efficient catalyst in the esterification reaction with acetic acid and ethanol. Due to the short, accessible mesopores, chemical variability, and possibility to homogenously cover large, rough surfaces. the films have a large potential for usage in various applications such as catalysis, sensing, and drug delivery.
Collapse
Affiliation(s)
- Pei-Hsuan Wu
- Nanostructured Materials, Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden.
| | - Peter Mäkie
- Nanostructured Materials, Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden.
| | - Magnus Odén
- Nanostructured Materials, Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden.
| | - Emma M Björk
- Nanostructured Materials, Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden.
- Institute of Inorganic Chemistry II, University of Ulm, Albert-Einstein-Allee 11, 890 81 Ulm, Germany.
| |
Collapse
|
9
|
Ullah S, Seidel K, Türkkan S, Warwas DP, Dubich T, Rohde M, Hauser H, Behrens P, Kirschning A, Köster M, Wirth D. Macrophage entrapped silica coated superparamagnetic iron oxide particles for controlled drug release in a 3D cancer model. J Control Release 2018; 294:327-336. [PMID: 30586597 DOI: 10.1016/j.jconrel.2018.12.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/06/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022]
Abstract
Targeted delivery of drugs is a major challenge in treatment of diverse diseases. Systemically administered drugs demand high doses and are accompanied by poor selectivity and side effects on non-target cells. Here, we introduce a new principle for targeted drug delivery. It is based on macrophages as transporters for nanoparticle-coupled drugs as well as controlled release of drugs by hyperthermia mediated disruption of the cargo cells and simultaneous deliberation of nanoparticle-linked drugs. Hyperthermia is induced by an alternating electromagnetic field (AMF) that induces heat from silica-coated superparamagnetic iron oxide nanoparticles (SPIONs). We show proof-of-principle of controlled release by the simultaneous disruption of the cargo cells and the controlled, AMF induced release of a toxin, which was covalently linked to silica-coated SPIONs via a thermo-sensitive linker. Cells that had not been loaded with SPIONs remain unaffected. Moreover, in a 3D co-culture model we demonstrate specific killing of associated tumour cells when employing a ratio as low as 1:40 (SPION-loaded macrophage: tumour cells). Overall, our results demonstrate that AMF induced drug release from macrophage-entrapped nanoparticles is tightly controlled and may be an attractive novel strategy for targeted drug release.
Collapse
Affiliation(s)
- Sami Ullah
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig 38124, Germany
| | - Katja Seidel
- Institute of Organic Chemistry and Centre of Biomolecular Drug Research (BMWZ), Leibniz Universität Hannover, Hannover, Germany
| | - Sibel Türkkan
- Institute of Organic Chemistry and Centre of Biomolecular Drug Research (BMWZ), Leibniz Universität Hannover, Hannover, Germany
| | - Dawid Peter Warwas
- Institute for Inorganic Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Tatyana Dubich
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig 38124, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Hansjörg Hauser
- Scientific Strategy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peter Behrens
- Institute for Inorganic Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Andreas Kirschning
- Institute of Organic Chemistry and Centre of Biomolecular Drug Research (BMWZ), Leibniz Universität Hannover, Hannover, Germany
| | - Mario Köster
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig 38124, Germany
| | - Dagmar Wirth
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig 38124, Germany; Institute for Experimental Hematology, Medical University Hannover, Hannover, Germany.
| |
Collapse
|
10
|
In vitro and in vivo accumulation of magnetic nanoporous silica nanoparticles on implant materials with different magnetic properties. J Nanobiotechnology 2018; 16:96. [PMID: 30482189 PMCID: PMC6258308 DOI: 10.1186/s12951-018-0422-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/11/2018] [Indexed: 12/21/2022] Open
Abstract
Background In orthopedic surgery, implant-associated infections are still a major problem. For the improvement of the selective therapy in the infection area, magnetic nanoparticles as drug carriers are promising when used in combination with magnetizable implants and an externally applied magnetic field. These implants principally increase the strength of the magnetic field resulting in an enhanced accumulation of the drug loaded particles in the target area and therewith a reduction of the needed amount and the risk of undesirable side effects. In the present study magnetic nanoporous silica core–shell nanoparticles, modified with fluorophores (fluorescein isothiocyanate/FITC or rhodamine B isothiocyanate/RITC) and poly(ethylene glycol) (PEG), were used in combination with metallic plates of different magnetic properties and with a magnetic field. In vitro and in vivo experiments were performed to investigate particle accumulation and retention and their biocompatibility. Results Spherical magnetic silica core–shell nanoparticles with reproducible superparamagnetic behavior and high porosity were synthesized. Based on in vitro proliferation and viability tests the modification with organic fluorophores and PEG led to highly biocompatible fluorescent particles, and good dispersibility. In a circular tube system martensitic steel 1.4112 showed superior accumulation and retention of the magnetic particles in comparison to ferritic steel 1.4521 and a Ti90Al6V4 control. In vivo tests in a mouse model where the nanoparticles were injected subcutaneously showed the good biocompatibility of the magnetic silica nanoparticles and their accumulation on the surface of a metallic plate, which had been implanted before, and in the surrounding tissue. Conclusion With their superparamagnetic properties and their high porosity, multifunctional magnetic nanoporous silica nanoparticles are ideal candidates as drug carriers. In combination with their good biocompatibility in vitro, they have ideal properties for an implant directed magnetic drug targeting. Missing adverse clinical and histological effects proved the good biocompatibility in vivo. Accumulation and retention of the nanoparticles could be influenced by the magnetic properties of the implanted plates; a remanent martensitic steel plate significantly improved both values in vitro. Therefore, the use of magnetizable implant materials in combination with the magnetic nanoparticles has promising potential for the selective treatment of implant-associated infections. Electronic supplementary material The online version of this article (10.1186/s12951-018-0422-6) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Hydrogels as Porogens for Nanoporous Inorganic Materials. Gels 2018; 4:gels4040083. [PMID: 30674859 PMCID: PMC6318640 DOI: 10.3390/gels4040083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/01/2018] [Accepted: 10/09/2018] [Indexed: 11/17/2022] Open
Abstract
Organic polymer-hydrogels are known to be capable of directing the nucleation and growth of inorganic materials, such as silica, metal oxides, apatite or metal chalcogenides. This approach can be exploited in the synthesis of materials that exhibit defined nanoporosity. When the organic polymer-based hydrogel is incorporated in the inorganic product, a composite is formed from which the organic component may be selectively removed, yielding nanopores in the inorganic product. Such porogenic impact resembles the concept of using soft or hard templates for porous materials. This micro-review provides a survey of select examples from the literature.
Collapse
|
12
|
Adhikari C, Mishra A, Nayak D, Chakraborty A. Metal organic frameworks modified mesoporous silica nanoparticles (MSN): A nano-composite system to inhibit uncontrolled chemotherapeutic drug delivery from Bare-MSN. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.06.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Ultrafast Synthesis of Multifunctional Submicrometer Hollow Silica Spheres in Microfluidic Spiral Channels. Sci Rep 2017; 7:12616. [PMID: 28974729 PMCID: PMC5626769 DOI: 10.1038/s41598-017-12856-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/14/2017] [Indexed: 11/29/2022] Open
Abstract
We demonstrate a facile and ultrafast approach for the synthesis of multifunctional submicrometer hollow silica spheres (smHSSs) using microfluidic spiral channels with enhanced mixing performance, introduced by the transverse Dean flows cross the channel as a result of centrifugal effects. Formation of smHSSs is initiated by the hydrolysis of tetraethyl orthosilicate (TEOS) at the interface of two laminar reactant flows. Complete mixing of the flows further facilitates the subsequent condensation of hydrolyzed TEOS, which builds up the shell layer of smHSSs. The average size of the as-synthesized smHSSs is 804.7 nm, and the thickness of the shell layer is ~20 nm. Multifunctional smHSSs integrated with proteins, fluorescent dyes, quantum dots, and magnetic nanoparticles can be further produced via this general platform. Their applications in cell imaging, organic dye adsorption, and drug delivery are examined.
Collapse
|
14
|
Jenisha Barnabas M, Parambadath S, Ha CS. Amino modified core–shell mesoporous silica based layered double hydroxide (MS-LDH) for drug delivery. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.05.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Civantos A, Martínez-Campos E, Ramos V, Elvira C, Gallardo A, Abarrategi A. Titanium Coatings and Surface Modifications: Toward Clinically Useful Bioactive Implants. ACS Biomater Sci Eng 2017; 3:1245-1261. [DOI: 10.1021/acsbiomaterials.6b00604] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ana Civantos
- Tissue
Engineering Group, Institute of Biofunctional Studies, Associated
Unit to the Institute of Polymer Science and Technology (CSIC), Pharmacy
Faculty, Complutense University of Madrid (UCM), Paseo Juan XXIII 1, 28040 Madrid, Spain
- Polymer
Functionalization Group, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Enrique Martínez-Campos
- Tissue
Engineering Group, Institute of Biofunctional Studies, Associated
Unit to the Institute of Polymer Science and Technology (CSIC), Pharmacy
Faculty, Complutense University of Madrid (UCM), Paseo Juan XXIII 1, 28040 Madrid, Spain
- Polymer
Functionalization Group, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Viviana Ramos
- Tissue
Engineering Group, Institute of Biofunctional Studies, Associated
Unit to the Institute of Polymer Science and Technology (CSIC), Pharmacy
Faculty, Complutense University of Madrid (UCM), Paseo Juan XXIII 1, 28040 Madrid, Spain
- Noricum S.L., San Sebastián
de los Reyes, Av. Fuente Nueva, 14, 28703 Madrid, Spain
| | - Carlos Elvira
- Polymer
Functionalization Group, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Alberto Gallardo
- Polymer
Functionalization Group, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Ander Abarrategi
- Haematopoietic
Stem Cell Laboratory, The Francis Crick Institute, 1 Midland
Road, NW1 1AT London, U.K
| |
Collapse
|
16
|
Wuttke S, Zimpel A, Bein T, Braig S, Stoiber K, Vollmar A, Müller D, Haastert-Talini K, Schaeske J, Stiesch M, Zahn G, Mohmeyer A, Behrens P, Eickelberg O, Bölükbas DA, Meiners S. Validating Metal-Organic Framework Nanoparticles for Their Nanosafety in Diverse Biomedical Applications. Adv Healthc Mater 2017; 6. [PMID: 27863166 DOI: 10.1002/adhm.201600818] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/06/2016] [Indexed: 01/09/2023]
Abstract
Metal-organic frameworks (MOFs) are promising platforms for the synthesis of nanoparticles for diverse medical applications. Their fundamental design principles allow for significant control of the framework architecture and pore chemistry, enabling directed functionalization for nanomedical applications. However, before applying novel nanomaterials to patients, it is imperative to understand their potential health risks. In this study, the nanosafety of different MOF nanoparticles is analyzed comprehensively for diverse medical applications. The authors first evaluate the effects of MOFs on human endothelial and mouse lung cells, which constitute a first line of defense upon systemic blood-mediated and local lung-specific applications of nanoparticles. Second, we validated these MOFs for multifunctional surface coatings of dental implants using human gingiva fibroblasts. Moreover, biocompatibility of MOFs is assessed for surface coating of nerve guidance tubes using human Schwann cells and rat dorsal root ganglion cultures. The main finding of this study is that the nanosafety and principal suitability of our MOF nanoparticles as novel agents for drug delivery and implant coatings strongly varies with the effector cell type. We conclude that it is therefore necessary to carefully evaluate the nanosafety of MOF nanomaterials with respect to their particular medical application and their interacting primary cell types, respectively.
Collapse
Affiliation(s)
- Stefan Wuttke
- Department of Chemistry and Center for NanoScience (CeNS); University of Munich (LMU); 81377 Munich Germany
| | - Andreas Zimpel
- Department of Chemistry and Center for NanoScience (CeNS); University of Munich (LMU); 81377 Munich Germany
| | - Thomas Bein
- Department of Chemistry and Center for NanoScience (CeNS); University of Munich (LMU); 81377 Munich Germany
| | - Simone Braig
- Department of Pharmacy; University of Munich (LMU); 81377 Munich Germany
| | - Katharina Stoiber
- Department of Pharmacy; University of Munich (LMU); 81377 Munich Germany
| | - Angelika Vollmar
- Department of Pharmacy; University of Munich (LMU); 81377 Munich Germany
| | - Dominik Müller
- Institute of Neuroanatomy; Hannover Medical School; Hannover 30625 Germany
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy; Hannover Medical School; Hannover 30625 Germany
- Center for Systems Neurosciences (ZSN) Hannover; 30625 Hannover Germany
| | - Jörn Schaeske
- Department of Prosthetic Dentistry and Biomedical Materials Science; Hannover Medical School; Hannover 30625 Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science; Hannover Medical School; Hannover 30625 Germany
| | - Gesa Zahn
- Institute for Inorganic Chemistry; Leibniz University Hannover; Hannover 30167 Germany
| | - Alexander Mohmeyer
- Institute for Inorganic Chemistry; Leibniz University Hannover; Hannover 30167 Germany
| | - Peter Behrens
- Institute for Inorganic Chemistry; Leibniz University Hannover; Hannover 30167 Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center (CPC); University Hospital, University of Munich (LMU); Member of the German Center for Lung Research (DZL); 81377 Munich Germany
| | - Deniz A. Bölükbas
- Comprehensive Pneumology Center (CPC); University Hospital, University of Munich (LMU); Member of the German Center for Lung Research (DZL); 81377 Munich Germany
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC); University Hospital, University of Munich (LMU); Member of the German Center for Lung Research (DZL); 81377 Munich Germany
| |
Collapse
|
17
|
Ding Y, Song Z, Liu Q, Wei S, Zhou L, Zhou J, Shen J. An enhanced chemotherapeutic effect facilitated by sonication of MSN. Dalton Trans 2017; 46:11875-11883. [DOI: 10.1039/c7dt02600e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sonodynamic therapy (SDT) is a non-invasive therapeutic modality for cancer treatment.
Collapse
Affiliation(s)
- Yi Ding
- College of Life Sciences
- College of Chemistry and Materials Science
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials
- Key Laboratory of Applied Photochemistry
| | - Ziyi Song
- College of Life Sciences
- College of Chemistry and Materials Science
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials
- Key Laboratory of Applied Photochemistry
| | - Qian Liu
- Department of Neurology
- Jinling Hospital
- Medical School of Nanjing University
- Nanjing
- P. R. China
| | - Shaohua Wei
- College of Life Sciences
- College of Chemistry and Materials Science
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials
- Key Laboratory of Applied Photochemistry
| | - Lin Zhou
- College of Life Sciences
- College of Chemistry and Materials Science
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials
- Key Laboratory of Applied Photochemistry
| | - Jiahong Zhou
- College of Life Sciences
- College of Chemistry and Materials Science
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials
- Key Laboratory of Applied Photochemistry
| | - Jian Shen
- College of Life Sciences
- College of Chemistry and Materials Science
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials
- Key Laboratory of Applied Photochemistry
| |
Collapse
|
18
|
Ogawa M. Mesoporous Silica Layer: Preparation and Opportunity. CHEM REC 2016; 17:217-232. [DOI: 10.1002/tcr.201600068] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Makoto Ogawa
- School of Energy Science and Engineering; Vidyasirimedhi Institute of Science and Technology (VISTEC); 555 Moo 1 Payupnai, Wangchan Rayong 21210 Thailand
| |
Collapse
|
19
|
Teng Z, Zhang J, Li W, Zheng Y, Su X, Tang Y, Dang M, Tian Y, Yuwen L, Weng L, Lu G, Wang L. Facile Synthesis of Yolk-Shell-Structured Triple-Hybridized Periodic Mesoporous Organosilica Nanoparticles for Biomedicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3550-3558. [PMID: 27183872 DOI: 10.1002/smll.201600616] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/29/2016] [Indexed: 06/05/2023]
Abstract
The synthesis of mesoporous nanoparticles with controllable structure and organic groups is important for their applications. In this work, yolk-shell-structured periodic mesoporous organosilica (PMO) nanoparticles simultaneously incorporated with ethane-, thioether-, and benzene-bridged moieties are successfully synthesized. The preparation of the triple-hybridized PMOs is via a cetyltrimethylammonium bromide-directed sol-gel process using mixed bridged silsesquioxanes as precursors and a following hydrothermal treatment. The yolk-shell-structured triple-hybridized PMO nanoparticles have large surface area (320 m(2) g(-1) ), ordered mesochannels (2.5 nm), large pore volume (0.59 cm(3) g(-1) ), uniform and controllable diameter (88-380 nm), core size (22-110 nm), and shell thickness (13-45 nm). In vitro cytotoxicity, hemolysis assay, and histological studies demonstrate that the yolk-shell-structured triple-hybridized PMO nanoparticles have excellent biocompatibility. Moreover, the organic groups in the triple-hybridized PMOs endow them with an ability for covalent connection of near-infrared fluorescence dyes, a high hydrophobic drug loading capacity, and a glutathione-responsive drug release property, which make them promising candidates for applications in bioimaging and drug delivery.
Collapse
Affiliation(s)
- Zhaogang Teng
- Key Laboratory for Organic Electronics and Information Displays & Istitute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Junjie Zhang
- Key Laboratory for Organic Electronics and Information Displays & Istitute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Wei Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Yuanyi Zheng
- Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Xiaodan Su
- Key Laboratory for Organic Electronics and Information Displays & Istitute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Yuxia Tang
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, P. R. China
| | - Meng Dang
- Key Laboratory for Organic Electronics and Information Displays & Istitute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Ying Tian
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, P. R. China
| | - Lihui Yuwen
- Key Laboratory for Organic Electronics and Information Displays & Istitute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Lixing Weng
- Key Laboratory for Organic Electronics and Information Displays & Istitute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Istitute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| |
Collapse
|
20
|
Hu JJ, Xiao D, Zhang XZ. Advances in Peptide Functionalization on Mesoporous Silica Nanoparticles for Controlled Drug Release. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3344-3359. [PMID: 27152737 DOI: 10.1002/smll.201600325] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/22/2016] [Indexed: 06/05/2023]
Abstract
During the last decade, using versatile, promising, and fascinating mesoporous silica nanoparticles (MSNs) as site-specific and stimuli-responsive drug delivery systems (DDSs) has received concentrated research interest. As one of the most attractive surface modification units, peptides have inherent bioactivity, biodegradability and biocompatibility. Recent progresses in the utilization of versatile peptides for surface functionalization of MSNs to achieve cell-specific targeting, fluorescence imaging, and intracellular diagnosis and treatment of tumors are summarized in this review. The various functional peptides decorated on the MSNs are introduced and classified into three types, including targeting peptides, stimuli-responsive peptides and multifunctional chimeric peptides. The limitations and challenges of peptide modified MSNs and their potential applications are further discussed.
Collapse
Affiliation(s)
- Jing-Jing Hu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Institute for Advanced Studies (IAS), Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Dong Xiao
- Key Laboratory of Biomedical Polymers of Ministry of Education, Institute for Advanced Studies (IAS), Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Institute for Advanced Studies (IAS), Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
21
|
Nasir T, Zhang L, Vilà N, Herzog G, Walcarius A. Electrografting of 3-Aminopropyltriethoxysilane on a Glassy Carbon Electrode for the Improved Adhesion of Vertically Oriented Mesoporous Silica Thin Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4323-4332. [PMID: 27065214 DOI: 10.1021/acs.langmuir.6b00798] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Vertically oriented mesoporous silica has proven to be of interest for applications in a variety of fields (e.g., electroanalysis, energy, and nanotechnology). Although glassy carbon is widely used as an electrode material, the adherence of silica deposits is rather poor, causing mechanical instability. A solution to improve the adhesion of mesoporous silica films onto glassy carbon electrodes without compromising the vertical orientation and the order of the mesopores will greatly contribute to the use of this kind of modified carbon electrode. We propose here the electrografting of 3-aminopropyltriethoxysilane on glassy carbon as a molecular glue to improve the mechanical stability of the silica film on the electrode surface without disturbing the vertical orientation and the order of the mesoporous silica obtained by electrochemically assisted self-assembly. These findings are supported by a series of surface chemistry techniques such as X-ray photoelectron spectroscopy, scanning and transmission electron microscopy, and cyclic voltammetry. Finally, methylviologen was used as a model redox probe to investigate the cathodic potential region of both glassy carbon and indium tin oxide electrodes modified with mesoporous silica in order to demonstrate further the interest in the approach developed here.
Collapse
Affiliation(s)
- Tauqir Nasir
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, CNRS, Université de Lorraine , 405 rue de Vandoeuvre, Villers-lès-Nancy F-54600, France
| | - Lin Zhang
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, CNRS, Université de Lorraine , 405 rue de Vandoeuvre, Villers-lès-Nancy F-54600, France
| | - Neus Vilà
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, CNRS, Université de Lorraine , 405 rue de Vandoeuvre, Villers-lès-Nancy F-54600, France
| | - Grégoire Herzog
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, CNRS, Université de Lorraine , 405 rue de Vandoeuvre, Villers-lès-Nancy F-54600, France
| | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, CNRS, Université de Lorraine , 405 rue de Vandoeuvre, Villers-lès-Nancy F-54600, France
| |
Collapse
|
22
|
Rahim MI, Rohde M, Rais B, Seitz JM, Mueller PP. Susceptibility of metallic magnesium implants to bacterial biofilm infections. J Biomed Mater Res A 2016; 104:1489-99. [DOI: 10.1002/jbm.a.35680] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/29/2016] [Accepted: 02/05/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Muhammad Imran Rahim
- Helmholtz Centre for Infection Research; Inhoffenstrasse 7 Braunschweig 38124 Germany
| | - Manfred Rohde
- Helmholtz Centre for Infection Research; Inhoffenstrasse 7 Braunschweig 38124 Germany
| | - Bushra Rais
- Helmholtz Centre for Infection Research; Inhoffenstrasse 7 Braunschweig 38124 Germany
| | - Jan-Marten Seitz
- Institute of Materials Science, Leibniz University of Hannover; An Der Universität 2 Garbsen 30823 Germany
- Department of Materials Science and Engineering; Michigan Technological University; 1400 Townsend Dr Houghton Michigan 49931
| | - Peter P. Mueller
- Helmholtz Centre for Infection Research; Inhoffenstrasse 7 Braunschweig 38124 Germany
| |
Collapse
|
23
|
Hao N, Chen X, Jayawardana KW, Wu B, Sundhoro M, Yan M. Shape control of mesoporous silica nanomaterials templated with dual cationic surfactants and their antibacterial activities. Biomater Sci 2016; 4:87-91. [PMID: 26364920 PMCID: PMC4679464 DOI: 10.1039/c5bm00197h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mesoporous silica nanomaterials of different shapes (film, platelet, sphere, rod) were synthesized simply by tuning the mole ratio of dual cationic surfactant templates, cetyltrimethylammonium bromide (CTAB) and tetrabutylammonium iodine (TBAI). The film showed the most potent antibacterial activity against mycobacteria.
Collapse
Affiliation(s)
- Nanjing Hao
- Department of Chemistry, University of Massachusetts, 1 University Ave., Lowell, MA 01854, USA.
| | - Xuan Chen
- Department of Chemistry, University of Massachusetts, 1 University Ave., Lowell, MA 01854, USA.
| | - Kalana W Jayawardana
- Department of Chemistry, University of Massachusetts, 1 University Ave., Lowell, MA 01854, USA.
| | - Bin Wu
- Department of Chemistry, University of Massachusetts, 1 University Ave., Lowell, MA 01854, USA.
| | - Madanodaya Sundhoro
- Department of Chemistry, University of Massachusetts, 1 University Ave., Lowell, MA 01854, USA.
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts, 1 University Ave., Lowell, MA 01854, USA.
| |
Collapse
|
24
|
Fullriede H, Abendroth P, Ehlert N, Doll K, Schäske J, Winkel A, Stumpp SN, Stiesch M, Behrens P. pH-responsive release of chlorhexidine from modified nanoporous silica nanoparticles for dental applications. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/bnm-2016-0003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractA pH-sensitive stimulus-response system for controlled drug release was prepared by modifying nanoporous silica nanoparticles (NPSNPs) with poly(4-vinylpyridine) using a bismaleimide as linker. At physiological pH values, the polymer serves as gate keeper blocking the pore openings to prevent the release of cargo molecules. At acidic pH values as they can occur during a bacterial infection, the polymer strains become protonated and straighten up due to electrostatic repulsion. The pores are opened and the cargo is released. The drug chlorhexidine was loaded into the pores because of its excellent antibacterial properties and low tendency to form resistances. The release was performed in PBS and diluted hydrochloric acid, respectively. The results showed a considerably higher release in acidic media compared to neutral solvents. Reversibility of this pH-dependent release was established. In vitro tests proved good cytocompatibility of the prepared nanoparticles. Antibacterial activity tests with
Collapse
|
25
|
Hao N, Li L, Tang F. Shape matters when engineering mesoporous silica-based nanomedicines. Biomater Sci 2016; 4:575-91. [DOI: 10.1039/c5bm00589b] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This review introduces various fabrication methods for non-spherical mesoporous silica nanomaterials and the roles of particle shape in nanomedicine applications.
Collapse
Affiliation(s)
- Nanjing Hao
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Laifeng Li
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Fangqiong Tang
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- P. R. China
| |
Collapse
|
26
|
Maleki A, Hamidi M. Dissolution enhancement of a model poorly water-soluble drug, atorvastatin, with ordered mesoporous silica: comparison of MSF with SBA-15 as drug carriers. Expert Opin Drug Deliv 2015; 13:171-81. [DOI: 10.1517/17425247.2015.1111335] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Shokry H, Vanamo U, Wiltschka O, Niinimäki J, Lerche M, Levon K, Linden M, Sahlgren C. Mesoporous silica particle-PLA-PANI hybrid scaffolds for cell-directed intracellular drug delivery and tissue vascularization. NANOSCALE 2015; 7:14434-14443. [PMID: 26252158 DOI: 10.1039/c5nr03983e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Instructive materials are expected to revolutionize stem cell based tissue engineering. As many stem cell cues have adverse effects on normal tissue homeostasis, there is a need to develop bioactive scaffolds which offer locally retained and cell-targeted drug delivery for intracellular release in targeted cell populations. Further, the scaffolds need to support vascularization to promote tissue growth and function. We have developed an electrospun PLA-PANI fiber scaffold, and incorporated mesoporous silica nanoparticles within the scaffold matrix to obtain cell-targeted and localized drug delivery. The isotropy of the scaffold can be tuned to find the optimal morphology for a given application and the scaffold is electroactive to support differentiation of contractile tissues. We demonstrate that there is no premature drug release from particles under physiological conditions over a period of one week and that the drug is released upon internalization of particles by cells within the scaffold. The scaffold is biocompatible, supports muscle stem cell differentiation and cell-seeded scaffolds are vascularized in vivo upon transplantation on the chorioallantoic membrane of chicken embryos. The scaffold is a step towards instructive biomaterials for local control of stem cell differentiation, and tissue formation supported by vascularization and without adverse effects on the homeostasis of adjacent tissues due to diffusion of biological cues.
Collapse
Affiliation(s)
- Hussein Shokry
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, P.O. Box 123, FI-20521, Turku, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Baleizão C, Farinha JPS. Hybrid smart mesoporous silica nanoparticles for theranostics. Nanomedicine (Lond) 2015; 10:2311-4. [DOI: 10.2217/nnm.15.102] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Carlos Baleizão
- Centro de Química-Física Molecular & Institute of Nanoscience & Nanotechnology, Instituto Superior Técnico, University of Lisbon, 1049–001 Lisboa, Portugal
| | - José Paulo S Farinha
- Centro de Química-Física Molecular & Institute of Nanoscience & Nanotechnology, Instituto Superior Técnico, University of Lisbon, 1049–001 Lisboa, Portugal
| |
Collapse
|
29
|
Engleder E, Demmerer E, Wang X, Honeder C, Zhu C, Studenik C, Wirth M, Arnoldner C, Gabor F. Determination of the glycosylation-pattern of the middle ear mucosa in guinea pigs. Int J Pharm 2015; 484:124-30. [PMID: 25724132 PMCID: PMC4379074 DOI: 10.1016/j.ijpharm.2015.02.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/20/2015] [Accepted: 02/22/2015] [Indexed: 11/17/2022]
Abstract
In the present study the glycosylation pattern of the middle ear mucosa (MEM) of guinea pigs, an approved model for middle ear research, was characterized with the purpose to identify bioadhesive ligands which might prolong the contact time of drug delivery systems with the middle ear mucosa (MEM). To assess the utility of five fluorescein labeled plant lectins with different carbohydrate specificities as bioadhesive ligands, viable MEM specimens were incubated at 4°C and the lectin binding capacities were calculated from the MEM-associated relative fluorescence intensities. Among all lectins under investigation, fluorescein-labeled wheat germ agglutinin (F-WGA) emerged as the highest bioadhesive lectin. In general, the accessibility of carbohydrate moieties of the MEM followed the order: sialic acid and N-acetyl-d-glucosamine (WGA)>>mannose and galactosamine (Lensculinaris agglutinin)>N-acetyl-d-glucosamine (Solanumtuberosum agglutinin)>fucose (Ulexeuropaeus isoagglutinin I)>>terminal mannose α-(1,3)-mannose (Galanthusnivalis agglutinin). Competitive inhibition studies with the corresponding carbohydrate revealed that F-WGA-binding was inhibited up to 90% confirming specificity of the F-WGA-MEM interaction. The cilia of the MEM were identified as F-WGA binding sites by fluorescence imaging as well as a z-stack of overlays of transmission, F-WGA- and nuclei-stained images of the MEM. Additionally, co-localisation experiments revealed that F-WGA bound to acidic mucopolysaccharides of the MEM. All in all, lectin-mediated bioadhesion to the MEM is proposed as a new concept for drug delivery to prolong the residence time of the drug in the tympanic cavity especially for successful therapy for difficult-to-treat diseases such as otitis media.
Collapse
Affiliation(s)
- Elisabeth Engleder
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Elisabeth Demmerer
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Xueyan Wang
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Clemens Honeder
- Department of Otorhinolaryngology, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria
| | - Chengjing Zhu
- Department of Otorhinolaryngology, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria
| | - Christian Studenik
- Department of Pharmacology and Toxicology, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Michael Wirth
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Christoph Arnoldner
- Department of Otorhinolaryngology, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria
| | - Franz Gabor
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstraße 14, 1090 Vienna, Austria.
| |
Collapse
|
30
|
Kao KC, Lin CH, Chen TY, Liu YH, Mou CY. A general method for growing large area mesoporous silica thin films on flat substrates with perpendicular nanochannels. J Am Chem Soc 2015; 137:3779-82. [PMID: 25756760 DOI: 10.1021/jacs.5b01180] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we introduce a new synthetic approach to grow mesoporous silica thin films with vertical mesochannels on centimeter-sized substrates via an oil-induced co-assembly process. Adding an oil, i.e., decane, into a CTAB-EtOH-TEOS ammonia solution leads to thin-film formation of mesoporous silica of controlled thickness between 20 and 100 nm with vertical mesochannels on various surfaces. The vertical mesoporous channels were evidenced by grazing incidence small-angle X-ray scattering (GISAXS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) characterizations. Decane played two roles: (a) as a pore expansion agent (up to 5.7 ± 0.5 nm) and (b) inducing vertically oriented hexagonal mesophases of micelle-silica composite. The production of periodic and vertical nanochannels is very robust, over many different substrate surfaces (from silicon to polystyrene), various silica precursors (TEOS, fumed silica, or zeolite seed), and many oils (decane, petroleum ether, or ethyl acetate). This wide robustness in the formation of vertical nanophases is attributed to a unique mechanism of confined synthesis of surfactant-silicate between two identical thin layers of oils on a substrate.
Collapse
Affiliation(s)
- Kun-Che Kao
- †Department of Chemistry and Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Han Lin
- †Department of Chemistry and Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Tzu-Ying Chen
- †Department of Chemistry and Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Hsin Liu
- ∥Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chung-Yuan Mou
- †Department of Chemistry and Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
31
|
Williams S, Neumann A, Bremer I, Su Y, Dräger G, Kasper C, Behrens P. Nanoporous silica nanoparticles as biomaterials: evaluation of different strategies for the functionalization with polysialic acid by step-by-step cytocompatibility testing. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:125. [PMID: 25690616 DOI: 10.1007/s10856-015-5409-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 10/23/2014] [Indexed: 06/04/2023]
Abstract
Nanoporous silica materials have become a prominent novel class of biomaterials which are typically applied as nanoparticles or thin films. Their large surface area combined with the rich surface chemistry of amorphous silica affords the possibility to equip this material with variable functionalities, also with several different ones on the same particle or coating. Although many studies have shown that nanoporous silica is apparently non-toxic and basically biocompatible, any surface modification may change the surface properties considerably and, therefore, the modified materials should be checked for their biocompatibility at every step. Here we report on different silane-based functionalization strategies, firstly a conventional succinic anhydride-based linker system and, secondly, copper-catalyzed click chemistry, to bind polysialic acid, a polysaccharide important in neurogenesis, onto nanoporous silica nanoparticles (NPSNPs) of MCM-41 type. At each of the different modification steps, the materials are characterized by cell culture experiments. The results show that polysialic acid can be immobilized on the surface of NPSNPs by using different strategies. The cell culture experiments show that the kind of surface immobilization has a strong influence on the toxicity of the material versus the cells. Whereas most modifications appear inoffensive, NPSNPs modified by click reactions are toxic, probably due to residues of the Cu catalyst used in these reactions.
Collapse
Affiliation(s)
- Sina Williams
- Cluster of Excellence "Hearing4all", Institut für Anorganische Chemie, Leibniz Universität Hannover, Callinstraße 9, 30167, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Duda F, Bradel S, Bleich A, Abendroth P, Heemeier T, Ehlert N, Behrens P, Esser KH, Lenarz T, Brandes G, Prenzler NK. Biocompatibility of silver containing silica films on Bioverit® II middle ear prostheses in rabbits. J Biomater Appl 2015; 30:17-29. [PMID: 25659947 DOI: 10.1177/0885328215570103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
For several centuries silver is known for its antibacterial effects. The middle ear is an interesting new scope for silver application since chronic inflammations combined with bacterial infection cause complete destruction of the fragile ossicle chain and tympanic membrane. The resulting conductive deafness requires tympanoplasty for reconstruction. Strategies to prevent bacterial growth on middle ear prostheses are highly recommended. In this study, rabbits were implanted with Bioverit® II middle ear prostheses functionalized with silver containing dense and nanoporous silica films which were compared with pure silica coatings as well as silver sulfadiazine cream applied on nanoporous silica coating. The health status of animals was continuously monitored; blood was examined before and after implantation. After 21 days, the middle ears were inspected; implants and mucosal samples were processed for electron microscopy. Autopsies were performed and systemic spreading of silver was chemically analyzed exemplarily in liver and kidneys. For verification of direct cytotoxicity, NIH 3T3 cells were cultured on similar silver containing silica coatings on glass up to 3 days. In vitro a reduced viability of fibroblasts adhering directly on the samples was detected compared to cells growing on the surrounding plastic of the same culture dish. In transmission electron microscopy, phagocytosed silver silica fragments, silver sulfadiazine cream as well as silver nanoparticles were noticed inside endosomes. In vivo, clinical and post mortem examinations were inconspicuous. Chemical analyses showed no increased silver content compared to controls. Mucosal coverages on almost all prostheses were found. But reduction of granulation tissue was only obvious around silver-coated implants. Single necroses and apoptosis in the mucosa were correlated by intracellular accumulation of metallic silver. For confirming supportive healing effects of middle ear implants, silver ion aggregates need to be tested in the future to optimize biocompatibility while assuring bactericidal effects in the middle ear.
Collapse
Affiliation(s)
- Franziska Duda
- ENT Department, Hannover Medical School, Hannover, Germany
| | - Susanne Bradel
- ENT Department, Hannover Medical School, Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Philipp Abendroth
- Cluster of Excellence "Hearing4all", Institute for Inorganic Chemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Tanja Heemeier
- Cluster of Excellence "Hearing4all", Institute for Inorganic Chemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Nina Ehlert
- Cluster of Excellence "Hearing4all", Institute for Inorganic Chemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Peter Behrens
- Cluster of Excellence "Hearing4all", Institute for Inorganic Chemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Karl-Heinz Esser
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Thomas Lenarz
- ENT Department, Hannover Medical School, Hannover, Germany
| | - Gudrun Brandes
- Institute of Cellular Biology in the Centre for Anatomy, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
33
|
Immobilization of Candida rugosa lipase by adsorption onto biosafe meso/macroporous silica and zirconia. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2014.09.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Wang C, Hong H, Lin Z, Yuan Y, Liu C, Ma X, Cao X. Tethering silver ions on amino-functionalized mesoporous silica for enhanced and sustained antibacterial properties. RSC Adv 2015. [DOI: 10.1039/c5ra22225g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amino group-based tethering method is an effective strategy to load Ag ions for long-term and highly efficient antibacterial activity. The developed Ag–CaMSS is a promising surgical implantation material with excellent antibacterial activity.
Collapse
Affiliation(s)
- Chengwei Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education
| | - Hua Hong
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- PR China
- The Second Military Medical University
| | - Zhaofen Lin
- The Second Military Medical University
- Shanghai 200433
- PR China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- PR China
- The Second Military Medical University
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education
| | - Xiaoyu Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education
| | - Xiaoyan Cao
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education
| |
Collapse
|
35
|
Gulzar A, Gai S, Yang P, Li C, Ansari MB, Lin J. Stimuli responsive drug delivery application of polymer and silica in biomedicine. J Mater Chem B 2015; 3:8599-8622. [DOI: 10.1039/c5tb00757g] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the last decade, using polymer and mesoporous silica materials as efficient drug delivery carriers has attracted great attention.
Collapse
Affiliation(s)
- Arif Gulzar
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Material Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Material Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Material Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Chunxia Li
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Mohd Bismillah Ansari
- SABIC Technology & Innovation Centre
- Saudi Basic Industries Corporation (SABIC)
- Riyadh 11551
- Saudi Arabia
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|
36
|
Liu F, Wang J, Huang P, Zhang Q, Deng J, Cao Q, Jia J, Cheng J, Fang Y, Deng DYB, Zhou W. Outside-in stepwise functionalization of mesoporous silica nanocarriers for matrix type sustained release of fluoroquinolone drugs. J Mater Chem B 2015; 3:2206-2214. [DOI: 10.1039/c4tb02073a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this study, we propose outside-in stepwise functionalization of MCM-41-type mesoporous silica for use as a high-efficiency matrix drug delivery nanosystem aimed at the insoluble antibacterial agent fluoroquinolone.
Collapse
|
37
|
Wang Y, Wise AK, Tan J, Maina JW, Shepherd RK, Caruso F. Mesoporous silica supraparticles for sustained inner-ear drug delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:4244-4248. [PMID: 25099026 DOI: 10.1002/smll.201401767] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Indexed: 06/03/2023]
Abstract
Mesoporous silica supraparticles (MS-SPs) are prepared via self-assembly of mesoporous silica nanoparticles under capillary force action in confined droplets. The MS-SPs are effective carriers for sustained drug delivery. Animal studies show that these particles are suitable for chronic intracochlear implantation, and neurotrophins released from the MS-SPs can efficiently rescue primary auditory neurons in an in vivo sensorineural hearing loss model.
Collapse
Affiliation(s)
- Yajun Wang
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia; Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | | | | | | | | | | |
Collapse
|
38
|
Maina JW, Cui J, Björnmalm M, Wise AK, Shepherd RK, Caruso F. Mold-templated inorganic-organic hybrid supraparticles for codelivery of drugs. Biomacromolecules 2014; 15:4146-51. [PMID: 25321318 DOI: 10.1021/bm501171j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This paper reports a facile and robust mold-templated technique for the assembly of mesoporous silica (MS) supraparticles and demonstrates their potential as vehicles for codelivery of brain-derived neurotrophic factor (BDNF) and dexamethasone (DEX). The MS supraparticles are assembled using gelatin as a biodegradable adhesive to bind and cross-link the particles. Microfabricated molds made of polydimethylsiloxane are used to control the size and shape of the supraparticles. The obtained mesoporous silica-gelatin hybrid supraparticles (MSG-SPs) are stable in water as well as in organic solvents, such as dimethyl sulfoxide, and efficiently coencapsulate both BDNF and DEX. The MSG-SPs also exhibit sustained release kinetics in simulated physiological conditions (>30 days), making them potential candidates for long-term delivery of therapeutics to the inner ear.
Collapse
Affiliation(s)
- James W Maina
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ‡Department of Chemical and Biomolecular Engineering, §Department of Otolaryngology, and ∥Department of Medical Bionics, The University of Melbourne , Parkville, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
39
|
Zhu M, Zhu Y, Ni B, Xie N, Lu X, Shi J, Zeng Y, Guo X. Mesoporous silica nanoparticles/hydroxyapatite composite coated implants to locally inhibit osteoclastic activity. ACS APPLIED MATERIALS & INTERFACES 2014; 6:5456-5466. [PMID: 24666121 DOI: 10.1021/am405013t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In an attempt to improve implant-bone integration and accelerate bone fracture healing from resisting osteoclastic resorption point of view, we have employed a novel procedure to develop a mesoporous silica nanoparticles/hydroxyapatite (MSNs/HA) composite coating onto stainless Kirschner wire substrate. Characterizations of the surface microstructures indicated enlarged specific surface area compared to HA-coated wires as control, thus the MSNs/HA composite coated implants are endowed with abilities to locally deliver biomedical substances and enhance fracture healing. Herein, zoledronic acid (ZOL) as a model drug, different doses of which were immobilized in the mesoporous coating toward decreasing osteoclastic resorption activity. The loading capacities of ZOL increased almost eight-folds to that of pure HA coating, and the introduction of MSNs obviously retarded ZOL release to achieve a more sustained release profile. After certain periods of osteoclast like cells co-culturing with ZOL contained wires, tartrat-resistant acid phosphatases (TRAP) staining of polynucleated cells and a pit formation assay were performed to investigate the ZOL dose-dependent anti-resorption activity. The promoted local effect on osteoclasts will be of clinical benefit to support implant integration and bone repair.
Collapse
Affiliation(s)
- Min Zhu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology , Shanghai, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Ma M, Zheng S, Chen H, Yao M, Zhang K, Jia X, Mou J, Xu H, Wu R, Shi J. A combined “RAFT” and “Graft From” polymerization strategy for surface modification of mesoporous silica nanoparticles: towards enhanced tumor accumulation and cancer therapy efficacy. J Mater Chem B 2014; 2:5828-5836. [DOI: 10.1039/c3tb21666g] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel modification route integrating the copolymers of positive charged quaternary amines and polyethylene glycol units using a combination “Raft” and “Graft From” strategy.
Collapse
Affiliation(s)
- Ming Ma
- State Key Laboratory of High Performance Ceramic and Superfine Microstructures
- Shanghai Institute of Ceramics
- Chinese Academy of Science
- Shanghai, P.R.China
| | - Shuguang Zheng
- Tenth Peoples Hospital of Tongji University
- Shanghai, P. R. China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramic and Superfine Microstructures
- Shanghai Institute of Ceramics
- Chinese Academy of Science
- Shanghai, P.R.China
| | - Minghua Yao
- Tenth Peoples Hospital of Tongji University
- Shanghai, P. R. China
| | - Kun Zhang
- State Key Laboratory of High Performance Ceramic and Superfine Microstructures
- Shanghai Institute of Ceramics
- Chinese Academy of Science
- Shanghai, P.R.China
| | - Xiaoqing Jia
- State Key Laboratory of High Performance Ceramic and Superfine Microstructures
- Shanghai Institute of Ceramics
- Chinese Academy of Science
- Shanghai, P.R.China
| | - Juan Mou
- State Key Laboratory of High Performance Ceramic and Superfine Microstructures
- Shanghai Institute of Ceramics
- Chinese Academy of Science
- Shanghai, P.R.China
| | - Huixiong Xu
- Tenth Peoples Hospital of Tongji University
- Shanghai, P. R. China
| | - Rong Wu
- Tenth Peoples Hospital of Tongji University
- Shanghai, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramic and Superfine Microstructures
- Shanghai Institute of Ceramics
- Chinese Academy of Science
- Shanghai, P.R.China
| |
Collapse
|
41
|
Ventura M, Sun Y, Cremers S, Borm P, Birgani ZT, Habibovic P, Heerschap A, van der Kraan PM, Jansen JA, Walboomers XF. A theranostic agent to enhance osteogenic and magnetic resonance imaging properties of calcium phosphate cements. Biomaterials 2013; 35:2227-33. [PMID: 24342727 DOI: 10.1016/j.biomaterials.2013.11.084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 11/27/2013] [Indexed: 12/27/2022]
Abstract
With biomimetic biomaterials, like calcium phosphate cements (CPCs), non-invasive assessment of tissue regeneration is challenging. This study describes a theranostic agent (TA) to simultaneously enhance both imaging and osteogenic properties of such a bone substitute material. For this purpose, mesoporous silica beads were produced containing an iron oxide core to enhance bone magnetic resonance (MR) contrast. The same beads were functionalized with silane linkers to immobilize the osteoinductive protein BMP-2, and finally received a calcium phosphate coating, before being embedded in the CPC. Both in vitro and in vivo tests were performed. In vitro testing showed that the TA beads did not interfere with essential material properties like cement setting. Furthermore, bioactive BMP-2 could be efficiently released from the carrier-beads. In vivo testing in a femoral condyle defect rat model showed long-term MR contrast enhancement, as well as improved osteogenic capacity. Moreover, the TA was released during CPC degradation and was not incorporated into the newly formed bone. In conclusion, the described TA was shown to be suitable for longitudinal material degradation and bone healing studies.
Collapse
Affiliation(s)
- Manuela Ventura
- Department of Biomaterials, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Yi Sun
- Department of Radiology, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands; Department of Urology, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Sjef Cremers
- Nano4Imaging GmbH, Zentrum für Biomedizintechnik (ZBMT), Pauwelsstrasse 17, 52074 Aachen, Germany
| | - Paul Borm
- Nano4Imaging GmbH, Zentrum für Biomedizintechnik (ZBMT), Pauwelsstrasse 17, 52074 Aachen, Germany
| | - Zeinab T Birgani
- Department of Tissue Regeneration, University of Twente, MIRA Institute for Biomedical Technology and Technical Medicine, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Pamela Habibovic
- Department of Tissue Regeneration, University of Twente, MIRA Institute for Biomedical Technology and Technical Medicine, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Arend Heerschap
- Department of Radiology, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Department of Rheumatology, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - John A Jansen
- Department of Biomaterials, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - X Frank Walboomers
- Department of Biomaterials, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
42
|
Neumann A, Christel A, Kasper C, Behrens P. BMP2-loaded nanoporous silica nanoparticles promote osteogenic differentiation of human mesenchymal stem cells. RSC Adv 2013. [DOI: 10.1039/c3ra44734k] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|