1
|
Ghosh P, Ajagbe SO, Gozem S. The Photophysical Path to the Triplet State in Light-Oxygen-Voltage (LOV) Domains. Chemistry 2025; 31:e202500117. [PMID: 40035420 DOI: 10.1002/chem.202500117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
Upon blue-light absorption, LOV domains efficiently undergo intersystem crossing (ISC) to the triplet state. Several factors potentially contribute to this efficiency. One often proposed in the literature is the heavy atom effect of the nearby (and eventually adduct-forming) cysteine. However, some LOV domain derivatives that lack the cysteine residue also undergo ISC efficiently. Using hybrid multireference quantum mechanical/molecular mechanical (QM / MM) models, we investigated the effect of the electrostatic environment in a prototypal LOV domain, Arabidopsis thaliana Phototropin 1 LOV2 (AtLOV2), compared to the effect of the dielectric of an aqueous solution. We find that the electrostatic environment of AtLOV2 is especially well tuned to stabilize a triplet( n N , π * ) ${(n_{\rm{N}}, \pi ^{\ast} )}$ state, which we posit is the state involved in the ISC step. Other low-lying triplet states that have( π , π * ) ${(\pi, \pi ^{\ast} )}$ and( n O , π * ) ${(n_{\rm{O}}, \pi ^{\ast} )}$ character are ruled out on the basis of energetics and/or their orbital character. The mechanistic picture that emerges from the calculations is one that involves the ISC of photoexcited flavin to a triplet( n N , π * ) ${(n_{\rm{N}}, \pi ^{\ast} )}$ state followed by rapid internal conversion to a triplet( π , π * ) ${(\pi, \pi ^{\ast} )}$ state, which is the state detected spectroscopically. This insight into the ISC mechanism can provide guidelines for tuning flavin's photophysics through mutations that alter the protein electrostatic environment and potentially helps to explain why ISC (and subsequent flavin photochemistry) does not occur readily in many classes of flavin-binding enzymes.
Collapse
Affiliation(s)
- Paulami Ghosh
- Department of Chemistry, Georgia State University, Atlanta, USA
| | | | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, USA
| |
Collapse
|
2
|
García de Fuentes A, Möglich A. Reduction midpoint potential of a paradigm light-oxygen-voltage receptor and its modulation by methionine residues. RSC Chem Biol 2024; 5:530-543. [PMID: 38846079 PMCID: PMC11151830 DOI: 10.1039/d4cb00056k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/08/2024] [Indexed: 06/09/2024] Open
Abstract
Light-dependent adaptations of organismal physiology, development, and behavior abound in nature and depend on sensory photoreceptors. As one class, light-oxygen-voltage (LOV) photoreceptors harness flavin-nucleotide chromophores to sense blue light. Photon absorption drives the LOV receptor to its signaling state, characterized by a metastable thioadduct between the flavin and a conserved cysteine residue. With this cysteine absent, LOV receptors instead undergo photoreduction to the flavin semiquinone which however can still elicit downstream physiological responses. Irrespective of the cysteine presence, the LOV photochemical response thus entails a formal reduction of the flavin. Against this backdrop, we here investigate the reduction midpoint potential E 0 in the paradigmatic LOV2 domain from Avena sativa phototropin 1 (AsLOV2), and how it can be deliberately varied. Replacements of residues at different sites near the flavin by methionine consistently increase E 0 from its value of around -280 mV by up to 40 mV. Moreover, methionine introduction invariably impairs photoactivation efficiency and thus renders the resultant AsLOV2 variants less light-sensitive. Although individual methionine substitutions also affect the stability of the signaling state and downstream allosteric responses, no clear-cut correlation with the redox properties emerges. With a reduction midpoint potential near -280 mV, AsLOV2 and, by inference, other LOV receptors may be partially reduced inside cells which directly affects their light responsiveness. The targeted modification of the chromophore environment, as presently demonstrated, may mitigate this effect and enables the design of LOV receptors with stratified redox sensitivities.
Collapse
Affiliation(s)
| | - Andreas Möglich
- Department of Biochemistry, University of Bayreuth 95447 Bayreuth Germany
- Bayreuth Center for Biochemistry & Molecular Biology, Universität Bayreuth 95447 Bayreuth Germany
- North-Bavarian NMR Center, Universität Bayreuth 95447 Bayreuth Germany
| |
Collapse
|
3
|
Nikolaev A, Tropina EV, Boldyrev KN, Maksimov EG, Borshchevskiy V, Mishin A, Yudenko A, Kuzmin A, Kuznetsova E, Semenov O, Remeeva A, Gushchin I. Two distinct mechanisms of flavoprotein spectral tuning revealed by low-temperature and time-dependent spectroscopy. Protein Sci 2024; 33:e4851. [PMID: 38038877 PMCID: PMC10731561 DOI: 10.1002/pro.4851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/22/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Flavins such as flavin mononucleotide or flavin adenine dinucleotide are bound by diverse proteins, yet have very similar spectra when in the oxidized state. Recently, we developed new variants of flavin-binding protein CagFbFP exhibiting notable blue (Q148V) or red (I52V A85Q) shifts of fluorescence emission maxima. Here, we use time-resolved and low-temperature spectroscopy to show that whereas the chromophore environment is static in Q148V, an additional protein-flavin hydrogen bond is formed upon photoexcitation in the I52V A85Q variant. Consequently, in Q148V, excitation, emission, and phosphorescence spectra are shifted, whereas in I52V A85Q, excitation and low-temperature phosphorescence spectra are relatively unchanged, while emission spectrum is altered. We also determine the x-ray structures of the two variants to reveal the flavin environment and complement the spectroscopy data. Our findings illustrate two distinct color-tuning mechanisms of flavin-binding proteins and could be helpful for the engineering of new variants with improved optical properties.
Collapse
Affiliation(s)
- Andrey Nikolaev
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Elena V. Tropina
- Institute of Spectroscopy RASTroitskMoscowRussia
- National Research University Higher School of EconomicsMoscowRussia
| | | | | | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Alexey Mishin
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Anna Yudenko
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Alexander Kuzmin
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Elizaveta Kuznetsova
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Oleg Semenov
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| |
Collapse
|
4
|
Püllmann P, Homann D, Karl TA, König B, Weissenborn MJ. Light-Controlled Biocatalysis by Unspecific Peroxygenases with Genetically Encoded Photosensitizers. Angew Chem Int Ed Engl 2023; 62:e202307897. [PMID: 37597259 DOI: 10.1002/anie.202307897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Fungal unspecific peroxygenases (UPOs) have gained substantial attention for their versatile oxyfunctionalization chemistry paired with impressive catalytic capabilities. A major drawback, however, remains their sensitivity towards their co-substrate hydrogen peroxide, necessitating the use of smart in situ hydrogen peroxide generation methods to enable efficient catalysis setups. Herein, we introduce flavin-containing protein photosensitizers as a new general tool for light-controlled in situ hydrogen peroxide production. By genetically fusing flavin binding fluorescent proteins and UPOs, we have created two virtually self-sufficient photo-enzymes (PhotUPO). Subsequent testing of a versatile substrate panel with the two divergent PhotUPOs revealed two stereoselective conversions. The catalytic performance of the fusion protein was optimized through enzyme and substrate loading variation, enabling up to 24300 turnover numbers (TONs) for the sulfoxidation of methyl phenyl sulfide. The PhotUPO concept was upscaled to a 100 mg substrate preparative scale, enabling the extraction of enantiomerically pure alcohol products.
Collapse
Affiliation(s)
- Pascal Püllmann
- Research Group Bioorganic Chemistry, Leibniz Institute for Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
- Present address: Molecular Design and Engineering, Bayer AG, Aprather Weg 18 A, 42113, Wuppertal, Germany
| | - Dominik Homann
- Research Group Bioorganic Chemistry, Leibniz Institute for Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Tobias A Karl
- Institute for Organic Chemistry, University of Regensburg, Universitätstr. 31, 93053, Regensburg, Germany
| | - Burkhard König
- Institute for Organic Chemistry, University of Regensburg, Universitätstr. 31, 93053, Regensburg, Germany
| | - Martin J Weissenborn
- Research Group Bioorganic Chemistry, Leibniz Institute for Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, 06120, Halle (Saale), Germany
| |
Collapse
|
5
|
Mishra A, Sharma A, Kateriya S. Effect of tryptophan mutation on the structure of LOV1 domain of phototropin1 protein of Ostreococcus tauri: A combined molecular dynamics simulation and biophysical approach. Biochim Biophys Acta Gen Subj 2023; 1867:130304. [PMID: 36627087 DOI: 10.1016/j.bbagen.2023.130304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 12/13/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023]
Abstract
BACKGROUND Light, oxygen and voltage (LOV) proteins detect blue light by formation of a covalent 'photoadduct' between the flavin chromophore and the neighboring conserved cysteine residue. LOV proteins devoid of this conserved photoactive cysteine are unable to form this 'photoadduct' upon light illumination, but they can still elicit functional response via the formation of neutral flavin radical. Recently, tryptophan residue has been shown to be the primary electron donors to the flavin excited state. METHODS Photoactive cysteine (Cys42) and tryptophan (Trp68) residues in the LOV1 domain of phototropin1 of Ostreococcus tauri (OtLOV1) was mutated to alanine and threonine respectively. Effect of these mutations have been studied using molecular dynamics simulation and spectroscopic techniques. RESULTS Molecular dynamics simulation indicated that W68T did not affect the structure of OtLOV1 protein, but C42A leads to some structural changes. An increase in the fluorescence lifetime and quantum yield values was observed for the Trp68 mutant. CONCLUSIONS An increase in the fluorescence lifetime and quantum yield of Trp68 mutant compared to the wild type protein suggests that Trp68 residue participates in quenching of the flavin excited state followed by photoexcitation. GENERAL SIGNIFICANCE Enhanced photo-physical properties of Trp68 OtLOV1 mutant might enable its use for the optogenetic and microscopic applications.
Collapse
Affiliation(s)
- Ayushi Mishra
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Amit Sharma
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi 110025, India
| | - Suneel Kateriya
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
6
|
Kabir MP, Ouedraogo D, Orozco-Gonzalez Y, Gadda G, Gozem S. Alternative Strategy for Spectral Tuning of Flavin-Binding Fluorescent Proteins. J Phys Chem B 2023; 127:1301-1311. [PMID: 36740810 PMCID: PMC9940217 DOI: 10.1021/acs.jpcb.2c06475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
iLOV is an engineered flavin-binding fluorescent protein (FbFP) with applications for in vivo cellular imaging. To expand the range of applications of FbFPs for multicolor imaging and FRET-based biosensing, it is desirable to understand how to modify their absorption and emission wavelengths (i.e., through spectral tuning). There is particular interest in developing FbFPs that absorb and emit light at longer wavelengths, which has proven challenging thus far. Existing spectral tuning strategies that do not involve chemical modification of the flavin cofactor have focused on placing positively charged amino acids near flavin's C4a and N5 atoms. Guided by previously reported electrostatic spectral tunning maps (ESTMs) of the flavin cofactor and by quantum mechanical/molecular mechanical (QM/MM) calculations reported in this work, we suggest an alternative strategy: placing a negatively charged amino acid near flavin's N1 atom. We predict that a single-point mutant, iLOV-Q430E, has a slightly red-shifted absorption and fluorescence maximum wavelength relative to iLOV. To validate our theoretical prediction, we experimentally expressed and purified iLOV-Q430E and measured its spectral properties. We found that the Q430E mutation results in a slight change in absorption and a 4-8 nm red shift in the fluorescence relative to iLOV, in good agreement with the computational predictions. Molecular dynamics simulations showed that the carboxylate side chain of the glutamate in iLOV-Q430E points away from the flavin cofactor, which leads to a future expectation that further red shifting may be achieved by bringing the side chain closer to the cofactor.
Collapse
|
7
|
Fine spectral tuning of a flavin-binding fluorescent protein for multicolor imaging. J Biol Chem 2023; 299:102977. [PMID: 36738792 PMCID: PMC10023982 DOI: 10.1016/j.jbc.2023.102977] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Flavin-binding fluorescent proteins are promising genetically encoded tags for microscopy. However, spectral properties of their chromophores (riboflavin, flavin mononucleotide, and flavin adenine dinucleotide) are notoriously similar even between different protein families, which limits applications of flavoproteins in multicolor imaging. Here, we present a palette of 22 finely tuned fluorescent tags based on the thermostable LOV domain from Chloroflexus aggregans. We performed site saturation mutagenesis of three amino acid positions in the flavin-binding pocket, including the photoactive cysteine, to obtain variants with fluorescence emission maxima uniformly covering the wavelength range from 486 to 512 nm. We demonstrate three-color imaging based on spectral separation and two-color fluorescence lifetime imaging of bacteria, as well as two-color imaging of mammalian cells (HEK293T), using the proteins from the palette. These results highlight the possibility of fine spectral tuning of flavoproteins and pave the way for further applications of flavin-binding fluorescent proteins in fluorescence microscopy.
Collapse
|
8
|
Bitzenhofer NL, Hilgers F, Bosio GN, Torra J, Casini G, Beinlich FRM, Knieps-Grünhagen E, Gordeliy V, Jaeger KE, Nonell S, Krauss U, Gensch T, Drepper T. Development and Characterization of Flavin-Binding Fluorescent Proteins, Part II: Advanced Characterization. Methods Mol Biol 2023; 2564:143-183. [PMID: 36107341 DOI: 10.1007/978-1-0716-2667-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flavin-based fluorescent proteins (FbFPs), a class of small fluorescent proteins derived from light-oxygen-voltage (LOV) domains, bind ubiquitous endogenous flavins as chromophores. Due to their unique properties, they can be used as versatile in vivo reporter proteins under aerobic and anaerobic conditions. This chapter presents methodologies for in-depth characterization of the biochemical, spectroscopic, photophysical, and photochemical properties of FbFPs.
Collapse
Affiliation(s)
- Nora Lisa Bitzenhofer
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Fabienne Hilgers
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Gabriela N Bosio
- Institute of Biological Information Processing IBI-1: Molecular and Cellular Physiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Joaquim Torra
- Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain
| | - Giorgia Casini
- Institute of Biological Information Processing IBI-1: Molecular and Cellular Physiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Felix R M Beinlich
- Institute of Biological Information Processing IBI-1: Molecular and Cellular Physiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Esther Knieps-Grünhagen
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Valentin Gordeliy
- Institute of Bio-and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Institute of Biological Information Processing IBI-1: Molecular and Cellular Physiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain.
| | - Ulrich Krauss
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany.
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.
| | - Thomas Gensch
- Institute of Biological Information Processing IBI-1: Molecular and Cellular Physiology, Forschungszentrum Jülich GmbH, Jülich, Germany.
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
9
|
Lavilla-Puerta M, Giuntoli B. Assessing In Vivo Oxygen Dynamics Using Plant N-Terminal Degrons in Saccharomyces cerevisiae. Methods Mol Biol 2023; 2564:269-286. [PMID: 36107348 DOI: 10.1007/978-1-0716-2667-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The expression of plant cysteine oxidase (PCO) enzyme in Saccharomyces cerevisiae enables the Arg/Cys N-degron pathway (Cys-NDP) for selective protein degradation that, in plants, functions as direct oxygen perception mechanism. A synthetic construct based on the plant Cys-NDP substrate related to apetala 2.12 (RAP2.12), the dual luciferase oxygen reporter (DLOR), exploits the N-terminal Cys of RAP2.12, and its oxygen-dependent degradation through the Cys-NDP. The luminescent output of DLOR can be used as a proxy for intracellular oxygen dynamics in budding yeast. Replacement of the luciferase reporter of the DLOR with fluorescent proteins would furthermore facilitate the imaging of reporter dynamics in living cells. In this chapter, we describe the methods for delivering the DLOR synthetic construct to yeast and calibrating its output by means of oxygen quantification in the culture with a physical oxygen sensor. We explain the setup needed to carry out hypoxic treatments with several colonies as replicates. We also describe the method to measure oxygen concentration in the culture, the closest indication of intracellular oxygen levels, as a way that would serve to calibrate the DLOR output. Finally, we propose a strategy to replace the luminescent reporters in the DLOR with fluorescent proteins to visualize oxygen dynamics in vivo.
Collapse
Affiliation(s)
| | - Beatrice Giuntoli
- Biology Department, University of Pisa, Pisa, Italy.
- Sant'Anna School of Advanced Studies, Plantlab, Pisa, Italy.
| |
Collapse
|
10
|
Remeeva A, Yudenko A, Nazarenko VV, Semenov O, Smolentseva A, Bogorodskiy A, Maslov I, Borshchevskiy V, Gushchin I. Development and Characterization of Flavin-Binding Fluorescent Proteins, Part I: Basic Characterization. Methods Mol Biol 2023; 2564:121-141. [PMID: 36107340 DOI: 10.1007/978-1-0716-2667-2_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flavin-based fluorescent proteins (FbFPs) are small fluorescent proteins derived from light-oxygen-voltage (LOV) domains. The proteins bind ubiquitous endogenous flavins as chromophores and can be used as versatile in vivo reporter proteins under aerobic and anaerobic conditions. This chapter presents the methodology to identify LOV domain sequences in genomic databases; design new FbFPs; characterize their biochemical, spectroscopic, photophysical, and photochemical properties; and conduct basic fluorescence microscopy experiments.
Collapse
Affiliation(s)
- Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anna Yudenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Vera V Nazarenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Oleg Semenov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anastasia Smolentseva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Andrey Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ivan Maslov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| |
Collapse
|
11
|
Zou W, Nguyen HN, Zastrow ML. Mutant Flavin-Based Fluorescent Protein Sensors for Detecting Intracellular Zinc and Copper in Escherichia coli. ACS Sens 2022; 7:3369-3378. [PMID: 36282086 PMCID: PMC9888404 DOI: 10.1021/acssensors.2c01376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Flavin-based fluorescent proteins (FbFPs) are a class of fluorescent reporters that undergo oxygen-independent fluorophore incorporation, which is an important advantage over green fluorescent proteins (GFPs) and mFruits. A FbFP derived from Chlamydomonas reinhardtii (CreiLOV) is a promising platform for designing new metal sensors. Some FbFPs are intrinsically quenched by metal ions, but the question of where metals bind and how to tune metal affinity has not been addressed. We used site-directed mutagenesis of CreiLOV to probe a hypothesized copper(II) binding site that led to fluorescence quenching. Most mutations changed the fluorescence quenching level, supporting the proposed site. One key mutation introducing a second cysteine residue in place of asparagine (CreiLOVN41C) significantly altered metal affinity and selectivity, yielding a zinc sensor. The fluorescence intensity and lifetime of CreiLOVN41C were reversibly quenched by Zn2+ ions with a biologically relevant affinity (apparent dissociation constant, Kd, of 1 nM). Copper quenching of CreiLOVN41C was retained but with several orders of magnitude higher affinity than CreiLOV (Kd = 0.066 fM for Cu2+, 5.4 fM for Cu+) and partial reversibility. We also show that CreiLOVN41C is an excellent intensity- and lifetime-based zinc sensor in aerobic and anaerobic live bacterial cells. Zn2+-induced fluorescence quenching is reversible over several cycles in Escherichia coli cell suspensions and can be imaged by fluorescence microscopy. CreiLOVN41C is a novel oxygen-independent metal sensor that significantly expands the current fluorescent protein-based toolbox of metal sensors and will allow for studies of anaerobic and low oxygen systems previously precluded by the use of oxygen-dependent GFPs.
Collapse
Affiliation(s)
- Wenping Zou
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Hazel N Nguyen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
12
|
Chang F, Wu L, Xiong Z, Yang Y, Xia X, Wu Q, Ge C, Chen H. Light-induced expression of a novel marine laccase in Escherichia coli from Marinomonas profundimaris and its application in synthetic dye decolorization. Protein Expr Purif 2022; 197:106108. [DOI: 10.1016/j.pep.2022.106108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022]
|
13
|
Understanding flavin electronic structure and spectra. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Maldonado-Carmona N, Ouk TS, Leroy-Lhez S. Latest trends on photodynamic disinfection of Gram-negative bacteria: photosensitizer's structure and delivery systems. Photochem Photobiol Sci 2021; 21:113-145. [PMID: 34784052 DOI: 10.1007/s43630-021-00128-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/26/2021] [Indexed: 02/01/2023]
Abstract
Antimicrobial resistance is threatening to overshadow last century's medical advances. Etiological agents of previously eradicated infectious diseases are now resurgent as multidrug-resistant strains, especially for Gram-negative strains. Finding new therapeutic solutions is a real challenge for our society. In this framework, Photodynamic Antimicrobial ChemoTherapy relies on the generation of toxic reactive oxygen species in the presence of light, oxygen, and a photosensitizer molecule. The use of reactive oxygen species is common for disinfection processes, using chemical agents, such as chlorine and hydrogen peroxide, and as they do not have a specific molecular target, it decreases the potential of tolerance to the antimicrobial treatment. However, light-driven generated reactive species result in an interesting alternative, as reactive species generation can be easily tuned with light irradiation and several PSs are known for their low environmental impact. Over the past few years, this topic has been thoroughly studied, exploring strategies based on single-molecule PSs (tetrapyrrolic compounds, dipyrrinate derivatives, metal complexes, etc.) or on conjunction with delivery systems. The present work describes some of the most relevant advances of the last 6 years, focusing on photosensitizers design, formulation, and potentiation, aiming for the disinfection of Gram-negative bacteria.
Collapse
Affiliation(s)
- Nidia Maldonado-Carmona
- PEIRENE Laboratory, Faculty of Sciences and Techniques, University of Limoges, 87060, Limoges, France.,Department of Chemistry, University of Coimbra, Coimbra Chemistry Center, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Tan-Sothea Ouk
- PEIRENE Laboratory, Faculty of Sciences and Techniques, University of Limoges, 87060, Limoges, France
| | - Stéphanie Leroy-Lhez
- PEIRENE Laboratory, Faculty of Sciences and Techniques, University of Limoges, 87060, Limoges, France.
| |
Collapse
|
15
|
Ding Y, Zhao Z, Matysik J, Gärtner W, Losi A. Mapping the role of aromatic amino acids within a blue-light sensing LOV domain. Phys Chem Chem Phys 2021; 23:16767-16775. [PMID: 34319324 DOI: 10.1039/d1cp02217b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photosensing LOV (Light, Oxygen, Voltage) domains detect and respond to UVA/Blue (BL) light by forming a covalent adduct between the flavin chromophore and a nearby cysteine, via the decay of the flavin triplet excited state. LOV domains where the reactive cysteine has been mutated are valuable fluorescent tools for microscopy and as genetically encoded photosensitisers for reactive oxygen species. Besides being convenient tools for applications, LOV domains without the reactive cysteine (naturally occurring or engineered) can still be functionally photoactivated via formation of a neutral flavin radical. Tryptophans and tyrosines are held as the main partners as potential electron donors to the flavin excited states. In this work, we explore the relevance of aromatic amino acids in determining the photophysical features of the LOV protein Mr4511 from Methylobacterium radiotolerans by introducing point mutations into the C71S variant that does not form the covalent adduct. By using an array of spectroscopic techniques we measured the fluorescence quantum yields and lifetimes, the triplet yields and lifetimes, and the efficiency of singlet oxygen (SO) formation for eleven Mr4511 variants. Insertion of Trp residues at distances between 0.6 and 1.5 nm from the flavin chromophore results in strong quenching of the flavin excited triplet state and, at the shorter distances even of the singlet excited state. The mutation F130W (ca. 0.6 nm) completely quenches the singlet excited state, preventing triplet formation: in this case, even if the cysteine is present, the photo-adduct is not formed. Tyrosines are also quenchers for the flavin excited states, although not as efficient as Trp residues, as demonstrated with their substitution with the inert phenylalanine. For one of these variants, C71S/Y116F, we found that the quantum yield of formation for singlet oxygen is 0.44 in aqueous aerobic solution, vs 0.17 for C71S. Based on our study with Mr4511 and on literature data for other LOV domains we suggest that Trp and Tyr residues too close to the flavin chromophore (at distances less than 0.9 nm) reduce the yield of photoproduct formation and that introduction of inert Phe residues in key positions can help in developing efficient, LOV-based photosensitisers.
Collapse
Affiliation(s)
- Yonghong Ding
- Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|
16
|
Pang Y, Zhang H, Ai HW. Genetically Encoded Fluorescent Redox Indicators for Unveiling Redox Signaling and Oxidative Toxicity. Chem Res Toxicol 2021; 34:1826-1845. [PMID: 34284580 DOI: 10.1021/acs.chemrestox.1c00149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Redox-active molecules play essential roles in cell homeostasis, signaling, and other biological processes. Dysregulation of redox signaling can lead to toxic effects and subsequently cause diseases. Therefore, real-time tracking of specific redox-signaling molecules in live cells would be critical for deciphering their functional roles in pathophysiology. Fluorescent protein (FP)-based genetically encoded redox indicators (GERIs) have emerged as valuable tools for monitoring the redox states of various redox-active molecules from subcellular compartments to live organisms. In the first section of this review, we overview the background, focusing on the sensing mechanisms of various GERIs. Next, we review a list of selected GERIs according to their analytical targets and discuss their key biophysical and biochemical properties. In the third section, we provide several examples which applied GERIs to understanding redox signaling and oxidative toxicology in pathophysiological processes. Lastly, a summary and outlook section is included.
Collapse
Affiliation(s)
- Yu Pang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22908, United States.,Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Hao Zhang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22908, United States.,Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Hui-Wang Ai
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22908, United States.,Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, United States.,The UVA Cancer Center, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
17
|
Goncharov IM, Smolentseva A, Semenov O, Natarov I, Nazarenko VV, Yudenko A, Remeeva A, Gushchin I. High-resolution structure of a naturally red-shifted LOV domain. Biochem Biophys Res Commun 2021; 567:143-147. [PMID: 34153684 DOI: 10.1016/j.bbrc.2021.06.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/13/2021] [Indexed: 12/30/2022]
Abstract
LOV domains are widespread photosensory modules that have also found applications in fluorescence microscopy, optogenetics, and light-driven generation of reactive oxygen species. Many of these applications require stable proteins with altered spectra. Here, we report a flavin-based fluorescent protein CisFbFP derived from Chloroflexus islandicus LOV domain-containing protein. We show that CisFbFP is thermostable, and its absorption and fluorescence spectra are red-shifted for ∼6 nm, which has not been observed for other cysteine-substituted natural LOV domains. We also provide a crystallographic structure of CisFbFP at the resolution of 1.2 Å that reveals alterations in the active site due to replacement of conservative asparagine with a serine. Finally, we discuss the possible effects of presence of cis-proline in the Aβ-Bβ loop on the protein's structure and stability. The findings provide the basis for engineering and color tuning of LOV-based tools for molecular biology.
Collapse
Affiliation(s)
- Ivan M Goncharov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
| | - Anastasia Smolentseva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
| | - Oleg Semenov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
| | - Ilia Natarov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
| | - Vera V Nazarenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
| | - Anna Yudenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia.
| |
Collapse
|
18
|
Kirar S, Chaudhari D, Thakur NS, Jain S, Bhaumik J, Laha JK, Banerjee UC. Light-assisted anticancer photodynamic therapy using porphyrin-doped nanoencapsulates. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 220:112209. [PMID: 34049179 DOI: 10.1016/j.jphotobiol.2021.112209] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/17/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
Light activatable porphyrinic photosensitizers (PSs) are essential components of anticancer and antimicrobial therapy and diagnostic imaging. However, their biological applications are quite challenging due to the lack of hydrophilicity and biocompatibility. To overcome such drawbacks, photosensitizers can be doped into a biocompatible polymer such as gelatin and further can be used for biomedical applications. Herein, first, a novel A4 type porphyrin PS [5,10,15,20-tetrakis(4-pyridylamidephenyl)porphyrin; TPyAPP] was synthesized via a rational route with good yield. Further, this porphyrin was encapsulated into the gelatin nanoparticles (GNPs) to develop hydrophilic phototherapeutic nanoagents (PTNAs, A4por-GNPs). Notably, the synthesis of such porphyrin-doped GNPs avoids the use of any toxic chemicals or solvents. The nanoprobes have also shown good fluorescence quantum yield demonstrating their applicability in bioimaging. Further, the mechanistic aspects of the anticancer and antimicrobial efficacy of the developed A4por-GNPs were evaluated via singlet oxygen generation studies. Overall, our results indicated porphyrin-doped biodegradable polymeric nanoparticles act as effective phototherapeutic agents against a broad range of cancer cell lines and microbes upon activation by the low-cost LED light.
Collapse
Affiliation(s)
- Seema Kirar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India
| | - Dasharath Chaudhari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India
| | - Neeraj S Thakur
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India; Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Sanyog Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India
| | - Jayeeta Bhaumik
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India
| | - Uttam C Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India.
| |
Collapse
|
19
|
Mogensen DJ, Westberg M, Breitenbach T, Etzerodt M, Ogilby PR. Stable Transfection of the Singlet Oxygen Photosensitizing Protein SOPP3: Examining Aspects of Intracellular Behavior †. Photochem Photobiol 2021; 97:1417-1430. [PMID: 33934354 DOI: 10.1111/php.13440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/26/2021] [Indexed: 01/28/2023]
Abstract
Protein-encased chromophores that photosensitize the production of reactive oxygen species, ROS, have been the center of recent activity in studies of oxidative stress. One potential attribute of such systems is that the local environment surrounding the chromophore, and that determines the chromophore's photophysics, ideally remains constant and independent of the global environment into which the system is placed. Therefore, a protein-encased sensitizer localized in the mitochondria would arguably have the same photophysics as that protein-encased sensitizer at the plasma membrane, for example. One thus obtains a useful tool to study processes modulated by spatially localized ROS. One ROS of interest is singlet oxygen, O2 (a1 Δg ). We recently developed a singlet oxygen photosensitizing protein, SOPP, in which flavin mononucleotide, FMN, is encased in a re-engineered light-oxygen-voltage protein. One goal was to ascertain how a version of this system, SOPP3, which selectively makes O2 (a1 Δg ), in vitro, behaves in a cell. We now demonstrate that SOPP3 undergoes exacerbated irradiation-mediated bleaching when expressed at either the plasma membrane or mitochondria in stable cell lines. We find that the environment around the SOPP3 system affects the bleaching rate, which argues against one of the key suppositions in support of a protein-encased chromophore.
Collapse
Affiliation(s)
| | | | | | - Michael Etzerodt
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| |
Collapse
|
20
|
Röllen K, Granzin J, Remeeva A, Davari MD, Gensch T, Nazarenko VV, Kovalev K, Bogorodskiy A, Borshchevskiy V, Hemmer S, Schwaneberg U, Gordeliy V, Jaeger KE, Batra-Safferling R, Gushchin I, Krauss U. The molecular basis of spectral tuning in blue- and red-shifted flavin-binding fluorescent proteins. J Biol Chem 2021; 296:100662. [PMID: 33862085 PMCID: PMC8131319 DOI: 10.1016/j.jbc.2021.100662] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/09/2023] Open
Abstract
Photoactive biological systems modify the optical properties of their chromophores, known as spectral tuning. Determining the molecular origin of spectral tuning is instrumental for understanding the function and developing applications of these biomolecules. Spectral tuning in flavin-binding fluorescent proteins (FbFPs), an emerging class of fluorescent reporters, is limited by their dependency on protein-bound flavins, whose structure and hence electronic properties cannot be altered by mutation. A blue-shifted variant of the plant-derived improved light, oxygen, voltage FbFP has been created by introducing a lysine within the flavin-binding pocket, but the molecular basis of this shift remains unconfirmed. We here structurally characterize the blue-shifted improved light, oxygen, voltage variant and construct a new blue-shifted CagFbFP protein by introducing an analogous mutation. X-ray structures of both proteins reveal displacement of the lysine away from the chromophore and opening up of the structure as instrumental for the blue shift. Site saturation mutagenesis and high-throughput screening yielded a red-shifted variant, and structural analysis revealed that the lysine side chain of the blue-shifted variant is stabilized close to the flavin by a secondary mutation, accounting for the red shift. Thus, a single additional mutation in a blue-shifted variant is sufficient to generate a red-shifted FbFP. Using spectroscopy, X-ray crystallography, and quantum mechanics molecular mechanics calculations, we provide a firm structural and functional understanding of spectral tuning in FbFPs. We also show that the identified blue- and red-shifted variants allow for two-color microscopy based on spectral separation. In summary, the generated blue- and red-shifted variants represent promising new tools for application in life sciences.
Collapse
Affiliation(s)
- Katrin Röllen
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Joachim Granzin
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Mehdi D Davari
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Thomas Gensch
- IBI-1: Molecular and Cellular Physiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Vera V Nazarenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Kirill Kovalev
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, Grenoble, France; Institute of Crystallography, RWTH Aachen University, Aachen, Germany
| | - Andrey Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Valentin Borshchevskiy
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Stefanie Hemmer
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany; IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany; DWI-Leibniz Institute for Interactive Materials, Aachen, Germany
| | - Valentin Gordeliy
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, Grenoble, France
| | - Karl-Erich Jaeger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany; IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Renu Batra-Safferling
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | - Ulrich Krauss
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany; IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.
| |
Collapse
|
21
|
Remeeva A, Nazarenko VV, Kovalev K, Goncharov IM, Yudenko A, Astashkin R, Gordeliy V, Gushchin I. Insights into the mechanisms of light-oxygen-voltage domain color tuning from a set of high-resolution X-ray structures. Proteins 2021; 89:1005-1016. [PMID: 33774867 DOI: 10.1002/prot.26078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/16/2021] [Indexed: 01/01/2023]
Abstract
Light-oxygen-voltage (LOV) domains are widespread photosensory modules that can be used in fluorescence microscopy, optogenetics and controlled production of reactive oxygen species. All of the currently known LOV domains have absorption maxima in the range of ~440 to ~450 nm, and it is not clear whether they can be shifted significantly using mutations. Here, we have generated a panel of LOV domain variants by mutating the key chromophore-proximal glutamine aminoacid of a thermostable flavin based fluorescent protein CagFbFP (Gln148) to asparagine, aspartate, glutamate, histidine, lysine and arginine. Absorption spectra of all of the mutants are blue-shifted, with the maximal shift of 8 nm observed for the Q148H variant. While CagFbFP and its Q148N/D/E variants are not sensitive to pH, Q148H/K/R reveal a moderate red shift induced byacidic pH. To gain further insight, we determined high resolution crystal structures of all of the mutants studied at the resolutions from 1.07 Å for Q148D to 1.63 Å for Q148R. Whereas in some of the variants, the aminoacid 148 remains in the vicinity of the flavin, in Q148K, Q148R and partially Q148D, the C-terminus of the protein unlatches and the side chain of the residue 148 is reoriented away from the chromophore. Our results explain the absence of color shifts from replacing Gln148 with charged aminoacids and pave the way for rational design of color-shifted flavin based fluorescent proteins.
Collapse
Affiliation(s)
- Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Vera V Nazarenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Kirill Kovalev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institute of Crystallography, RWTH Aachen University, Aachen, Germany
| | - Ivan M Goncharov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anna Yudenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Roman Astashkin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
| | - Valentin Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
22
|
Schenk R, Bachmaier S, Bringaud F, Boshart M. Efficient flavinylation of glycosomal fumarate reductase by its own ApbE domain in Trypanosoma brucei. FEBS J 2021; 288:5430-5445. [PMID: 33755328 DOI: 10.1111/febs.15812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 03/09/2021] [Indexed: 01/26/2023]
Abstract
A subset of flavoproteins has a covalently attached flavin prosthetic group enzymatically attached via phosphoester bonding. In prokaryotes, this is catalysed by alternative pyrimidine biosynthesis E (ApbE) flavin transferases. ApbE-like domains are present in few eukaryotic taxa, for example the N-terminal domain of fumarate reductase (FRD) of Trypanosoma, a parasitic protist known as a tropical pathogen causing African sleeping sickness. We use the versatile reverse genetic tools available for Trypanosoma to investigate the flavinylation of glycosomal FRD (FRDg) in vivo in the physiological and organellar context. Using direct in-gel fluorescence detection of covalently attached flavin as proxy for activity, we show that the ApbE-like domain of FRDg has flavin transferase activity in vivo. The ApbE domain is preceded by a consensus flavinylation target motif at the extreme N terminus of FRDg, and serine 9 in this motif is essential as flavin acceptor. The preferred mode of flavinylation in the glycosome was addressed by stoichiometric expression and comparison of native and catalytically inactive ApbE domains. In addition to the trans-flavinylation activity, the ApbE domain catalyses the intramolecular cis-flavinylation with at least fivefold higher efficiency. We discuss how the higher efficiency due to unusual fusion of the ApbE domain to its substrate protein FRD may provide a selective advantage by faster FRD biogenesis during rapid metabolic adaptation of trypanosomes. The first 37 amino acids of FRDg, including the consensus motif, are sufficient as flavinylation target upon fusion to other proteins. We propose FRDg(1-37) as 4-kDa heat-stable, detergent-resistant fluorescent protein tag and suggest its use as a new tool to study glycosomal protein import.
Collapse
Affiliation(s)
- Robin Schenk
- Biozentrum, Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München (LMU), Martinsried, Germany
| | - Sabine Bachmaier
- Biozentrum, Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München (LMU), Martinsried, Germany
| | - Frédéric Bringaud
- CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Université de Bordeaux, France
| | - Michael Boshart
- Biozentrum, Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München (LMU), Martinsried, Germany
| |
Collapse
|
23
|
Cardoso
Ramos F, Cupellini L, Mennucci B. Computational Investigation of Structural and Spectroscopic Properties of LOV-Based Proteins with Improved Fluorescence. J Phys Chem B 2021; 125:1768-1777. [PMID: 33566620 PMCID: PMC7917436 DOI: 10.1021/acs.jpcb.0c10834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/27/2021] [Indexed: 01/22/2023]
Abstract
Flavin-based fluorescent proteins are a class of fluorescent reporters derived from light, oxygen, and voltage (LOV) sensing proteins. Through mutagenesis, natural LOV proteins have been engineered to obtain improved fluorescence properties. In this study, we combined extended classical Molecular Dynamics simulations and multiscale Quantum Mechanics/Molecular Mechanics methods to clarify the relationship between structural and dynamic changes induced by specific mutations and the spectroscopic response. To reach this goal we compared two LOV variants, one obtained by the single mutation needed to photochemically inactivate the natural system, and the other (iLOV) obtained through additional mutations and characterized by a significantly improved fluorescence. Our simulations confirmed the "flipping and crowding" effect induced in iLOV by the additional mutations and revealed its mechanism of action. We also showed that these mutations, and the resulting differences in the composition and flexibility of the binding pockets, are not reflected in significant shifts of the excitation and emission energies, in agreement with the similarity of the spectra measured for the two systems. However, a small but consistent reduction was found in the Stokes shift of iLOV, suggesting a reduction of the intermolecular reorganization experienced by the chromophore after excitation, which could slow down its internal conversion to the ground state and improve the fluorescence.
Collapse
Affiliation(s)
- Felipe Cardoso
Ramos
- Dipartimento di Chimica e
Chimica Industriale, University of Pisa, Via G. Moruzzi 13, Pisa, I-56124, Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica e
Chimica Industriale, University of Pisa, Via G. Moruzzi 13, Pisa, I-56124, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e
Chimica Industriale, University of Pisa, Via G. Moruzzi 13, Pisa, I-56124, Italy
| |
Collapse
|
24
|
Yudenko A, Smolentseva A, Maslov I, Semenov O, Goncharov IM, Nazarenko VV, Maliar NL, Borshchevskiy V, Gordeliy V, Remeeva A, Gushchin I. Rational Design of a Split Flavin-Based Fluorescent Reporter. ACS Synth Biol 2021; 10:72-83. [PMID: 33325704 DOI: 10.1021/acssynbio.0c00454] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein-fragment complementation assays are used ubiquitously for probing protein-protein interactions. Most commonly, the reporter protein is split in two parts, which are then fused to the proteins of interest and can reassemble and provide a readout if the proteins of interest interact with each other. The currently known split fluorescent proteins either can be used only in aerobic conditions and assemble irreversibly, or require addition of exogenous chromophores, which complicates the design of experiments. In recent years, light-oxygen-voltage (LOV) domains of several photoreceptor proteins have been developed into flavin-based fluorescent proteins (FbFPs) that, under some circumstances, can outperform commonly used fluorescent proteins such as GFP. Here, we show that CagFbFP, a small thermostable FbFP based on a LOV domain-containing protein from Chloroflexus aggregans, can serve as a split fluorescent reporter. We use the available genetic and structural information to identify three loops between the conserved secondary structure elements, Aβ-Bβ, Eα-Fα, and Hβ-Iβ, that tolerate insertion of flexible poly-Gly/Ser segments and eventually splitting. We demonstrate that the designed split pairs, when fused to interacting proteins, are fluorescent in vivo in E. coli and human cells and have low background fluorescence. Our results enable probing protein-protein interactions in anaerobic conditions without using exogenous fluorophores and provide a basis for further development of LOV and PAS (Per-Arnt-Sim) domain-based fluorescent reporters and optogenetic tools.
Collapse
Affiliation(s)
- Anna Yudenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Anastasia Smolentseva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Ivan Maslov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Oleg Semenov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Ivan M. Goncharov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Vera V. Nazarenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Nina L. Maliar
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Valentin Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38044 Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| |
Collapse
|
25
|
Das S, Tiwari M, Mondal D, Sahoo BR, Tiwari DK. Growing tool-kit of photosensitizers for clinical and non-clinical applications. J Mater Chem B 2020; 8:10897-10940. [PMID: 33165483 DOI: 10.1039/d0tb02085k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photosensitizers are photosensitive molecules utilized in clinical and non-clinical applications by taking advantage of light-mediated reactive oxygen generation, which triggers local and systemic cellular toxicity. Photosensitizers are used for diverse biological applications such as spatio-temporal inactivation of a protein in a living system by chromophore-assisted light inactivation, localized cell photoablation, photodynamic and immuno-photodynamic therapy, and correlative light-electron microscopy imaging. Substantial efforts have been made to develop several genetically encoded, chemically synthesized, and nanotechnologically driven photosensitizers for successful implementation in redox biology applications. Genetically encoded photosensitizers (GEPS) or reactive oxygen species (ROS) generating proteins have the advantage of using them in the living system since they can be manipulated by genetic engineering with a variety of target-specific genes for the precise spatio-temporal control of ROS generation. The GEPS variety is limited but is expanding with a variety of newly emerging GEPS proteins. Apart from GEPS, a large variety of chemically- and nanotechnologically-empowered photosensitizers have been developed with a major focus on photodynamic therapy-based cancer treatment alone or in combination with pre-existing treatment methods. Recently, immuno-photodynamic therapy has emerged as an effective cancer treatment method using smartly designed photosensitizers to initiate and engage the patient's immune system so as to empower the photosensitizing effect. In this review, we have discussed various types of photosensitizers, their clinical and non-clinical applications, and implementation toward intelligent efficacy, ROS efficiency, and target specificity in biological systems.
Collapse
Affiliation(s)
- Suman Das
- Department of Biotechnology, Faculty of Life Sciences and Environment, Goa University, Taleigao Plateau, Goa 403206, India.
| | | | | | | | | |
Collapse
|
26
|
Wang Z, Toffoletti A, Hou Y, Zhao J, Barbon A, Dick B. Insight into the drastically different triplet lifetimes of BODIPY obtained by optical/magnetic spectroscopy and theoretical computations. Chem Sci 2020; 12:2829-2840. [PMID: 34164047 PMCID: PMC8179375 DOI: 10.1039/d0sc05494a] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022] Open
Abstract
The triplet state lifetimes of organic chromophores are crucial for fundamental photochemistry studies as well as applications as photosensitizers in photocatalysis, photovoltaics, photodynamic therapy and photon upconversion. It is noteworthy that the triplet state lifetime of a chromophore can vary significantly for its analogues, while the exact reason was rarely studied. Herein with a few exemplars of typical BODIPY derivatives, which show triplet lifetimes varying up to 110-fold (1.4-160 μs), we found that for these derivatives with short triplet state lifetimes (ca. 1-3 μs), the electron spin polarization (ESP) pattern of the time-resolved electron paramagnetic resonance (TREPR) spectra of the triplet state is inverted at a longer delay time after laser pulse excitation, as a consequence of a strong anisotropy in the decay rates of the zero-field state sublevel of the triplet state. For the derivatives showing longer triplet state lifetimes (>50 μs), no such ESP inversion was observed. The observed fast decay of one sublevel is responsible for the short triplet state lifetime; theoretical computations indicate that it is due to a strong coupling between the T z sublevel and the ground state mediated by the spin-orbit interaction. Another finding is that the heavy atom effect on the shortening of the triplet state lifetime is more significant for the T1 states with lower energy. To the best of our knowledge, this is the first systematic study to rationalize the short triplet state lifetime of visible-light-harvesting organic chromophores. Our results are useful for fundamental photochemistry and the design of photosensitizers showing long-lived triplet states.
Collapse
Affiliation(s)
- Zhijia Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology E-208 West Campus, 2 Ling Gong Rd. Dalian 116024 China
| | - Antonio Toffoletti
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova Via Marzolo 1 35131 Padova Italy
| | - Yuqi Hou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology E-208 West Campus, 2 Ling Gong Rd. Dalian 116024 China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology E-208 West Campus, 2 Ling Gong Rd. Dalian 116024 China
| | - Antonio Barbon
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova Via Marzolo 1 35131 Padova Italy
| | - Bernhard Dick
- Lehrstuhl für Physikalische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Regensburg Universitätsstr. 31 D-93053 Regensburg Germany
| |
Collapse
|
27
|
Li Y, Cui ZJ. Photodynamic Activation of Cholecystokinin 1 Receptor with Different Genetically Encoded Protein Photosensitizers and from Varied Subcellular Sites. Biomolecules 2020; 10:1423. [PMID: 33050050 PMCID: PMC7601527 DOI: 10.3390/biom10101423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Cholecystokinin 1 receptor (CCK1R) is activated by singlet oxygen (1O2) generated in photodynamic action with sulphonated aluminum phthalocyanine (SALPC) or genetically encoded protein photosensitizer (GEPP) KillerRed or mini singlet oxygen generator (miniSOG). A large number of GEPP with varied 1O2 quantum yields have appeared recently; therefore, in the present work, the efficacy of different GEPP to photodynamically activate CCK1R was examined, as monitored by Fura-2 calcium imaging. KillerRed, miniSOG, miniSOG2, singlet oxygen protein photosensitizer (SOPP), flavin-binding fluorescent protein from Methylobacterium radiotolerans with point mutation C71G (Mr4511C71G), and flavin-binding fluorescent protein from Dinoroseobacter shibae (DsFbFP) were expressed at the plasma membrane (PM) in AR4-2J cells, which express endogenous CCK1R. Light irradiation (KillerRed: white light 85.3 mW‧cm-2, 4' and all others: LED 450 nm, 85 mW·cm-2, 1.5') of GEPPPM-expressing AR4-2J was found to all trigger persistent calcium oscillations, a hallmark of permanent photodynamic CCK1R activation; DsFbFP was the least effective, due to poor expression. miniSOG was targeted to PM, mitochondria (MT) or lysosomes (LS) in AR4-2J in parallel experiments; LED light irradiation was found to all induce persistent calcium oscillations. In miniSOGPM-AR4-2J cells, light emitting diode (LED) light irradiation-induced calcium oscillations were readily inhibited by CCK1R antagonist devazepide 2 nM; miniSOGMT-AR4-2J cells were less susceptible, but miniSOGLS-AR4-2J cells were not inhibited. In conclusion, different GEPPPM could all photodynamically activate CCK1R. Intracellular GEPP photodynamic action may prove particularly suited to study intracellular GPCR.
Collapse
Affiliation(s)
| | - Zong Jie Cui
- Institute of Cell Biology, Beijing Normal University, Beijing 100875, China;
| |
Collapse
|
28
|
Aissa HB, Gautier A. Engineering Glowing Chemogenetic Hybrids for Spying on Cells. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hela Ben Aissa
- École normale supérieure PSL University CNRS, Laboratoire des biomolécules, LBM Sorbonne Université 75005 Paris France
| | - Arnaud Gautier
- École normale supérieure PSL University CNRS, Laboratoire des biomolécules, LBM Sorbonne Université 75005 Paris France
- Institut Universitaire de France Paris France
| |
Collapse
|
29
|
Chia HE, Zuo T, Koropatkin NM, Marsh EG, Biteen JS. Imaging living obligate anaerobic bacteria with bilin-binding fluorescent proteins. CURRENT RESEARCH IN MICROBIAL SCIENCES 2020; 1:1-6. [PMID: 33313576 PMCID: PMC7731933 DOI: 10.1016/j.crmicr.2020.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/25/2022] Open
Abstract
Fluorescent tools such as green fluorescent protein (GFP) have been used extensively as reporters in biochemistry and microbiology, but GFP and other conventional fluorescent proteins are restricted to aerobic environments. This limitation precludes fluorescence studies of anaerobic ecologies including polymicrobial communities in the human gut microbiome and in soil microbiomes, which profoundly affect health, disease, and the environment. To address this limitation, we describe the first implementation of two bilin-binding fluorescent proteins (BBFPs), UnaG and IFP2.0, as oxygen-independent fluorescent labels for live-cell imaging in anaerobic bacteria. Expression of UnaG or IFP2.0 in the prevalent gut bacterium Bacteroides thetaiotaomicron (B. theta) results in detectable fluorescence upon the addition of the bilirubin or biliverdin ligand, even in anaerobic conditions. Furthermore, these BBFPs can be used in two-color imaging to differentiate cells expressing either UnaG or IFP2.0; UnaG and IFP2.0 can also be used to distinguish B. theta from other common gut bacterial species in mixed-culture live-cell imaging. BBFPs are promising fluorescent tools for live-cell imaging investigations of otherwise inaccessible anaerobic polymicrobial communities.
Collapse
Affiliation(s)
- Hannah E. Chia
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Tiancheng Zuo
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Nicole M. Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - E. Neil G. Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Julie S. Biteen
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
30
|
Broch F, Gautier A. Illuminating Cellular Biochemistry: Fluorogenic Chemogenetic Biosensors for Biological Imaging. Chempluschem 2020; 85:1487-1497. [PMID: 32644262 DOI: 10.1002/cplu.202000413] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/18/2020] [Indexed: 12/19/2022]
Abstract
Cellular activity is defined by the precise spatiotemporal regulation of various components, such as ions, small molecules, or proteins. Studying cell physiology consequently requires the optical recording of these processes, notably by using fluorescent biosensors. The recent development of various fluorogenic systems greatly expanded the palette of reporters to be included in these sensors design. Fluorogenic reporters consist of a protein or RNA tag that can complex either an endogenous or a synthetic fluorogenic dye (so-called fluorogen). The intrinsic nature of these tags, along with the high tunability of their cognate chromophore provide interesting features such as far-red to near-infrared emission, oxygen independence, or unprecedented color versatility. These engineered photoreceptors, self-labelling proteins, or noncovalent aptamers and protein tags were rapidly identified as promising reporters to observe biological events. This Minireview focuses on the new perspectives they offer to design unique and innovative biosensors, thus pushing the boundaries of cellular imaging.
Collapse
Affiliation(s)
- Fanny Broch
- Sorbonne Université, École normale supérieure, PSL University, CNRS Laboratoire des biomolécules, LBM, 75005, Paris, France
| | - Arnaud Gautier
- Sorbonne Université, École normale supérieure, PSL University, CNRS Laboratoire des biomolécules, LBM, 75005, Paris, France.,Institut Universitaire de France, France
| |
Collapse
|
31
|
Ko S, Jeon H, Yoon S, Kyung M, Yun H, Na JH, Jung ST. Discovery of Novel Pseudomonas putida Flavin-Binding Fluorescent Protein Variants with Significantly Improved Quantum Yield. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5873-5879. [PMID: 32367716 DOI: 10.1021/acs.jafc.0c00121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oxygen-independent, flavin-binding fluorescent proteins (FbFPs) are emerging as alternatives to green fluorescent protein (GFP), which has limited applicability in studying anaerobic microorganisms, such as human gastrointestinal bacteria, which grow in oxygen-deficient environments. However, the utility of these FbFPs has been compromised because of their poor fluorescence emission. To overcome this limitation, we have employed a high-throughput library screening strategy and engineered an FbFP derived from Pseudomonas putida (SB2) for enhanced quantum yield. Of the resulting SB2 variants, KOFP-7 exhibited a significantly improved quantum yield (0.61) compared to other reported engineered FbFPs, which was even higher than that of enhanced GFP (EGFP, 0.60), with significantly enhanced tolerance against a strong reducing agent.
Collapse
Affiliation(s)
- Sanghwan Ko
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul 02841, Korea
- Department of Applied Chemistry, Kookmin University, Seoul 02707, Korea
| | - Hyunwoo Jeon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Sanghan Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Munsu Kyung
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul 02841, Korea
| | - Hyungdon Yun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Jung-Hyun Na
- Department of Pharmaceutical Engineering, Sangji University, Wonju 26339, Korea
| | - Sang Taek Jung
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul 02841, Korea
| |
Collapse
|
32
|
Effects of Proline Substitutions on the Thermostable LOV Domain from Chloroflexus aggregans. CRYSTALS 2020. [DOI: 10.3390/cryst10040256] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Light-oxygen-voltage (LOV) domains are ubiquitous photosensory modules found in proteins from bacteria, archaea and eukaryotes. Engineered versions of LOV domains have found widespread use in fluorescence microscopy and optogenetics, with improved versions being continuously developed. Many of the engineering efforts focused on the thermal stabilization of LOV domains. Recently, we described a naturally thermostable LOV domain from Chloroflexus aggregans. Here we show that the discovered protein can be further stabilized using proline substitution. We tested the effects of three mutations, and found that the melting temperature of the A95P mutant is raised by approximately 2 °C, whereas mutations A56P and A58P are neutral. To further evaluate the effects of mutations, we crystallized the variants A56P and A95P, while the variant A58P did not crystallize. The obtained crystal structures do not reveal any alterations in the proteins other than the introduced mutations. Molecular dynamics simulations showed that mutation A58P alters the structure of the respective loop (Aβ-Bβ), but does not change the general structure of the protein. We conclude that proline substitution is a viable strategy for the stabilization of the Chloroflexus aggregans LOV domain. Since the sequences and structures of the LOV domains are overall well-conserved, the effects of the reported mutations may be transferable to other proteins belonging to this family.
Collapse
|
33
|
Ozbakir HF, Anderson NT, Fan KC, Mukherjee A. Beyond the Green Fluorescent Protein: Biomolecular Reporters for Anaerobic and Deep-Tissue Imaging. Bioconjug Chem 2020; 31:293-302. [PMID: 31794658 PMCID: PMC7033020 DOI: 10.1021/acs.bioconjchem.9b00688] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluorescence imaging represents cornerstone technology for studying biological function at the cellular and molecular levels. The technology's centerpiece is a prolific collection of genetic reporters based on the green fluorescent protein (GFP) and related analogs. More than two decades of protein engineering have endowed the GFP repertoire with an incredible assortment of fluorescent proteins, allowing scientists immense latitude in choosing reporters tailored to various cellular and environmental contexts. Nevertheless, GFP and derivative reporters have specific limitations that hinder their unrestricted use for molecular imaging. These challenges have inspired the development of new reporter proteins and imaging mechanisms. Here, we review how these developments are expanding the frontiers of reporter gene techniques to enable nondestructive studies of cell function in anaerobic environments and deep inside intact animals-two important biological contexts that are fundamentally incompatible with the use of GFP-based reporters.
Collapse
Affiliation(s)
- Harun F. Ozbakir
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Nolan T. Anderson
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Kang-Ching Fan
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Arnab Mukherjee
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry, University of California, Santa Barbara, California 93106, United States
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106, United States
- Center for Bioengineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
34
|
Zou W, Le K, Zastrow ML. Live‐Cell Copper‐Induced Fluorescence Quenching of the Flavin‐Binding Fluorescent Protein CreiLOV. Chembiochem 2020; 21:1356-1363. [DOI: 10.1002/cbic.201900669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Wenping Zou
- Department of ChemistryUniversity of Houston 3585 Cullen Boulevard Houston TX 77204 USA
| | - Khoa Le
- Department of ChemistryUniversity of Houston 3585 Cullen Boulevard Houston TX 77204 USA
| | - Melissa L. Zastrow
- Department of ChemistryUniversity of Houston 3585 Cullen Boulevard Houston TX 77204 USA
| |
Collapse
|
35
|
Bollinger A, Thies S, Katzke N, Jaeger K. The biotechnological potential of marine bacteria in the novel lineage of Pseudomonas pertucinogena. Microb Biotechnol 2020; 13:19-31. [PMID: 29943398 PMCID: PMC6922532 DOI: 10.1111/1751-7915.13288] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 01/20/2023] Open
Abstract
Marine habitats represent a prolific source for molecules of biotechnological interest. In particular, marine bacteria have attracted attention and were successfully exploited for industrial applications. Recently, a group of Pseudomonas species isolated from extreme habitats or living in association with algae or sponges were clustered in the newly established Pseudomonas pertucinogena lineage. Remarkably for the predominantly terrestrial genus Pseudomonas, more than half (9) of currently 16 species within this lineage were isolated from marine or saline habitats. Unlike other Pseudomonas species, they seem to have in common a highly specialized metabolism. Furthermore, the marine members apparently possess the capacity to produce biomolecules of biotechnological interest (e.g. dehalogenases, polyester hydrolases, transaminases). Here, we summarize the knowledge regarding the enzymatic endowment of the marine Pseudomonas pertucinogena bacteria and report on a genomic analysis focusing on the presence of genes encoding esterases, dehalogenases, transaminases and secondary metabolites including carbon storage compounds.
Collapse
Affiliation(s)
- Alexander Bollinger
- Institute of Molecular Enzyme TechnologyHeinrich‐Heine‐University DüsseldorfForschungszentrum JülichD‐52425JülichGermany
| | - Stephan Thies
- Institute of Molecular Enzyme TechnologyHeinrich‐Heine‐University DüsseldorfForschungszentrum JülichD‐52425JülichGermany
| | - Nadine Katzke
- Institute of Molecular Enzyme TechnologyHeinrich‐Heine‐University DüsseldorfForschungszentrum JülichD‐52425JülichGermany
| | - Karl‐Erich Jaeger
- Institute of Molecular Enzyme TechnologyHeinrich‐Heine‐University DüsseldorfForschungszentrum JülichD‐52425JülichGermany
- Institute of Bio‐ and Geosciences IBG‐1: BiotechnologyForschungszentrum Jülich GmbHD‐52425JülichGermany
| |
Collapse
|
36
|
Péresse T, Gautier A. Next-Generation Fluorogen-Based Reporters and Biosensors for Advanced Bioimaging. Int J Mol Sci 2019; 20:E6142. [PMID: 31817528 PMCID: PMC6940837 DOI: 10.3390/ijms20246142] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 12/17/2022] Open
Abstract
Our ability to observe biochemical events with high spatial and temporal resolution is essential for understanding the functioning of living systems. Intrinsically fluorescent proteins such as the green fluorescent protein (GFP) have revolutionized the way biologists study cells and organisms. The fluorescence toolbox has been recently extended with new fluorescent reporters composed of a genetically encoded tag that binds endogenously present or exogenously applied fluorogenic chromophores (so-called fluorogens) and activates their fluorescence. This review presents the toolbox of fluorogen-based reporters and biosensors available to biologists. Various applications are detailed to illustrate the possible uses and opportunities offered by this new generation of fluorescent probes and sensors for advanced bioimaging.
Collapse
Affiliation(s)
- Tiphaine Péresse
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France;
| | - Arnaud Gautier
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France;
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| |
Collapse
|
37
|
Genetically Encoded Photosensitizers as Light-Triggered Antimicrobial Agents. Int J Mol Sci 2019; 20:ijms20184608. [PMID: 31533368 PMCID: PMC6769541 DOI: 10.3390/ijms20184608] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 02/08/2023] Open
Abstract
Diseases caused by multi-drug resistant pathogens have become a global concern. Therefore, new approaches suitable for treating these bacteria are urgently needed. In this study, we analyzed genetically encoded photosensitizers (PS) related to the green fluorescent protein (GFP) or light-oxygen-voltage (LOV) photoreceptors for their exogenous applicability as light-triggered antimicrobial agents. Depending on their specific photophysical properties and photochemistry, these PSs can produce different toxic ROS (reactive oxygen species) such as O2•− and H2O2 via type-I, as well as 1O2 via type-II reaction in response to light. By using cell viability assays and microfluidics, we could demonstrate differences in the intracellular and extracellular phototoxicity of the applied PS. While intracellular expression and exogenous supply of GFP-related PSs resulted in a slow inactivation of E. coli and pathogenic Gram-negative and Gram-positive bacteria, illumination of LOV-based PSs such as the singlet oxygen photosensitizing protein SOPP3 resulted in a fast and homogeneous killing of these microbes. Furthermore, our data indicate that the ROS type and yield as well as the localization of the applied PS protein can strongly influence the antibacterial spectrum and efficacy. These findings open up new opportunities for photodynamic inactivation of pathogenic bacteria.
Collapse
|
38
|
Kirar S, Thakur NS, Laha JK, Banerjee UC. Porphyrin Functionalized Gelatin Nanoparticle-Based Biodegradable Phototheranostics: Potential Tools for Antimicrobial Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2019; 2:4202-4212. [DOI: 10.1021/acsabm.9b00493] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Chia HE, Marsh ENG, Biteen JS. Extending fluorescence microscopy into anaerobic environments. Curr Opin Chem Biol 2019; 51:98-104. [DOI: 10.1016/j.cbpa.2019.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 04/22/2019] [Accepted: 05/13/2019] [Indexed: 12/01/2022]
|
40
|
Nemukhin AV, Grigorenko BL, Khrenova MG, Krylov AI. Computational Challenges in Modeling of Representative Bioimaging Proteins: GFP-Like Proteins, Flavoproteins, and Phytochromes. J Phys Chem B 2019; 123:6133-6149. [DOI: 10.1021/acs.jpcb.9b00591] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Alexander V. Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Bella L. Grigorenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Maria G. Khrenova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Federal Research Center of Biotechnology, Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow 119071, Russian
| | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| |
Collapse
|
41
|
Orozco-Gonzalez Y, Kabir MP, Gozem S. Electrostatic Spectral Tuning Maps for Biological Chromophores. J Phys Chem B 2019; 123:4813-4824. [DOI: 10.1021/acs.jpcb.9b00489] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Mohammad Pabel Kabir
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
42
|
Torra J, Lafaye C, Signor L, Aumonier S, Flors C, Shu X, Nonell S, Gotthard G, Royant A. Tailing miniSOG: structural bases of the complex photophysics of a flavin-binding singlet oxygen photosensitizing protein. Sci Rep 2019; 9:2428. [PMID: 30787421 PMCID: PMC6382843 DOI: 10.1038/s41598-019-38955-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/11/2019] [Indexed: 11/15/2022] Open
Abstract
miniSOG is the first flavin-binding protein that has been developed with the specific aim of serving as a genetically-encodable light-induced source of singlet oxygen (1O2). We have determined its 1.17 Å resolution structure, which has allowed us to investigate its mechanism of photosensitization using an integrated approach combining spectroscopic and structural methods. Our results provide a structural framework to explain the ability of miniSOG to produce 1O2 as a competition between oxygen- and protein quenching of its triplet state. In addition, a third excited-state decay pathway has been identified that is pivotal for the performance of miniSOG as 1O2 photosensitizer, namely the photo-induced transformation of flavin mononucleotide (FMN) into lumichrome, which increases the accessibility of oxygen to the flavin FMN chromophore and makes protein quenching less favourable. The combination of the two effects explains the increase in the 1O2 quantum yield by one order of magnitude upon exposure to blue light. Besides, we have identified several surface electron-rich residues that are progressively photo-oxidized, further contributing to facilitate the production of 1O2. Our results help reconcile the apparent poor level of 1O2 generation by miniSOG and its excellent performance in correlative light and electron microscopy experiments.
Collapse
Affiliation(s)
- Joaquim Torra
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, Barcelona, 08017, Spain
| | - Céline Lafaye
- Univ. Grenoble Alpes, CNRS, CEA, IBS (Institut de Biologie Structurale), F-38000, Grenoble, France
| | - Luca Signor
- Univ. Grenoble Alpes, CNRS, CEA, IBS (Institut de Biologie Structurale), F-38000, Grenoble, France
| | - Sylvain Aumonier
- European Synchrotron Radiation Facility, F-38043, Grenoble, France
| | - Cristina Flors
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanoscience), Ciudad Universitaria de Cantoblanco, C/Faraday 9, 28049, Madrid, Spain.,Nanobiotechnology Unit Associated to the National Center for Biotechnology (CNB-CSIC-IMDEA), Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, California, 94158-9001, United States.,Cardiovascular Research Institute, University of California-San Francisco, San Francisco, California, 94158-9001, United States
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, Barcelona, 08017, Spain.
| | | | - Antoine Royant
- Univ. Grenoble Alpes, CNRS, CEA, IBS (Institut de Biologie Structurale), F-38000, Grenoble, France. .,European Synchrotron Radiation Facility, F-38043, Grenoble, France.
| |
Collapse
|
43
|
Kabir MP, Orozco-Gonzalez Y, Gozem S. Electronic spectra of flavin in different redox and protonation states: a computational perspective on the effect of the electrostatic environment. Phys Chem Chem Phys 2019; 21:16526-16537. [DOI: 10.1039/c9cp02230a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This study discusses how UV/vis absorption spectra of flavin in different redox and protonation states are shifted by the nearby electrostatic microenvironment.
Collapse
Affiliation(s)
| | | | - Samer Gozem
- Department of Chemistry
- Georgia State University
- Atlanta
- USA
| |
Collapse
|
44
|
Nazarenko VV, Remeeva A, Yudenko A, Kovalev K, Dubenko A, Goncharov IM, Kuzmichev P, Rogachev AV, Buslaev P, Borshchevskiy V, Mishin A, Dhoke GV, Schwaneberg U, Davari MD, Jaeger KE, Krauss U, Gordeliy V, Gushchin I. A thermostable flavin-based fluorescent protein from Chloroflexus aggregans: a framework for ultra-high resolution structural studies. Photochem Photobiol Sci 2019; 18:1793-1805. [DOI: 10.1039/c9pp00067d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A new thermostable fluorescent protein is shown to be a promising model for ultra-high resolution structural studies of LOV domains and for application as a fluorescent reporter.
Collapse
|
45
|
Meteleshko YI, Nemukhin AV, Khrenova MG. Novel flavin-based fluorescent proteins with red-shifted emission bands: a computational study. Photochem Photobiol Sci 2018; 18:177-189. [PMID: 30403258 DOI: 10.1039/c8pp00361k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The iLOV protein is a promising member of the class of flavin mononucleotide (FMN) based fluorescent proteins (FbFPs). It is becoming a popular tool for bioanalytical applications and bioimaging as a competitor of the well-known green fluorescent protein and its analogues. The main limitation of FbFPs is that all the members have close values of their absorption and emission band maxima. Therefore the upcoming challenge is to introduce novel variants of FbFPs to extend their color palette. We report the results of computational studies of iLOV variants, introducing point mutations and chromophore analogues. We found that point mutations of the apoprotein and substitution of FMN with either 8-amino-FMN or 8-methylamino-FMN lead to the red shift of emission bands up to 100 nm. Substitution with 1-deaza-FMN and the point mutations of the apoprotein result in a set of novel fluorescent proteins with emission bands in the "transparent" window where light readily penetrates through mammalian tissues. Newly suggested FbFPs can be used for multicolor imaging and also as components of FRET pairs.
Collapse
Affiliation(s)
- Yulia I Meteleshko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russian Federation.
| | - Alexander V Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russian Federation. and Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina 4, Moscow, 119334, Russian Federation
| | - Maria G Khrenova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russian Federation. and Federal Research Center of Biotechnology, Bach Institute of Biochemistry, Russian Academy of Sciences, Leninskiy Prospect 33, 119071 Moscow, Russian Federation
| |
Collapse
|
46
|
An optogenetic toolbox of LOV-based photosensitizers for light-driven killing of bacteria. Sci Rep 2018; 8:15021. [PMID: 30301917 PMCID: PMC6177443 DOI: 10.1038/s41598-018-33291-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 09/26/2018] [Indexed: 01/04/2023] Open
Abstract
Flavin-binding fluorescent proteins (FPs) are genetically encoded in vivo reporters, which are derived from microbial and plant LOV photoreceptors. In this study, we comparatively analyzed ROS formation and light-driven antimicrobial efficacy of eleven LOV-based FPs. In particular, we determined singlet oxygen (1O2) quantum yields and superoxide photosensitization activities via spectroscopic assays and performed cell toxicity experiments in E. coli. Besides miniSOG and SOPP, which have been engineered to generate 1O2, all of the other tested flavoproteins were able to produce singlet oxygen and/or hydrogen peroxide but exhibited remarkable differences in ROS selectivity and yield. Accordingly, most LOV-FPs are potent photosensitizers, which can be used for light-controlled killing of bacteria. Furthermore, the two variants Pp2FbFP and DsFbFP M49I, exhibiting preferential photosensitization of singlet oxygen or singlet oxygen and superoxide, respectively, were shown to be new tools for studying specific ROS-induced cell signaling processes. The tested LOV-FPs thus further expand the toolbox of optogenetic sensitizers usable for a broad spectrum of microbiological and biomedical applications.
Collapse
|
47
|
Di H, Morantz EK, Sadhwani H, Madden JC, Brinton MA. Insertion position as well as the inserted TRS and gene sequences differentially affect the retention of foreign gene expression by simian hemorrhagic fever virus (SHFV). Virology 2018; 525:150-160. [PMID: 30286427 DOI: 10.1016/j.virol.2018.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/26/2022]
Abstract
Recombinant SHFV infectious cDNA clones expressing a foreign gene from an additional sg mRNA were constructed. Two 3' genomic region sites, between ORF4' and ORF2b and between ORF4 and ORF5, were utilized for insertion of the myxoma M013 gene with a C-terminal V5 tag followed by one of the three inserted transcription regulatory sequences (TRS), TRS2', TRS4' or TRS7. M013 insertion at the ORF4'/ORF2b site but not the ORF4/ORF5 site generated progeny virus but only the recombinant virus with an inserted TRS2' retained the entire M013 gene through passage four. Insertion of an auto-fluorescent protein gene, iLOV, with an inserted TRS2' at the ORF4'/ORF2b site, generated viable progeny virus. iLOV expression was maintained through passage eight. Although regulation of SHFV subgenomic RNA synthesis is complex, the ORF4'/ORF2b site, which is located between the two sets of minor structural proteins, is able to tolerate foreign gene insertion.
Collapse
Affiliation(s)
- Han Di
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States
| | - Esther K Morantz
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States
| | - Heena Sadhwani
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States
| | - Joseph C Madden
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States
| | - Margo A Brinton
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States.
| |
Collapse
|
48
|
Gerlach T, Hilgers F, Bitzenhofer N, Drepper T, Rother D. Avoiding cross-reactivities in multistep biocatalysis by light-induced enzyme deactivation. CHEM-ING-TECH 2018. [DOI: 10.1002/cite.201855327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- T. Gerlach
- Forschungszentrum Jülich GmbH; IBG-1: Biotechnologie; Wilhelm-Johnen-Straße 52428 Jülich Germany
| | - F. Hilgers
- Forschungszentrum Jülich GmbH; IBG-1: Biotechnologie; Wilhelm-Johnen-Straße 52428 Jülich Germany
| | - N. Bitzenhofer
- Forschungszentrum Jülich GmbH; IBG-1: Biotechnologie; Wilhelm-Johnen-Straße 52428 Jülich Germany
| | - T. Drepper
- Forschungszentrum Jülich GmbH; IBG-1: Biotechnologie; Wilhelm-Johnen-Straße 52428 Jülich Germany
| | - D. Rother
- Forschungszentrum Jülich GmbH; IBG-1: Biotechnologie; Wilhelm-Johnen-Straße 52428 Jülich Germany
| |
Collapse
|
49
|
Gautier A, Tebo AG. Fluorogenic Protein‐Based Strategies for Detection, Actuation, and Sensing. Bioessays 2018; 40:e1800118. [DOI: 10.1002/bies.201800118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/01/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Arnaud Gautier
- PASTEUR, Département de Chimie, École Normale SupérieurePSL University, Sorbonne Université, CNRS75005 ParisFrance
| | - Alison G. Tebo
- PASTEUR, Département de Chimie, École Normale SupérieurePSL University, Sorbonne Université, CNRS75005 ParisFrance
| |
Collapse
|
50
|
Pinilla-Redondo R, Cyriaque V, Jacquiod S, Sørensen SJ, Riber L. Monitoring plasmid-mediated horizontal gene transfer in microbiomes: recent advances and future perspectives. Plasmid 2018; 99:56-67. [PMID: 30086339 DOI: 10.1016/j.plasmid.2018.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 10/28/2022]
Abstract
The emergence of antimicrobial resistant bacteria constitutes an increasing global health concern. Although it is well recognized that the cornerstone underlying this phenomenon is the dissemination of antimicrobial resistance via plasmids and other mobile genetic elements, the antimicrobial resistance transfer routes remain largely uncharted. In this review, we describe different methods for assessing the transfer frequency and host ranges of plasmids within complex microbiomes. The discussion is centered around the critical evaluation of recent advances for monitoring the fate of fluorescently tagged plasmids in bacterial communities through the coupling of fluorescence activated cell sorting and next generation sequencing techniques. We argue that this approach constitutes an exceptional tool for obtaining quantitative data regarding the extent of plasmid transfer, key disseminating taxa, and possible propagation routes. The integration of this information will provide valuable insights on how to develop alternative avenues for fighting the rise of antimicrobial resistant pathogens, as well as the means for constructing more comprehensive risk assessment models.
Collapse
Affiliation(s)
| | - Valentine Cyriaque
- Proteomics and Microbiology Lab, Research Institute for Biosciences, UMONS, Mons, Belgium
| | | | - Søren J Sørensen
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Leise Riber
- Section for Functional Genomics, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|