1
|
Li C, Xu D, Liu H, Xu W, Wang B, He Q, Xu W, Fu Y, Li H, Cheng J. Surface Plasmon-Driven Versatile Enhancement of Chemosensing. ACS Sens 2024; 9:6531-6541. [PMID: 39652440 DOI: 10.1021/acssensors.4c01985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Chemo-sensors have deeply integrated into various facets of our daily lives. To further satisfy the increasing performance demand, the current attempts are mainly centered on materials science approaches, usually involving time-& labor-consuming structure designing, synthesis, and modification. To date, it remains largely unexplored to enhance sensing material performance at the fundamental physical level by strategic exploitation of optical properties. In this work, we proposed a facile and versatile approach for improving the material performance by strategically utilizing the surface plasmon resonance─a characteristic property of optical devices. This approach is revealed to have a dual effect on fluorescence-based chemosensing: it amplifies the collection of fluorescence signals and simultaneously expedites the kinetics of chemical reactions. In this work, we developed a surface plasmon-driven fluorescence-based chemosensor that utilizes the 2,4,6-trisformyl phenol-diethylamine (TFP-I) fluorescent probe for the detection of hydrogen peroxide (H2O2) gas molecules. By harnessing the dual-effect induced by surface plasmons, we achieved outstanding sensing performance for H2O2 gas molecules, characterized by 0.0225 ppt sensitivity and an exceedingly low limit of detection. This study substantiates the applicability of the surface plasmon resonance-based optical effect in the realm of fluorescent chemical materials for sensing performance amplification. Beyond this, it pioneers the strategic harnessing of optical effects to manipulate the performance of chemical materials, particularly for the advancement of sensing capabilities.
Collapse
Affiliation(s)
- Chunhui Li
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dinghai Xu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Huan Liu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Wenxing Xu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Bo Wang
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingguo He
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Fu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huizi Li
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangong Cheng
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Lafuente M, Kooijman LJ, Rodrigo SG, Berenschot E, Mallada R, Pina MP, Tas NR, Tiggelaar RM. Periodic Arrays of Plasmonic Ag-Coated Multiscale 3D-Structures with SERS Activity: Fabrication, Modelling and Characterisation. MICROMACHINES 2024; 15:1129. [PMID: 39337789 PMCID: PMC11434411 DOI: 10.3390/mi15091129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024]
Abstract
Surface enhanced Raman spectroscopy (SERS) is gaining importance as sensing tool. However, wide application of the SERS technique suffers mainly from limitations in terms of uniformity of the plasmonics structures and sensitivity for low concentrations of target analytes. In this work, we present SERS specimens based on periodic arrays of 3D-structures coated with silver, fabricated by silicon top-down micro and nanofabrication (10 mm × 10 mm footprint). Each 3D-structure is essentially an octahedron on top of a pyramid. The width of the top part-the octahedron-was varied from 0.7 µm to 5 µm. The smallest structures reached an analytical enhancement factor (AEF) of 3.9 × 107 with a relative standard deviation (RSD) below 20%. According to finite-difference time-domain (FDTD) simulations, the origin of this signal amplification lies in the strong localization of electromagnetic fields at the edges and surfaces of the octahedrons. Finally, the sensitivity of these SERS specimens was evaluated under close-to-reality conditions using a portable Raman spectrophotometer and monitoring of the three vibrational bands of 4-nitrobenzenethiol (4-NBT). Thus, this contribution deals with fabrication, characterization and simulation of multiscale 3D-structures with SERS activity.
Collapse
Affiliation(s)
- Marta Lafuente
- Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Campus Rio Ebro, C/Maria de Luna s/n, Universidad de Zaragoza, 50018 Zaragoza, Spain; (R.M.); (M.P.P.)
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands; (L.J.K.); (E.B.); (N.R.T.)
| | - Lucas J. Kooijman
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands; (L.J.K.); (E.B.); (N.R.T.)
| | - Sergio G. Rodrigo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Erwin Berenschot
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands; (L.J.K.); (E.B.); (N.R.T.)
| | - Reyes Mallada
- Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Campus Rio Ebro, C/Maria de Luna s/n, Universidad de Zaragoza, 50018 Zaragoza, Spain; (R.M.); (M.P.P.)
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - María P. Pina
- Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Campus Rio Ebro, C/Maria de Luna s/n, Universidad de Zaragoza, 50018 Zaragoza, Spain; (R.M.); (M.P.P.)
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Niels R. Tas
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands; (L.J.K.); (E.B.); (N.R.T.)
| | - Roald M. Tiggelaar
- NanoLab Cleanroom, MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
3
|
Roy TR, Dutta-Gupta S, Iyer BVS. Deformation induced evolution of plasmonic responses in polymer grafted nanoparticle thin films. NANOSCALE 2024; 16:11705-11715. [PMID: 38861250 DOI: 10.1039/d4nr00789a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Multi-functional nanoparticle thin films are being used in various applications ranging from biosensing to photo-voltaics. In this study, we integrate two different numerical approaches to understand the interplay between the mechanical deformation and optical response of polymer grafted plasmonic nanoparticle (PGPN) arrays. Using numerical simulations we examine the deformation of thin films formed by end-functionalised polymer grafted nanoparticles subject to uniaxial elongation. The induced deformation causes the particles in the thin film network to rearrange their positions by two different mechanisms viz. sliding and packing. In sliding, the particles move in the direction of induced deformation. On the other hand, in packing, the particles move in a direction normal to that of the induced deformation. By employing a Green's tensor formulation in polarizable backgrounds for evaluating the optical response of the nanoparticle network, we calculate the evolution of the plasmonic response of the structure as a function of strain. The results indicate that the evolution of plasmonic response closely follows the deformation. In particular, we show that the onset of relative electric field enhancement of the optical response occurs when there is significant rearrangement of the constituent PGPNs in the array. Furthermore, we show that depending on the local packing/sliding and the polarization of the incident light there can be both enhancement and suppression of the SERS response.
Collapse
Affiliation(s)
- Talem Rebeda Roy
- Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy 502284, Telangana, India.
| | - Shourya Dutta-Gupta
- Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Sangareddy 502284, Telangana, India.
| | - Balaji V S Iyer
- Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy 502284, Telangana, India.
| |
Collapse
|
4
|
Liu Y, Chui KK, Fang Y, Wen S, Zhuo X, Wang J. Metal-Organic Framework-Enabled Trapping of Volatile Organic Compounds into Plasmonic Nanogaps for Surface-Enhanced Raman Scattering Detection. ACS NANO 2024; 18:11234-11244. [PMID: 38630523 PMCID: PMC11064218 DOI: 10.1021/acsnano.4c00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 05/01/2024]
Abstract
Utilizing electromagnetic hotspots within plasmonic nanogaps is a promising approach to create ultrasensitive surface-enhanced Raman scattering (SERS) substrates. However, it is difficult for many molecules to get positioned in such nanogaps. Metal-organic frameworks (MOFs) are commonly used to absorb and concentrate diverse molecules. Herein, we combine these two strategies by introducing MOFs into plasmon-coupled nanogaps, which has so far remained experimentally challenging. Ultrasensitive SERS substrates are fabricated through the construction of nanoparticle-on-mirror structures, where Au nanocrystals are encapsulated with a zeolitic imidazolate framework-8 (ZIF-8) shell and then coupled to a gold film. The ZIF-8 shell, as a spacer that separates the Au nanocrystal and the Au film, can be adjusted in thickness over a wide range, which allows the electric field enhancement and plasmon resonance wavelength to be varied. By trapping Raman-active molecules within the ZIF-8 shell, we show that our plasmon-coupled structures exhibit a superior SERS detection performance. A range of volatile organic compounds at the concentrations of 10-2 mg m-3 can be detected sensitively and reliably. Our study therefore offers an attractive route for synergistically combining plasmonic electric field enhancement and MOF-enabled molecular enrichment to design and create SERS substrates for ultrasensitive detection.
Collapse
Affiliation(s)
- Yi Liu
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR 999077, China
| | - Ka Kit Chui
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR 999077, China
| | - Yini Fang
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR 999077, China
| | - Shizheng Wen
- Jiangsu
Province Key Laboratory of Modern Measurement Technology and Intelligent
Systems, School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Xiaolu Zhuo
- School
of Science and Engineering, The Chinese
University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Jianfang Wang
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
5
|
Adhikari S, Noh D, Kim M, Ahn D, Jang Y, Oh E, Lee D. Vapor phase detection of explosives by surface enhanced Raman scattering under ambient conditions with metal nanogap structures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:123996. [PMID: 38350410 DOI: 10.1016/j.saa.2024.123996] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/16/2024] [Accepted: 02/03/2024] [Indexed: 02/15/2024]
Abstract
Non-invasive and passive detection of explosives in the vapor phase is advantageous for military, counter-terrorism, and homeland security applications. Detection of explosives using SERS has been an active research topic. However, the vapor pressures of most explosives are low at room temperature, and consequently, the vapor phase detection by SERS is highly challenging without intentionally heating explosive powder to increase the vapor pressure. In this work, we report the rapid and sensitive detection of 2,4,6-trinitrotoluene (TNT) and 2,4-dinitrotoluene (2,4-DNT) in the vapor phase, using a gold nanogap (AuNG) SERS substrate. The AuNG SERS substrate was fabricated with electron beam evaporation, rapid thermal annealing, and wet etching. SERS measurements were carried out with an incident power as low as 0.56 mW at 785 nm. To prevent the condensation effect, the TNT and 2,4-DNT powders inside the cuvette were taken out before inserting the nanogap substrate. Our SERS results demonstrate the feasibility of the non-invasive detection of vapor phase explosives under ambient conditions.
Collapse
Affiliation(s)
- Samir Adhikari
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Daegwon Noh
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea; Institute of Quantum Systems, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Minjun Kim
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Daehyun Ahn
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yudong Jang
- Institute of Quantum Systems, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eunsoon Oh
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea; Institute of Quantum Systems, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Donghan Lee
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea; Institute of Quantum Systems, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
6
|
Rathnakumar S, Bhaskar S, Sivaramakrishnan V, Kambhampati NSV, Srinivasan V, Ramamurthy SS. Tecoma stans Floral Extract-Based Biosynthesis for Enhanced Surface Plasmon-Coupled Emission and a Preliminary Study on Fluoroimmunoassay. Anal Chem 2024; 96:4005-4012. [PMID: 38415592 DOI: 10.1021/acs.analchem.3c01441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
We demonstrate the synthesis of biogenic supported silver spiked star architectures and their application to increase the electromagnetic field intensity at its tips that enhance plasmon-coupled emission. Tecoma stans floral extract has been used to synthesize silver nanocubes and spiked stars. We observe ∼445-fold and ∼680-fold enhancements in spacer and cavity configurations, respectively, in the SPCE platform. The hotspot intensity and Purcell factor are evaluated by carrying out finite-difference time-domain (FDTD) simulations. Time-based studies are presented to modulate the sharpness of the edges wherein an increase in the tip sharpness with the increase in reaction time up to 5 h is observed. The unique morphology of the silver architectures allowed us to utilize them in biosensing application. A SPCE-based fluoroimmunoassay was performed, achieving a 1.9 pg/mL limit of detection of TNF-α cytokine. This combination of anisotropic architectures, SPCE and immunoassay prove to be a powerful platform for the ultrasensitive detection of biomarkers in surface-bound assays.
Collapse
Affiliation(s)
- Sriram Rathnakumar
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Puttaparthi, 515134, Andhra Pradesh, India
| | - Seemesh Bhaskar
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Venketesh Sivaramakrishnan
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Puttaparthi, 515134, Andhra Pradesh, India
| | - Naga Sai Visweswar Kambhampati
- Department of Chemistry, STAR Laboratory, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Puttaparthi, 515134, Andhra Pradesh, India
| | - Venkatesh Srinivasan
- Department of Chemistry, STAR Laboratory, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Puttaparthi, 515134, Andhra Pradesh, India
| | - Sai Sathish Ramamurthy
- Department of Chemistry, STAR Laboratory, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Puttaparthi, 515134, Andhra Pradesh, India
| |
Collapse
|
7
|
Photosensitive ion channels in layered MXene membranes modified with plasmonic gold nanostars and cellulose nanofibers. Nat Commun 2023; 14:359. [PMID: 36690639 PMCID: PMC9870870 DOI: 10.1038/s41467-023-36039-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Ion channels transduce external stimuli into ion-transport-mediated signaling, which has received considerable attention in diverse fields such as sensors, energy harvesting devices, and desalination membrane. In this work, we present a photosensitive ion channel based on plasmonic gold nanostars (AuNSs) and cellulose nanofibers (CNFs) embedded in layered MXene nanosheets. The MXene/AuNS/CNF (MAC) membrane provides subnanometer-sized ionic pathways for light-sensitive cationic flow. When the MAC nanochannel is exposed to NIR light, a photothermal gradient is formed, which induces directional photothermo-osmotic flow of nanoconfined electrolyte against the thermal gradient and produces a net ionic current. MAC membrane exhibits enhanced photothermal current compared with pristine MXene, which is attributed to the combined photothermal effects of plasmonic AuNSs and MXene and the widened interspacing of the MAC composite via the hydrophilic nanofibrils. The MAC composite membranes are envisioned to be applied in flexible ionic channels with ionogels and light-controlled ionic circuits.
Collapse
|
8
|
Tim B, Błaszkiewicz P, Kotkowiak M. Recent Advances in Metallic Nanoparticle Assemblies for Surface-Enhanced Spectroscopy. Int J Mol Sci 2021; 23:291. [PMID: 35008714 PMCID: PMC8745207 DOI: 10.3390/ijms23010291] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022] Open
Abstract
Robust and versatile strategies for the development of functional nanostructured materials often focus on assemblies of metallic nanoparticles. Research interest in such assemblies arises due to their potential applications in the fields of photonics and sensing. Metallic nanoparticles have received considerable recent attention due to their connection to the widely studied phenomenon of localized surface plasmon resonance. For instance, plasmonic hot spots can be observed within their assemblies. A useful form of spectroscopy is based on surface-enhanced Raman scattering (SERS). This phenomenon is a commonly used in sensing techniques, and it works using the principle that scattered inelastic light can be greatly enhanced at a surface. However, further research is required to enable improvements to the SERS techniques. For example, one question that remains open is how to design uniform, highly reproducible, and efficiently enhancing substrates of metallic nanoparticles with high structural precision. In this review, a general overview on nanoparticle functionalization and the impact on nanoparticle assembly is provided, alongside an examination of their applications in surface-enhanced Raman spectroscopy.
Collapse
Affiliation(s)
| | | | - Michał Kotkowiak
- Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland; (B.T.); (P.B.)
| |
Collapse
|
9
|
Enhancing SERS Intensity by Coupling PSPR and LSPR in a Crater Structure with Ag Nanowires. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112411855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The sensitive characteristics of surface-enhanced Raman scattering (SERS) can be applied to various fields, and this has been of interest to many researchers. Propagating surface plasmon resonance (PSPR) was initially utilized but, recently, it has been studied coupled with localized surface plasmon resonance that occurs in metal nanostructures. In this study, a new type of metal microstructure, named crater, was used for generating PSPR and Ag nanowires (AgNWs) for the generation of LSPR. A crater structure was fabricated on a GaAs (100) wafer using the wet chemical etching method. Then, a metal film was deposited inside the crater, and AgNWs were uniformly coated inside using the spray coating method. Metal films were used to enhance the electromagnetic field when coupled with AgNWs to obtain a high SERS intensity. The SERS intensity measured inside the crater structure with deposited AgNWs was up to 17.4 times higher than that of the flat structure with a deposited Ag film. These results suggest a new method for enhancing the SERS phenomenon, and it is expected that a larger SERS intensity can be obtained by fine-tuning the crater size and diameter and the length of the AgNWs.
Collapse
|
10
|
Xu L, Ding Q. Magnetic field induced high-density SERS active assembly of Fe 3O 4@Au nanostars in a glass capillary for food colorant detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5487-5492. [PMID: 34738609 DOI: 10.1039/d1ay00989c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Fe3O4@Au nanostars, whose anisotropic shape couples the plasmons focused on the magnetic core with the branches of the gold shell, hold promise for surface enhanced Raman spectroscopy (SERS) applications. Assembly of monodisperse Fe3O4@Au nanostars induced by a magnetic field could lead to highly ordered superstructures, providing distinctive SERS activity. In this study, a simplified fabrication technique was developed to assemble Fe3O4@Au nanostars on the inner walls of a glass capillary into a highly sensitive, reproducible and recyclable SERS active glass capillary under controlled magnetic alignment. The strong dipole-dipole interactions between the neighboring nanoparticles lead to a close-packed pattern as an energetically favorable configuration. The magnetic dipolar interaction between the particles can be further tuned by the controlled anisotropic shape of the gold shell. The interparticle plasmon couplings and lightning rod effects of the Fe3O4@Au nanostars contributed to Raman enhancement. Based on the capillary action, capillaries can act as a microreactor for the sampling tools. We further demonstrate SERS-based colorant detection in the capillary which the target molecule can easily detect by simple adsorption of the colorants by capillary action. The Fe3O4@Au nanostars in the capillary with a long shelf life, high sensitivity and low cost promote the application of SERS technology in widespread fields.
Collapse
Affiliation(s)
- Lihua Xu
- Department of Precision Manufacturing Engineering Suzhou Vocational Institute of Industrial Technology, Suzhou 215104, People's Republic of China
| | - Qianqian Ding
- Department of Precision Manufacturing Engineering Suzhou Vocational Institute of Industrial Technology, Suzhou 215104, People's Republic of China
| |
Collapse
|
11
|
Keerthana L, Ahmad Dar M, Dharmalingam G. Plasmonic Au-Metal Oxide Nanocomposites for High-Temperature and Harsh Environment Sensing Applications. Chem Asian J 2021; 16:3558-3584. [PMID: 34510778 DOI: 10.1002/asia.202100885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Noble metal nanoparticles like Au have long been admired for their brilliant colour, significantly influenced by plasmon resonance. When embedded in metal oxides, they exhibit unique properties which make them an excellent choice for sensing in high-temperature and harsh environment atmospheres. In this review, the various morphologies of Au nanoparticles (AuNPs) used in combination with metal oxides for sensing gases at temperatures greater than 300 °C are discussed. Theoretical discussions on the plasmon resonance properties of AuNPs as well as computational techniques like finite difference time domain (FDTD), are often used for understanding and correlating their extinction spectra and are briefed initially. The sensing properties of AuNPs embedded on a metal oxide matrix (such as TiO2 , SiO2 , NiO etc) for quantifying multiple analytes are then elucidated. The effect of high temperature as well as gas environments including corrosive atmospheres on such nanocomposites, and the different approaches to comprehend them are presented. Finally, techniques and methods to improve on the challenges associated with the realization and integration such Au-metal oxide plasmonic nanostructures for applications such as combustion monitoring, fuel cells, and other applications are discussed.
Collapse
Affiliation(s)
- L Keerthana
- Plasmonic nanomaterials laboratory, PSG Institute of Advanced Studies, Coimbatore, 641004, India
| | - Mushtaq Ahmad Dar
- Center of Excellence for Research in Engineering (CEREM), College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia
| | | |
Collapse
|
12
|
Zhao YX, Kang HS, Zhao WQ, Chen YL, Ma L, Ding SJ, Chen XB, Wang QQ. Dual Plasmon Resonances and Tunable Electric Field in Structure-Adjustable Au Nanoflowers for Improved SERS and Photocatalysis. NANOMATERIALS 2021; 11:nano11092176. [PMID: 34578492 PMCID: PMC8466837 DOI: 10.3390/nano11092176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022]
Abstract
Flower-like metallic nanocrystals have shown great potential in the fields of nanophononics and energy conversion owing to their unique optical properties and particular structures. Herein, colloid Au nanoflowers with different numbers of petals were prepared by a steerable template process. The structure-adjustable Au nanoflowers possessed double plasmon resonances, tunable electric fields, and greatly enhanced SERS and photocatalytic activity. In the extinction spectra, Au nanoflowers had a strong electric dipole resonance located around 530 to 550 nm. Meanwhile, a longitudinal plasmon resonance (730~760 nm) was obtained when the number of petals of Au nanoflowers increased to two or more. Numerical simulations verified that the strong electric fields of Au nanoflowers were located at the interface between the Au nanosphere and Au nanopetals, caused by the strong plasmon coupling. They could be further tuned by adding more Au nanopetals. Meanwhile, much stronger electric fields of Au nanoflowers with two or more petals were identified under longitudinal plasmon excitation. With these characteristics, Au nanoflowers showed excellent SERS and photocatalytic performances, which were highly dependent on the number of petals. Four-petal Au nanoflowers possessed the highest SERS activity on detecting Rhodamine B (excited both at 532 and 785 nm) and the strongest photocatalytic activity toward photodegrading methylene blue under visible light irradiation, caused by the strong multi-interfacial plasmon coupling and longitudinal plasmon resonance.
Collapse
Affiliation(s)
- Yi-Xin Zhao
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China; (Y.-X.Z.); (H.-S.K.); (W.-Q.Z.); (Y.-L.C.); (X.-B.C.)
| | - Hao-Sen Kang
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China; (Y.-X.Z.); (H.-S.K.); (W.-Q.Z.); (Y.-L.C.); (X.-B.C.)
| | - Wen-Qin Zhao
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China; (Y.-X.Z.); (H.-S.K.); (W.-Q.Z.); (Y.-L.C.); (X.-B.C.)
| | - You-Long Chen
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China; (Y.-X.Z.); (H.-S.K.); (W.-Q.Z.); (Y.-L.C.); (X.-B.C.)
| | - Liang Ma
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China; (Y.-X.Z.); (H.-S.K.); (W.-Q.Z.); (Y.-L.C.); (X.-B.C.)
- Correspondence: (L.M.); (S.-J.D.); (Q.-Q.W.)
| | - Si-Jing Ding
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China
- Correspondence: (L.M.); (S.-J.D.); (Q.-Q.W.)
| | - Xiang-Bai Chen
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China; (Y.-X.Z.); (H.-S.K.); (W.-Q.Z.); (Y.-L.C.); (X.-B.C.)
| | - Qu-Quan Wang
- Department of Physics, Wuhan University, Wuhan 430072, China
- Correspondence: (L.M.); (S.-J.D.); (Q.-Q.W.)
| |
Collapse
|
13
|
Tarhan T, Dündar A, Okumuş V, Çulha M. Synthesis and Characterization of Bionanomaterials and Evaluation of Their Antioxidant, Antibacterial, and DNA Cleavage Activities. ChemistrySelect 2021. [DOI: 10.1002/slct.202004773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tuba Tarhan
- Mardin Artuklu University Vocational High School of Health Services 47100 Mardin Turkey
| | - Abdurrahman Dündar
- Mardin Artuklu University Vocational High School of Health Services 47100 Mardin Turkey
| | - Veysi Okumuş
- Department of Biology Faculty of Science Siirt University 56100 Siirt Turkey
| | - Mustafa Çulha
- Sabancı University Materials Science and Nanoengineering 34956 Tuzla/İstanbul Turkey
| |
Collapse
|
14
|
López-Lorente ÁI. Recent developments on gold nanostructures for surface enhanced Raman spectroscopy: Particle shape, substrates and analytical applications. A review. Anal Chim Acta 2021; 1168:338474. [PMID: 34051992 DOI: 10.1016/j.aca.2021.338474] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Surface enhanced Raman spectroscopy (SERS) is a powerful technique for sensitive analysis which is attracting great attention in the last decades. In this review, different gold nanostructures that have been exploited for SERS analysis are described, ranging from gold nanospheres to anisotropic and complex-shaped gold nanostructures, in which the presence of high aspect ratio features leads to an increment of the electromagnetic field at the surface of the nanomaterial, resulting in enhanced SERS response. In addition to the shape of the nanostructure, the interparticle nanogaps play a prominent role in the SERS efficiency. In this sense, different approaches such as nanoaggregation and formation of assemblies and ordered structures lead to the creation of the so-called hot spots. SERS measurements may be performed in solution, while usually the nanostructures are deposited building a SERS substrate, which can be created via attachment of chemically prepared gold nanostructures, as well as via top-down physical methods. Among the classical supports for creating the SERS substrates, in the last years there is a trend towards the development of flexible supports based on polymers as well as paper. Finally, some recent applications of gold nanostructures-based SERS substrates within the analytical field are discussed to spotlight the potential of this technique in real-world analytical scenarios.
Collapse
Affiliation(s)
- Ángela I López-Lorente
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain.
| |
Collapse
|
15
|
Specific detection of Staphylococcus aureus infection and marker for Alzheimer disease by surface enhanced Raman spectroscopy using silver and gold nanoparticle-coated magnetic polystyrene beads. Sci Rep 2021; 11:6240. [PMID: 33737512 PMCID: PMC7973519 DOI: 10.1038/s41598-021-84793-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Targeted and effective therapy of diseases demands utilization of rapid methods of identification of the given markers. Surface enhanced Raman spectroscopy (SERS) in conjunction with streptavidin-biotin complex is a promising alternative to culture or PCR based methods used for such purposes. Many biotinylated antibodies are available on the market and so this system offers a powerful tool for many analytical applications. Here, we present a very fast and easy-to-use procedure for preparation of streptavidin coated magnetic polystyrene-Au (or Ag) nanocomposite particles as efficient substrate for surface SERS purposes. As a precursor for the preparation of SERS active and magnetically separable composite, commercially available streptavidin coated polystyrene (PS) microparticles with a magnetic core were utilized. These composites of PS particles with silver or gold nanoparticles were prepared by reducing Au(III) or Ag(I) ions using ascorbic acid or dopamine. The choice of the reducing agent influences the morphology and the size of the prepared Ag or Au particles (15-100 nm). The prepare composites were also characterized by HR-TEM images, mapping of elements and also magnetization measurements. The content of Au and Ag was determined by AAS analysis. The synthesized composites have a significantly lower density against magnetic composites based on iron oxides, which considerably decreases the tendency to sedimentation. The polystyrene shell on a magnetic iron oxide core also pronouncedly reduces the inclination to particle aggregation. Moreover, the preparation and purification of this SERS substrate takes only a few minutes. The PS composite with thorny Au particles with the size of approximately 100 nm prepared was utilized for specific and selective detection of Staphylococcus aureus infection in joint knee fluid (PJI) and tau protein (marker for Alzheimer disease).
Collapse
|
16
|
Sun AY, Lee YC, Chang SW, Chen SL, Wang HC, Wan D, Chen HL. Diverse Substrate-Mediated Local Electric Field Enhancement of Metal Nanoparticles for Nanogap-Enhanced Raman Scattering. Anal Chem 2021; 93:4299-4307. [PMID: 33635644 DOI: 10.1021/acs.analchem.0c05307] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The localized surface plasmon resonance of plasmonic nanoparticles (NPs) can be coupled with a noble metal substrate (S) to induce a localized augmented electric field (E-field) concentrated at the NP-S gap. Herein, we analyzed the fundamental near-field properties of metal NPs on diverse substrates numerically (using the 3D finite-difference time-domain method) and experimentally [using surface-enhanced Raman scattering (SERS)]. We systematically examined the effects of plasmonic NPs on noble metals (Ag and Au), non-noble metals (Al, Ti, Cu, Fe, and Ni), semiconductors (Si and Ge), and dielectrics (TiO2, ZnO, and SiO2) as substrates. For the AgNPs, the Al (11,664 times) and Si (3969 times) substrates produced considerable E-field enhancements, with Al in particular generating a tremendous E-field enhancement comparable in intensity to that induced by a Ag (28,224 times) substrate. Notably, we found that a superior metallic character of the substrate gave rise to easier induction of image charges within the metal substrate, resulting in a greater E-field at the NP-S gap; on the other hand, the larger the permittivity of the nonmetal substrate, the greater the ability of the substrate to store an image charge distribution, resulting in stronger coupling to the charges of localized surface plasmon resonance oscillation on the metal NP. Furthermore, we measured the SERS spectra of rhodamine 6G (a commonly used Raman spectral probe), histamine (a biogenic amine used as a food freshness indicator), creatinine (a kidney health indicator), and tert-butylbenzene [an extreme ultraviolet (EUV) lithography contaminant] on AgNP-immobilized Al and Si substrates to demonstrate the wide range of potential applications. Finally, the NP-S gap hotspots appear to be widely applicable as an ultrasensitive SERS platform (∼single-molecule level), especially when used as a powerful analytical tool for the detection of residual contaminants on versatile substrates.
Collapse
Affiliation(s)
- Aileen Y Sun
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Yang-Chun Lee
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 300044, Taiwan.,Department of Materials Science and Engineering and Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106319, Taiwan
| | - Sih-Wei Chang
- Department of Materials Science and Engineering and Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106319, Taiwan
| | - Shau-Liang Chen
- Department of Materials Science and Engineering and Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106319, Taiwan
| | - Hsueh-Cheng Wang
- Department of Electrical and Computer Engineering, National Chiao Tung University, No. 1001, University Road, Hsinchu 300093, Taiwan
| | - Dehui Wan
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Hsuen-Li Chen
- Department of Materials Science and Engineering and Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106319, Taiwan
| |
Collapse
|
17
|
Lafuente M, Sanz D, Urbiztondo M, Santamaría J, Pina MP, Mallada R. Gas phase detection of chemical warfare agents CWAs with portable Raman. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121279. [PMID: 31606709 DOI: 10.1016/j.jhazmat.2019.121279] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
The development of SERS substrates for chemical detection of specific analytes requires appropriate selection of plasmonic metal and the surface where it is deposited. Here we deposited Ag nanoplates on three substrates: i) conventional SiO2/Si wafer, ii) stainless steel mesh and iii) graphite foils. The SERS enhancement of the signal was studied for Rhodamine 6 G (R6 G) as common liquid phase probe molecule. We conducted a comprehensive study with λ = 532, 633 and 785 nm on all the substrates. The best substrate was investigated, at the optimum laser 785 nm, for gas phase detection of dimethyl methyl phosphonate (DMMP), simulant of the G-series nerve agents, at a concentration of 2.5 ppmV (14 mg/m3). The spectral fingerprint was clearly observed; with variations on the relative intensities of SERS Raman bands compared to bulk DMMP in liquid phase reflects the DMMP-Ag interactions. These interactions were simulated by Density Functional Theory (DFT) calculations and the simulated spectra matched with the experimental one. Finally, we were detected the characteristics DMMP fingerprint with hand-held portable equipment. These results open the way for the application of SERS technique on real scenarios where robust, light-weight, miniaturized and simple to use and cost-effective tools are required by first responders.
Collapse
Affiliation(s)
- Marta Lafuente
- Nanoscience Institute of Aragon (INA), University of Zaragoza, Department of Chemical & Environmental Engineering, Edificio I+D+i, Campus Rio Ebro, C/Mariano Esquillor s/n, 50018, Zaragoza, Spain; Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50009, Zaragoza, Spain
| | - Diego Sanz
- Nanoscience Institute of Aragon (INA), University of Zaragoza, Department of Chemical & Environmental Engineering, Edificio I+D+i, Campus Rio Ebro, C/Mariano Esquillor s/n, 50018, Zaragoza, Spain; Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50009, Zaragoza, Spain
| | - Miguel Urbiztondo
- Centro Universitario de la Defensa de Zaragoza, Carretera Huesca s/n, 50090, Zaragoza, Spain
| | - Jesús Santamaría
- Nanoscience Institute of Aragon (INA), University of Zaragoza, Department of Chemical & Environmental Engineering, Edificio I+D+i, Campus Rio Ebro, C/Mariano Esquillor s/n, 50018, Zaragoza, Spain; Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50009, Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain
| | - María Pilar Pina
- Nanoscience Institute of Aragon (INA), University of Zaragoza, Department of Chemical & Environmental Engineering, Edificio I+D+i, Campus Rio Ebro, C/Mariano Esquillor s/n, 50018, Zaragoza, Spain; Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50009, Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain
| | - Reyes Mallada
- Nanoscience Institute of Aragon (INA), University of Zaragoza, Department of Chemical & Environmental Engineering, Edificio I+D+i, Campus Rio Ebro, C/Mariano Esquillor s/n, 50018, Zaragoza, Spain; Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50009, Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain.
| |
Collapse
|
18
|
Jung WG, Park JH, Jo YR, Kim BJ. Growth Kinetics of Individual Au Spiky Nanoparticles Using Liquid-Cell Transmission Electron Microscopy. J Am Chem Soc 2019; 141:12601-12609. [DOI: 10.1021/jacs.9b03718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Wan-Gil Jung
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, Korea
| | - Jeung Hun Park
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yong-Ryun Jo
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, Korea
| | - Bong-Joong Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, Korea
| |
Collapse
|
19
|
Li L, Deng S, Wang H, Zhang R, Zhu K, Lu Y, Wang Z, Zong S, Wang Z, Cui Y. A SERS fiber probe fabricated by layer-by-layer assembly of silver sphere nanoparticles and nanorods with a greatly enhanced sensitivity for remote sensing. NANOTECHNOLOGY 2019; 30:255503. [PMID: 30840944 DOI: 10.1088/1361-6528/ab0d2b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Remote sensing remains a challenge due to its demand for high sensitivity, convenient sampling and rapid response time. Surface enhanced Raman scattering (SERS) spectroscopy is a powerful analytical method for the detection of various samples. Here, aiming at increasing the sensitivity, a novel strategy for the preparation of a SERS probe is demonstrated by using hollow optical fiber tips decorated by layer-by-layer assembly of two kinds of nanoparticles. Specifically, Au@Ag core-shell nanorods and Ag nanospheres with opposite surface charge were assembled layer-by-layer on the tip of hollow optical fibers through electrostatic interaction. Then, much more hotspots are generated due to the close gap between the nanorods and nanospheres in the resultant 3D structure, which can lead to a dramatically enhanced SERS activity of the probe compared with that fabricated by pure silver sphere nanoparticles or nanorods. On the other hand, taking the advantages of the vibration spectroscopic fingerprints property of SERS spectra and the long-distance communication capacity of optical fibers, the remote online detection of biological species including proteins, funguses and cells can be easily achieved within a few minutes. Therefore, such a novel kind of optical fiber-SERS sensor holds great potential for the rapid detection of a wide range of samples due to its superiority of simplicity and high sensitivity.
Collapse
Affiliation(s)
- Lang Li
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu, 210096, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bruzas I, Lum W, Gorunmez Z, Sagle L. Advances in surface-enhanced Raman spectroscopy (SERS) substrates for lipid and protein characterization: sensing and beyond. Analyst 2019; 143:3990-4008. [PMID: 30059080 DOI: 10.1039/c8an00606g] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has become an essential ultrasensitive analytical tool for biomolecular analysis of small molecules, macromolecular proteins, and even cells. SERS enables label-free, direct detection of molecules through their intrinsic Raman fingerprint. In particular, protein and lipid bilayers are dynamic three-dimensional structures that necessitate label-free methods of characterization. Beyond direct detection and quantitation, the structural information contained in SERS spectra also enables deeper biophysical characterization of biomolecules near metallic surfaces. Therefore, SERS offers enormous potential for such systems, although making measurements in a nonperturbative manner that captures the full range of interactions and activity remains a challenge. Many of these challenges have been overcome through advances in SERS substrate development, which have expanded the applications and targets of SERS for direct biomolecular quantitation and biophysical characterization. In this review, we will first discuss different categories of SERS substrates including solution-phase, solid-supported, tip-enhanced Raman spectroscopy (TERS), and single-molecule substrates for biomolecular analysis. We then discuss detection of protein and biological lipid membranes. Lastly, biophysical insights into proteins, lipids and live cells gained through SERS measurements of these systems are reviewed.
Collapse
Affiliation(s)
- Ian Bruzas
- Department of Chemistry, University of Cincinnati, 301 Clifton Court, Cincinnati, OH 45221, USA.
| | | | | | | |
Collapse
|
21
|
Efficient metal halide perovskite light-emitting diodes with significantly improved light extraction on nanophotonic substrates. Nat Commun 2019; 10:727. [PMID: 30760711 PMCID: PMC6374404 DOI: 10.1038/s41467-019-08561-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/08/2019] [Indexed: 11/11/2022] Open
Abstract
Metal halide perovskite has emerged as a promising material for light-emitting diodes. In the past, the performance of devices has been improved mainly by optimizing the active and charge injection layers. However, the large refractive index difference among different materials limits the overall light extraction. Herein, we fabricate efficient methylammonium lead bromide light-emitting diodes on nanophotonic substrates with an optimal device external quantum efficiency of 17.5% which is around twice of the record for the planar device based on this material system. Furthermore, optical modelling shows that a high light extraction efficiency of 73.6% can be achieved as a result of a two-step light extraction process involving nanodome light couplers and nanowire optical antennas on the nanophotonic substrate. These results suggest that utilization of nanophotonic structures can be an effective approach to achieve high performance perovskite light-emitting diodes. The rapid development of halide perovskite light-emitting diodes mainly relies on the optimization of the active layer and charge injection layers. Here Zhang et al. incorporate three-dimensional nanophotonic substrates to enhance light out-coupling and achieve high external quantum efficiency of 17.5%.
Collapse
|
22
|
Bian K, Zhang X, Yang M, Luo L, Li L, He Y, Cong C, Li X, Zhu R, Gao D. Dual-template cascade synthesis of highly multi-branched Au nanoshells with ultrastrong NIR absorption and efficient photothermal therapeutic intervention. J Mater Chem B 2019; 7:598-610. [DOI: 10.1039/c8tb02753f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A universal dual-template cascade strategy for the synthesis of multi-branched gold nanoshells with ultrastrong NIR absorption for tumor photothermal therapy.
Collapse
|
23
|
Sarychev AK, Ivanov A, Lagarkov A, Barbillon G. Light Concentration by Metal-Dielectric Micro-Resonators for SERS Sensing. MATERIALS (BASEL, SWITZERLAND) 2018; 12:E103. [PMID: 30598001 PMCID: PMC6337457 DOI: 10.3390/ma12010103] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/04/2018] [Accepted: 12/27/2018] [Indexed: 11/27/2022]
Abstract
Metal-dielectric micro/nano-composites have surface plasmon resonances in visible and near-infrared domains. Excitation of coupled metal-dielectric resonances is also important. These different resonances can allow enhancement of the electromagnetic field at a subwavelength scale. Hybrid plasmonic structures act as optical antennae by concentrating large electromagnetic energy in micro- and nano-scales. Plasmonic structures are proposed for various applications such as optical filters, investigation of quantum electrodynamics effects, solar energy concentration, magnetic recording, nanolasing, medical imaging and biodetection, surface-enhanced Raman scattering (SERS), and optical super-resolution microscopy. We present the review of recent achievements in experimental and theoretical studies of metal-dielectric micro and nano antennae that are important for fundamental and applied research. The main impact is application of metal-dielectric optical antennae for the efficient SERS sensing.
Collapse
Affiliation(s)
- Andrey K Sarychev
- Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow, Russia.
| | - Andrey Ivanov
- Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow, Russia.
| | - Andrey Lagarkov
- Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow, Russia.
| | | |
Collapse
|
24
|
Ordered Array of Metal Particles on Semishell Separated with Ultrathin Oxide: Fabrication and SERS Properties. COATINGS 2018. [DOI: 10.3390/coatings9010020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Metal particles in gap cavities provide an interesting system to achieve hybrid local surface plasmon modes for local field enhancement. Here, we demonstrate a relatively simple method to fabricate Ag nanoparticles positioned on Ag semishells separated by a thin (~5 nm) dielectric layer. The obtained structure can provide strong local electric field enhancement for surface-enhanced Raman scattering (SERS). The fabrication of the ordered array structure was realized by nanosphere self-assembly, atomic layer deposition, and metal thin-film dewetting. Numerical simulation proved that, compared to the conventional metal semishell arrays, the additional Ag particles introduce extra hot spots particularly in the valley regions between adjacent Ag semishells. As a result, the SERS enhancement factor of the metal semishell-based plasmonic structure could be further improved by an order of magnitude. The developed novel plasmonic structure also shows good potential for application in plasmon-enhanced solar water-splitting devices.
Collapse
|
25
|
Theodorou IG, Jiang Q, Malms L, Xie X, Coombes RC, Aboagye EO, Porter AE, Ryan MP, Xie F. Fluorescence enhancement from single gold nanostars: towards ultra-bright emission in the first and second near-infrared biological windows. NANOSCALE 2018; 10:15854-15864. [PMID: 30105338 DOI: 10.1039/c8nr04567d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Gold nanostars (AuNSs) are promising agents for the development of high-performance diagnostic devices, by enabling metal enhanced fluorescence (MEF) in the physiological near-infrared (NIR) and second near-infrared (NIR-II) windows. The local electric field near their sharp tips and between their branches can be enhanced by several orders of magnitude, holding great promise for large fluorescence enhancements from single AuNS particles, rather than relying on interparticle coupling in nanoparticle substrates. Here, guided by electric field simulations, two different types of AuNSs with controlled morphologies and plasmonic responses in the NIR and NIR-II regions are used to investigate the mechanism of MEF from colloidal AuNSs. Fluorophore conjugation to AuNSs allows significant fluorescence enhancement of up to 30 times in the NIR window, and up to 4-fold enhancement in the NIR-II region. Together with other inherent advantages of AuNSs, including their multispike morphology offering easy access to cell membranes and their large surface area providing flexible multifunctionality, AuNS are promising for the development of in vivo imaging applications. Using time-resolved fluorescence measurements to deconvolute semi-quantitatively excitation enhancement from emission enhancement, we show that a combination of enhanced excitation and an increased radiative decay rate, both contribute to the observed large enhancement. In accordance to our electric field modelling, however, excitation enhancement is the component that varies most with particle morphology. These findings provide important insights into the mechanism of MEF from AuNSs, and can be used to further guide particle design for high contrast enhancement, enabling the development of MEF biodetection technologies.
Collapse
Affiliation(s)
- Ioannis G Theodorou
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gu L, Zhang D, Kam M, Zhang Q, Poddar S, Fu Y, Mo X, Fan Z. Significantly improved black phase stability of FAPbI 3 nanowires via spatially confined vapor phase growth in nanoporous templates. NANOSCALE 2018; 10:15164-15172. [PMID: 30084853 DOI: 10.1039/c8nr03058h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The formamidinium lead iodide (FAPbI3) perovskite has attracted immense research interest as it has much improved stability than methylammonium lead iodide (MAPbI3) while still maintaining excellent optoelectronic properties. Compared to MAPbI3, FAPbI3 has shown an elevated decomposition temperature and a slower decomposition process and therefore it is considered as a more promising candidate for future high-efficiency and reliable optoelectronic devices. However, these excellent optoelectronic properties only exist in the alpha phase and this phase will spontaneously transform into an undesired delta phase with much poorer optoelectronic properties regardless of the environment. This is the main challenge for the application of the FAPbI3 perovskite. Herein, we report a novel strategy to stabilize the cubic black phase of FAPbI3 by using nanoengineering templates. Without further treatment, the black phase can be held over 7 months under ambient conditions and 8 days in an extreme environment with a Relative Humidity (RH) of 97%. A systematic study further reveals that this great improvement can be attributed to the spatial confinement in anodized alumina membrane (AAM) nanochannels, which prohibits the unwanted α-to-δ phase transition by restricting the expansion of NWs in the ab plane, and the excellent passivation against water molecule invasion. Meanwhile, we also demonstrate the potency of these NWs in practical applications by configuring them into photodetectors, which have shown reasonable response and excellent device stability.
Collapse
Affiliation(s)
- Leilei Gu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhou X, Zhao Q, Liu G, Zhang H, Li Y, Cai W. Kinetically-Controlled Growth of Chestnut-Like Au Nanocrystals with High-Density Tips and Their High SERS Performances on Organochlorine Pesticides. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E560. [PMID: 30041432 PMCID: PMC6071147 DOI: 10.3390/nano8070560] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 01/08/2023]
Abstract
A modified seed growth route was developed to fabricate the Au nanocrystals with high-density tips based on kinetically-controlled growth via adjusting the adding rate of Au seeds into growth solution. The obtained Au nanostructures were chestnut-like in morphology and about 100 nm in size. They were built of the radial [111]-oriented nanoneedles and were 30⁻50 nm in length. There were about 120⁻150 tips in each nanocrystal. The formation of chestnut-like Au nanocrystals is ascribed to surfactant-induced preferential growth of seeds along direction [111]. Importantly, the chestnut-like Au configuration displayed powerful surface enhanced Raman scattering (SERS) performance (enhance factor > 10⁷), owing to the high density of tips. Further, such film was used as a SERS substrate for the detection of lindane (γ-666) molecules (the typical organochlorine pesticide). The detection limit was about 10 ppb, and the relationship between SERS intensity I and concentration C of 666 accords with the double logarithm linear. This work presents a simple approach to Au nanocrystal with high-density tips, and provides a highly efficacious SERS-substrate for quantitative and trace recognition of toxic chlorinated pesticides.
Collapse
Affiliation(s)
- Xia Zhou
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China.
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China.
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China.
| | - Qian Zhao
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China.
| | - Guangqiang Liu
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China.
| | - Hongwen Zhang
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China.
| | - Yue Li
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China.
| | - Weiping Cai
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China.
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
28
|
Improving the efficiency of dye-sensitized solar cell via tuning the Au plasmons inlaid TiO2 nanotube array photoanode. J APPL ELECTROCHEM 2018. [DOI: 10.1007/s10800-018-1220-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
29
|
Tsui KH, Li X, Tsoi JKH, Leung SF, Lei T, Chak WY, Zhang C, Chen J, Cheung GSP, Fan Z. Low-cost, flexible, disinfectant-free and regular-array three-dimensional nanopyramid antibacterial films for clinical applications. NANOSCALE 2018; 10:10436-10442. [PMID: 29796449 DOI: 10.1039/c8nr01968a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, a low-cost, scalable and highly repeatable approach was developed to prepare polystyrene films with three-dimensional nanopyramids on the surface. The nanopyramids have a tunable aspect ratio and more importantly, their anti-bacterial performance has been systematically studied. The effectiveness of the nanopyramids on E. coli growth inhibition and the role of the nanostructure aspect ratio were carefully studied through scanning electron microscopy and confocal laser scanning microscopy. The results showed an excellent antibacterial performance with more than 90% reduction in the E. coli population in all nanopyramid samples after a 168 h prolonged incubation time. The nanopyramid film developed here can be used for clinical and commercial applications to prevent the growth of pathogenic bacteria on various surfaces.
Collapse
Affiliation(s)
- Kwong-Hoi Tsui
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mesicek J, Kuca K. Summary of numerical analyses for therapeutic uses of laser-activated gold nanoparticles. Int J Hyperthermia 2018; 34:1255-1264. [DOI: 10.1080/02656736.2018.1440016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Jakub Mesicek
- Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
31
|
Park S, Lee J, Ko H. Transparent and Flexible Surface-Enhanced Raman Scattering (SERS) Sensors Based on Gold Nanostar Arrays Embedded in Silicon Rubber Film. ACS APPLIED MATERIALS & INTERFACES 2017; 9:44088-44095. [PMID: 29172436 DOI: 10.1021/acsami.7b14022] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Integration of surface-enhanced Raman scattering (SERS) sensors onto transparent and flexible substrates enables lightweight and deformable SERS sensors which can be wrapped or swabbed on various nonplanar surfaces for the efficient collection and detection of analytes on various surfaces. However, the development of transparent and flexible SERS substrates with high sensitivity is still challenging. Here, we demonstrate a transparent and flexible SERS substrate with high sensitivity based on a polydimethylsiloxane (PDMS) film embedded with gold nanostar (GNS) assemblies. The flexible SERS substrates enable conformal coverage on arbitrary surfaces, and the optical transparency allows light interaction with the underlying contact surface, thereby providing highly sensitive detection of analytes adsorbed on arbitrary metallic and dielectric surfaces which otherwise do not provide any noticeable Raman signals of analytes. In particular, when the flexible SERS substrates are covered onto metallic surfaces, the SERS enhancement is greatly improved because of the additional plasmon couplings between GNS and metal film. We achieve the detection capability of a trace amount of benzenethiol (10-8 M) and enormous SERS enhancement factor (∼1.9 × 108) for flexible SERS substrates on Ag film. In addition, because of the embedded structure of GNS monolayers within the PDMS film, SERS sensors maintain the high sensitivity even after mechanical deformations of stretching, bending, and torsion for 100 cycles. The transparent and flexible SERS substrates introduced in this study are applicable to various SERS sensing applications on nonplanar surfaces, which are not achievable for hard SERS substrates.
Collapse
Affiliation(s)
- Seungyoung Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan Metropolitan City 689-798, Republic of Korea
| | - Jiwon Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan Metropolitan City 689-798, Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan Metropolitan City 689-798, Republic of Korea
| |
Collapse
|
32
|
Byram C, Soma VR. 2,4-dinitrotoluene detected using portable Raman spectrometer and femtosecond laser fabricated Au–Ag nanoparticles and nanostructures. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.nanoso.2017.09.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Sheen Mers SV, Umadevi S, Ganesh V. Controlled Growth of Gold Nanostars: Effect of Spike Length on SERS Signal Enhancement. Chemphyschem 2017; 18:1358-1369. [PMID: 28266094 DOI: 10.1002/cphc.201601380] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/06/2017] [Indexed: 11/10/2022]
Abstract
Two different types of gold nanostars (Au NS), namely, short-spiked nanostars (SSNS) and long-spiked nanostars (LSNS), are prepared by using a hexagonal lyotropic liquid-crystalline (LLC) phase as a template. The formation, size and length of spikes or arms of the resultant Au NS are controlled by preparation in either a hexagonal LLC phase or an isotropic phase. These NS are anchored onto indium tin oxide (ITO) electrodes through a self-assembled monolayer of 3-mercaptopropyltrimethoxysilane, which acts as a linker molecule. Structural and morphological characterisations of SSNS- and LSNS-anchored ITO electrodes are performed by means of microscopic and spectroscopic analyses. Further electrochemical techniques, namely, cyclic voltammetry and electrochemical impedance spectroscopy, are also used to confirm the immobilisation of these Au NS on ITO electrodes and to study the electrochemical characteristics. These studies clearly reveal the formation of star-shaped, branched, anisotropic nanostructures of gold during the template preparation method and these Au NS are successfully anchored onto ITO electrodes through a covalent immobilisation strategy. Furthermore, the SERS activity of these Au NS is analysed by using glutathione and crystal violet as analytes and by employing glass and ITO as substrates. It is interesting to note that SSNS show a significant enhancement in SERS signals relative to those of LSNS.
Collapse
Affiliation(s)
- S V Sheen Mers
- Electrodics and Electrocatalysis (EEC) Division, CSIR-Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi, 630003, Tamilnadu, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
| | - S Umadevi
- Department of Industrial Chemistry, Alagappa University, Karaikudi, 630003, Tamilnadu, India
| | - V Ganesh
- Electrodics and Electrocatalysis (EEC) Division, CSIR-Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi, 630003, Tamilnadu, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
| |
Collapse
|
34
|
Yuan Y, Panwar N, Yap SHK, Wu Q, Zeng S, Xu J, Tjin SC, Song J, Qu J, Yong KT. SERS-based ultrasensitive sensing platform: An insight into design and practical applications. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.02.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Zhao MM, Liu WY, Du JG, Guo XD, Wang L, Xia MJ, Tang J. Multidimensional Co3O4 nano sponge for the highly sensitive SERS applications. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11801-017-6236-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Liu C, Tan L, Li L, Dong J, Qian W. Two-in-one: Au nanocages with a highly open architecture and “hotspot” effect as SERS-active substrates. CrystEngComm 2017. [DOI: 10.1039/c7ce00607a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
37
|
Kim KH, Chae SS, Jang S, Choi WJ, Chang H, Lee JO, Lee TI. "Atomic Force Masking" Induced Formation of Effective Hot Spots along Grain Boundaries of Metal Thin Films. ACS APPLIED MATERIALS & INTERFACES 2016; 8:32094-32101. [PMID: 27933813 DOI: 10.1021/acsami.6b11851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present an interesting phenomenon, "atomic force masking", which is the deposition of a few-nanometer-thick gold film on ultrathin low-molecular-weight (LMW) polydimethylsiloxane (PDMS) engineered on a polycrystalline gold thin film, and demonstrated the formation of hot spot based on SERS. The essential principle of this atomic force masking phenomenon is that an LMW PDMS layer on a single crystalline grain of gold thin film would repel gold atoms approaching this region during a second cycle of evaporation, whereas new nucleation and growth of gold atoms would occur on LMW PDMS deposited on grain boundary regions. The nanostructure formed by the atomic force masking, denoted here as "hot spots on grain boundaries" (HOGs), which is consistent with finite-difference time-domain (FDTD) simulation, and the mechanism of atomic force masking were investigated by carrying out systematic experiments, and density functional theory (DFT) calculations were made to carefully explain the related fundamental physics. Also, to highlight the manufacturing advantages of the proposed method, we demonstrated the simple synthesis of a flexible HOG SERS, and we used this substrate in a swabbing test to detect a common pesticide placed on the surface of an apple.
Collapse
Affiliation(s)
- Kwang Hyun Kim
- Department of Materials Science and Engineering, Yonsei University , Seoul 03722, South Korea
| | - Soo Sang Chae
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT) , Daejeon 34114, South Korea
| | - Seunghun Jang
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT) , Daejeon 34114, South Korea
| | - Won Jin Choi
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT) , Daejeon 34114, South Korea
- Materials and Science Engineering Department, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Hyunju Chang
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT) , Daejeon 34114, South Korea
| | - Jeong-O Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT) , Daejeon 34114, South Korea
| | - Tae Il Lee
- Department of BioNano Technology, Gachon University , Seongnam, Gyeonggi-Do 13120, South Korea
| |
Collapse
|
38
|
Ye S, Benz F, Wheeler MC, Oram J, Baumberg JJ, Cespedes O, Christenson HK, Coletta PL, Jeuken LJC, Markham AF, Critchley K, Evans SD. One-step fabrication of hollow-channel gold nanoflowers with excellent catalytic performance and large single-particle SERS activity. NANOSCALE 2016; 8:14932-14942. [PMID: 27352044 DOI: 10.1039/c6nr04045d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hollow metallic nanostructures have shown potential in various applications including catalysis, drug delivery and phototherapy, owing to their large surface areas, reduced net density, and unique optical properties. In this study, novel hollow gold nanoflowers (HAuNFs) consisting of an open hollow channel in the center and multiple branches/tips on the outer surface are fabricated for the first time, via a facile one-step synthesis using an auto-degradable nanofiber as a bifunctional template. The one-dimensional (1D) nanofiber acts as both a threading template as well as a promoter of the anisotropic growth of the gold crystal, the combination of which leads to the formation of HAuNFs with a hollow channel and nanospikes. The synergy of favorable structural/surface features, including sharp edges, open cavity and high-index facets, provides our HAuNFs with excellent catalytic performance (activity and cycling stability) coupled with large single-particle SERS activity (including ∼30 times of activity in ethanol electro-oxidation and ∼40 times of single-particle SERS intensity, benchmarked against similar-sized solid gold nanospheres with smooth surfaces, as well as retaining 86.7% of the initial catalytic activity after 500 cycles in ethanol electro-oxidation). This innovative synthesis gives a nanostructure of the geometry distinct from the template and is extendable to fabricating other systems for example, hollow-channel silver nanoflowers (HAgNFs). It thus provides an insight into the design of hollow nanostructures via template methods, and offers a versatile synthetic strategy for diverse metal nanomaterials suited for a broad range of applications.
Collapse
Affiliation(s)
- Sunjie Ye
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK. and Leeds Institute for Biomedical and Clinical Sciences, University of Leeds, Leeds, LS9 7TF, UK
| | - Felix Benz
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge Cambridge, CB3 0HE, UK
| | - May C Wheeler
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| | - Joseph Oram
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| | - Jeremy J Baumberg
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge Cambridge, CB3 0HE, UK
| | - Oscar Cespedes
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| | - Hugo K Christenson
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| | - Patricia Louise Coletta
- Leeds Institute for Biomedical and Clinical Sciences, University of Leeds, Leeds, LS9 7TF, UK
| | - Lars J C Jeuken
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Alexander F Markham
- Leeds Institute for Biomedical and Clinical Sciences, University of Leeds, Leeds, LS9 7TF, UK
| | - Kevin Critchley
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| | - Stephen D Evans
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
39
|
Kim K, Lee J, Jo G, Shin S, Kim JB, Jang JH. Dendrimer-Capped Gold Nanoparticles for Highly Reliable and Robust Surface Enhanced Raman Scattering. ACS APPLIED MATERIALS & INTERFACES 2016; 8:20379-84. [PMID: 27403733 DOI: 10.1021/acsami.6b05710] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dendrimer-stabilized gold nanoparticles (Au-Den) were prepared by a facile solution based method for a highly reliable and robust surface enhanced Raman scattering (SERS) substrate. Au-Den was selectively attached on the surface of reduced graphene oxide (rGO) by noncovalent interactions between the Au capping dendrimer and the graphene surface. Au-Den/rGO exhibits the outstandingly stable and highly magnified Raman signal with an enhancement factor (EF) of 3.9 × 10(7) that enables detection of R6G dyes with concentration as low as 10 nM, retaining 95% of the Raman signal intensity after 1 year. The remarkable stability and enhancement originated not only from a simple combination of the electromagnetic and chemical mechanism of SERS but also from intensified packing density of stable Au-Den on the graphene substrate due to the firm binding between the dendrimer capped metal nanoparticles and the graphene substrate. This method is not limited to the gold nanoparticles and G4 dendrimer used herein, but also can be applied to other dendrimers and metal nanoparticles, which makes the material platform suggested here superior to other SERS substrates.
Collapse
Affiliation(s)
- Kwanghyun Kim
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS) , Ulsan 44919, Republic of Korea
- School of Energy and Chemical Engineering, UNIST , Ulsan 44919, Republic of Korea
| | - Jeongyeop Lee
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS) , Ulsan 44919, Republic of Korea
- School of Energy and Chemical Engineering, UNIST , Ulsan 44919, Republic of Korea
| | - Gyeongcheon Jo
- Department of Chemistry, KAIST , 291 Daehak-ro, Yuseong-gu, Daejeon 34142, Republic of Korea
| | - Seungmin Shin
- Department of Chemistry, KAIST , 291 Daehak-ro, Yuseong-gu, Daejeon 34142, Republic of Korea
| | - Jin-Baek Kim
- Department of Chemistry, KAIST , 291 Daehak-ro, Yuseong-gu, Daejeon 34142, Republic of Korea
| | - Ji-Hyun Jang
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS) , Ulsan 44919, Republic of Korea
- School of Energy and Chemical Engineering, UNIST , Ulsan 44919, Republic of Korea
| |
Collapse
|
40
|
Ben-Jaber S, Peveler WJ, Quesada-Cabrera R, Cortés E, Sotelo-Vazquez C, Abdul-Karim N, Maier SA, Parkin IP. Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules. Nat Commun 2016; 7:12189. [PMID: 27412699 PMCID: PMC4947161 DOI: 10.1038/ncomms12189] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/09/2016] [Indexed: 12/25/2022] Open
Abstract
Surface-enhanced Raman spectroscopy is one of the most sensitive spectroscopic techniques available, with single-molecule detection possible on a range of noble-metal substrates. It is widely used to detect molecules that have a strong Raman response at very low concentrations. Here we present photo-induced-enhanced Raman spectroscopy, where the combination of plasmonic nanoparticles with a photo-activated substrate gives rise to large signal enhancement (an order of magnitude) for a wide range of small molecules, even those with a typically low Raman cross-section. We show that the induced chemical enhancement is due to increased electron density at the noble-metal nanoparticles, and demonstrate the universality of this system with explosives, biomolecules and organic dyes, at trace levels. Our substrates are also easy to fabricate, self-cleaning and reusable. Surface enhanced Raman spectroscopy is a sensitive technique capable of detecting single molecules via their vibrational fingerprints. Here, the authors demonstrate improved sensitivity with photo-induced enhanced Raman spectroscopy applied to trace-level detection of explosives and other analytes.
Collapse
Affiliation(s)
- Sultan Ben-Jaber
- Department of Chemistry, University College London, 20 Gordon St, London WC1H 0AJ, UK
| | - William J Peveler
- Department of Chemistry, University College London, 20 Gordon St, London WC1H 0AJ, UK
| | - Raul Quesada-Cabrera
- Department of Chemistry, University College London, 20 Gordon St, London WC1H 0AJ, UK
| | - Emiliano Cortés
- The Blackett Laboratory, Department of Physics, Imperial College, London SW7 2AZ, UK
| | - Carlos Sotelo-Vazquez
- Department of Chemistry, University College London, 20 Gordon St, London WC1H 0AJ, UK
| | - Nadia Abdul-Karim
- Department of Chemistry, University College London, 20 Gordon St, London WC1H 0AJ, UK
| | - Stefan A Maier
- The Blackett Laboratory, Department of Physics, Imperial College, London SW7 2AZ, UK
| | - Ivan P Parkin
- Department of Chemistry, University College London, 20 Gordon St, London WC1H 0AJ, UK
| |
Collapse
|
41
|
Meng X, Baride A, Jiang C. Ligand Controlled Morphology Evolution of Active Intermediates for the Syntheses of Gold Nanostars. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6674-6681. [PMID: 27291864 DOI: 10.1021/acs.langmuir.6b01592] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Gold nanostars have unique plasmonic properties that are related to the highly branched nanostructures. However, it is challenging to precisely control these branches. Here we studied the reaction kinetics on the seed-mediated growth process of gold nanostars using in situ UV-vis spectroscopy. The impact of hydroquinone ligands on the formation and evolution of active intermediates was systematically explored. In addition, we improved the classical seed-mediated method to achieve a much better control on the final morphology of gold nanostars by a sudden addition of a high concentration ligand solution. Our method can significantly advance the syntheses of gold nanostars and provide numerous opportunities to prepare nanomaterials with unique morphology and plasmonic properties.
Collapse
Affiliation(s)
- Xianghua Meng
- Department of Chemistry, University of South Dakota , 414 East Clark Street, Vermillion, South Dakota 57069 United States
| | - Aravind Baride
- Department of Chemistry, University of South Dakota , 414 East Clark Street, Vermillion, South Dakota 57069 United States
| | - Chaoyang Jiang
- Department of Chemistry, University of South Dakota , 414 East Clark Street, Vermillion, South Dakota 57069 United States
| |
Collapse
|
42
|
Cai Q, Mateti S, Watanabe K, Taniguchi T, Huang S, Chen Y, Li LH. Boron Nitride Nanosheet-Veiled Gold Nanoparticles for Surface-Enhanced Raman Scattering. ACS APPLIED MATERIALS & INTERFACES 2016; 8:15630-15636. [PMID: 27254250 DOI: 10.1021/acsami.6b04320] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Atomically thin boron nitride (BN) nanosheets have many properties desirable for surface-enhanced Raman spectroscopy (SERS). BN nanosheets have a strong surface adsorption capability toward airborne hydrocarbon and aromatic molecules. For maximized adsorption area and hence SERS sensitivity, atomically thin BN nanosheet-covered gold nanoparticles have been prepared for the first time. When placed on top of metal nanoparticles, atomically thin BN nanosheets closely follow their contours so that the plasmonic hot spots are retained. Electrically insulating BN nanosheets also act as a barrier layer to eliminate metal-induced disturbances in SERS. Moreover, the SERS substrates veiled by BN nanosheets show an outstanding reusability in the long term. As a result, the sensitivity, reproducibility, and reusability of SERS substrates can be greatly improved. We also demonstrate that large BN nanosheets produced by chemical vapor deposition can be used to scale up the proposed SERS substrate for practical applications.
Collapse
Affiliation(s)
- Qiran Cai
- Institute for Frontier Materials, Deakin University , Geelong Waurn Ponds Campus, Waurn Ponds, Victoria 3216, Australia
| | - Srikanth Mateti
- Institute for Frontier Materials, Deakin University , Geelong Waurn Ponds Campus, Waurn Ponds, Victoria 3216, Australia
| | - Kenji Watanabe
- National Institute for Materials Science , Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Takashi Taniguchi
- National Institute for Materials Science , Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Shaoming Huang
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University , Wenzhou 325027, China
| | - Ying Chen
- Institute for Frontier Materials, Deakin University , Geelong Waurn Ponds Campus, Waurn Ponds, Victoria 3216, Australia
| | - Lu Hua Li
- Institute for Frontier Materials, Deakin University , Geelong Waurn Ponds Campus, Waurn Ponds, Victoria 3216, Australia
| |
Collapse
|
43
|
Lagarkov A, Budashov I, Chistyaev V, Ezhov A, Fedyanin A, Ivanov A, Kurochkin I, Kosolobov S, Latyshev A, Nasimov D, Ryzhikov I, Shcherbakov M, Vaskin A, Sarychev AK. SERS-active dielectric metamaterials based on periodic nanostructures. OPTICS EXPRESS 2016; 24:7133-7150. [PMID: 27137006 DOI: 10.1364/oe.24.007133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
New dielectric SERS metamaterial is investigated. The material consists of periodic dielectric bars deposited on the metal substrate. Computer simulations as well as real experiment reveal extraordinary optical reflectance in the proposed metamaterial due to the excitation of the multiple dielectric resonances. We demonstrate the enhancement of the Raman signal from the complex of 5,5'-dithio-bis-[2-nitrobenzoic acid] molecules and gold nanoparticle (DTNB-Au-NP), which is immobilized on the surface of the barshaped dielectric metamaterial.
Collapse
|
44
|
Hakonen A, Rindzevicius T, Schmidt MS, Andersson PO, Juhlin L, Svedendahl M, Boisen A, Käll M. Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion. NANOSCALE 2016; 8:1305-1308. [PMID: 26676552 DOI: 10.1039/c5nr06524k] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Threats from chemical warfare agents, commonly known as nerve gases, constitute a serious security issue of increasing global concern because of surging terrorist activity worldwide. However, nerve gases are difficult to detect using current analytical tools and outside dedicated laboratories. Here we demonstrate that surface-enhanced Raman scattering (SERS) can be used for sensitive detection of femtomol quantities of two nerve gases, VX and Tabun, using a handheld Raman device and SERS substrates consisting of flexible gold-covered Si nanopillars. The substrate surface exhibits high droplet adhesion and nanopillar clustering due to elasto-capillary forces, resulting in enrichment of target molecules in plasmonic hot-spots with high Raman enhancement. The results may pave the way for strategic life-saving SERS detection of chemical warfare agents in the field.
Collapse
Affiliation(s)
- Aron Hakonen
- Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden.
| | - Tomas Rindzevicius
- DTU Nanotech, Technical University of Denmark, Department of Micro- and Nanotechnology, Ørsteds Plads, Building 345 east, 2800 Kgs. Lyngby, Denmark
| | - Michael Stenbæk Schmidt
- DTU Nanotech, Technical University of Denmark, Department of Micro- and Nanotechnology, Ørsteds Plads, Building 345 east, 2800 Kgs. Lyngby, Denmark
| | - Per Ola Andersson
- Swedish Defense Research Agency FOI, Dept CBRN Def & Security, SE-90182 Umeå, Sweden
| | - Lars Juhlin
- Swedish Defense Research Agency FOI, Dept CBRN Def & Security, SE-90182 Umeå, Sweden
| | - Mikael Svedendahl
- Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden.
| | - Anja Boisen
- DTU Nanotech, Technical University of Denmark, Department of Micro- and Nanotechnology, Ørsteds Plads, Building 345 east, 2800 Kgs. Lyngby, Denmark
| | - Mikael Käll
- Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
45
|
Lee J, Zhang Q, Park S, Choe A, Fan Z, Ko H. Particle-Film Plasmons on Periodic Silver Film over Nanosphere (AgFON): A Hybrid Plasmonic Nanoarchitecture for Surface-Enhanced Raman Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:634-642. [PMID: 26684078 DOI: 10.1021/acsami.5b09753] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Plasmonic systems based on particle-film plasmonic couplings have recently attracted great attention because of the significantly enhanced electric field at the particle-film gaps. Here, we introduce a hybrid plasmonic architecture utilizing combined plasmonic effects of particle-film gap plasmons and silver film over nanosphere (AgFON) substrates. When gold nanoparticles (AuNPs) are assembled on AgFON substrates with controllable particle-film gap distances, the AuNP-AgFON system supports multiple plasmonic couplings from interparticle, particle-film, and crevice gaps, resulting in a huge surface-enhanced Raman spectroscopy (SERS) effect. We show that the periodicity of AgFON substrates and the particle-film gaps greatly affects the surface plasmon resonances, and thus, the SERS effects due to the interplay between multiple plasmonic couplings. The optimally designed AuNP-AgFON substrate shows a SERS enhancement of 233 times compared to the bare AgFON substrate. The ultrasensitive SERS sensing capability is also demonstrated by detecting glutathione, a neurochemical molecule that is an important antioxidant, down to the 10 pM level.
Collapse
Affiliation(s)
- Jiwon Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science & Technology (UNIST) , Ulsan 44919, Republic of Korea
| | - Qianpeng Zhang
- Department of Electronic & Computer Engineering, Hong Kong University of Science & Technology (HKUST) , Hong Kong SAR, China
| | - Seungyoung Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science & Technology (UNIST) , Ulsan 44919, Republic of Korea
| | - Ayoung Choe
- School of Energy and Chemical Engineering, Ulsan National Institute of Science & Technology (UNIST) , Ulsan 44919, Republic of Korea
| | - Zhiyong Fan
- Department of Electronic & Computer Engineering, Hong Kong University of Science & Technology (HKUST) , Hong Kong SAR, China
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science & Technology (UNIST) , Ulsan 44919, Republic of Korea
| |
Collapse
|
46
|
Gold nanostars: Benzyldimethylammonium chloride-assisted synthesis, plasmon tuning, SERS and catalytic activity. J Colloid Interface Sci 2016; 462:341-50. [DOI: 10.1016/j.jcis.2015.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/02/2015] [Accepted: 10/05/2015] [Indexed: 11/23/2022]
|
47
|
Zhao HZ, Xu Y, Wang CY, Wang R, Xiang ST, Chen L. Design and fabrication of a microfluidic SERS chip with integrated Ag film@nanoAu. RSC Adv 2016. [DOI: 10.1039/c5ra25018h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A “sandwich” microfluidic surface enhanced Raman scattering (SERS) chip with Ag film@nanoAu prepared in a microchannel was proposed and fabricated in situ. The detection limit for Rhodamine 6G was 10−8 M and the enhancement factor was 3.8 × 105.
Collapse
Affiliation(s)
- Hua-Zhou Zhao
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing
- China
- Defense Key Disciplines Lab of Novel Micro-nano Devices and System Technology
| | - Yi Xu
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing
- China
- Defense Key Disciplines Lab of Novel Micro-nano Devices and System Technology
| | - Chun-Yan Wang
- Defense Key Disciplines Lab of Novel Micro-nano Devices and System Technology
- Chongqing
- China
- International R & D Center of Micro-nano Systems and New Materials Technology
- Chongqing
| | - Rong Wang
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing
- China
- Defense Key Disciplines Lab of Novel Micro-nano Devices and System Technology
| | - Song-Tao Xiang
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing
- China
- Defense Key Disciplines Lab of Novel Micro-nano Devices and System Technology
| | - Li Chen
- Defense Key Disciplines Lab of Novel Micro-nano Devices and System Technology
- Chongqing
- China
- International R & D Center of Micro-nano Systems and New Materials Technology
- Chongqing
| |
Collapse
|
48
|
Zeng Z, Liu Y, Wei J. Recent advances in surface-enhanced raman spectroscopy (SERS): Finite-difference time-domain (FDTD) method for SERS and sensing applications. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.06.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Forati E, Sabouni A, Ray S, Head B, Schoen C, Sievenpiper D. Neurotransmitter Specific, Cellular-Resolution Functional Brain Mapping Using Receptor Coated Nanoparticles: Assessment of the Possibility. PLoS One 2015; 10:e0145852. [PMID: 26717196 PMCID: PMC4696845 DOI: 10.1371/journal.pone.0145852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/09/2015] [Indexed: 11/24/2022] Open
Abstract
Receptor coated resonant nanoparticles and quantum dots are proposed to provide a cellular-level resolution image of neural activities inside the brain. The functionalized nanoparticles and quantum dots in this approach will selectively bind to different neurotransmitters in the extra-synaptic regions of neurons. This allows us to detect neural activities in real time by monitoring the nanoparticles and quantum dots optically. Gold nanoparticles (GNPs) with two different geometries (sphere and rod) and quantum dots (QDs) with different sizes were studied along with three different neurotransmitters: dopamine, gamma-Aminobutyric acid (GABA), and glycine. The absorption/emission spectra of GNPs and QDs before and after binding of neurotransmitters and their corresponding receptors are reported. The results using QDs and nanorods with diameter 25nm and aspect rations larger than three were promising for the development of the proposed functional brain mapping approach.
Collapse
Affiliation(s)
- Ebrahim Forati
- Electrical and Computer Engineering Department, University of California San Diego, La Jolla, CA 92098, United States of America
| | - Abas Sabouni
- Electrical and Computer Engineering Department, University of California San Diego, La Jolla, CA 92098, United States of America
| | - Supriyo Ray
- Biomedical Sciences, University of California San Diego, La Jolla, CA 92098, United States of America
| | - Brian Head
- Department of Anesthesiology, University of California San Diego, La Jolla, CA 92098, United States of America
| | | | - Dan Sievenpiper
- Electrical and Computer Engineering Department, University of California San Diego, La Jolla, CA 92098, United States of America
| |
Collapse
|
50
|
Lee Y, Lee J, Lee TK, Park J, Ha M, Kwak SK, Ko H. Particle-on-Film Gap Plasmons on Antireflective ZnO Nanocone Arrays for Molecular-Level Surface-Enhanced Raman Scattering Sensors. ACS APPLIED MATERIALS & INTERFACES 2015; 7:26421-26429. [PMID: 26575302 DOI: 10.1021/acsami.5b09947] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
When semiconducting nanostructures are combined with noble metals, the surface plasmons of the noble metals, in addition to the charge transfer interactions between the semiconductors and noble metals, can be utilized to provide strong surface plasmon effects. Here, we suggest a particle-film plasmonic system in conjunction with tapered ZnO nanowire arrays for ultrasensitive SERS chemical sensors. In this design, the gap plasmons between the metal nanoparticles and the metal films provide significantly improved surface-enhanced Raman spectroscopy (SERS) effects compared to those of interparticle surface plasmons. Furthermore, 3D tapered metal nanostructures with particle-film plasmonic systems enable efficient light trapping and waveguiding effects. To study the effects of various morphologies of ZnO nanostructures on the light trapping and thus the SERS enhancements, we compare the performance of three different ZnO morphologies: ZnO nanocones (NCs), nanonails (NNs), and nanorods (NRs). Finally, we demonstrate that our SERS chemical sensors enable a molecular level of detection capability of benzenethiol (100 zeptomole), rhodamine 6G (10 attomole), and adenine (10 attomole) molecules. This work presents a new design platform based on the 3D antireflective metal/semiconductor heterojunction nanostructures, which will play a critical role in the study of plasmonics and SERS chemical sensors.
Collapse
Affiliation(s)
- Youngoh Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan Metropolitan City, 689-798, Republic of Korea
| | - Jiwon Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan Metropolitan City, 689-798, Republic of Korea
| | - Tae Kyung Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan Metropolitan City, 689-798, Republic of Korea
| | - Jonghwa Park
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan Metropolitan City, 689-798, Republic of Korea
| | - Minjung Ha
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan Metropolitan City, 689-798, Republic of Korea
| | - Sang Kyu Kwak
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan Metropolitan City, 689-798, Republic of Korea
| | - Hyunhyub Ko
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan Metropolitan City, 689-798, Republic of Korea
| |
Collapse
|