1
|
Sivaselvam S, Anjana RS, Dhujana NS, Victor M, Jayasree RS. Nitrogen-doped carbon dots: a novel biosensing platform for selective norfloxacin detection and bioimaging. J Mater Chem B 2024; 12:7635-7645. [PMID: 39007591 DOI: 10.1039/d4tb01006j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Incomplete metabolism and non-biodegradable nature of norfloxacin (NORx) lead to its persistent residues in the environment and food, potentially fostering the emergence of antibiotic resistance and posing a significant threat to public health. Hence, we developed a norfloxacin sensor employing hydrothermally synthesized N-doped carbon dots (N-Ch-CQDs) from chitosan and PEI demonstrated high sensitivity and specificity towards the antibiotic detection. The quantum yield of excitation-dependent emission of N-Ch-CQDs was effectively tuned from 4.6 to 21.5% by varying the concentration of PEI (5-15%). With the enhanced fluorescence in the presence of norfloxacin, N-Ch-CQDs exhibited a linear detection range of 20-1400 nM with a limit of detection (LoD) of 9.3 nM. The high biocompatibility of N-Ch-CQDs was confirmed in the in vitro and in vivo model and showed the environment-friendly nature of the sensor. Detailed study elucidated the formation of strong hydrogen bonds between N-Ch-CQDs and NORx, leading to fluorescence enhancement. The developed sensor's capability to detect NORx was evaluated in water and milk samples. The recovery rate ranged from 98.5% to 103.5%, demonstrating the sensor's practical applicability. Further, the bioimaging potential of N-Ch-CQDs was demonstrated in both the in vitro (L929 cells) and in vivo model (C. elegans). The synergistic influence of the defecation pattern and functioning of intestinal barrier mitigates the translocation of N-Ch-CQDs into the reproductive organ of nematodes. This study revealed the bioimaging and fluorescent sensing ability of N-Ch-CQDs, which holds significant promise for extensive application in the biomedical field.
Collapse
Affiliation(s)
- S Sivaselvam
- Division of Biophotonics and Imaging, Department of Biomaterial Sciences and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum 695012, India.
| | - R S Anjana
- Division of Biophotonics and Imaging, Department of Biomaterial Sciences and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum 695012, India.
| | - N S Dhujana
- Division of Biophotonics and Imaging, Department of Biomaterial Sciences and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum 695012, India.
| | - Marina Victor
- Division of Biophotonics and Imaging, Department of Biomaterial Sciences and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum 695012, India.
| | - Ramapurath S Jayasree
- Division of Biophotonics and Imaging, Department of Biomaterial Sciences and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum 695012, India.
| |
Collapse
|
2
|
Wang X, Li F, Meng X, Xia C, Ji C, Wu H. Abnormality of mussel in the early developmental stages induced by graphene and triphenyl phosphate: In silico toxicogenomic data-mining, in vivo, and toxicity pathway-oriented approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106674. [PMID: 37666107 DOI: 10.1016/j.aquatox.2023.106674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
Increasing number of complex mixtures of organic pollutants in coastal area (especially for nanomaterials and micro/nanoplastics associated chemicals) threaten aquatic ecosystems and their joint hazards are complex and demanding tasks. Mussels are the most sensitive marine faunal groups in the world, and their early developmental stages (embryo and larvae) are particularly susceptible to environmental contaminants, which can distinguish the probable mechanisms of mixture-induced growth toxicity. In this study, the potential critical target and biological processes affected by graphene and triphenyl phosphate (TPP) were developed by mining public toxicogenomic data. And their combined toxic effects were verified by toxicological assay at early developmental stages in filter-feeding mussels (embryo and larvae). It showed that interactions among graphene/TPP with 111 genes (ABCB1, TP53, SOD, CAT, HSP, etc.) affected phenotypes along conceptual framework linking these chemicals to developmental abnormality endpoints. The PPAR signaling pathway, monocarboxylic acid metabolic process, regulation of lipid metabolic process, response to oxidative stress, and gonad development were noted as the key molecular pathways that contributed to the developmental abnormality. Enriched phenotype analysis revealed biological processes (cell proliferation, cell apoptosis, inflammatory response, response to oxidative stress, and lipid metabolism) affected by the investigated mixture. Combined, our results supported that adverse effects induced by contaminants/ mixture could not only be mediated by single receptor signaling or be predicted by the simple additive effect of contaminants. The results offer a framework for better comprehending the developmental toxicity of environmental contaminants in mussels and other invertebrate species, which have considerable potential for hazard assessment of coastal mixture.
Collapse
Affiliation(s)
- Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Xiangjing Meng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chunlei Xia
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| |
Collapse
|
3
|
González-Soto N, Blasco N, Irazola M, Bilbao E, Guilhermino L, Cajaraville MP. Fate and effects of graphene oxide alone and with sorbed benzo(a)pyrene in mussels Mytilus galloprovincialis. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131280. [PMID: 37030218 DOI: 10.1016/j.jhazmat.2023.131280] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Graphene oxide (GO) has gained a great scientific and economic interest due to its unique properties. As incorporation of GO in consumer products is rising, it is expected that GO will end up in oceans. Due to its high surface to volume ratio, GO can adsorb persistent organic pollutants (POPs), such as benzo(a)pyrene (BaP), and act as carrier of POPs, increasing their bioavailability to marine organisms. Thus, uptake and effects of GO in marine biota represent a major concern. This work aimed to assess the potential hazards of GO, alone or with sorbed BaP (GO+BaP), and BaP alone in marine mussels after 7 days of exposure. GO was detected through Raman spectroscopy in the lumen of the digestive tract and in feces of mussels exposed to GO and GO+BaP while BaP was bioaccumulated in mussels exposed to GO+BaP, but especially in those exposed to BaP. Overall, GO acted as a carrier of BaP to mussels but GO appeared to protect mussels towards BaP accumulation. Some effects observed in mussels exposed to GO+BaP were due to BaP carried onto GO nanoplatelets. Enhanced toxicity of GO+BaP with respect to GO and/or BaP or to controls were identified for other biological responses, demonstrating the complexity of interactions between GO and BaP.
Collapse
Affiliation(s)
- Nagore González-Soto
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Science and Technology Faculty and Plentzia Marine Station, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - Nagore Blasco
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Science and Technology Faculty and Plentzia Marine Station, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - Mireia Irazola
- Dept. Analytical Chemistry and Plentzia Marine Station, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - Eider Bilbao
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Science and Technology Faculty and Plentzia Marine Station, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - Lúcia Guilhermino
- Ecotoxicology Research Group, ICBAS, Institute of Biomedical Sciences of Abel Salazar and Research Group of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - Miren P Cajaraville
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Science and Technology Faculty and Plentzia Marine Station, University of the Basque Country (UPV/EHU), Basque Country, Spain.
| |
Collapse
|
4
|
Pikula K, Johari SA, Santos-Oliveira R, Golokhvast K. Toxicity and Biotransformation of Carbon-Based Nanomaterials in Marine Microalgae Heterosigma akashiwo. Int J Mol Sci 2023; 24:10020. [PMID: 37373170 PMCID: PMC10297852 DOI: 10.3390/ijms241210020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
This work is related to the environmental toxicology risk assessment and evaluation of the possible transformation of carbon-based nanomaterials (CNMs) after contact with marine microalgae. The materials used in the study represent common and widely applied multi-walled carbon nanotubes (CNTs), fullerene (C60), graphene (Gr), and graphene oxide (GrO). The toxicity was evaluated as growth rate inhibition, esterase activity, membrane potential, and reactive oxygen species generation changes. The measurement was performed with flow cytometry after 3, 24, 96 h, and 7 days. The biotransformation of nanomaterials was evaluated after 7 days of microalgae cultivation with CNMs by FTIR and Raman spectroscopy. The calculated toxic level (EC50 in mg/L, 96 h) of used CNMs reduced in the following order: CNTs (18.98) > GrO (76.77) > Gr (159.40) > C60 (414.0). Oxidative stress and membrane depolarization were the main toxic action of CNTs and GrO. At the same time, Gr and C60 decreased the toxic action with time and had no negative impact on microalgae after 7 days of exposure even at the concentration of 125 mg/L. Moreover, C60 and Gr after 7 days of contact with microalgae cells obtained structural deformations.
Collapse
Affiliation(s)
- Konstantin Pikula
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia;
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Pasdaran St, Sanandaj 66177-15175, Iran;
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rua Hélio de Almeida 75, Rio de Janeiro 21941906, Brazil;
- Laboratory of Nanoradiopharmaceuticals and Radiopharmacy, Rio de Janeiro State University, R. São Francisco Xavier, 524, Rio de Janeiro 23070200, Brazil
| | - Kirill Golokhvast
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia;
- Siberian Federal Scientific Center of Agrobiotechnology RAS, Centralnaya Str., Presidium, 633501 Krasnoobsk, Russia
| |
Collapse
|
5
|
Jakubowska-Lehrmann M, Dąbrowska A, Białowąs M, Makaras T, Hallmann A, Urban-Malinga B. The impact of various carbon nanomaterials on the morphological, behavioural, and biochemical parameters of rainbow trout in the early life stages. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106550. [PMID: 37163832 DOI: 10.1016/j.aquatox.2023.106550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
With the increasing production and the number of potential applications of carbon nanomaterials, mainly from the graphene family, their release into the natural environment, especially to aquatic ecosystems, is inevitable. The aim of the study was to determine the effects of various carbon nanomaterials (graphene nanoflakes (GNF), graphene oxide (GO), reduced graphene oxide (RGO) and silicon carbide nanofibers (NFSiC) in the concentration of 4 mg L-1 on the early life stages of the rainbow trout Oncorhynchus mykiss. The survival rates of O. mykiss were not affected after 36 days of exposure to studied materials, except for RGO, which caused significant mortality of both embryos and larvae compared to the control conditions. Larvae exposed to GO and NFSiC were characterized by a smaller standard body length at hatch, whereas at the end of the experiment, the growth of fish exposed to all materials was accelerated, especially in GO and RGO treatment, in which higher body weight and length were accompanied by lower volume of the yolk sac. Neither the markers of the oxidative damage nor the antioxidant enzymes activities were significantly affected in embryos, newly hatched larvae and larvae after 26-day exposure to studied carbon nanomaterials. Also, no neurotoxic effect expressed by the activity of the whole-body acetylcholinesterase was observed. Nevertheless, the significant increase in the velocity and the overall activity of larvae exposed to GNF (not investigated after exposure to other materials) must be highlighted. The most pronounced effect of RGO might be connected with its large particle size, sharp edges, and the presence of TiO2 nanoparticles. The results indicate for the first time that various carbon nanomaterials potentially released into aquatic ecosystems may have serious developmental implications for the early life stages of salmonid fish.
Collapse
Affiliation(s)
| | - Agnieszka Dąbrowska
- Laboratory of Spectroscopy and Intermolecular Interactions, Department of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland; University of Warsaw Biological and Chemical Research Centre, Żwirki i Wigury 101, Warsaw 02-089, Poland.
| | - Marcin Białowąs
- National Marine Fisheries Research Institute, Kołłątaja 1, Gdynia 81-332, Poland
| | - Tomas Makaras
- Nature Research Centre, Akademijos St. 2, Vilnius 08412, Lithuania
| | - Anna Hallmann
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Dębinki 1, Gdańsk, Poland
| | | |
Collapse
|
6
|
Zhao Y, Hua X, Rui Q, Wang D. Exposure to multi-walled carbon nanotubes causes suppression in octopamine signal associated with transgenerational toxicity induction in C.elegans. CHEMOSPHERE 2023; 318:137986. [PMID: 36716936 DOI: 10.1016/j.chemosphere.2023.137986] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Multi-walled carbon nanotube (MWCNT), a kind of carbon-based nanomaterials, has been extensively utilized in a variety of fields. In Caenorhabditis elegans, MWCNT exposure can result in toxicity not only at parental generation (P0-G) but also in the offspring. However, the underlying mechanisms remain still largely unknown. DAF-12, a transcriptional factor (TF), was previously found to be activated and involved in transgenerational toxicity control after MWCNT exposure. In this study, we observed that exposure to 0.1-10 μg/L MWCNTs caused the significant decrease in expression of tbh-1 encoding a tyramine beta-hydroxylase with the function to govern the octopamine synthesis, suggesting the inhibition in octopamine signal. After exposure to 0.1 μg/L MWCNT, the decrease in tbh-1 expression could be also detected in F1-G and F2-G. Moreover, in germline cells, the TF DAF-12 regulated transgenerational MWCNT toxicity by suppressing expression and function of TBH-1. Meanwhile, exposure to 0.1-10 μg/L MWCNTs induced the increase in octr-1 expression and the decrease in ser-6 expression. After exposure to 0.1 μg/L MWCNT, the increased octr-1 expression and the decreased ser-6 expression were further observed in F1-G and F2-G. Germline TBH-1 controlled transgenerational MWCNT toxicity by regulating the activity of octopamine receptors (SER-6 and OCTR-1) in offspring. Furthermore, in the offspring, SER-6 and OCTR-1 affected the induction of MWCNT toxicity by upregulating or downregulating the level of ELT-2, a GATA TF. Taken together, these findings suggested possible link between alteration in octopamine related signals and MWCNT toxicity induction in offspring in organisms.
Collapse
Affiliation(s)
- Yingyue Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xin Hua
- Medical School, Southeast University, Nanjing, China
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, China
| |
Collapse
|
7
|
Hua X, Feng X, Liang G, Chao J, Wang D. Long-term exposure to tire-derived 6-PPD quinone causes intestinal toxicity by affecting functional state of intestinal barrier in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160591. [PMID: 36464050 DOI: 10.1016/j.scitotenv.2022.160591] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/07/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
2-((4-Methylpentan-2-yl)amino)-5-(phenylamino)cyclohexa-2,5-diene-1,4-dione (6-PPDQ) is the ozonation product of 6-PPD, a commonly used tire preservative. Although the 6-PPDQ has been frequently detected in different environmental ecosystems, its long-term effects on organisms remain still largely unknown. We here used Caenorhabditis elegans as an experimental animal to investigate the toxic effect of prolonged exposure to 6-PPDQ (0.1-100 μg/L). After the exposure, we found that 100 μg/L 6-PPDQ caused the lethality. We further selected concentrations of 0.1-10 μg/L to examine the possible intestinal toxicity induced by 6-PPDQ. Although 0.1-10 μg/L 6-PPDQ could not influence intestinal morphology, the intestinal permeability was significantly enhanced by 1-10 μg/L 6-PPDQ as indicated by erioglaucine disodium staining. In addition, the expression of intestinal fatty acid transporter ACS-22 governing functional state of intestinal barrier was decreased by exposure to 1-10 μg/L 6-PPDQ. Meanwhile, intestinal reactive oxygen species (ROS) production was induced by 0.1-10 μg/L 6-PPDQ and lipofuscin accumulation reflected by intestinal autofluorescence was activated by 1-10 μg/L 6-PPDQ. Accompanied with activation of intestinal oxidative stress, expressions of some anti-oxidation related genes (ctl-2, sod-2, sod-3, and sod-4) were significantly increased by 0.1-10 μg/L 6-PPDQ. Moreover, intestinal RNAi of acs-22 strengthened the susceptibility of nematodes to intestinal toxicity of 6-PPDQ. Therefore, considering that the environmentally relevant concentrations of 6-PPDQ were ≤10 μg/L, our data suggested that long-term exposure to 6-PPDQ at environmentally relevant concentrations potentially results in intestinal toxicity by disrupting functional state of intestinal barrier in organisms.
Collapse
Affiliation(s)
- Xin Hua
- Medical School, Southeast University, Nanjing 210009, China
| | - Xiao Feng
- Medical School, Southeast University, Nanjing 210009, China
| | - Geyu Liang
- School of Public Health, Southeast University, Nanjing 210009, China
| | - Jie Chao
- Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
8
|
Sivaselvam S, Mohankumar A, Narmadha R, Selvakumar R, Sundararaj P, Viswanathan C, Ponpandian N. Effect of gamma-ray irradiated reduced graphene oxide (rGO) on environmental health: An in-vitro and in-vivo studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120933. [PMID: 36565492 DOI: 10.1016/j.envpol.2022.120933] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The unique properties of reduced graphene oxide (rGO) have drawn the attention of scientists worldwide since the last decade and it is explored for a wide range of applications. However, the rapid expansion of rGO use in various products will eventually lead to environenal exposure and rises a safety concern on the environment and humal health risk. Moreover, the utilization of toxic chemicals for the reduction of graphene oxide (GO) into rGO is not environmentally friendly, warranting the exploration of non-toxic approaches. In the present work, rGO was synthesized using a different dose of gamma-ray irradiation and characterized. The in-vitro and in-vivo analysis indicated that the gamma-irradiated rGO induced toxicity depending on its degree of reduction and dosage. In the L929 cells, rGO-30 KGy significantly induced cytotoxicity even at low concentration (1 mg L-1) by inducing reactive oxygen species (ROS), lactate dehydrogenase (LDH) enzyme production, nuclear fragmentation and apoptosis. The change in morphology of the cells like membrane blebbing and cell rounding was also observed via FESEM. In the in-vivo model Caenorhabditis elegans, rGO-30 KGy significantly affected the functioning of primary and secondary targeted organs and also negatively influenced the nuclear accumulation of transcription factors (DAF-16/FOXO and SKN-1/Nrf2), neuronal health, and antioxidant defense mechanism of the nematodes. The real-time PCR analysis showed significant up-regulation (ced-3, ced-4, cep-1, egl-1, and hus-1) and down-regulation (ced-9) of the gene involved in germ-line and DNA damage-induced apoptosis. The detailed toxicity mechanism of gamma irradiated rGO has been elucidated. This work highlights the toxicity of rGO prepared by gamma-ray radiation and paves way for understating the toxicity mechanism.
Collapse
Affiliation(s)
- S Sivaselvam
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641 046, India
| | - A Mohankumar
- Department of Zoology, Bharathiar University, Coimbatore, 641 046, India
| | - R Narmadha
- Nanobiotechnology Laboratory, Department of Nanobiotechnology, PSG Institute of Advanced Studies, Peelamedu, Coimbatore, 641 004, India
| | - R Selvakumar
- Nanobiotechnology Laboratory, Department of Nanobiotechnology, PSG Institute of Advanced Studies, Peelamedu, Coimbatore, 641 004, India
| | - P Sundararaj
- Department of Zoology, Bharathiar University, Coimbatore, 641 046, India
| | - C Viswanathan
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641 046, India
| | - N Ponpandian
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641 046, India.
| |
Collapse
|
9
|
Carboxyl Functionalization of N-MWCNTs with Stone-Wales Defects and Possibility of HIF-1α Wave-Diffusive Delivery. Int J Mol Sci 2023; 24:ijms24021296. [PMID: 36674808 PMCID: PMC9866222 DOI: 10.3390/ijms24021296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Nitrogen-doped multi-walled carbon nanotubes (N-MWCNTs) are widely used for drug delivery. One of the main challenges is to clarify their interaction with hypoxia-inducible factor 1 alpha (HIF-1α), the lack of which leads to oncological and cardiovascular diseases. In the presented study, N-MWCNTs were synthesized by catalytic chemical vapor deposition and irradiated with argon ions. Their chemical state, local structure, interfaces, Stone-Wales defects, and doping with nitrogen were analyzed by high resolution transmission electron microscopy (HRTEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Using experimental data, supercells of functionalized N-MWCNTs with an oxygen content of 2.7, 4 and 6 at. % in carboxyl groups were built by quantum chemical methods. Our analysis by the self-consistent charge density functional tight-binding (SCC DFTB) method shows that a key role in the functionalization of CNTs with carboxyl groups belongs to Stone-Wales defects. The results of research in the decoration of CNTs with HIF-1α demonstrate the possibility of wave-diffusion drug delivery. The nature of hybridization and relaxation determines the mechanism of oxygen regulation with HIF-1α molecules, namely, by OH-(OH-C) and OH-(O=C) chemical bonds. The concentration dependence of drug release in the diffusion mode suggests that the best pattern for drug delivery is provided by the tube with a carboxylic oxygen content of 6 at. %.
Collapse
|
10
|
Zhao Y, Xu R, Hua X, Rui Q, Wang D. Multi-walled carbon nanotubes induce transgenerational toxicity associated with activation of germline long non-coding RNA linc-7 in C.elegans. CHEMOSPHERE 2022; 301:134687. [PMID: 35472608 DOI: 10.1016/j.chemosphere.2022.134687] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 05/21/2023]
Abstract
With the increase in application, multi-walled carbon nanotubes (MWCNTs) are potentially bioavailable to environmental organisms. However, the potential transgenerational effect of MWCNTs and underlying mechanisms remains still unclear. Here, we examined transgenerational MWCNT toxicity and the underlying mechanism mediated by germline long non-coding RNAs (lncRNAs) in Caenorhabditis elegans. Exposure to 0.1-10 μg/L MWCNT caused transgenerational toxicity reflected by endpoints of brood size and locomotion behavior. Meanwhile, among germline lncRNAs, expression of 5 lncRNAs were dysregulated by MWCNT exposure. Among these 5 dysregulated lncRNAs, only germline RNAi of linc-7 affected MWCNT toxicity. Increase in germline linc-7 expression was observed transgenerationally, and transgenerational MWCNT toxicity was prevented in linc-7(RNAi) nematodes. Moreover, germline linc-7 controlled transgenerational MWCNT toxicity by activating downstream DAF-12, a transcriptional factor. Therefore, our data indicated the association between induction of transgenerational MWCNT toxicity and increase in germline linc-7 expression in organisms.
Collapse
Affiliation(s)
- Yingyue Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruoran Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Hua
- Medical School, Southeast University, Nanjing, 210009, China
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
11
|
Lu K, Zha Y, Dong S, Zhu Z, Lv Z, Gu Y, Deng R, Wang M, Gao S, Mao L. Uptake Route Altered the Bioavailability of Graphene in Misgurnus anguillicaudatus: Comparing Waterborne and Sediment Exposures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9435-9445. [PMID: 35700278 DOI: 10.1021/acs.est.2c01805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Numerous studies on the bioavailability of graphene-based nanomaterials relate to the water-only exposure route. However, the sediment exposure route should be the most important pathway for benthic organisms to ingest graphene, while to date little work on the bioavailability of graphene in benthic organisms has been explored. In this study, with the help of carbon-14-labeled few-layer graphene (14C-FLG), we quantificationally compared the bioaccumulation, biodistribution, and elimination kinetics of 14C-FLG in loaches via waterborne and sediment exposures. After 72 h of exposure, the accumulated 14C-FLG in loaches exposed via waterborne was 14.28 μg/g (dry mass), which was 3.18 times higher than that (4.49 μg/g) exposed via sediment. The biodistribution results showed that, compared to waterborne exposure, sediment exposure remarkably facilitated the transport of 14C-FLG from the gut into the liver, which made it difficult to be excreted. Although 14C-FLG did not cause significant hepatotoxicity, the disruption of intestinal microbiota homeostasis, immune response, and several key metabolic pathways in the gut were observed, which may be due to the majority of 14C-FLG being accumulated in the gut. Overall, this study reveals the different bioavailabilities of graphene in loaches via waterborne and sediment exposures, which is helpful in predicting its bioaccumulation capability and trophic transfer ability.
Collapse
Affiliation(s)
- Kun Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Yilin Zha
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Shipeng Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Zhiyu Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Zhuoyan Lv
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Yufei Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Renquan Deng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Mingjie Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
12
|
Côa F, Delite FDS, Strauss M, Martinez DST. Toxicity mitigation and biodistribution of albumin corona coated graphene oxide and carbon nanotubes in Caenorhabditis elegans. NANOIMPACT 2022; 27:100413. [PMID: 35940564 DOI: 10.1016/j.impact.2022.100413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/26/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
In this work, the toxicity and biodistribution of graphene oxide (GO) and oxidized multi-walled carbon nanotubes (MWCNT) were investigated in Caenorhabditis elegans. Bovine serum albumin (BSA) was selected as a model protein to evaluate the influence of protein corona formation on materials physicochemical properties, colloidal stability, and toxicity. Biological assays were performed to assess the effects of bare and albumin corona coated materials on survival, oxidative stress, intestinal barrier permeability, growth, reproduction, and fertility. Critical alterations in topography, surface roughness and chemistry of GO and MWCNT were observed due to albumin corona formation. These modifications were associated with changes in colloidal stability of materials and prevention of their aggregation and sedimentation in nematode testing medium. Both GO and MWCNT caused damage to nematode survival, growth, reproduction, and fertility, as well as enhanced oxidative stress and permeability of the intestinal barrier. But GO was more toxic than MWCNT to C. elegans, especially at long-term assays. Albumin corona mitigated 100% of acute and chronic effects of MWCNT. In contrast, the negative effects of GO were not completely mitigated; GO inhibited 16.2% of nematode growth, 86.5% of reproduction, and 32.0% of fertility at the highest concentration evaluated (10 mg L-1), while corona coated GO mitigated 50% and 100% of fertility and growth, respectively. Confocal Raman spectroscopy imaging was crucial to point out that bare and albumin corona coated GO and MWCNT crossed the C. elegans intestinal barrier reaching its reproductive organs. However, BSA corona protected the nematodes targeted organs from negative effects from MWCNT and blocked its translocation to other tissues, while coated GO was translocated inside the nematode affecting the functionality of crucial organs. In addition, coated MWCNT was excreted after 2 h of food resumption, whereas coated GO still accumulated in the nematode intestine. Our results demonstrate that the materials different translocation and excretion patterns in C. elegans had a relation to the impaired physiological functions of primary and secondary organs. This work is a contribution towards a better understanding of the impacts of protein corona on the toxicity of graphene oxide and carbon nanotubes; essential information for biological applications and nanosafety.
Collapse
Affiliation(s)
- Francine Côa
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Fabrício de Souza Delite
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Mathias Strauss
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center of Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Diego Stéfani Teodoro Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.
| |
Collapse
|
13
|
Bi C, Junaid M, Liu Y, Guo W, Jiang X, Pan B, Li Z, Xu N. Graphene oxide chronic exposure enhanced perfluorooctane sulfonate mediated toxicity through oxidative stress generation in freshwater clam Corbicula fluminea. CHEMOSPHERE 2022; 297:134242. [PMID: 35259357 DOI: 10.1016/j.chemosphere.2022.134242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/16/2022] [Accepted: 03/04/2022] [Indexed: 05/20/2023]
Abstract
Graphene oxide (GO), a frequently utilized graphene family nanomaterial, is inevitably released into the aquatic environment and interacts with organic pollutants, including perfluorooctane sulfonate (PFOS), a well-known persistent organic pollutant. To determine the adverse effects of GO chronic exposure on PFOS bioaccumulation and toxicity, adult freshwater bivalves, namely Asian clams (Corbicula fluminea) were treated for 28 days with PFOS (500 ng/L) and different concentrations of GO (0.2, 1, 5 mg/L) as PFOS single and GO single exposure groups, as well as PFOS-GO mixture exposure groups. Our results demonstrated that the bioaccumulation of PFOS was significantly enhanced by co-exposure in gills and visceral masses, which was 1.64-2.91 times higher in gills than in visceral masses. Both single, as well as co-exposure, caused a significant reduction in clams' siphoning behavior, compared to the controls. Further, the co-exposure significantly increased the production of reactive oxygen species (ROS), exacerbating malondialdehyde (MDA) content, enhancing superoxide dismutase (SOD) and catalase (CAT), while decreasing glutathione reductase (GR) and glutathione S-transferase (GST) enzymatic activities in clam tissues. And co-exposure significantly altered the expressions of se-gpx, sod, cyp30, hsp40, and hsp22 genes (associated with oxidative stress and xenobiotic metabolism) both in gills and visceral masses. Moreover, co-exposure caused significant histopathological changes such as cilia degradation in the gills, expansion of tubule lumens in digestive glands, and oocyte shrinkage in gonads. Finally, the enhanced integrated biomarker response (EIBR) index revealed that co-exposure to 500 ng/L PFOS + 1 mg/L/5 mg/L GO was the most stressful circumstance. Overall, our findings suggested that the presence of GO increased PFOS bioaccumulation in tissues, inducing multifaceted negative implications at molecular and behavioral levels through oxidative stress generation in Asian clams.
Collapse
Affiliation(s)
- Chunqing Bi
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Muhammad Junaid
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yan Liu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wenjing Guo
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xilin Jiang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Zhengguoshen Li
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
14
|
The Impact of Background-Level Carboxylated Single-Walled Carbon Nanotubes (SWCNTs−COOH) on Induced Toxicity in Caenorhabditis elegans and Human Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031218. [PMID: 35162241 PMCID: PMC8834598 DOI: 10.3390/ijerph19031218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 11/25/2022]
Abstract
Single-walled carbon nanotubes (SWCNTs) are widely utilized for industrial, biomedical, and environmental purposes. The toxicity of Carboxylated SWCNTs (SWCNTs−COOH) in in vivo models, particularly Caenorhabditis elegans (C. elegans), and in vitro human cells is still unclear. In this study, C. elegans was used to study the effects of SWCNTs−COOH on lethality, lifespan, growth, reproduction, locomotion, reactive oxygen species (ROS) generation, and the antioxidant system. Our data show that exposure to ≥1 μg·L−1 SWCNTs−COOH could induce toxicity in nematodes that affects lifespan, growth, reproduction, and locomotion behavior. Moreover, the exposure of nematodes to SWCNTs−COOH induced ROS generation and the alteration of antioxidant gene expression. SWCNTs−COOH induced nanotoxic effects at low dose of 0.100 or 1.00 μg·L−1, particularly for the expression of antioxidants (SOD-3, CTL-2 and CYP-35A2). Similar nanotoxic effects were found in human cells. A low dose of SWCNTs−COOH induced ROS generation and increased the expression of catalase, MnSOD, CuZnSOD, and SOD-2 mRNA but decreased the expression of GPX-2 and GPX-3 mRNA in human monocytes. These findings reveal that background-level SWCNTs−COOH exerts obvious adverse effects, and C. elegans is a sensitive in vivo model that can be used for the biological evaluation of the toxicity of nanomaterials.
Collapse
|
15
|
Li F, Meng X, Wang X, Ji C, Wu H. Graphene-triphenyl phosphate (TPP) co-exposure in the marine environment: Interference with metabolism and immune regulation in mussel Mytilus galloprovincialis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112904. [PMID: 34655885 DOI: 10.1016/j.ecoenv.2021.112904] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Both immune regulation and endocrine systems are great challenges to marine organisms, and effective protocols for determining these adverse outcome pathways are limited, especially in vivo. The increasing usage of graphene nanomaterials can lead to the frequent exposure to marine organisms. Triphenyl phosphate (TPP), an organophosphate flame retardant, is frequently detected in natural environments. In this study, the combined toxic effects of co-exposure to graphene and TPP was investigated in Mytilus galloprovincialis using computational toxicology and multi-omics technology. Noticeably, graphene could disturb the membrane stability and increase the tissue accumulation of TPP. The adsorption behavior of TPP on graphene could inhibit the surface activity of graphene. In the digestive gland, transcriptomics analysis revealed the down-regulated genes in graphene + TPP treatment, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH), sorbitol dehydrogenase (SORD), glutathione s-transferase mu 3 (GSTM3) and 4-aminobutyrate aminotransferase (ABAT), were mainly associated with oxidative stress and energy metabolism. Moreover, metabolic responses indicated that graphene + TPP could cause disturbances in energy metabolism and osmotic regulation marked by differentially altered ATP, glucose and taurine in mussels. These data underline the need for further knowledge on the potential interactions of nanomaterials with existing contaminants in marine organisms.
Collapse
Affiliation(s)
- Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003, PR China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Xiangjing Meng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003, PR China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003, PR China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003, PR China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003, PR China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| |
Collapse
|
16
|
Audira G, Lee JS, Siregar P, Malhotra N, Rolden MJM, Huang JC, Chen KHC, Hsu HS, Hsu Y, Ger TR, Hsiao CD. Comparison of the chronic toxicities of graphene and graphene oxide toward adult zebrafish by using biochemical and phenomic approaches. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116907. [PMID: 33744786 DOI: 10.1016/j.envpol.2021.116907] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/27/2021] [Accepted: 03/05/2021] [Indexed: 05/14/2023]
Abstract
Graphene (GR) and graphene oxide (GO) are widely being used as promising candidates for biomedical applications, as well as for bio-sensing, drug delivery, and anticancer therapy. However, their undesirable side effects make it necessary to assess further the toxicity and safety of using these materials. The main objective of the current study was to investigate the toxicities of GR and GO in predicted environmental relevant concentrations in adult zebrafish (Danio rerio), particularly on their behaviors, and conducted biochemical assays to elucidate the possible mechanism that underlies their toxicities. Zebrafish was chronically (∼14 days) exposed to two different doses of GR (0.1 and 0.5 ppm) or GO (0.1 and 1 ppm). At 14 ± 1 days, a battery of behavioral tests was conducted, followed by enzyme-linked immunosorbent assays (ELISA) test on the following day to inspect the alterations in antioxidant activity, oxidative stress, and neurotransmitters in the treated zebrafish brain. An alteration in predator avoidance behavior was observed in all treated groups, while GR-treated fish exhibited abnormal exploratory behavior. Furthermore, altered locomotor activity was displayed by most of the treated groups, except for the high concentration of the GR group. From the ELISA results, we discovered a high concentration of GR exposure significantly decreased several neurotransmitters and cortisol levels. Meanwhile, elevated reactive oxygen species (ROS) were displayed by the group treated with low and high doses of GR and GO, respectively. These significant changes would possibly affect zebrafish behaviors and might suggest the potential toxicity from GR and GO exposures. To sum up, the present study presented new evidence for the effects of GR and GO in zebrafish behavioral dysregulation. We hope these assessments can contribute to our understanding of graphene and graphene oxide biosafety.
Collapse
Affiliation(s)
- Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan
| | - Jiann-Shing Lee
- Department of Applied Physics, National Pingtung University, Pingtung, 90003, Taiwan
| | - Petrus Siregar
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan
| | - Nemi Malhotra
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li, 320314, Taiwan
| | - Marri Jmelou M Rolden
- Faculty of Pharmacy and the Graduate School, University of Santo Tomas, Manila, 1008, Philippines
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung, 90003, Taiwan
| | - Kelvin H-C Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung, 90003, Taiwan
| | - Hua-Shu Hsu
- Department of Applied Physics, National Pingtung University, Pingtung, 90003, Taiwan
| | - Yuchun Hsu
- Department of Applied Physics, National Pingtung University, Pingtung, 90003, Taiwan
| | - Tzong-Rong Ger
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Center for Nanotechnology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Center for Nanotechnology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan.
| |
Collapse
|
17
|
Li M, Zhu J, Wu Q, Wang Q. The combined adverse effects of cis-bifenthrin and graphene oxide on lipid homeostasis in Xenopus laevis. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124876. [PMID: 33360192 DOI: 10.1016/j.jhazmat.2020.124876] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/19/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Simultaneous exposure to multiple pollutants has received great concerns considering that the interactions between pollutants can alter the environment fate and bioavailability of pollutants with potentially deleterious effects. Graphene oxide (GO) has been widely used in many areas including environmental remediation, biology and agriculture. However, researchers have largely ignored the combined toxicity of GO with coexisting toxicants. Cis-bifenthrin (cis-BF), a typical synthetic pyrethroid insecticide, was frequently detected in the environment, which raised the possibility of interaction between cis-BF and GO. Our study investigated the toxic effects of cis-BF alone or combined with GO on the lipid homeostasis in Xenopus laevis. Tadpoles at 51 stage were exposed to cis-BF (0, 12, 60 and 300 ng/L) or in their combination with GO (0.1 mg/L) for 21 days. Coexposure to cis-BF and GO deteriorated the lipid homeostasis disruption in tadpoles. The up- or down-regulation of lipogenesis genes expression and enzymes activity were amplified in the coexposure groups. Furthermore, the presence of GO enhanced the deleterious impacts of cis-BF on the hepatic function in tadpoles. This study uniquely shows that GO promotes the lipotoxicity and hepatic function deficit caused by cis-BF exposure in frog.
Collapse
Affiliation(s)
- Meng Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaping Zhu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Qiong Wu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Qiangwei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
18
|
Britto RS, Nascimento JP, Serodre T, Santos AP, Soares AMVM, Furtado C, Ventura-Lima J, Monserrat JM, Freitas R. Oxidative stress in Ruditapes philippinarum after exposure to different graphene oxide concentrations in the presence and absence of sediment. Comp Biochem Physiol C Toxicol Pharmacol 2021; 240:108922. [PMID: 33164844 DOI: 10.1016/j.cbpc.2020.108922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/24/2020] [Accepted: 10/18/2020] [Indexed: 11/30/2022]
Abstract
The use of carbon nanomaterials (CNMs) is growing in different technological fields, raising concern on their potential impacts on the environment. Given its diverse nanothenological applications, graphene oxide (GO) stands out among the most widely used CNMs. Its hydrophilic capacity enables it to remain stable in suspension in water allowing that GO can be accessible for accumulation by aquatic organisms through ingestion, filtration and superficial dermal contact when present in aquatic ecosystems. Considering that the effects induced to aquatic organisms may depend on environment characteristics, such as temperature, salinity, water pH as well as the presence/absence of sediment, the present study aimed to investigate the influence of sediment on the impacts caused by GO exposure. For this, oxidative stress parameters were measured in the clam Ruditapes philippinarum, exposed to different GO concentrations (0.01, 0.1 and 1 mg/L), in the presence and absence of sediment, for a 28-days experimental period. The results here presented showed that regardless the presence or absence of sediment, most of the biochemical parameters considered were altered when clams were exposed to the highest concentration. The present findings further revealed that in the presence of sediment, clams mostly invested in non-enzymatic defenses (such as reduced glutathione, GSH), while animals exposed to GO in the absence of sediment favored their enzymatic antioxidant defense capacity (catalase, CAT and superoxide dismutase, SOD). This study highlights the relevance of environmental variations as key factors influencing organisms' responses to pollutants.
Collapse
Affiliation(s)
- Roberta Socoowski Britto
- Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas (ICB), FURG, Brazil; Departamento de Biologia & CESAM, Universidade de Aveiro, Aveiro, Portugal.
| | | | - Tiago Serodre
- Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, Minas Gerais, MG, Brazil
| | | | | | - Clascídia Furtado
- Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, Minas Gerais, MG, Brazil
| | - Juliane Ventura-Lima
- Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas (ICB), FURG, Brazil
| | - José M Monserrat
- Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas (ICB), FURG, Brazil.
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, Aveiro, Portugal.
| |
Collapse
|
19
|
Kim HM, Long NP, Min JE, Anh NH, Kim SJ, Yoon SJ, Kwon SW. Comprehensive phenotyping and multi-omic profiling in the toxicity assessment of nanopolystyrene with different surface properties. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123005. [PMID: 32937704 DOI: 10.1016/j.jhazmat.2020.123005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
There is a growing concern regarding the toxic effects of terrestrial nanoplastic contaminants. However, an all-encompassing phenotyping- and omics-based strategy for the toxicity assessment of nanoplastics with different surface properties on soil living organisms remains to be established. Herein, we devised a comprehensive phenotyping and multi-omic profiling method to examine the molecular disturbance of nanopolystyrene (PS)-exposed Caenorhabditis elegans. The exposure time was 24 h with either 1 μg/mL or 10 μg/mL of PS. We found that PS considerably affected the reproduction and locomotion, as well as increased the oxidative stress of worms regardless of their surface properties. Nevertheless, each type of PS affected the metabolome and lipidome of the nematodes differently. Uncharged PS (PS-N) triggered significant metabolic disturbances, whereas the metabolic influences from PS-NH2 and PS-COOH were subtle. The dysregulated transcriptome profiles of PS-N were strongly associated with the metabolic pathways. Besides, the altered expression of several genes associated with autophagy and longevity was observed. Collectively, we demonstrated that comprehensive phenotyping and omics-based profiling establish a practical framework that allows us to gain deeper insights into the maladaptive consequences of PS in nematodes. It can be utilized for the evaluation of other environmental contaminants in the terrestrial ecosystem.
Collapse
Affiliation(s)
- Hyung Min Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nguyen Phuoc Long
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung Eun Min
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sun Jo Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Jun Yoon
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
20
|
Flasz B, Dziewięcka M, Kędziorski A, Tarnawska M, Augustyniak M. Vitellogenin expression, DNA damage, health status of cells and catalase activity in Acheta domesticus selected according to their longevity after graphene oxide treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:140274. [PMID: 32783857 DOI: 10.1016/j.scitotenv.2020.140274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/14/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
The increased use of graphene oxide (GO) raises worrisome questions regarding its possible threat to various ecosystems. Invertebrates represent valuable organisms for environmental studies. The lifespan can influence the ability to cope with toxins, especially those that act via oxidative stress. Two strains of Acheta domesticus, which are selected for longevity, were tested. The main aim was to investigate how GO, when administrated in food, affects: the condition of cells, DNA stability, ROS generation and the reproduction potential (the Vitellogenin (Vg) protein expression). The "recovery effect" - after removing GO from the diet for 15 days - was also measured. The results revealed different responses to GO in the wild (H) and long-living (D) strains. The D strain had a higher catalase activity compared to the H strain on the 25th day of the imago stage. Removing GO from the food resulted in a decrease in the catalase activity to the level of the control. On the 5th day of the imago stage, the H strain had a higher cell mortality than the D strain in the GO-intoxicated groups. There was more DNA damage in the H strain compared to the long-living strain. A remedial effect was seen after the GO was removed from the diet. The total Vg protein expression was higher in the H strain and lower in the D strain. The results indicated a GO concentration-dependent outcome. In both strains, removing the GO from the food led to a high Vg expression. The Vg expression after GO treatment, particularly translation and post-translational processing, should be studied in detail in the future. The D strain of crickets had more specialized mechanisms for maintaining homeostasis than the H strain. Organisms can fight off negative effects of GO, especially when they have systems that are well developed against oxidative stress.
Collapse
Affiliation(s)
- Barbara Flasz
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007 Katowice, Poland.
| | - Marta Dziewięcka
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007 Katowice, Poland
| | - Andrzej Kędziorski
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007 Katowice, Poland
| | - Monika Tarnawska
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007 Katowice, Poland
| | - Maria Augustyniak
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
21
|
Li M, Zhu J, Fang H, Wang M, Wang Q, Zhou B. Coexposure to environmental concentrations of cis-bifenthrin and graphene oxide: Adverse effects on the nervous system during metamorphic development of Xenopus laevis. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:120995. [PMID: 31425913 DOI: 10.1016/j.jhazmat.2019.120995] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/06/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
Despite the great concerns associated with the combined biological effects of nanoparticles and insecticides, the current understanding of the corresponding ecological risks remains limited. Xenopus laevis (X. laevis) tadpoles were exposed to various concentrations of typical pyrethroid (cis-bifenthrin; cis-BF), either alone or in combination with graphene oxide (GO), for 21 days. The presence of GO resulted in increased bioconcentration of cis-BF and a higher 1S-enantiomer fraction. Exposure to cis-BF and GO caused further reduction in pre-metamorphic developmental rates and activated dopaminergic, noradrenergic, and serotonergic neurotransmitter systems. Reduced tadpole activity and levels of genomic DNA methylation at cytosine nucleotides (5hmC) were observed in the coexposure groups. These results indicate that GO enhance the bioconcentration of cis-BF and promote the conversion of its 1R-enantiomer to the 1S form, which lead to disruption of neurotransmitter systems as well as interference in metamorphic development.
Collapse
Affiliation(s)
- Meng Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Jiaping Zhu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Hua Fang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Mengcen Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Qiangwei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
22
|
De Marchi L, Coppola F, Soares AMVM, Pretti C, Monserrat JM, Torre CD, Freitas R. Engineered nanomaterials: From their properties and applications, to their toxicity towards marine bivalves in a changing environment. ENVIRONMENTAL RESEARCH 2019; 178:108683. [PMID: 31539823 DOI: 10.1016/j.envres.2019.108683] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/18/2019] [Accepted: 08/20/2019] [Indexed: 05/05/2023]
Abstract
As a consequence of their unique characteristics, the use of Engineered Nanomaterials (ENMs) is rapidly increasing in industrial, agricultural products, as well as in environmental technology. However, this fast expansion and use make likely their release into the environment with particular concerns for the aquatic ecosystems, which tend to be the ultimate sink for this type of contaminants. Considering the settling behaviour of particulates, benthic organisms are more likely to be exposed to these compounds. In this way, the present review aims to summarise the most recent data available from the literature on ENMs behaviour and fate in aquatic ecosystems, focusing on their ecotoxicological impacts towards marine and estuarine bivalves. The selection of ENMs presented here was based on the OECD's Working Party on Manufactured Nanomaterials (WPMN), which involves the safety testing and risk assessment of ENMs. Physical-chemical characteristics and properties, applications, environmental relevant concentrations and behaviour in aquatic environment, as well as their toxic impacts towards marine bivalves are discussed. Moreover, it is also identified the impacts derived from the simultaneous exposure of marine organisms to ENMs and climate changes as an ecologically relevant scenario.
Collapse
Affiliation(s)
- Lucia De Marchi
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal; Department of Mechanical Engineering & Center for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Francesca Coppola
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Pisa, 56122, Italy
| | - José M Monserrat
- Universidade Federal Do Rio Grande, FURG, Instituto de Ciências Biológicas (ICB), Av Itália km 8 s/n - Caixa Postal 474, 96200-970, Rio Grande, RS, Brazil
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milano, Italy
| | - Rosa Freitas
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
23
|
Sun J, Zhou Q, Hu X. Integrating multi-omics and regular analyses identifies the molecular responses of zebrafish brains to graphene oxide: Perspectives in environmental criteria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:269-279. [PMID: 31100591 DOI: 10.1016/j.ecoenv.2019.05.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
With the broad application of nanoparticles, nanotoxicology has attracted substantial attention in environmental science. However, the methods for detecting few and targeted genes or proteins, even single omics approaches, may miss other responses, including the major responses induced by nanoparticles. To determine the actual toxicological mechanisms of zebrafish brains induced by graphene oxide (GO, a popular carbon-based nanomaterial applied in various fields) at nonlethal concentrations, multi-omics and regular analyses were combined. The biomolecule responses were remarkable, although GO was not obviously observed in brain tissues. The trends for gene and protein changes were the same and accounted for 3.53% and 5.36% of all changes in the genome and proteome, respectively, suggesting a limitation of single omics analysis. Transcriptomics and proteomics analyses indicated that GO affected the functions or pathways of the troponin complex, actin cytoskeleton, monosaccharide transmembrane transporter activity, oxidoreductase activity and focal adhesion. Both metabolomics and proteomics revealed mitochondrial dysfunction and disruption of the citric acid cycle. The integrated analysis of omics, transmission electron microscopy and immunostaining confirmed that GO induced energy disruptions and mitochondrial damage by downregulating tubulin. The combination of multi-omics and regular analyses provides insights into the actual and highly influential mechanisms underlying nanotoxicity.
Collapse
Affiliation(s)
- Jing Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
24
|
De Marchi L, Pretti C, Chiellini F, Morelli A, Neto V, Soares AMVM, Figueira E, Freitas R. The influence of simulated global ocean acidification on the toxic effects of carbon nanoparticles on polychaetes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:1178-1187. [PMID: 30970483 DOI: 10.1016/j.scitotenv.2019.02.109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
Ocean acidification events are recognized as important drivers of change in biological systems. Particularly, the impacts of acidification are more severe in estuarine systems than in surface ocean due to their shallowness, low buffering capacity, low salinity and high organic matter from land drainage. Moreover, because they are transitional areas, estuaries can be seriously impacted by a vast number of anthropogenic activities and in the last decades, carbon nanomaterials (CNMs) are considered as emerging contaminants in these ecosystems. Considering all these evidences, chronic experiment was carried out, trying to understand the possible alteration on the chemical behaviour of two different CNMs (functionalized and pristine) in predicted climate change scenarios and consequently, how these alterations could modify the sensitivity of one the most common marine and estuarine organisms (the polychaeta Hediste diversicolor) assessing a set of biomarkers related to polychaetes oxidative status as well as the metabolic performance and neurotoxicity. Our results demonstrated that all enzymes worked together to counteract seawater acidification and CNMs, however oxidative stress in the exposed polychaetes to both CNMs, especially under ocean acidification conditions, was enhanced. In fact, although the antioxidant enzymes tried to cope as compensatory response of cellular defense systems against oxidative stress, the synergistic interactive effects of pH and functionalized CNMs indicated that acidified pH significantly increased the oxidative damage (in terms of lipid peroxidation) in the cotaminated organisms. Different responses were observed in organisms submitted to pristine CNMs under pH control, where the lipid peroxidation did not increase along with the increasing exposure concentrations. The present results further demonstrated neurotoxicity caused by both CNMs, especially noticeable at acidified conditions. The mechanism of enhanced toxicity could be attributed to slighter aggregation and more suspended NMs in acidified seawater (as demonstrated by the DLS analysis). Therefore, ocean acidification may cause a higher risk of CNMs to marine ecosystems.
Collapse
Affiliation(s)
- Lucia De Marchi
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro 3810-193, Aveiro, Portugal; Department of Mechanical Engineering & Center for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Pisa 56122, Italy
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa 56126, Italy
| | - Andrea Morelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa 56126, Italy
| | - Victor Neto
- Department of Mechanical Engineering & Center for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro 3810-193, Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro 3810-193, Aveiro, Portugal.
| |
Collapse
|
25
|
Abdi Goushbolagh N, Keshavarz M, Zare MH, Bahreyni-Toosi MH, Kargar M, Farhood B. Photosensitizer effects of MWCNTs-COOH particles on CT26 fibroblastic cells exposed to laser irradiation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1326-1334. [DOI: 10.1080/21691401.2019.1593997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nouraddin Abdi Goushbolagh
- Medical Physics Department, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Marzieh Keshavarz
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Zare
- Medical Physics Department, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Radiotherapy Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Masoud Kargar
- Medical Physics Department, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
26
|
Yang X, Yang Q, Zheng G, Han S, Zhao F, Hu Q, Fu Z. Developmental neurotoxicity and immunotoxicity induced by graphene oxide in zebrafish embryos. ENVIRONMENTAL TOXICOLOGY 2019; 34:415-423. [PMID: 30549182 DOI: 10.1002/tox.22695] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/25/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
Graphene oxide (GO) has emerged as the worldwide promising candidate for biomedical application, such as for drug delivery, bio-sensing and anti-cancer therapy. This study was focused on the zebrafish and RAW264.7 cell line as in vivo and in vitro models to assess the potential developmental neurotoxicity and immunotoxicity of GO. No obvious acute developmental toxicity was observed upon treatments with 0.01, 0.1, and 1 μg/mL GO for five consecutive days. However, decreased hatching rate, increased malformation rate, heart beat rate and hypoactivity of locomotor behavior were detected when exposed to 10 μg/mL GO. Also, RT-PCR analysis revealed that expressions of genes related to the nervous system were up-regulated. The potential risk of GO for developmental neurotoxicity may be ascribed to the high level of oxidative stress induced by high concentration of GO. Most importantly, the mRNA levels of immune response associated genes, such as interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor-α (TNFα), interferon-γ (IFN-γ) were significantly increased under environmental concentration exposure. The activation of pro-inflammatory immune response was also observed in macrophage cell line. Taken together, our results demonstrated that immunotoxicity is a sensitive indicator for assessment of bio-compatibility of GO.
Collapse
Affiliation(s)
- Xiaole Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiaolei Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Guiwen Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Shuhong Han
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Fenghui Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
27
|
Zhang J, Xia X, Li S, Ran W. Response of methane production via propionate oxidation to carboxylated multiwalled carbon nanotubes in paddy soil enrichments. PeerJ 2018; 6:e4267. [PMID: 29340254 PMCID: PMC5768162 DOI: 10.7717/peerj.4267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/25/2017] [Indexed: 01/18/2023] Open
Abstract
Carboxylated multiwalled carbon nanotubes (MWCNTs-COOH) have become a growing concern in terms of their fate and toxicity in aqueous environments. Methane (CH4) is a major product of organic matter degradation in waterlogged environments. In this study, we determined the effect of MWCNTs-COOH on the production of CH4 from propionate oxidation in paddy soil enrichments. The results showed that the methanogenesis from propionate degradation was accelerated in the presence of MWCNTs-COOH. In addition, the rates of CH4 production and propionate degradation increased with increasing concentrations of MWCNTs-COOH. Scanning electron microscopy (SEM) observations showed that the cells were intact and maintained their structure in the presence of MWCNTs-COOH. In addition, SEM and fluorescence in situ hybridization (FISH) images revealed that the cells were in direct contact with the MWCNTs and formed cell-MWCNTs aggregates that contained both bacteria and archaea. On the other hand, nontoxic magnetite nanoparticles (Fe3O4) had similar effects on the CH4 production and cell integrity as the MWCNTs-COOH. Compared with no nanomaterial addition, the relative abundances of Geobacter and Methanosarcina species increased in the presence of MWCNTs-COOH. This study suggests that MWCNTs-COOH exerted positive rather than cytotoxic effects on the syntrophic oxidation of propionate in paddy soil enrichments and affected the bacterial and archaeal community structure at the test concentrations. These findings provide novel insight into the consequences of nanomaterial release into anoxic natural environments.
Collapse
Affiliation(s)
- Jianchao Zhang
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
| | - Xingxuan Xia
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Siliang Li
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
| | - Wei Ran
- Jiangsu Provincial Coordinated Research Center for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
28
|
Nouara A, Lü P, Chen L, Pan Y, Yang Y, Chen K. Silver effects on silkworm, Bombyx mori. J Toxicol Sci 2018; 43:697-709. [DOI: 10.2131/jts.43.697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Abdelli Nouara
- School of Food and Biological Engineering, Jiangsu University, China
- Institute of Life Sciences, Jiangsu University, China
| | - Peng Lü
- Institute of Life Sciences, Jiangsu University, China
| | - Liang Chen
- Institute of Life Sciences, Jiangsu University, China
| | - Yan Pan
- Institute of Life Sciences, Jiangsu University, China
| | - Yanhua Yang
- Institute of Life Sciences, Jiangsu University, China
| | - Keping Chen
- School of Food and Biological Engineering, Jiangsu University, China
- Institute of Life Sciences, Jiangsu University, China
| |
Collapse
|
29
|
Promoting the aerobic Baeyer-Villiger oxidation of ketones over carboxylic multi-walled carbon nanotubes. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Wang N, Wang H, Tang C, Lei S, Shen W, Wang C, Wang G, Wang Z, Wang L. Toxicity evaluation of boron nitride nanospheres and water-soluble boron nitride in Caenorhabditis elegans. Int J Nanomedicine 2017; 12:5941-5957. [PMID: 28860759 PMCID: PMC5571844 DOI: 10.2147/ijn.s130960] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Boron nitride (BN) nanomaterials have been increasingly explored for potential biological applications. However, their toxicity remains poorly understood. Using Caenorhabditis elegans as a whole-animal model for toxicity analysis of two representative types of BN nanomaterials – BN nanospheres (BNNSs) and highly water-soluble BN nanomaterial (named BN-800-2) – we found that BNNSs overall toxicity was less than soluble BN-800-2 with irregular shapes. The concentration thresholds for BNNSs and BN-800-2 were 100 µg·mL−1 and 10 µg·mL−1, respectively. Above this concentration, both delayed growth, decreased life span, reduced progeny, retarded locomotion behavior, and changed the expression of phenotype-related genes to various extents. BNNSs and BN-800-2 increased oxidative stress levels in C. elegans by promoting reactive oxygen species production. Our results further showed that oxidative stress response and MAPK signaling-related genes, such as GAS1, SOD2, SOD3, MEK1, and PMK1, might be key factors for reactive oxygen species production and toxic responses to BNNSs and BN-800-2 exposure. Together, our results suggest that when concentrations are lower than 10 µg·mL−1, BNNSs are more biocompatible than BN-800-2 and are potentially biocompatible material.
Collapse
Affiliation(s)
- Ning Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital
| | - Hui Wang
- Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Chengchun Tang
- Boron Nitride Research Center, School of Materials Science and Engineering, Hebei University of Technology, Tianjin
| | - Shijun Lei
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital
| | - Wanqing Shen
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital
| | - Cong Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital
| | | | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital.,Department of Gastrointestinal Surgery
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital.,Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Zhao L, Wan H, Liu Q, Wang D. Multi-walled carbon nanotubes-induced alterations in microRNA let-7 and its targets activate a protection mechanism by conferring a developmental timing control. Part Fibre Toxicol 2017; 14:27. [PMID: 28728598 PMCID: PMC5520286 DOI: 10.1186/s12989-017-0208-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/14/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- Li Zhao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Hanxiao Wan
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Qizhan Liu
- School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
32
|
Zhang X, Zhou Q, Zou W, Hu X. Molecular Mechanisms of Developmental Toxicity Induced by Graphene Oxide at Predicted Environmental Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7861-7871. [PMID: 28614664 DOI: 10.1021/acs.est.7b01922] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Developmental toxicity is a critical issue in nanotoxicity. However, very little is known about the effects of graphene oxide (GO, a widely used carbon material) at predicted environmental concentrations on biological development or the specific molecular mechanisms. The present study established that the development of zebrafish embryos exposed to trace concentrations (1-100 μg/L) of GO was impaired because of DNA modification, protein carbonylation and excessive generation of reactive oxygen species (ROS), especially the superoxide radical. Noticeably, there was a nonmonotonic response of zebrafish developmental toxicity to GO at μg/L to mg/L levels. Transcriptomics analysis revealed that disturbing collagen- and matrix metalloproteinase (MMP)-related genes affected the skeletal and cardiac development of zebrafish. Moreover, metabolomics analysis showed that the inhibition of amino acid metabolism and the ratios of unsaturated fatty acids (UFAs) to saturated fatty acids (SFAs) contributed to the above developmental toxicity. The present work verifies the developmental toxicity of GO at trace concentrations and illustrates for the first time the specific molecular mechanisms thereof. Because of the potential developmental toxicity of GO at trace concentrations, government administrators and nanomaterial producers should consider its potential risks prior to the widespread environmental exposure to GO.
Collapse
Affiliation(s)
- Xingli Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| | - Wei Zou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| |
Collapse
|
33
|
The Annona muricata leaf ethanol extract affects mobility and reproduction in mutant strain NB327 Caenorhabditis elegans. Biochem Biophys Rep 2017; 10:282-286. [PMID: 28955756 PMCID: PMC5614673 DOI: 10.1016/j.bbrep.2017.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/03/2017] [Accepted: 04/23/2017] [Indexed: 12/29/2022] Open
Abstract
The C. elegans NB327 mutant strain is characterized for the knockdown of the dic-1 gene. The dic-1 gene is homologous to the dice-1 gene in humans, encoding the protein DICE-1 as a tumor suppressor. Absence or under-regulation of the dice-1 gene can be reflected in lung and prostate cancer [17], [18]. This study evaluated the effect of EEAML on the C. elegans NB327 mutant strain. Phenotypic aspects such as morphology, body length, locomotion, and reproductive behaviour were analyzed. It is important to emphasize that the strain presents a phenotype characteristic with respect to egg laying and hatching. Reported studies showed that Annona muricata extract and its active components evidence anti-cancer and anti-tumor effects, through experimentation in vivo and in vitro models. However, neurotoxicity has been reported as a side effect. The results showed that the mutant strain NB327 was exposed to EEAML (5 mg/ml) concentration, it showed a significant decrease in average locomotion, resulting in 13 undulations in 30 s. This contrasts with the control strain's 17.5 undulations in 30 s. Similarly, the number of progenies was reduced from 188 progenies (control strain) to 114 and 92 progenies at the dose of (1 mg/ml and 5 mg/m) EEAML. The results of this study suggest that EEAML has a possible neurotoxic effect in concentrations equal to or greater than 5 mg/ml. Also, it does not have positive effects on the mutant strain of Caenorhabditis elegans NB327 phenotype.
Collapse
|
34
|
Zhuang Z, Li M, Liu H, Luo L, Gu W, Wu Q, Wang D. Function of RSKS-1-AAK-2-DAF-16 signaling cascade in enhancing toxicity of multi-walled carbon nanotubes can be suppressed by mir-259 activation in Caenorhabditis elegans. Sci Rep 2016; 6:32409. [PMID: 27573184 PMCID: PMC5004105 DOI: 10.1038/srep32409] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/04/2016] [Indexed: 01/04/2023] Open
Abstract
Caenorhabditis elegans is an important non-mammalian alternative assay model for toxicological study. Previous study has indicated that exposure to multi-walled carbon nanotubes (MWCNTs) dysregulated the transcriptional expression of mir-259. In this study, we examined the molecular basis for mir-259 in regulating MWCNTs toxicity in nematodes. Mutation of mir-259 induced a susceptible property to MWCNTs toxicity, and MWCNTs exposure induced a significant increase in mir-259::GFP in pharyngeal/intestinal valve and reproductive tract, implying that mir-259 might mediate a protection mechanisms for nematodes against MWCNTs toxicity. RSKS-1, a putative ribosomal protein S6 kinase, acted as the target for mir-259 in regulating MWCNTs toxicity, and mutation of rsks-1 suppressed the susceptible property of mir-259 mutant to MWCNTs toxicity. Moreover, mir-259 functioned in pharynx-intestinal valve and RSKS-1 functioned in pharynx to regulate MWCNTs toxicity. Furthermore, RSKS-1 regulated MWCNTs toxicity by suppressing the function of AAK-2-DAF-16 signaling cascade. Our results will strengthen our understanding the microRNAs mediated protection mechanisms for animals against the toxicity from certain nanomaterials.
Collapse
Affiliation(s)
- Ziheng Zhuang
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou 213164, China.,Changzhou No. 7 People's Hospital, Changzhou 213011, China
| | - Min Li
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou 213164, China.,Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Hui Liu
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou 213164, China
| | - Libo Luo
- Changzhou No. 7 People's Hospital, Changzhou 213011, China
| | - Weidong Gu
- Changzhou No. 7 People's Hospital, Changzhou 213011, China
| | - Qiuli Wu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| |
Collapse
|
35
|
Yu Y, Zhi L, Wu Q, Jing L, Wang D. NPR-9 regulates the innate immune response in Caenorhabditis elegans by antagonizing the activity of AIB interneurons. Cell Mol Immunol 2016; 15:27-37. [PMID: 27133473 DOI: 10.1038/cmi.2016.8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/23/2016] [Accepted: 01/24/2016] [Indexed: 11/09/2022] Open
Abstract
npr-9 encodes a homologue of the gastrin-releasing peptide receptor (GRPR) and is expressed in AIB interneurons. In this study, we investigated the role of NPR-9 in the neuronal control of innate immunity using the model system Caenorhabditis elegans. After exposure to Pseudomonas aeruginosa PA14, npr-9(tm1652) mutants showed resistance to infection, decreased PA14 colonization and increased expression of immunity-related genes. Nematodes overexpressing NPR-9 exhibited increased susceptibility to infection, increased PA14 colonization and reduced expression of immunity-related genes. In nematodes, ChR2-mediated AIB interneuron activation strengthened the innate immune response and decreased PA14 colonization. Overexpression of NPR-9 suppressed the innate immune response and increased PA14 colonization in nematodes with the activation of AIB interneurons mediated by ChR2 or by expressing pkc-1(gf) in AIB interneurons. We, therefore, hypothesize that NPR-9 regulates the innate immune response by antagonizing the activity of AIB interneurons. Furthermore, expression of GRPR, the human homologue of NPR-9, could largely mimic NPR-9 function by regulating innate immunity in nematodes. Our results provide insight into the pivotal role of interneurons in controlling innate immunity and the complex biological functions of GRPRs.
Collapse
Affiliation(s)
- Yonglin Yu
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Lingtong Zhi
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Qiuli Wu
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Lina Jing
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| |
Collapse
|
36
|
Yao MZ, Hu YL, Sheng XX, Lin J, Ling D, Gao JQ. Toxicity analysis of various Pluronic F-68-coated carbon nanotubes on mesenchymal stem cells. Chem Biol Interact 2016; 250:47-58. [DOI: 10.1016/j.cbi.2016.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/27/2016] [Accepted: 03/07/2016] [Indexed: 01/09/2023]
|
37
|
Holt BD, Shawky JH, Dahl KN, Davidson LA, Islam MF. Distribution of single wall carbon nanotubes in the Xenopus laevis embryo after microinjection. J Appl Toxicol 2016; 36:568-78. [PMID: 26510384 PMCID: PMC4943752 DOI: 10.1002/jat.3255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/22/2015] [Accepted: 09/26/2015] [Indexed: 01/16/2023]
Abstract
Single wall carbon nanotubes (SWCNTs) are advanced materials with the potential for a myriad of diverse applications, including biological technologies and large-scale usage with the potential for environmental impacts. SWCNTs have been exposed to developing organisms to determine their effects on embryogenesis, and results have been inconsistent arising, in part, from differing material quality, dispersion status, material size, impurity from catalysts and stability. For this study, we utilized highly purified SWCNT samples with short, uniform lengths (145 ± 17 nm) well dispersed in solution. To test high exposure doses, we microinjected > 500 µg ml(-1) SWCNT concentrations into the well-established embryogenesis model, Xenopus laevis, and determined embryo compatibility and subcellular localization during development. SWCNTs localized within cellular progeny of the microinjected cells, but were heterogeneously distributed throughout the target-injected tissue. Co-registering unique Raman spectral intensity of SWCNTs with images of fluorescently labeled subcellular compartments demonstrated that even at regions of highest SWCNT concentration, there were no gross alterations to subcellular microstructures, including filamentous actin, endoplasmic reticulum and vesicles. Furthermore, SWCNTs did not aggregate and localized to the perinuclear subcellular region. Combined, these results suggest that purified and dispersed SWCNTs are not toxic to X. laevis animal cap ectoderm and may be suitable candidate materials for biological applications.
Collapse
Affiliation(s)
- Brian D. Holt
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Joseph H. Shawky
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kris Noel Dahl
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Lance A. Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mohammad F. Islam
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
38
|
A MicroRNA-Mediated Insulin Signaling Pathway Regulates the Toxicity of Multi-Walled Carbon Nanotubes in Nematode Caenorhabditis elegans. Sci Rep 2016; 6:23234. [PMID: 26984256 PMCID: PMC4794644 DOI: 10.1038/srep23234] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/02/2016] [Indexed: 12/25/2022] Open
Abstract
The underlying mechanisms for functions of microRNAs (miRNAs) in regulating toxicity of nanomaterials are largely unclear. Using Illumina HiSeq(TM) 2000 sequencing technique, we obtained the dysregulated mRNA profiling in multi-walled carbon nanotubes (MWCNTs) exposed nematodes. Some dysregulated genes encode insulin signaling pathway. Genetic experiments confirmed the functions of these dysregulated genes in regulating MWCNTs toxicity. In the insulin signaling pathway, DAF-2/insulin receptor regulated MWCNTs toxicity by suppressing function of DAF-16/FOXO transcription factor. Moreover, we raised a miRNAs-mRNAs network involved in the control of MWCNTs toxicity. In this network, mir-355 might regulate MWCNTs toxicity by inhibiting functions of its targeted gene of daf-2, suggesting that mir-355 may regulate functions of the entire insulin signaling pathway by acting as an upregulator of DAF-2, the initiator of insulin signaling pathway, in MWCNTs exposed nematodes. Our results provides highlight on understanding the crucial role of miRNAs in regulating toxicity of nanomaterials in organisms.
Collapse
|
39
|
Ruan Q, Qiao Y, Zhao Y, Xu Y, Wang M, Duan J, Wang D. Beneficial effects of Glycyrrhizae radix extract in preventing oxidative damage and extending the lifespan of Caenorhabditis elegans. JOURNAL OF ETHNOPHARMACOLOGY 2016; 177:101-110. [PMID: 26626487 DOI: 10.1016/j.jep.2015.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 09/08/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Glycyrrhizae radix (GR) is a medicinal herb extensively used in traditional Chinese medicine. This study aimed to evaluate the pharmacological effect of GR and the possible mechanisms of GR, to provide a pharmacological basis in traditional medicine. MATERIALS AND METHODS In the present study, C. elegans (L1-larvae to young adults) was exposed to 0.12-0.24 g/mL of GR in 12-well sterile tissue culture plates at 20°C in the presence of food. Lethality, growth, lifespan, reproduction, locomotion, metabolism, intestinal autofluorescence, and reactive oxygen species (ROS) production assays were performed to investigate the possible safety profile and beneficial effects of GR in these nematodes. We found that the lifespan of nematodes exposed to 0.18-0.24 g/mL of GR was extended. We then determined the mechanism of the longevity effect of GR using quantitative reverse transcription PCR and oxidative stress resistance assays induced by heat and paraquat. RESULTS Prolonged exposure to 0.12-0.24 g/mL of GR did not induce lethality, alter body length, morphology or metabolism, affect brood size, locomotion, the development of D-type GABAergic motor neurons, or induce significant induction of intestinal autofluorescence and intestinal ROS production. In C. elegans, pretreatment with GR suppressed the damage due to heat-stress or oxidative stress induced by paraquat, a ROS generator, on lifespan, and inhibited the induction of intestinal ROS production induced by paraquat. Moreover, prolonged exposure to GR extended lifespan, increased locomotion and decreased intestinal ROS production in adult day-12 nematodes. Furthermore, prolonged exposure to GR significantly altered the expression patterns of genes encoding the insulin-like signaling pathway which had a key role in longevity control. Mutation of daf-16 gene encoding the FOXO transcription factor significantly decreased lifespan, suppressed locomotion, and increased intestinal ROS production in GR exposed adult nematodes. CONCLUSIONS GR is relatively safe and has protective effects against the damage caused by both heat-stress and oxidative stress at the examined concentrations. Furthermore, GR is capable of extending the lifespan of nematodes, and the insulin-like signaling pathway may play a crucial role in regulating the lifespan-extending effects of GR.
Collapse
Affiliation(s)
- Qinli Ruan
- Center for Drug Safety Evaluation and Research, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yan Qiao
- Center for Drug Safety Evaluation and Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yunli Zhao
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China
| | - Yun Xu
- Center for Drug Safety Evaluation and Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Meng Wang
- Center for Drug Safety Evaluation and Research, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Dayong Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China.
| |
Collapse
|
40
|
Shakoor S, Sun L, Wang D. Multi-walled carbon nanotubes enhanced fungal colonization and suppressed innate immune response to fungal infection in nematodes. Toxicol Res (Camb) 2016; 5:492-499. [PMID: 30090363 DOI: 10.1039/c5tx00373c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/30/2015] [Indexed: 11/21/2022] Open
Abstract
The underlying molecular mechanisms for multi-walled carbon nanotube (MWCNT)-induced in vivo toxicity on innate immunity are still largely unclear. Considering the potential of Caenorhabditis elegans for the study of innate immune response of animals, we employed this in vivo assay system to investigate the effects of MWCNTs on innate immune response of animals and the underlying mechanisms. Pre-exposure to MWCNTs at concentrations more than 100 μg L-1 enhanced the adverse effect of fungal infection in reducing lifespan. With regard to the underlying cellular mechanisms, we found that MWCNT pre-exposure enhanced colony formation of Candida albicans in the body of nematodes, and suppressed innate immune response of nematodes by decreasing expression levels of some antimicrobial genes. With regard to the underlying molecular mechanisms, we found that MWCNTs decreased expression levels of pmk-1, sek-1, and nsy-1 genes encoding the p38 mitogen activated protein kinase (MAPK) signaling pathway, and inhibited translational expression of PMK-1::GFP in the intestine and phosphorylation of PMK-1. Epistasis assays showed that MWCNTs required the involvement of the p38 MAPK signaling pathway mediated by a NSY-1-SEK-1-PMK-1 cascade to enhance the toxicity of fungal infection, increase fungal colony formation, and suppress innate immune response. Thus, our results suggest that MWCNTs may possess immunoinhibitory effects by affecting the functions of the p38 MAPK signaling pathway. Our study also provides meaningful insights into the role of innate immune system of hosts against the toxicity of environmental toxicants.
Collapse
Affiliation(s)
- Shumaila Shakoor
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education , Medical School , Southeast University , Nanjing 210009 , China .
| | - Lingmei Sun
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education , Medical School , Southeast University , Nanjing 210009 , China .
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education , Medical School , Southeast University , Nanjing 210009 , China .
| |
Collapse
|
41
|
Ficociello G, Salemme A, Uccelletti D, Fiorito S, Togna AR, Vallan L, González-Domínguez JM, Da Ros T, Francisci S, Montanari A. Evaluation of the efficacy of carbon nanotubes for delivering peptides into mitochondria. RSC Adv 2016. [DOI: 10.1039/c6ra14254k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Future therapy for mitochondrial pathologies: CKKSFLSPRTALINFLVK peptide from mitochondrial-LeuRS has a mitochondrial targeting activity when conjugated with multi-walled carbon nanotubes.
Collapse
Affiliation(s)
- Graziella Ficociello
- Department of Biology and Biotechnologies “Charles Darwin”
- Sapienza University of Rome
- 5-00185 Rome
- Italy
| | - Adele Salemme
- Department of Physiology and Pharmacology “Vittorio Erspamer”
- Sapienza University of Rome
- 5-00185 Rome
- Italy
| | - Daniela Uccelletti
- Department of Biology and Biotechnologies “Charles Darwin”
- Sapienza University of Rome
- 5-00185 Rome
- Italy
| | - Silvana Fiorito
- Institute of Translational Pharmacology – CNR
- 100-00133 Rome
- Italy
| | - Anna Rita Togna
- Department of Physiology and Pharmacology “Vittorio Erspamer”
- Sapienza University of Rome
- 5-00185 Rome
- Italy
| | - Lorenzo Vallan
- INSTM Unit of Trieste
- Department of Chemical and Pharmaceutical Sciences
- University of Trieste
- 1-34127 Trieste
- Italy
| | - Jose M. González-Domínguez
- INSTM Unit of Trieste
- Department of Chemical and Pharmaceutical Sciences
- University of Trieste
- 1-34127 Trieste
- Italy
| | - Tatiana Da Ros
- INSTM Unit of Trieste
- Department of Chemical and Pharmaceutical Sciences
- University of Trieste
- 1-34127 Trieste
- Italy
| | - Silvia Francisci
- Department of Biology and Biotechnologies “Charles Darwin”
- Sapienza University of Rome
- 5-00185 Rome
- Italy
| | - Arianna Montanari
- Department of Biology and Biotechnologies “Charles Darwin”
- Sapienza University of Rome
- 5-00185 Rome
- Italy
- Pasteur Institute – Cenci Bolognetti Foundation
| |
Collapse
|
42
|
Zhi L, Fu W, Wang X, Wang D. ACS-22, a protein homologous to mammalian fatty acid transport protein 4, is essential for the control of the toxicity and translocation of multi-walled carbon nanotubes in Caenorhabditis elegans. RSC Adv 2016. [DOI: 10.1039/c5ra23543j] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ACS-22 plays an essential role in regulating toxicity and translocation of MWCNTs.
Collapse
Affiliation(s)
- Lingtong Zhi
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
- Medical School
- Southeast University
- Nanjing 210009
- China
| | - Wei Fu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
- Medical School
- Southeast University
- Nanjing 210009
- China
| | - Xiong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
- Medical School
- Southeast University
- Nanjing 210009
- China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
- Medical School
- Southeast University
- Nanjing 210009
- China
| |
Collapse
|
43
|
Werengowska-Ciećwierz K, Wiśniewski M, Terzyk AP, Roszek K, Czarnecka J, Bolibok P, Rychlicki G. Conscious Changes of Carbon Nanotubes Cytotoxicity by Manipulation with Selected Nanofactors. Appl Biochem Biotechnol 2015; 176:730-41. [PMID: 25894948 PMCID: PMC4500856 DOI: 10.1007/s12010-015-1607-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 04/06/2015] [Indexed: 12/14/2022]
Abstract
We discuss eight major challenges in the field of carbon nanomaterial toxicity. Generally, we pick up some of them, and the most important challenge is searching of the qualitative relationships between nanofactors and cytotoxicity. This is important since it can provide the possibility of conscious changes of carbon nanotubes cytotoxicity by manipulation with selected nanofactors. Therefore, the toxicity of a series of gradually oxidized carbon nanotubes is studied. We show, for the first time, that toxicity of those materials depends strongly on the ratio of acidic to basic group concentration—the higher is this ratio value, the more toxic are nanotubes. In this way, by changing this ratio, one can change toxicity. This correlation is more evident after ultrasonication, and it is connected with the accessibility of charged groups for interactions with proteins. Toxicity also depends on the ability of nanotubes for protein adsorption. We suggest that the changes in the protein composition of medium, especially lack of important growth factors, inhibit cell proliferation.
Collapse
Affiliation(s)
- Karolina Werengowska-Ciećwierz
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin St., 87-100, Toruń, Poland
| | | | | | | | | | | | | |
Collapse
|
44
|
Sun L, Lin Z, Liao K, Xi Z, Wang D. Adverse effects of coal combustion related fine particulate matter (PM2.5) on nematode Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 512-513:251-260. [PMID: 25625637 DOI: 10.1016/j.scitotenv.2015.01.058] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 06/04/2023]
Abstract
The toxic effects of coal combustion related fine particulate matter (PM2.5), collected from Datong, Shanxi province, China, on nematode Caenorhabditis elegans were investigated. Exposure to PM2.5 resulted in deficits in development, reproduction, locomotion behavior, and lifespan, and induction of intestinal autofluorescence or reactive oxygen species (ROS) production. Prolonged exposure to PM2.5 led to more severe toxicity on nematodes than acute exposure. In addition, exposure to PM2.5 induced altered expression patterns of genes required for the control of oxidative stress. Reduction in mean defecation cycle length and developmental deficits in AVL and DVB neurons, which are involved in the control of defecation behavior, were also triggered by PM2.5 exposure. Thus, oxidative stress and abnormal defecation behavior may contribute greatly to the toxicity of coal combustion related PM2.5 in nematodes. The results also imply that the long-term adverse effects of coal combustion related PM2.5 on environmental organisms should be carefully considered.
Collapse
Affiliation(s)
- Lingmei Sun
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China
| | - Zhiqing Lin
- Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control Technology for Environmental & Food Safety, Tianjin 300050, China
| | - Kai Liao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China
| | - Zhuge Xi
- Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control Technology for Environmental & Food Safety, Tianjin 300050, China.
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China.
| |
Collapse
|
45
|
Zhao Y, Wu Q, Wang D. A microRNAs–mRNAs network involved in the control of graphene oxide toxicity in Caenorhabditis elegans. RSC Adv 2015. [DOI: 10.1039/c5ra16142h] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A microRNAs–mRNAs network involved in the control of graphene oxide toxicity was raised in nematodes.
Collapse
Affiliation(s)
- Yunli Zhao
- Medical School
- Southeast University
- Nanjing 210009
- China
| | - Qiuli Wu
- Medical School
- Southeast University
- Nanjing 210009
- China
| | - Dayong Wang
- Medical School
- Southeast University
- Nanjing 210009
- China
| |
Collapse
|
46
|
Yang R, Zhao Y, Yu X, Lin Z, Xi Z, Rui Q, Wang D. Insulin signaling regulates the toxicity of traffic-related PM2.5 on intestinal development and function in nematode Caenorhabditis elegans. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00131a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Insulin signaling pathway may act as an important molecular basis for the toxicity of traffic-related PM2.5 in Caenorhabditis elegans, a non-mammalian toxicological model.
Collapse
Affiliation(s)
- Ruilong Yang
- College of Life Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
| | - Yunli Zhao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
- Medical School of Southeast University
- Nanjing 210009
- China
| | - Xiaoming Yu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
- Medical School of Southeast University
- Nanjing 210009
- China
| | - Zhiqing Lin
- Institute of Health and Environmental Medicine
- Key Laboratory of Risk Assessment and Control Technology for Environmental & Food Safety
- Tianjin 300050
- China
| | - Zhuge Xi
- Institute of Health and Environmental Medicine
- Key Laboratory of Risk Assessment and Control Technology for Environmental & Food Safety
- Tianjin 300050
- China
| | - Qi Rui
- College of Life Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
- Medical School of Southeast University
- Nanjing 210009
- China
| |
Collapse
|
47
|
Yang J, Zhao Y, Wang Y, Wang H, Wang D. Toxicity evaluation and translocation of carboxyl functionalized graphene in Caenorhabditis elegans. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00137d] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
G-COOH in the range of mg L−1 did not cause toxic effects on both the exposed nematodes and their progeny.
Collapse
Affiliation(s)
- Junnian Yang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
- Medical School of Southeast University
- Nanjing 210009
- China
- College of Life Sciences and Engineering
| | - Yunli Zhao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
- Medical School of Southeast University
- Nanjing 210009
- China
| | - Yanwen Wang
- Institute of Nanochemistry and Nanobiology
- Shanghai University
- Shanghai 200444
- China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology
- Shanghai University
- Shanghai 200444
- China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
- Medical School of Southeast University
- Nanjing 210009
- China
| |
Collapse
|
48
|
Zhao S, Wang Q, Zhao Y, Rui Q, Wang D. Toxicity and translocation of graphene oxide in Arabidopsis thaliana. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:145-56. [PMID: 25499792 DOI: 10.1016/j.etap.2014.11.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/21/2014] [Accepted: 11/25/2014] [Indexed: 05/24/2023]
Abstract
We investigated the possible safety property and translocation of graphene oxide (GO) in the range of μg/L in Arabidopsis. GO exposure did not obviously influence germination, seed development, shoot and root development of seedlings, and flowering time. Meanwhile, GO exposure could not induce severe H2O2 production, increase in malondialdehyde content, formation of oxidative stress, and altered activities of antioxidant enzymes. Moreover, GO exposure did not change expression patterns of examined genes required for germination, photomorphogenesis, root development, and transition from vegetative to reproductive development. In the seedling, we did not observe severe GO accumulation in mesophyll and parenchyma cells of leaf or stem, and in sieve element in leaf, stem, or root. In contrast, we observed the severe GO accumulation in root hair and root parenchyma cells. Our results provide the physiological basis for safety property of GO at the examined concentrations in Arabidopsis plants. Furthermore, our data imply that although GO was absorbed by Arabidopsis plants through root hairs, plants might still have strong ability to be against GO translocation into stem or leaves. In addition, we found that cotyledon might serve as an important site for GO distribution during the early development.
Collapse
Affiliation(s)
- Shengqing Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China
| | - Qianqian Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunli Zhao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China.
| |
Collapse
|
49
|
Zhao Y, Wang X, Wu Q, Li Y, Tang M, Wang D. Quantum dots exposure alters both development and function of D-type GABAergic motor neurons in nematode Caenorhabditis elegans. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00207e] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Both translocation into targeted neurons and developmental and functional alterations in targeted neurons contribute to CdTe QDs neurotoxicity.
Collapse
Affiliation(s)
- Yunli Zhao
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education
- Medical School of Southeast University
- Nanjing 210009
- China
| | - Xiong Wang
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education
- Medical School of Southeast University
- Nanjing 210009
- China
| | - Qiuli Wu
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education
- Medical School of Southeast University
- Nanjing 210009
- China
| | - Yiping Li
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education
- Medical School of Southeast University
- Nanjing 210009
- China
| | - Meng Tang
- School of Public Health
- Southeast University
- Nanjing 210009
- China
| | - Dayong Wang
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education
- Medical School of Southeast University
- Nanjing 210009
- China
| |
Collapse
|
50
|
Shu C, Yu X, Wu Q, Zhuang Z, Zhang W, Wang D. Pretreatment with paeonol prevents the adverse effects and alters the translocation of multi-walled carbon nanotubes in nematode Caenorhabditis elegans. RSC Adv 2015. [DOI: 10.1039/c4ra14377a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Pretreatment with paeonol alters toxicity and translocation of MWCNTs in nematodes.
Collapse
Affiliation(s)
- Chengjie Shu
- College of Life Sciences
- Nanjing Normal University
- Nanjing 210046
- China
- Nanjing Institute for Comprehensive Utilization of Wild Plants
| | - Xiaoming Yu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
- Medical School of Southeast University
- Nanjing 210009
- China
| | - Qiuli Wu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
- Medical School of Southeast University
- Nanjing 210009
- China
| | - Ziheng Zhuang
- School of Pharmaceutical Engineering and Life Sciences
- Changzhou University
- Changzhou 213164
- China
| | - Weiming Zhang
- College of Life Sciences
- Nanjing Normal University
- Nanjing 210046
- China
- Nanjing Institute for Comprehensive Utilization of Wild Plants
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
- Medical School of Southeast University
- Nanjing 210009
- China
| |
Collapse
|