1
|
Rolim PADS, Catanoze IA, Fracasso JAR, Barbosa DB, dos Santos L, Ximenes VF, Guiotti AM. Antifungal, Antioxidant, and Irritative Potential of Citronella Oil (Cymbopogon nardus) Associated with Phenethyl Ester of Caffeic Acid (CAPE). COSMETICS 2024; 11:162. [DOI: 10.3390/cosmetics11050162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The present study aimed to analyze the antifungal, antioxidant, and irritant potential of citronella oil, both isolated and combined with caffeic acid phenethyl ester (CAPE), for topical oral candidiasis. The antioxidant potential was evaluated using two methods, the DPPH test and the reducing power test (FRAP), while the irritant potential of the solutions was assessed through the hen’s egg chorioallantoic membrane test (HET-CAM). The DPPH test (IC50) values for the CITRO III + CAPE III combination were 32 ± 9 mg/mL, and for isolated CAPE, 13 ± 3 mg/mL. The results from the FRAP method revealed a low iron-reducing power for the combination of 1.25 mg/mL of citronella and 0.0775 mg/mL of CAPE (CITRO III + CAPE III), showing no significant difference compared to the isolated solution of 0.15 mg/mL of CAPE. The antibacterial activity of CAPE and isolated citronella in vitro against microorganisms was evaluated using two methods: microdilution and biofilm assay. The results showed that the MIC and MFC values were 0.5 mg/mL for citronella at both tested times (24 h and 48 h). For CAPE, the MFC values were 0.031 mg/mL. For the biofilm assay, the isolated compounds and combinations at 1 min and 6 h showed significantly different results from the controls (p < 0.05). Furthermore, the HET-CAM results demonstrated the absence of irritability. Based on these premises, the antifungal and antioxidant actions, and absence of irritability were proven. Moreover, this work presents a natural antifungal of interest to the pharmaceutical industry.
Collapse
Affiliation(s)
- Pedro Antônio de Souza Rolim
- School of Dentistry, São Paulo State University (UNESP), 1193, José Bonifacio Street, Araçatuba 16015-050, Brazil
| | - Isabela Araguê Catanoze
- School of Dentistry, São Paulo State University (UNESP), 1193, José Bonifacio Street, Araçatuba 16015-050, Brazil
| | | | - Debora Barros Barbosa
- School of Dentistry, São Paulo State University (UNESP), 1193, José Bonifacio Street, Araçatuba 16015-050, Brazil
| | - Lucineia dos Santos
- Faculty of Sciences and Letters, São Paulo State University (UNESP), 2100, Dom Antonio Avenue, Assis 19806-900, Brazil
| | - Valdecir Farias Ximenes
- School of Sciences, São Paulo State University (UNESP), 14-01, Eng. Luiz Edmundo Carrijo Coube Avenue, Bauru 17033-360, Brazil
| | - Aimée Maria Guiotti
- School of Dentistry, São Paulo State University (UNESP), 1193, José Bonifacio Street, Araçatuba 16015-050, Brazil
| |
Collapse
|
2
|
Schaefer S, Corrigan N, Brunke S, Lenardon MD, Boyer C. Combatting Fungal Infections: Advances in Antifungal Polymeric Nanomaterials. Biomacromolecules 2024; 25:5670-5701. [PMID: 39177507 DOI: 10.1021/acs.biomac.4c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Fungal pathogens cause over 6.5 million life-threatening systemic infections annually, with mortality rates ranging from 20 to 95%, even with medical intervention. The World Health Organization has recently emphasized the urgent need for new antifungal drugs. However, the range of effective antifungal agents remains limited and resistance is increasing. This Review explores the current landscape of fungal infections and antifungal drugs, focusing on synthetic polymeric nanomaterials like nanoparticles that enhance the physicochemical properties of existing drugs. Additionally, we examine intrinsically antifungal polymers that mimic naturally occurring peptides. Advances in polymer characterization and synthesis now allow precise design and screening for antifungal activity, biocompatibility, and drug interactions. These antifungal polymers represent a promising new class of drugs for combating fungal infections.
Collapse
Affiliation(s)
- Sebastian Schaefer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Nathaniel Corrigan
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Megan D Lenardon
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| |
Collapse
|
3
|
Casu C, Orrù G. Potential of photodynamic therapy in the management of infectious oral diseases. World J Exp Med 2024; 14:84284. [PMID: 38590303 PMCID: PMC10999068 DOI: 10.5493/wjem.v14.i1.84284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/24/2023] [Accepted: 12/19/2023] [Indexed: 03/19/2024] Open
Abstract
Photodynamic therapy (PDT) can take place in the presence of three elements: Light with an appropriate wavelength; a photosensitizer; and the presence of oxygen. This type of treatment is very effective overall against bacterial, viral and mycotic cells. In the last 10 years many papers have been published on PDT with different types of photosensitizers (e.g., methylene blue, toluidine blue, indocyanine green, curcumin-based photosensitizers), different wavelengths (e.g., 460 nm, 630 nm, 660 nm, 810 nm) and various parameters (e.g., power of the light, time of illumination, number of sessions). In the scientific literature all types of PDT seem very effective, even if it is difficult to find a standard protocol for each oral pathology. PDT could be an interesting way to treat some dangerous oral infections refractory to common pharmacological therapies, such as candidiasis from multidrug-resistant Candida spp.
Collapse
Affiliation(s)
- Cinzia Casu
- Department of Surgical Science, Oral Biotechnology Laboratory, University of Cagliari, Cagliari 09124, Italy
| | - Germano Orrù
- Department of Surgical Science, Oral Biotechnology Laboratory, University of Cagliari, Cagliari 09124, Italy
| |
Collapse
|
4
|
Peng X, Guo X, Zhou Y. The Efficacy of Ten Different Adjunctive Measures in Patients with Nonsurgically Treated Peri-Implant Disease: A Network Meta-Analysis of Randomized Controlled Trials. Photobiomodul Photomed Laser Surg 2024; 42:99-124. [PMID: 38294889 DOI: 10.1089/photob.2023.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Objective: This study aimed to evaluate the impact of 10 adjunctive measures on non-surgical therapy outcomes for peri-implant disease. Methods: We formulated the study question and keywords following the Population, Intervention, Comparator, Outcome framework. Randomized controlled trials were identified through searches in PubMed, Embase, the Cochrane Library, and the Web of Science. Two researchers assessed the quality of included literature according to the Cochrane Risk of Bias Assessment Tool. Data analysis and ranking were performed using Stata 15.0 software. Results: This study, involving 51 pieces of literature and 2660 samples, conducted a network meta-analysis (NMA), which revealed that photodynamic therapy (PDT) significantly reduced probing pocket depth values in patients with peri-implant mucositis (SUCRA = 96.3%) and peri-implantitis (SUCRA = 96.7%). In addition, it showed an improvement in bleeding on probing (BOP) values for peri-implantitis (SUCRA = 91.6%). Furthermore, diode lasers improved BOP values for peri-implant mucositis (SUCRA = 76.5%). Conclusions: According to the NMA results and the surface under the cumulative ranking curve (SUCRA), PDT and diode laser outperform other adjuncts in peri-implant disease.
Collapse
Affiliation(s)
- Xuepei Peng
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xingtong Guo
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuwen Zhou
- Department of Stomatology, Jiaxing Maternal and Child Health Hospital, Jiaxing, China
| |
Collapse
|
5
|
Wang Y, Tang H, Wang K, Zhao Y, Xu J, Fan Y. Clinical evaluation of photodynamic therapy for oral leukoplakia: a retrospective study of 50 patients. BMC Oral Health 2024; 24:9. [PMID: 38172857 PMCID: PMC10765792 DOI: 10.1186/s12903-023-03791-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Topical photodynamic therapy (PDT) has demonstrated encouraging results in the treatment of oral leukoplakia (OLK). However, data on the clinical efficacy of PDT in Chinese patients with OLK are still limited. METHODS Fifty patients diagnosed with OLK were enrolled, including patients with various dysplastic tissues. All patients received topical PDT with 5-aminolevulinic acid (5-ALA) as a photosensitizer. Clinical efficacy was evaluated 4 weeks after treatment. Follow-up was performed every 3 months during the first year and every 6 months during the second year. RESULTS The overall response rate was 68% (34/50): 12% (n = 6) complete and 56% (n = 28) partial responses. Aneuploidy was reduced in the patients with dysplastic lesions. Oral pain and local ulcers developed in 52% of the patients (n = 26). Patients with a long history of OLK including hyperplasia and dysplastic lesions, as well as those with non-homogenous lesions, were more likely to develop pain and ulcer. During follow-up, the recurrence rate of hyperplasia and dysplastic lesions was 32% (n = 16) and the malignant transformation rate of dysplastic lesions was 4% (n = 2). Lesions on the buccal mucosa were associated with recurrence (P = 0.044; OR: 0.108, 95% CI: 0.013-0.915). CONCLUSION Topical 5-ALA-mediated PDT is an effective treatment for OLK, particularly for homogenous leukoplakia, with few side effects. The buccal mucosa may be a protective factor that can reduce recurrence.
Collapse
Affiliation(s)
- Yanting Wang
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Haonan Tang
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Keyi Wang
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yuping Zhao
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Juanyong Xu
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yuan Fan
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| |
Collapse
|
6
|
Vellappally S, Naik S, Hashem M, Fouad H. In vitro comparison of antifungal activity of conventional alcohol sprays and antimicrobial photodynamic therapy on acrylic denture resin. Technol Health Care 2024; 32:279-284. [PMID: 37270824 DOI: 10.3233/thc-230069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
BACKGROUND Traditionally, alcohol sprays are used for disinfection of acrylic-base denture surfaces. A limited number of studies have assessed the role of antimicrobial photodynamic therapy (aPDT) in this regard; however, it remains debatable whether conventional alcohol sprays are superior to aPDT in terms of antifungal activity or vis versa. OBJECTIVE The aim of the present in vitro study is to compare the antifungal activity of conventional alcohol sprays and aPDT on acrylic denture resin. METHODS Individuals wearing complete dentures at least on one arch were included. Dentures were randomly divided into three groups. Groups 1-3 were disinfected with an alcohol-based antiseptic spray and aPDT, respectively. Assessment of oral yeast growth was done using swab samples. The culture mediums were incubated at 37∘C for 72 hours and viewed through a microscope. The numbers of colony forming units (CFU/ml) were determined. P< 0.05 were considered statistically significant. RESULTS At baseline, the mean CFU/ml in Groups 1-3 were comparable. After disinfection, a statistically significant reduction in microbial CFU/ml was observed in Groups 1 (P< 0.05) and 2 (P< 0.05) compared with baseline. In Group 3, there was no difference in CFU/ml throughout the study. After disinfection, there was no difference in microbial CFU/ml in dentures in Groups 1 and 2. CONCLUSION Conventional alcohol sprays are as effective as aPDT towards reducing oral yeasts CFU/ml on acrylic denture resin.
Collapse
Affiliation(s)
- Sajith Vellappally
- Department of Dental Health, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sachin Naik
- Department of Dental Health, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Hashem
- Department of Dental Health, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hassan Fouad
- Applied Medical Science Department, Community College, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Vila-Nova TEL, Leão RDS, Santiago Junior JF, Pellizzer EP, Vasconcelos BCDE, Moraes SLD. Photodynamic therapy in the treatment of denture stomatitis: A systematic review and meta-analysis. J Prosthet Dent 2023; 130:825-832. [PMID: 35125209 DOI: 10.1016/j.prosdent.2021.11.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/28/2022]
Abstract
STATEMENT OF PROBLEM Photodynamic therapy is widely used in dentistry, but limited evidence exists regarding its effectiveness in treating denture stomatitis. High resistance to antifungals has been reported, and photodynamic therapy could be an alternative treatment. PURPOSE The purpose of this systematic review and meta-analysis was to evaluate whether photodynamic therapy is effective in reducing denture stomatitis. MATERIAL AND METHODS A systematic review was conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist and recorded in the prospective register of systematic reviews (PROSPERO) (CRD42020205589) to answer the population, intervention, control, outcome (PICO) question: "Is photodynamic therapy effective in the treatment of denture stomatitis when compared with the use of antifungal agents?" Electronic searches were performed in databases PubMed/MEDLINE, Cochrane library, and Web of Science for articles published until February 2021 by using the following terms: (denture stomatitis OR oral candidiasis) AND (low-level light therapy OR laser therapy OR lasers OR photodynamic therapies OR photochemotherapy) AND (antifungal drugs OR antifungal agents OR antimicrobial OR treatment). Clinical trials and randomized clinical trials, studies in the English language, and studies comparing antifungal agents with photodynamic therapy were included. RESULTS In total, 5 articles were selected for the qualitative analysis and 3 for the meta-analysis. No significant difference was detected between antifungal therapy and photodynamic therapy in the reduction of colony-forming units on the palate. In a subgroup analysis, a significant difference was found in the reduction of colony-forming units on the palate at 15 days and at the denture surface at 30 days. CONCLUSIONS Photodynamic therapy is effective in the treatment of denture stomatitis, but after 30 days and 15 days, the antifungals demonstrated better performance.
Collapse
Affiliation(s)
- Taciana Emília Leite Vila-Nova
- PhD student, Department of Oral Rehabilitation, Faculty of Dentistry, University of Pernambuco (UPE), Recife, Pernambuco, Brazil
| | - Rafaella de Souza Leão
- Adjunct Professor of Department of Prosthodontics, School of Dentistry, Pernambuco University (UPE), Recife, Pernambuco, Brazil
| | | | - Eduardo Piza Pellizzer
- Full Professor of Departament of Dental Materials and Prosthodontics, São Paulo State University (UNESP), Araçatuba Dental School, Araçatuba, São Paulo, Brazil
| | | | - Sandra Lúcia Dantas Moraes
- Associate Professor, Department of Oral Rehabilitation, Faculty of Dentistry, University of Pernambuco (UPE), Recife, Pernambuco, Brazil
| |
Collapse
|
8
|
Fernandes JA, Conrado PCV, Perina BS, de Oliveira ACV, Arita GS, Capoci IRG, Gonçalves RS, Caetano W, Svidzinski TIE, Cotica ESK, Bonfim-Mendonça PDS. Photodynamic inactivation by hypericin-P123 on azole-resistant isolates of the Trichophyton rubrum complex as planktonic cells and biofilm. Photodiagnosis Photodyn Ther 2023; 44:103875. [PMID: 37923285 DOI: 10.1016/j.pdpdt.2023.103875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
INTRODUCTION The Trichophyton rubrum complex comprises the majority of dermatophyte fungi (DM) responsible for chronic cases of onychomycosis, which is treated with oral or topical antifungals. However, owing to antifungal resistance, alternative therapies, such as photodynamic therapy (PDT), are needed. This study investigated the frequency of the T. rubrum species complex in onychomycosis cases in the northwestern region of Paraná state, Brazil, and evaluated the efficacy of (PDT) using P123-encapsulated hypericin (Hyp-P123) on clinical isolates of T. rubrum in the planktonic cell and biofilm forms. MATERIAL AND METHODS The frequency of the T. rubrum complex in onychomycosis cases from 2017 to 2021 was evaluated through a data survey of records from the Laboratory of Medical Mycology (LEPAC) of the State University of Maringa (UEM). To determine the effect of PDT-Hyp-P123 on planktonic cells of T. rubrum isolates, 1 × 105 conidia/mL were treated with ten different concentrations of Hyp-P123 and then irradiated with 37.8 J/cm2. Antibiofilm activity of PDT-Hyp-P123 was tested against T. rubrum biofilm in the adhesion phase (3 h), evaluated 72 h after irradiation (37.8 J/cm2), and the mature biofilm (72 h), evaluated immediately after irradiation. In this context, three different parameters were evaluated: cell viability, metabolic activity and total biomass. RESULTS The T. rubrum species complex was the most frequently isolated DM in onychomycosis cases (approximately 80 %). A significant reduction in fungal growth was observed for 75 % of the clinical isolates tested with a concentration from 0.19 μmol/L Hyp-P123, and 56.25 % had complete inhibition of fungal growth (fungicidal action); while all isolates were azole-resistant. The biofilm of T. rubrum isolates (TR0022 and TR0870) was inactivated in both the adhesion phase and the mature biofilm. CONCLUSION PDT-Hyp-P123 had antifungal and antibiofilm activity on T. rubrum, which is an important dermatophyte responsible for onychomycosis cases.
Collapse
Affiliation(s)
| | | | - Brenda Serenini Perina
- Department of Analysis Clinics & Biomedicine, State University of Maringá, Paraná, Brazil
| | | | - Glaucia Sayuri Arita
- Department of Analysis Clinics & Biomedicine, State University of Maringá, Paraná, Brazil
| | | | | | - Wilker Caetano
- Department of Chemistry, State University of Maringá, Paraná, Brazil
| | | | | | | |
Collapse
|
9
|
de Souto Medeiros MR, da Silva Barros CC, de Macedo Andrade AC, de Lima KC, da Silveira ÉJD. Antimicrobial photodynamic therapy in the treatment of oral erythematous candidiasis: a controlled and randomized clinical trial. Clin Oral Investig 2023; 27:6471-6482. [PMID: 37718381 DOI: 10.1007/s00784-023-05252-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
OBJECTIVE To analyze the clinical and microbiological efficacy of antimicrobial photodynamic therapy (aPDT) in patients with erythematous candidiasis (EC). METHODS This study was a controlled and randomized clinical trial in patients diagnosed with EC, who were allocated into a control group (CG) and experimental group (EG) treated with nystatin oral suspension and aPDT with methylene blue 0.1%, respectively. A clinical index was used to classify the EC lesions from mild to severe and assess the treatment efficacy. Microbiological samples were collected before and after aPDT session and analyzed by counting colony-forming units (CFUs) of Candida and Staphylococcus sp. RESULTS A total of 41 patients (CG (n = 18); EG (n = 23)) were analyzed in our research. Of these, 16 (94.1%) of the CG and 16 (84.2%) of the EG exhibited complete remission of the lesions. Regarding the degree of the lesion, it was observed that the severe lesions were more difficult to present remission, while all the mild and moderate lesions showed complete regression (p = 0.001). The microbiological analysis showed that Candida albicans and Staphylococcus sp. were the most prevalent microorganisms, and the aPDT group showed a decrease in CFUs of these microorganisms after the first aPDT session (p < 0.05). CONCLUSIONS aPDT proved to be a clinically and microbiologically effective therapy for treating EC. TRIAL REGISTRATION Registered at ClinicalTrials.gov; Set 12th, 2019; No. RBR-8w8599. CLINICAL RELEVANCE aPDT is a promising alternative treatment since it presents satisfactory results and does not cause damage to oral tissues or develop resistance to the treatment.
Collapse
Affiliation(s)
- Maurília Raquel de Souto Medeiros
- Postgraduate Program in Dental Sciences, Department of Dentistry, Federal University of Rio Grande Do Norte, Av. Salgado Filho, 1787, Lagoa Nova, Natal, RN, 59056-000, Brazil
| | - Caio César da Silva Barros
- Postgraduate Program in Dental Sciences, Department of Dentistry, Federal University of Rio Grande Do Norte, Av. Salgado Filho, 1787, Lagoa Nova, Natal, RN, 59056-000, Brazil
| | - Ana Cláudia de Macedo Andrade
- Postgraduate Program in Dental Sciences, Department of Dentistry, Federal University of Rio Grande Do Norte, Av. Salgado Filho, 1787, Lagoa Nova, Natal, RN, 59056-000, Brazil
| | - Kenio Costa de Lima
- Postgraduate Program in Dental Sciences, Department of Dentistry, Federal University of Rio Grande Do Norte, Av. Salgado Filho, 1787, Lagoa Nova, Natal, RN, 59056-000, Brazil
| | - Éricka Janine Dantas da Silveira
- Postgraduate Program in Dental Sciences, Department of Dentistry, Federal University of Rio Grande Do Norte, Av. Salgado Filho, 1787, Lagoa Nova, Natal, RN, 59056-000, Brazil.
| |
Collapse
|
10
|
Zhu Y, Gao M, Su M, Shen Y, Zhang K, Yu B, Xu FJ. A Targeting Singlet Oxygen Battery for Multidrug-Resistant Bacterial Deep-Tissue Infections. Angew Chem Int Ed Engl 2023; 62:e202306803. [PMID: 37458367 DOI: 10.1002/anie.202306803] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Traditional photodynamic therapy (PDT) is dependent on externally applied light and oxygen, and the depth of penetration of these factors can be insufficient for the treatment of deep infections. The short half-life and short diffusion distance of reactive oxygen species (ROS) also limit the antibacterial efficiency of PDT. Herein, we designed a targeting singlet oxygen delivery system, CARG-Py, for irradiation-free and oxygen-free PDT. This system was converted to the "singlet oxygen battery" CARG-1 O2 and released singlet oxygen without external irradiation or oxygen. CARG-1 O2 is composed of pyridones coupled to a targeting peptide that improves the utilization of singlet oxygen in deep multidrug-resistant bacterial infections. CARG-1 O2 was shown to damage DNA, protein, and membranes by increasing the level of reactive oxygen inside bacteria; the attacking of multiple biomolecular sites caused the death of methicillin-resistant Staphylococcus aureus (MRSA). An in vivo study in a MRSA-infected mouse model of pneumonia demonstrated the potential of CARG-1 O2 for the efficient treatment of deep infections. This work provides a new strategy to improve traditional PDT for irradiation- and oxygen-free treatment of deep infections while improving convenience of PDT.
Collapse
Affiliation(s)
- Yiwen Zhu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Minzheng Gao
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mengrui Su
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanzhe Shen
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kai Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
11
|
AlSunbul H, Murriky A. Efficacy of methylene blue and curcumin mediated antimicrobial photodynamic therapy in the treatment of indirect pulp capping in permanent molar teeth. Photodiagnosis Photodyn Ther 2023; 42:103598. [PMID: 37150490 DOI: 10.1016/j.pdpdt.2023.103598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023]
Abstract
PURPOSE This study aimed to evaluate the adhesive bond strength and antibacterial efficacy of methylene blue (MB)-mediated antimicrobial photodynamic therapy (aPDT) and curcumin (CUR)-mediated aPDT versus the conventional disinfectants, such as chlorhexidine gluconate (CHX) gel and sodium hypochlorite (NaOCl), for indirect pulp capping (IPC) treatment of permanent molars. METHODS One Hundred grossly carious human permanent molars were collected through non-traumatic extraction. All specimens were embedded in polyvinyl cross-sections to the cemento-enamel junction. The cavity preparation was conducted by grinding the samples using silicon carbide discs. After culturing Streptococcus mutans (S. mutans), a 10 µL of S. mutans suspension (106 colony forming units/mL) was transferred in each tooth cavity and anaerobically incubated for 48 hours at 37°C. All specimens were randomly divided into 5 groups: Group-I: samples treated IPC; Group-II: samples treated with 2% CHX gel; Group-III: samples treated with 6% NaOCl; Group-IV: irradiation of prepared cavity with MB-mediated aPDT; and Group-V: irradiation of prepared cavity with CUR-mediated aPDT. After disinfection methods, the universal adhesive was used, and all specimens were restored using giomer. Eventually, confocal laser scanning microscopy, shear bond strength (SBS), micro-tensile bond strength (μTBS), four-point bending strength (4P-BS) analyses were performed, and the data were analyzed statistically. RESULTS At baseline, the highest SBS (48.8 ± 6.5 MPa), μTBS (54.3 ± 3.9 MPa), and 4P-BS (123 ± 32 MPa) scores were demonstrated by the samples treated with MB-mediated aPDT. However, after 12 months of storage, the highest SBS (42.3 ± 3.9 MPa) and μTBS (45.2 ± 6.6 MPa) scores were shown by samples treated with MB-mediated aPDT, while CUR-mediated aPDT treated samples demonstrated the highest 4P-BS scores (70 ± 18 MPa). Moreover, the highest antibacterial activity against S. mutans was shown by the samples treated with MB-mediated aPDT. CONCLUSIONS The application of aPDT, especially MB-mediated, demonstrated superior SBS, μTBS, and 4P-BS values as well as antibacterial activity against S. mutans as compared to 2% CHX gel and 6% NaOCl as cavity disinfectants for IPC treatment of permanent molars.
Collapse
Affiliation(s)
- Hanan AlSunbul
- Department of Restorative Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia.
| | - Afraa Murriky
- Department of Restorative Dentistry, College of Dentistry, Riyadh Elm University, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Xu Y, Liu S, Zhao H, Li Y, Cui C, Chou W, Zhao Y, Yang J, Qiu H, Zeng J, Chen D, Wu S, Tan Y, Wang Y, Gu Y. Ultrasonic irradiation enhanced the efficacy of antimicrobial photodynamic therapy against methicillin-resistant Staphylococcus aureus biofilm. ULTRASONICS SONOCHEMISTRY 2023; 97:106423. [PMID: 37235946 DOI: 10.1016/j.ultsonch.2023.106423] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
Antimicrobial photodynamic therapy (aPDT) is a non-pharmacological antimicrobial regimen based on light, photosensitizer and oxygen. It has become a potential method to inactivate multidrug-resistant bacteria. However, limited by the delivery of photosensitizer (PS) in biofilm, eradicating biofilm-associated infections by aPDT remains challenging. This study aimed to explore the feasibility of combining ultrasonic irradiation with aPDT to enhance the efficacy of aPDT against methicillin-resistant staphylococcus aureus (MRSA) biofilm. A cationic benzylidene cyclopentanone photosensitizer with much higher selectivity to bacterial cells than mammalian cells were applied at the concentration of 10 μM. 532 nm laser (40 mW/cm2, 10 min) and 1 MHz ultrasound (500 mW/cm2, 10 min, simultaneously with aPDT) were employed against MRSA biofilms in vitro. In addition to combined with ultrasonic irradiation and aPDT, MRSA biofilms were treated with laser irradiation only, photosensitizer only, ultrasonic irradiation only, ultrasonic irradiation and photosensitizer, and aPDT respectively. The antibacterial efficacy was determined by XTT assay, and the penetration depth of PS in biofilm was observed using a photoluminescence spectrometer and a confocal laser scanning microscopy (CLSM). In addition, the viability of human dermal fibroblasts (WS-1 cells) after the same treatments mentioned above and the uptake of P3 by WS-1 cells after ultrasonic irradiation were detected by CCK-8 and CLSM in vitro. Results showed that the percent decrease in metabolic activity resulting from the US + aPDT group (75.76%) was higher than the sum of the aPDT group (44.14%) and the US group (9.88%), suggesting synergistic effects. Meanwhile, the diffusion of PS in the biofilm of MRSA was significantly increased by 1 MHz ultrasonic irradiation. Ultrasonic irradiation neither induced the PS uptake by WS-1 cells nor reduced the viability of WS-1 cells. These results suggested that 1 MHz ultrasonic irradiation significantly enhanced the efficacy of aPDT against MRSA biofilm by increasing the penetration depth of PS. In addition, the antibacterial efficacy of aPDT can be enhanced by ultrasonic irradiation, the US + aPDT treatment demonstrated encouraging in vivo antibacterial efficacy (1.73 log10 CFU/mL reduction). In conclusion, the combination of aPDT and 1 MHz ultrasound is a potential and promising strategy to eradicate biofilm-associated infections of MRSA.
Collapse
Affiliation(s)
- Yixuan Xu
- Medical School of Chinese PLA, Beijing 100853, China; Department of Laser Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Shiyang Liu
- Technical Institute of Physics and Chemistry Academy of Sciences, Beijing 100190, China
| | - Hongyou Zhao
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Yi Li
- Medical School of Chinese PLA, Beijing 100853, China; Department of Laser Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Chao Cui
- Medical School of Chinese PLA, Beijing 100853, China; Department of Laser Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Wenxin Chou
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Yuxia Zhao
- Technical Institute of Physics and Chemistry Academy of Sciences, Beijing 100190, China
| | - Jiyong Yang
- Department of Microbiology, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Haixia Qiu
- Department of Laser Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Jing Zeng
- Department of Laser Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Defu Chen
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Shengnan Wu
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Yizhou Tan
- Department of Laser Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Ying Wang
- Department of Laser Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
| | - Ying Gu
- Department of Laser Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China; Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; Precision Laser Medical Diagnosis and Treatment Innovation Unit, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
13
|
Luchian I, Budală DG, Baciu ER, Ursu RG, Diaconu-Popa D, Butnaru O, Tatarciuc M. The Involvement of Photobiology in Contemporary Dentistry-A Narrative Review. Int J Mol Sci 2023; 24:ijms24043985. [PMID: 36835395 PMCID: PMC9961259 DOI: 10.3390/ijms24043985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Light is an emerging treatment approach that is being used to treat many diseases and conditions such as pain, inflammation, and wound healing. The light used in dental therapy generally lies in visible and invisible spectral regions. Despite many positive results in the treatment of different conditions, this therapy still faces some skepticism, which has prevented its widespread adoption in clinics. The main reason for this skepticism is the lack of comprehensive information about the molecular, cellular, and tissular mechanisms of action, which underpin the positive effects of phototherapy. However, there is currently promising evidence in support of the use of light therapy across a spectrum of oral hard and soft tissues, as well as in a variety of important dental subspecialties, such as endodontics, periodontics, orthodontics, and maxillofacial surgery. The merging of diagnostic and therapeutic light procedures is also seen as a promising area for future expansion. In the next decade, several light technologies are foreseen as becoming integral parts of modern dentistry practice.
Collapse
Affiliation(s)
- Ionut Luchian
- Department of Periodontology, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Dana Gabriela Budală
- Department of Prosthodontics, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania
- Correspondence: (D.G.B.); (E.-R.B.)
| | - Elena-Raluca Baciu
- Department of Dental Materials, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania
- Correspondence: (D.G.B.); (E.-R.B.)
| | - Ramona Gabriela Ursu
- Department of Preventive Medicine and Interdisciplinarity (IX)—Microbiology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iaşi, Romania
| | - Diana Diaconu-Popa
- Department of Dental Technology, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Oana Butnaru
- Department of Biophysics, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Monica Tatarciuc
- Department of Dental Technology, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania
| |
Collapse
|
14
|
Al-Ghamdi ARS, Khanam HK, Qamar Z, Abdul NS, Reddy N, Vempalli S, Noushad M, Alqahtani WMS. Therapeutic efficacy of adjunctive photodynamic therapy in the treatment of denture stomatitis. Photodiagnosis Photodyn Ther 2023; 42:103326. [PMID: 36773753 DOI: 10.1016/j.pdpdt.2023.103326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND The present report assessed the efficacy of curcumin-mediated photodynamic therapy (CUR-mediated PDT) as an adjunct to antifungal gel treatment by evaluating the salivary interleukin-6 (IL-6) and matrix metalloproteinases-8 (MMP-8) levels together with Candida species counts in denture stomatitis (DS) patients. METHODS In total, 50 DS subjects were randomly categorized into 2 groups: Group-1: subjects who received the antifungal gel treatment and Group-2: participants who received CUR-mediated PDT. The Sabourad Dextrose Agar and CHROMAgar were utilized for evaluating Candida species counts, while the Enzyme-Linked Immunosorbent Assay was employed to estimate the salivary levels of IL-6 and MMP-8. All clinical evaluations were performed at the baseline, 1 month, and 2 months. RESULTS In total, group-2 subjects showed a significant decrease in Candida albicans (C. albicans) counts on both follow-ups (i.e., 1-month and 2-month) than group-1 participants. C. krusei count also reduced in group-2 subejcts than group-1 participants at the 2nd follow-up as compared to the baseline, nevertheless, a slight increase in C. krusei count was noticed in group-2 subjects at the 2nd follow-up than the 1st follow-up. The salivary IL-6 and MMP-8 levels in both groups reduced significantly at both follow-ups than the baseline. According to the stepwise logistic regression analysis, no statistically significant correlation was observed between Candida species count and other parameters such as age and gender of the patient, duration of DS, and frequency of treatment(s). CONCLUSION CUR-mediated PDT is an efficaciousness therapeutic modality for alleviating Candida species counts on the surface of denture and the palatal mucosa, as well as improving the salivary IL-6 and MMP-8 levels in DS patients.
Collapse
Affiliation(s)
- Abdul Rahman Saeed Al-Ghamdi
- Department of Restorative and Prosthetic Dentistry, College of Dentistry, Dar Al Uloom University, Riyadh, Saudi Arabia
| | - Hm Khuthija Khanam
- Department of Restorative and Prosthetic Dentistry, College of Dentistry, Dar Al Uloom University, Riyadh, Saudi Arabia.
| | - Zeeshan Qamar
- Department of O&MFS and Diagnostic Sciences, Faculty of Dentistry, Riyadh Elm University, Riyadh, Saudi Arabia
| | - Nishath Sayed Abdul
- Department of OMFS and Diagnostic Sciences (Oral Pathology), Faculty of Dentistry, Riyadh Elm University, Riyadh, Saudi Arabia
| | - Naveen Reddy
- Department of Prosthodontics, Faculty of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Swetha Vempalli
- Department of Oral and Maxillofacial Sciences, Faculty of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Noushad
- Department of Restorative and Prosthetic Dentistry, College of Dentistry, Dar Al Uloom University, Riyadh, Saudi Arabia; Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Waleed M S Alqahtani
- Department of Prosthetic Dentistry, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
15
|
Jo YH, Lee WJ, Lee JH, Yoon HI. Antifungal activity, mechanical properties, and accuracy of three-dimensionally printed denture base with microencapsulated phytochemicals on varying post-polymerization time. BMC Oral Health 2022; 22:611. [PMID: 36522725 PMCID: PMC9756466 DOI: 10.1186/s12903-022-02654-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Studies on the antifungal activity, flexural strength, Vickers hardness, and intaglio surface trueness of three-dimensionally printed (3DP) denture bases with microencapsulated phytochemicals with respect to changes in post-polymerization time (PPT) are lacking. METHODS Specimens of various shapes and dimensions were fabricated with a 3DP denture base resin mixed with 5 wt% phytoncide-filled microcapsules. Each specimen was subjected to different PPT protocols of 5, 10, 20, and 30 min. Specimens without microcapsules with 5-min PPT were used as the negative control group. Cell colonies were counted to evaluate antifungal activity. Three-point bending and Vickers hardness tests were performed to measure the flexural strengths and hardness of the specimens. Fourier-transform infrared spectrometry was used to inspect the degree of conversion (DC). The intaglio surface trueness was measured using root-mean-square estimates calculated by superimposition analysis. A non-parametric Kruskal-Wallis test or one-way analysis of variance was performed (α = 0.05). RESULTS The specimens with microcapsules and 10-min PPT showed the highest antifungal activity among the tested groups. Compared with the positive control group (5-min PPT), the specimens with PPTs of 10 min or longer showed significantly higher mean flexural strength, higher DC, greater hardness, and better trueness (all, P < 0.05). Except for the difference in antifungal activity, no statistically significant differences were detected between the specimens subjected to 10-, 20-, and 30-min PPT. CONCLUSION The 3DP denture base filled with microencapsulated phytoncide showed different antifungal activity and physical properties on changing PPT. The 3DP denture base containing phytoncide-filled microcapsules at 5 wt% concentration and subjected to 10-min PPT exhibited sufficient antifungal activity as well as mechanical properties and accuracy within clinical acceptance.
Collapse
Affiliation(s)
- Ye-Hyeon Jo
- grid.31501.360000 0004 0470 5905Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Won-Jun Lee
- grid.31501.360000 0004 0470 5905Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Ji-Hyun Lee
- grid.31501.360000 0004 0470 5905Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Hyung-In Yoon
- grid.31501.360000 0004 0470 5905Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| |
Collapse
|
16
|
Delcanale P, Abbruzzetti S, Viappiani C. Photodynamic treatment of pathogens. LA RIVISTA DEL NUOVO CIMENTO 2022; 45:407-459. [PMCID: PMC8921710 DOI: 10.1007/s40766-022-00031-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/10/2022] [Indexed: 06/01/2023]
Abstract
The current viral pandemic has highlighted the compelling need for effective and versatile treatments, that can be quickly tuned to tackle new threats, and are robust against mutations. Development of such treatments is made even more urgent in view of the decreasing effectiveness of current antibiotics, that makes microbial infections the next emerging global threat. Photodynamic effect is one such method. It relies on physical processes proceeding from excited states of particular organic molecules, called photosensitizers, generated upon absorption of visible or near infrared light. The excited states of these molecules, tailored to undergo efficient intersystem crossing, interact with molecular oxygen and generate short lived reactive oxygen species (ROS), mostly singlet oxygen. These species are highly cytotoxic through non-specific oxidation reactions and constitute the basis of the treatment. In spite of the apparent simplicity of the principle, the method still has to face important challenges. For instance, the short lifetime of ROS means that the photosensitizer must reach the target within a few tens nanometers, which requires proper molecular engineering at the nanoscale level. Photoactive nanostructures thus engineered should ideally comprise a functionality that turns the system into a theranostic means, for instance, through introduction of fluorophores suitable for nanoscopy. We discuss the principles of the method and the current molecular strategies that have been and still are being explored in antimicrobial and antiviral photodynamic treatment.
Collapse
Affiliation(s)
- Pietro Delcanale
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| |
Collapse
|
17
|
López-Molina S, Galiana-Roselló C, Galiana C, Gil-Martínez A, Bandeira S, González-García J. Alkaloids as Photosensitisers for the Inactivation of Bacteria. Antibiotics (Basel) 2021; 10:1505. [PMID: 34943717 PMCID: PMC8698950 DOI: 10.3390/antibiotics10121505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial photodynamic therapy has emerged as a powerful approach to tackle microbial infections. Photodynamic therapy utilises a photosensitiser, light, and oxygen to generate singlet oxygen and/or reactive oxygen species in an irradiated tissue spot, which subsequently react with nearby biomolecules and destroy the cellular environment. Due to the possibility to irradiate in a very precise location, it can be used to eradicate bacteria, fungus, and parasites upon light activation of the photosensitiser. In this regard, natural products are low-cost molecules capable of being obtained in large quantities, and some of them can be used as photosensitisers. Alkaloids are the largest family among natural products and include molecules with a basic nature and aromatic rings. For this study, we collected the naturally occurring alkaloids used to treat microorganism infections using a photodynamic inactivation approach. We gathered their main photophysical properties (excitation/emission wavelengths, quantum yields, and oxygen quantum yield) which characterise the ability to efficiently photosensitise. In addition, we described the antibacterial activity of alkaloids upon irradiation and the mechanisms involved in the microorganism killing. This review will serve as a reference source to obtain the main information on alkaloids used in antimicrobial photodynamic therapy.
Collapse
Affiliation(s)
- Sònia López-Molina
- Department of Inorganic Chemistry, Institute of Molecular Science, Catedrático José Beltran 2, 46980 Paterna, Spain; (S.L.-M.); (C.G.-R.); (A.G.-M.); (S.B.)
| | - Cristina Galiana-Roselló
- Department of Inorganic Chemistry, Institute of Molecular Science, Catedrático José Beltran 2, 46980 Paterna, Spain; (S.L.-M.); (C.G.-R.); (A.G.-M.); (S.B.)
| | - Carolina Galiana
- Department of Pharmacy, CEU Cardenal Herrera University, Ramón y Cajal s/n, 46115 Alfara del Patriarca, Spain;
| | - Ariadna Gil-Martínez
- Department of Inorganic Chemistry, Institute of Molecular Science, Catedrático José Beltran 2, 46980 Paterna, Spain; (S.L.-M.); (C.G.-R.); (A.G.-M.); (S.B.)
| | - Stephane Bandeira
- Department of Inorganic Chemistry, Institute of Molecular Science, Catedrático José Beltran 2, 46980 Paterna, Spain; (S.L.-M.); (C.G.-R.); (A.G.-M.); (S.B.)
| | - Jorge González-García
- Department of Inorganic Chemistry, Institute of Molecular Science, Catedrático José Beltran 2, 46980 Paterna, Spain; (S.L.-M.); (C.G.-R.); (A.G.-M.); (S.B.)
| |
Collapse
|
18
|
Firoozi P, Farshidfar N, Fekrazad R. Efficacy of antimicrobial photodynamic therapy compared to nystatin therapy in reducing Candida colony count in patients with Candida-associated denture stomatitis: a systematic review and meta-analysis. Evid Based Dent 2021. [DOI: https:/doi.org/10.1038/s41432-021-0208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/31/2021] [Indexed: 08/30/2023]
|
19
|
Firoozi P, Farshidfar N, Fekrazad R. Efficacy of antimicrobial photodynamic therapy compared to nystatin therapy in reducing Candida colony count in patients with Candida-associated denture stomatitis: a systematic review and meta-analysis. Evid Based Dent 2021:10.1038/s41432-021-0208-9. [PMID: 34862461 DOI: 10.1038/s41432-021-0208-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/31/2021] [Indexed: 11/08/2022]
Abstract
Purpose This meta-analysis assessed the efficacy of antimicrobial photodynamic therapy (aPDT) compared to conventional nystatin therapy (NYT) in reducing Candida colony count in patients with Candida-associated denture stomatitis (CADS) and critically appraised the available literature.Methods This meta-analysis was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) updated guidelines. A literature search was performed in four electronic databases to identify relevant articles up to 15 August 2021. Randomised controlled trials (RCTs) that assessed the efficacy of aPDT compared to NYT in reducing Candida colony count in patients with CADS were investigated. The weighted mean difference (MD) and 95% confidence interval were calculated. The I2 statistic was used to determine heterogeneity at the level of α = 0.10. The Cochrane risk of bias (RoB 2) tool was used to assess the risk of bias. Certainty of the evidence was determined using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) ranking system.Results Only three eligible RCTs with 141 participants were included in this systematic review and meta-analysis. Based on the pooled results, NYT compared to aPDT generally performed better in reducing Candida colony count (Log10 CFU/mL) in patients' palate and patients' denture. The included studies had a moderate risk of bias and the certainty of the evidence was low.Conclusion Although still inconclusive, based on the current evidence, aPDT may be effective in reducing Candida colony count and treating CADS. Nonetheless, it does not appear to be more effective than conventional NYT in this regard. According to the limited number of included studies, more well-designed RCTs with larger sample sizes and standardised methodology should be conducted to validate this conclusion.
Collapse
Affiliation(s)
- Parsa Firoozi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran; Student Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Nima Farshidfar
- Orthodontic Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fekrazad
- Professor of Radiation Sciences Research Centre, Laser Research Centre in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran; International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
20
|
Mustafa M, Alamri HM, Almokhatieb AA, Alqahtani AR, Alayad AS, Divakar DD. Effectiveness of antimicrobial photodynamic therapy as an adjunct to mechanical instrumentation in reducing counts of Enterococcus faecalis and Candida albicans from C-shaped root canals. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2021; 38:328-333. [PMID: 34748657 DOI: 10.1111/phpp.12751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND/PURPOSE The aim was to assess the effectiveness of antimicrobial photodynamic therapy (aPDT) as an adjunct to mechanical instrumentation (MI) in reducing Enterococcus faecalis (E faecalis) and Candida albicans (C albicans) counts from C-shaped root-canals. METHODS Teeth with C-shaped canals as identified on cone beam computed tomographic images were included. Following incubation with E faecalis and C albicans, samples were divided into 4 groups a four follows: Group-1: MI with adjunct aPDT; Group-2: aPDT alone; Group-3: MI alone; and Group-4: no treatment. The pulp chambers of these teeth were exposed and coronal pulp was mechanically derided using sterile endodontic excavators. Using flexible files, all canals were debrided up to size #30 K-files with intermittent irrigation with 2.5% sodium hypochlorite irrigation. In Groups 1 and 3, methylene-blue was injected in all canals and aPDT was performed using a 600 nm diode laser. Sample-size estimation was done on data from a pilot investigation and group-comparisons were done using one way analysis of variance and Bonferroni post-hoc adjustment tests. P < .05 was considered statistically significant. RESULTS Sixty periodontally hopeless mandibular second molars with C-shaped canals were included. There was a statistically significant reduction CFU/mL of E faecalis (P < .001) and C albicans (P < .001). At post-operative microbial assessments in Group-1. There was no difference CFU/mL of E faecalis and C albicans at post-operative microbial assessments in Groups 2-4. CONCLUSION MI with adjunct aPDT is more effective in reducing count of E faecalis and C albicans from C-shaped root canals.
Collapse
Affiliation(s)
- Mohammed Mustafa
- Department of Conservative Dental Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hadi Mohammed Alamri
- Department of Conservative Dental Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ahmed A Almokhatieb
- Department of Conservative Dental Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ali Robaian Alqahtani
- Department of Conservative Dental Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdullah S Alayad
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Darshan Devang Divakar
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.,Department of Oral Medicine and Radiology, Faculty of Dentistry, Levy Mwanawasa Medical University (LMMU), Ministry of Health, Lusaka, Zambia
| |
Collapse
|
21
|
Aroso RT, Schaberle FA, Arnaut LG, Pereira MM. Photodynamic disinfection and its role in controlling infectious diseases. Photochem Photobiol Sci 2021; 20:1497-1545. [PMID: 34705261 PMCID: PMC8548867 DOI: 10.1007/s43630-021-00102-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
Photodynamic therapy is witnessing a revival of its origins as a response to the rise of multi-drug resistant infections and the shortage of new classes of antibiotics. Photodynamic disinfection (PDDI) of microorganisms is making progresses in preclinical models and in clinical cases, and the perception of its role in the clinical armamentarium for the management of infectious diseases is changing. We review the positioning of PDDI from the perspective of its ability to respond to clinical needs. Emphasis is placed on the pipeline of photosensitizers that proved effective to inactivate biofilms, showed efficacy in animal models of infectious diseases or reached clinical trials. Novel opportunities resulting from the COVID-19 pandemic are briefly discussed. The molecular features of promising photosensitizers are emphasized and contrasted with those of photosensitizers used in the treatment of solid tumors. The development of photosensitizers has been accompanied by the fabrication of a variety of affordable and customizable light sources. We critically discuss the combination between photosensitizer and light source properties that may leverage PDDI and expand its applications to wider markets. The success of PDDI in the management of infectious diseases will ultimately depend on the efficacy of photosensitizers, affordability of the light sources, simplicity of the procedures, and availability of fast and efficient treatments.
Collapse
Affiliation(s)
- Rafael T Aroso
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Fábio A Schaberle
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Luís G Arnaut
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal.
| | - Mariette M Pereira
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal.
| |
Collapse
|
22
|
Influence of Incubation Time on Ortho-Toluidine Blue Mediated Antimicrobial Photodynamic Therapy Directed against Selected Candida Strains-An In Vitro Study. Int J Mol Sci 2021; 22:ijms222010971. [PMID: 34681632 PMCID: PMC8536188 DOI: 10.3390/ijms222010971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 12/25/2022] Open
Abstract
(1) Background and the aim: The appropriate incubation time in the antimicrobial photodynamic therapy protocol seems to have a huge impact on the efficacy of this process. This is particularly important in relation to Candida strains, due to the size of these cells and the presence of the cell wall. The aims of this study were to determine the optimal incubation time needed for the absorption of toluidine blue by cells of C. albicans, C. glabrata, C. krusei and C. parapsilosis using direct observation by optical microscopy, and to evaluate the efficacy of TBO-mediated aPDT on planktonic cells of these strains. (2) Methods: The microscopic evaluation consisted of taking a series of images at a magnification of 600× and counting the % of stained cells. The in vitro effect of TBO-mediated aPDT combined with a diode laser (635 nm, 400mW, 12 J/cm2, CW) on the viability of yeast cells with different incubation times was evaluated. (3) Results: The presence of TBO within the cytoplasm was observed in all tested Candida strains and at all microscopic evaluation times. However, the highest percentages of cells were stained at 7 and 10 min. The highest % reduction of CFU/mL after TBO-mediated aPDT against Candida was obtained for the strain C. albicans ATCC 10,231 and it was 78.55%. (4) Conclusions: TBO-mediated aPDT against Candida was effective in reducing the number of CFU/mL at all assessed incubation times. However, the most efficient period for almost all strains was 7–10 min.
Collapse
|
23
|
Labban N, Taweel SMA, ALRabiah MA, Alfouzan AF, Alshiddi IF, Assery MK. Efficacy of Rose Bengal and Curcumin mediated photodynamic therapy for the treatment of denture stomatitis in patients with habitual cigarette smoking: A randomized controlled clinical trial. Photodiagnosis Photodyn Ther 2021; 35:102380. [PMID: 34087468 DOI: 10.1016/j.pdpdt.2021.102380] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/14/2021] [Accepted: 05/28/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Cigarette smoking in conjugation with bad oral hygiene is considered a typical predisposing factor for many oral diseases including denture stomatitis. This study investigated the effect of Rose Bengal (RB)-and Curcumin (CUR)-mediated photodynamic therapy (PDT) in comparison with nystatin therapy in the intervention of denture stomatitis in cigarette smokers. METHODS Overall, 45 habitual cigarette smokers aged ~58 years having denture stomatitis were categorized into three groups: Group-I - RB-mediated PDT, Group-II - CUR-mediated PDT, and Group-III - Nystatin therapy. The primary outcome of the interest was: counts of Candida colony from denture surface and palatal mucosa, calculated as CFU/mL, whereas the prevalence of Candida species determined in 3 research groups comprised the secondary outcome. Oral swab specimens were gathered from the denture surfaces and palatal mucosa. All clinical assessments were performed at baseline, 6 weeks, and 12 weeks. RESULTS C. albicans was the most prevalent yeast identified on both denture surfaces and palatal mucosa, followed by C. tropicalis and C. glabrata. A considerable decrease in the CFU/mL scores were observed in Group-I and Group-II at the end of the interventions and on the 12-week follow-up (p<0.05). Group-I, II, and III demonstrated clinical efficacy rates of 53%, 51%, and 49%, respectively. CONCLUSION CUR-and RB-mediated PDT was found to be as effective as topical Nystatin therapy for the intervention of denture stomatitis among cigarette smokers.
Collapse
Affiliation(s)
- Nawaf Labban
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University. P. O. Box 60169, Riyadh 11545, Saudi Arabia.
| | - Sara Mohammad Al Taweel
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University. P. O. Box 60169, Riyadh 11545, Saudi Arabia
| | - Mohammed A ALRabiah
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University. P. O. Box 60169, Riyadh 11545, Saudi Arabia
| | - Afnan F Alfouzan
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University. P. O. Box 60169, Riyadh 11545, Saudi Arabia
| | - Ibraheem F Alshiddi
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University. P. O. Box 60169, Riyadh 11545, Saudi Arabia
| | - Mansour K Assery
- Department of Prosthodontics, Riyadh Elm University, Riyadh, Saudi Arabia
| |
Collapse
|
24
|
Aroso RT, Piccirillo G, Arnaut ZA, Gonzalez AC, Rodrigues FM, Pereira MM. Photodynamic inactivation of influenza virus as a potential alternative for the control of respiratory tract infections. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
25
|
Wang Y, Guo X, Zhou S, Wang L, Fang Y, Xing L, Zhao Y, Zhang LP, Qiu H, Zeng J, Gu Y. Selective photodynamic inactivation of Helicobacter pylori by a cationic benzylidene cyclopentanone photosensitizer - an in vitro and ex vivo study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 223:112287. [PMID: 34454316 DOI: 10.1016/j.jphotobiol.2021.112287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 07/28/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
The rise in the antibiotic resistance rate of Helicobacter pylori has led to an increasing eradication failure of this carcinogenic bacterial pathogen worldwide. This underlines the need for alternative antibacterial strategies against H. pylori infection. Antimicrobial photodynamic therapy (aPDT) is a promising non-pharmacological antibacterial technology. In this study, the selective killing activities of three benzylidene cyclopentanone (BCP) photosensitizers (Y1, P1 and P3) towards H. pylori over normal human gastric epithelial GES-1 cells were evaluated and the ex vivo photodynamic inactivation effect was preliminarily assessed on twelve H. Pylor-infected mice. Results showed that under the irradiation of 24 J/cm2 532 nm laser, Y1, P1 and P3 at 2.5 μM induced a 3-log10 reduction of H. pylori CFU (99.9% killing). Confocal images showed that P3, unlike Y1 and P1, could not be uptaken by GES-1 cells. P3 at 2.5 to 20 μM showed not significant (p > 0.05) phototoxicity to GES-1 cells, nevertheless, Y1 and P1 under the same concentrations exhibited remarkable phototoxicity to GES-1 cells. In the co-culture of H. pylori and GES-1 cells, P3 at 2.5 μM led to a complete eradication of H. pylori under the irradiation of 24 J/cm2 532 nm laser. While for the GES-1 cells, no significant (p > 0.05) phototoxicity was observed under the same aPDT dosage. The ex vivo experiments showed that P3 mediated aPDT resulted in 82.4% to 100% reduction of H. pylori CFU without damaging the gastric mucosa. To sum up, P3 is a promising anti-H. pylori photosensitizer with the ability to selectively photo-inactivate H. pylori while sparing normal gastric tissues.
Collapse
Affiliation(s)
- Ying Wang
- Department of Laser Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Xianghuan Guo
- Department of Laser Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Shaona Zhou
- Department of Laser Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Leili Wang
- Department of Microbiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yanyan Fang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Limei Xing
- Department of Laser Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Yuxia Zhao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Li-Peng Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haixia Qiu
- Department of Laser Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Jing Zeng
- Department of Laser Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Ying Gu
- Department of Laser Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China; Hainan Hospital of Chinese PLA General Hospital, Sanya 572013, China.
| |
Collapse
|
26
|
Association of Graphene Silver Polymethyl Methacrylate (PMMA) with Photodynamic Therapy for Inactivation of Halitosis Responsible Bacteria in Denture Wearers. NANOMATERIALS 2021; 11:nano11071643. [PMID: 34201467 PMCID: PMC8305032 DOI: 10.3390/nano11071643] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
(1) Background: Poor hygiene and denture presence in the oral cavity are factors that favor bacterial accumulation, the cause of halitosis and of various oral and general diseases. Aim: This study aimed to evaluate the possibility of inactivating bacteria associated with halitosis in acrylic denture wearers using polymethyl methacrylate resin enhanced with graphene silver nanoparticles and the effect of the resin association with extra oral photodynamic therapy. (2) Methods: Graphene silver nanoparticles in 1 and 2 wt% were added to a commercial acrylic resin powder. Three study groups containing samples from the three different materials were established. The first group was not exposed to the light treatment, and the other two were exposed to red light (laser and light emitting diode) after photosensitizer placement on the disk’s surface. Samples were incubated with Porphyromonas gingivalis and Enterococcus faecalis. (3) Results: For both bacterial strains, inhibition zones were obtained, showing significant differences for the light-treated samples. (4) Conclusions: Denture resins with antibacterial properties associated with extra oral photodynamic therapy exhibited enhanced antibacterial effects. The procedure could be used as a safer and more efficient alternative technique against halitosis and oral infections in denture wearers.
Collapse
|
27
|
Hesse J, Schmalfuss A, Kvaal SI. Photodynamic therapy of oral lichen planus. Photochem Photobiol Sci 2021; 19:1271-1279. [PMID: 32945823 DOI: 10.1039/d0pp00249f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Oral lichen planus (OLP) is a chronic inflammatory and immune-mediated disease affecting the oral mucosa. OLP presents with asymptomatic, lacelike white stripes and/or symptomatic red, ulcerated mucous membranes. Eating, drinking and oral hygiene procedures may be painful resulting in reduced quality of life (QOL). The histopathological picture is a zone of cellular infiltrate, mainly CD8+ cells, in the superficial layer of the connective tissue and signs of liquefaction degeneration of the basal membrane. Conventional treatment is corticosteroids. Local and systemic side effects are common, and patients may develop drug resistance. The intention with this article is to demonstrate the heterogeneity in photodynamic therapy (PDT) of OLP. A search in PubMed, Embase (Ovid) and Medline (Ovid) identified seventeen clinical studies investigating PDT of OLP. Only five were randomised controlled studies and the study groups varied from 5 to 50 patients. Five different photosensitisers or precursors were tested. Both broadband spectrum lamps, lasers and light-emitting-diodes (LEDs), with wavelengths from 420 nm to 682 nm, were used. The number of treatment sessions varied from one to ten. The patients were followed up for 0 to 48 months, but in thirteen studies the post treatment observation time was ≤6 months. Single arm studies demonstrated improvement of OLP except in one study. In all controlled studies except for one, PDT was superior or equal to conventional treatment. The majority of patients experienced a slight burning sensation during light activation, but no serious adverse events were reported. Only few studies examined the effect of PDT on a cellular level.
Collapse
Affiliation(s)
- Juliane Hesse
- University of Oslo, Faculty of Dentistry, Institute of Clinical Dentistry, Department of Oral Surgery and Oral Medicine, Oslo, Norway. and Public Dental Health Service Competence Centre of Northern Norway, Tromsø, Norway
| | - Andreas Schmalfuss
- UiT, The Arctic University of Norway, Faculty of Health Science, Department of Clinical Dentistry, Tromsø, Norway
| | - Sigrid I Kvaal
- University of Oslo, Faculty of Dentistry, Institute of Clinical Dentistry, Department of Oral Surgery and Oral Medicine, Oslo, Norway.
| |
Collapse
|
28
|
Rapacka-Zdończyk A, Woźniak A, Michalska K, Pierański M, Ogonowska P, Grinholc M, Nakonieczna J. Factors Determining the Susceptibility of Bacteria to Antibacterial Photodynamic Inactivation. Front Med (Lausanne) 2021; 8:642609. [PMID: 34055830 PMCID: PMC8149737 DOI: 10.3389/fmed.2021.642609] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/12/2021] [Indexed: 01/23/2023] Open
Abstract
Photodynamic inactivation of microorganisms (aPDI) is an excellent method to destroy antibiotic-resistant microbial isolates. The use of an exogenous photosensitizer or irradiation of microbial cells already equipped with endogenous photosensitizers makes aPDI a convenient tool for treating the infections whenever technical light delivery is possible. Currently, aPDI research carried out on a vast repertoire of depending on the photosensitizer used, the target microorganism, and the light delivery system shows efficacy mostly on in vitro models. The search for mechanisms underlying different responses to photodynamic inactivation of microorganisms is an essential issue in aPDI because one niche (e.g., infection site in a human body) may have bacterial subpopulations that will exhibit different susceptibility. Rapidly growing bacteria are probably more susceptible to aPDI than persister cells. Some subpopulations can produce more antioxidant enzymes or have better performance due to efficient efflux pumps. The ultimate goal was and still is to identify and characterize molecular features that drive the efficacy of antimicrobial photodynamic inactivation. To this end, we examined several genetic and biochemical characteristics, including the presence of individual genetic elements, protein activity, cell membrane content and its physical properties, the localization of the photosensitizer, with the result that some of them are important and others do not appear to play a crucial role in the process of aPDI. In the review, we would like to provide an overview of the factors studied so far in our group and others that contributed to the aPDI process at the cellular level. We want to challenge the question, is there a general pattern of molecular characterization of aPDI effectiveness? Or is it more likely that a photosensitizer-specific pattern of molecular characteristics of aPDI efficacy will occur?
Collapse
Affiliation(s)
| | - Agata Woźniak
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Klaudia Michalska
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Pierański
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Patrycja Ogonowska
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Mariusz Grinholc
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Nakonieczna
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
29
|
Wiench R, Skaba D, Matys J, Grzech-Leśniak K. Efficacy of Toluidine Blue-Mediated Antimicrobial Photodynamic Therapy on Candida spp. A Systematic Review. Antibiotics (Basel) 2021; 10:antibiotics10040349. [PMID: 33806003 PMCID: PMC8064486 DOI: 10.3390/antibiotics10040349] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/13/2022] Open
Abstract
The effectiveness of antimicrobial photodynamic therapy (aPDT) in the treatment of oral yeast infections was examined many times in recent years. The authors of this review tried to address the question: "Should TBO (toluidine blue ortho)-mediated aPDT be considered a possible alternative treatment for oral candidiasis?". PubMed/Medline and the Cochrane Central Register of Controlled Trials (CEN-TRAL) databases were searched from 1997 up to the 27th of October 2020 using a combination of the following keywords: (Candida OR Candidiasis oral OR Candidosis oral OR denture stomatitis) AND (toluidine blue OR photodynamic therapy OR aPDT OR photodynamic antimicrobial chemotherapy OR PACT OR photodynamic inactivation OR PDI). Animal studies or in vitro studies involving Candida albicans (C. albicans) and/or nonalbicans stain, randomized clinical trials (RCT) involving patients with oral candidiasis or denture stomatitis published solely in English language were included. Candida elimination method in animal, in vitro studies and RCT used was TBO-mediated aPDT. Exactly 393 studies were taken into consideration. Then, after analyzing titles and abstracts of said studies, 361 were excluded. Only 32 studies ended up being selected for in-depth screening, after which 21 of them were included in this study. All studies reported the antifungal effectiveness of aPDT with TBO against C. albicans and non-albicans Candida. In studies conducted with planktonic cells, only one study showed eradication of C. albicans. All others showed partial elimination and only one of them was not statistically significant. Experiments on yeast biofilms, in all cases, showed partial, statistically significant cell growth inhibition and weight reduction (a reduction in the number of cells-mainly hyphae) and the mass of extracellular polymeric substance (EPS). In vivo aPDT mediated by TBO exhibits antifungal effects against oral Candida spp.; however, its clinical effectiveness as a potent therapeutic strategy for oral yeast infections requires further investigation.
Collapse
Affiliation(s)
- Rafał Wiench
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (R.W.); (D.S.)
| | - Dariusz Skaba
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (R.W.); (D.S.)
| | - Jacek Matys
- Laser Laboratory Dental Surgery Department, Medical University of Wroclaw, 50-425 Wroclaw, Poland;
| | - Kinga Grzech-Leśniak
- Laser Laboratory Dental Surgery Department, Medical University of Wroclaw, 50-425 Wroclaw, Poland;
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23284, USA
- Correspondence:
| |
Collapse
|
30
|
Tang J, Tang G, Niu J, Yang J, Zhou Z, Gao Y, Chen X, Tian Y, Li Y, Li J, Cao Y. Preparation of a Porphyrin Metal-Organic Framework with Desirable Photodynamic Antimicrobial Activity for Sustainable Plant Disease Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2382-2391. [PMID: 33605718 DOI: 10.1021/acs.jafc.0c06487] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Considering the severity of plant pathogen resistance toward commonly used agricultural microbicides, as well as the potential threats of agrichemicals to the eco-environment, there is a pressing need for antimicrobial approaches that are capable of inactivating pathogens efficiently without the risk of inducing resistances and harm. In this work, a porphyrin metal-organic framework (MOF) nanocomposite was constructed by incorporating 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin tetra(p-toluenesulfonate) (TMPyP) as a photosensitizer (PS) in the cage of a variant MOF (HKUST-1) to efficiently produce singlet oxygen (1O2) to inactivate plant pathogens under light irradiation. The results showed that the prepared PS@MOF had a loading rate of PS about 12% (w/w) and excellent and broad-spectrum photodynamic antimicrobial activity in vitro against three plant pathogenic fungi and two pathogenic bacteria. Moreover, PS@MOF showed outstanding control efficacy against Sclerotinia sclerotiorum on cucumber in the pot experiment. Allium cepa chromosome aberration assays and safety evaluation on cucumber and Chinese cabbage indicated that PS@MOF had no genotoxicity and was safe to plants. Thus, porphyrin MOF demonstrated a great potential as an alternative and efficient new microbicide for sustainable plant disease management.
Collapse
Affiliation(s)
- Jingyue Tang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Gang Tang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Junfan Niu
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jiale Yang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhiyuan Zhou
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yunhao Gao
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xi Chen
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yuyang Tian
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yan Li
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jianqiang Li
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yongsong Cao
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
31
|
Role of antimicrobial photodynamic therapy in reducing whole salivary oral yeasts colonization in type-2 diabetic and non-diabetic patients with and without dental implants. Photodiagnosis Photodyn Ther 2021; 33:102183. [PMID: 33454393 DOI: 10.1016/j.pdpdt.2021.102183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The aim was to assess the impact of antimicrobial photodynamic therapy (aPDT) in reducing whole salivary oral yeasts colonization in type-2 diabetic and non-diabetic patients with dental implants. METHODS Type-2 diabetic and self-reported non-diabetic patients were included. Participants were divided into the following groups: Group-1: Type-2 diabetic patients with dental implants; Group-2: Non-diabetic patients with dental implants; Group-3: Type-2 diabetic patients without dental prostheses; Group-4: Non-diabetic patients without dental prostheses. In each group, participants were subdivided into 2-sub-groups. In the test-subgroup, participants received routine oral hygiene maintenance instructions (OHMI) and underwent full mouth disinfection using aPDT; and in the control-group, participants received OHMI alone. Unstimulated whole saliva samples were collected, hemoglobin A1c levels were measured and yeast colonization was assessed at baseline and at 3-months' follow-up in all groups. Sample-size estimation was done and group-comparisons were done. P-values <0.01 were considered statistically significant. RESULTS At baseline, the mean oral yeasts colonization was significantly higher among patients in Group-1 (P < 0.001) and 3 (P < 0.001) compared with individuals in groups 2 (P < 0.001) and 4 (P < 0.001). At baseline and at 3-months of follow-up, the mean HbA1c levels and oral yeasts colonization were significantly higher among patients in Group-1 (P < 0.001) and 3 (P < 0.001) compared with individuals in groups 2 (P < 0.001) and 4 (P < 0.001). CONCLUSION In the short-term, routine OHMI with adjunct aPDT is more effective in reducing whole salivary oral yeasts counts than OHMI alone in patients with and without dental implants.
Collapse
|
32
|
Klausen M, Ucuncu M, Bradley M. Design of Photosensitizing Agents for Targeted Antimicrobial Photodynamic Therapy. Molecules 2020; 25:E5239. [PMID: 33182751 PMCID: PMC7696090 DOI: 10.3390/molecules25225239] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022] Open
Abstract
Photodynamic inactivation of microorganisms has gained substantial attention due to its unique mode of action, in which pathogens are unable to generate resistance, and due to the fact that it can be applied in a minimally invasive manner. In photodynamic therapy (PDT), a non-toxic photosensitizer (PS) is activated by a specific wavelength of light and generates highly cytotoxic reactive oxygen species (ROS) such as superoxide (O2-, type-I mechanism) or singlet oxygen (1O2*, type-II mechanism). Although it offers many advantages over conventional treatment methods, ROS-mediated microbial killing is often faced with the issues of accessibility, poor selectivity and off-target damage. Thus, several strategies have been employed to develop target-specific antimicrobial PDT (aPDT). This includes conjugation of known PS building-blocks to either non-specific cationic moieties or target-specific antibiotics and antimicrobial peptides, or combining them with targeting nanomaterials. In this review, we summarise these general strategies and related challenges, and highlight recent developments in targeted aPDT.
Collapse
Affiliation(s)
- Maxime Klausen
- School of Chemistry and the EPSRC IRC Proteus, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK;
| | - Muhammed Ucuncu
- School of Chemistry and the EPSRC IRC Proteus, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK;
- Department of Analytical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir 35620, Turkey
| | - Mark Bradley
- School of Chemistry and the EPSRC IRC Proteus, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK;
| |
Collapse
|
33
|
Liu HQ, An YW, Li ZW, Li WX, Yuan B, Wang JC, Jin HT, Wang C. Sinoporphyrin sodium, a novel sensitizer for photodynamic and sonodynamic therapy. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AbstractSinoporphyrin sodium (DVDMS) is a novel sensitizer discovered by Professor Fang Qi-Cheng and widely used in photodynamic (PDT) and sonodynamic therapy (SDT). We searched databases including PubMed, Web of Science, CNKI, etc. for system review of its progress. We found that, both DVDMS-PDT and -SDT had been proven effective for inhibiting tumor growth and mechanisms involved reactive oxygen species, autophagy, and mitochondrial apoptosis pathways. Material advances enhanced antitumor effects and expanded its application. The safety of DVDMS in animals was evaluated, and metabolic parameters were uncovered. Additionally, DVDMS-PDT also exhibited therapeutic effects on non-neoplastic diseases like psoriasis and bacterial infections. Two phase I clinical trials of DVDMS have been documented, but recruitments had still not been completed. In conclusion, DVDMS is a promising sensitizer for both PDT and SDT; however, there are some shortcomings in previous studies like inconsistent treatment parameters, which need systematic assessments in future. Moreover, more mechanisms such as the role of autophagy need to be discovered. Further evidence of the safety and effectiveness of new materials are needed, and the application in non-neoplastic diseases like actinic keratosis and fungal infection deserves further development. Above all, promoting its clinical applications is the most important goal.
Collapse
Affiliation(s)
- Han-Qing Liu
- Research & Education Department, Shenzhen Samii Medical Center, Shenzhen, Guangdong, 518118, China
| | - Ya-Wen An
- Research & Education Department, Shenzhen Samii Medical Center, Shenzhen, Guangdong, 518118, China
| | - Zhi-Wen Li
- Research & Education Department, Shenzhen Samii Medical Center, Shenzhen, Guangdong, 518118, China
| | - Wei-Xin Li
- Research & Education Department, Shenzhen Samii Medical Center, Shenzhen, Guangdong, 518118, China
| | - Bo Yuan
- Research & Education Department, Shenzhen Samii Medical Center, Shenzhen, Guangdong, 518118, China
| | - Jian-Chun Wang
- Research & Education Department, Shenzhen Samii Medical Center, Shenzhen, Guangdong, 518118, China
| | - Hong-Tao Jin
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No.2 of Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Cheng Wang
- Research & Education Department, Shenzhen Samii Medical Center, Shenzhen, Guangdong, 518118, China
| |
Collapse
|
34
|
Monfrecola G, Megna M, Rovati C, Arisi M, Rossi M, Calzavara-Pinton I, Fabbrocini G, Calzavara-Pinton P. A Critical Reappraisal of Off-Label Use of Photodynamic Therapy for the Treatment of Non-Neoplastic Skin Conditions. Dermatology 2020; 237:262-276. [PMID: 32554971 DOI: 10.1159/000507926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/16/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In the past 30 years, topical photodynamic therapy (PDT) has been investigated for the treatment of a broad spectrum of cosmetic, inflammatory, and infectious skin conditions with variable, and often contrasting, results. However, the non-expert clinician may be in difficulty evaluating these results because different sensitizers, concentrations, formulations, light sources, and irradiation protocols have been used. In addition, many of these studies have poor quality design being case reports and uncontrolled studies of few cases. SUMMARY With the aim to clarify the potential usefulness of PDT for the treatment of infectious and inflammatory skin diseases as well as selected cosmetic indications, we searched for randomized controlled clinical trials, non-randomized comparative studies, retrospective studies, and case series studies with a number of at least 10 patients, published since 1990. Later, we reappraised the results in order to give a simple critical overview. Key Messages: Evidence from the literature seems to strongly support the use of ALA- and MAL-PDT for the treatment of common skin diseases such as acne, warts, condylomata, and Leishmania skin infection and for photorejuvenation, i.e., the correction of selected cosmetic changes of aging and photoaging. For other disorders, the level of evidence and strength of recommendation are lower, and controlled randomized studies with prolonged follow-ups are necessary in order to assess the clinical usefulness and other potential advantages over current treatment options.
Collapse
Affiliation(s)
- Giuseppe Monfrecola
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Matteo Megna
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Chiara Rovati
- Dermatology Department, University of Brescia, Brescia, Italy
| | | | | | | | - Gabriella Fabbrocini
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
35
|
Fonseca G, Dourado D, Barreto M, Cavalcanti M, Pavelski M, Ribeiro L, Frigo L. Antimicrobial Photodynamic Therapy (aPDT) for decontamination of high-speed handpieces: A comparative study. Photodiagnosis Photodyn Ther 2020; 30:101686. [DOI: 10.1016/j.pdpdt.2020.101686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/05/2020] [Accepted: 02/14/2020] [Indexed: 12/28/2022]
|
36
|
Malik NKA, Alkadhi OH. Effectiveness of mechanical debridement with and without antimicrobial photodynamic therapy against oral yeasts in children with gingivitis undergoing fixed orthodontic therapy. Photodiagnosis Photodyn Ther 2020; 31:101768. [PMID: 32305653 DOI: 10.1016/j.pdpdt.2020.101768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/26/2020] [Accepted: 04/02/2020] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The aim was to assess the effectiveness of mechanical debridement (MD) and antimicrobial photodynamic therapy (aPDT) against oral yeasts in children with gingivitis undergoing fixed orthodontic therapy (FOT). METHODS Individuals undergoing orthodontic treatment were included. Patients were randomly divided into 2-groups. In the test-group, patients underwent MD with adjuvant aPDT; and in the control-group, patients underwent MD alone. Demographic information was recorded using a questionnaire. An ultrasonic scaler was used to perform MD and aPDT was done using methylene blue and visible light. In both groups, gingival index, unstimulated whole salivary flow rate and oral yeasts counts were measured at baseline and compared at 6-months' follow-up. Group comparisons were performed and P < 0.05 was selected as an indicator of statistical significance. RESULTS Eighteen (10 males and 8 females) and 18 individuals (9 males and 9 females) were included in the test- and control groups. The mean age of individuals in the test and control groups were 16.6 ± 0.5 and 16.8 ± 0.4 years, respectively. At 6-months' follow-up, the GI was comparable among patients in the test- and control-group. In the test-group, the CFU/ml of oral yeasts were significantly higher at baseline compared with 6-months' follow-up (P < 0.05). In the control-group, there was no statistically significant difference in the CFU/ml of oral yeasts at baseline and 6-months' follow-up. CONCLUSION aPDT is a useful adjuvant to MD in reducing whole salivary oral yeasts counts among adolescents undergoing orthodontic treatment. In the sort-term, MD with and without aPDT is useful in reducing GI in adolescents undergoing orthodontic treatment.
Collapse
Affiliation(s)
- Naif Khalid Al Malik
- Department of Preventive Dental Science, Division of Orthodontics, Riyadh Elm University, Riyadh, Saudi Arabia.
| | - Omar Hamad Alkadhi
- Department of Preventive Dental Science, Division of Orthodontics, Riyadh Elm University, Riyadh, Saudi Arabia.
| |
Collapse
|
37
|
Reinhardt LC, Nascente PS, Ribeiro JS, Guimarães VBS, Etges A, Lund RG. Sensitivity to antifungals by Candida spp samples isolated from cases of chronic atrophic candidiasis (CAC). BRAZ J BIOL 2020; 80:266-272. [PMID: 31291399 DOI: 10.1590/1519-6984.190454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 09/10/2018] [Indexed: 01/23/2023] Open
Abstract
The treatment of choice for chronic atrophic candidiasis (CAC), also known as denture stomatitis, is topical antifungal therapy. This study aimed to isolate, identify, and assess the antifungal susceptibility of Candida species from mucosal sites in denture wearers with a diagnosis of CAC and determine the prevalence of associated variables. The sample consisted of 44 patients wearing complete or partial dentures who had a clinical diagnosis of CAC. Using sterile cotton swabs, specimens were collected from the oral mucosa of all patients and grown at 30ºC for 48 h in CHROMagar Candida, as a means of isolating and screening the species. The complementary identification of the species was performed using the VITEK 2 automated system (BioMérieux), as well as the determination of their susceptibility to antifungal agents. Data were analyzed using the chi-square test. STATA 13.1 was used for statistical analysis (α = 5%). Of 44 patients with CAC, 33 (75%) had lesions classified as Newton type II. Yeasts were isolated in 38 cases. The most prevalent species was Candida albicans. None of the isolates were resistant to the antifungals tested. Our findings suggest that current indications for antifungal agents are appropriate. Also, antifungal susceptibility testing and proper fungal identification can help dentists to determine the optimal course of treatment for CAC.
Collapse
Affiliation(s)
- L C Reinhardt
- Programa de Pós-graduação em Odontologia - PPGO, Laboratório de Microbiologia Oral, Faculdade de Odontologia, Universidade Federal de Pelotas - UFPel, Rua Gonçalves Chaves, 457, Sala 702/3, CEP , Pelotas, RS, Brasil
| | - P S Nascente
- Programa de Pós-graduação em Bioquímica e Bioprospecção - PPGBBio, Departamento de Microbiologia e Parasitologia, Laboratório de Micologia, Universidade Federal de Pelotas - UFPel, Campus Universitário Capão do Leão, s/n, , Capão do Leão, RS, Brasil
| | - J S Ribeiro
- Programa de Pós-graduação em Odontologia - PPGO, Laboratório de Microbiologia Oral, Faculdade de Odontologia, Universidade Federal de Pelotas - UFPel, Rua Gonçalves Chaves, 457, Sala 702/3, CEP , Pelotas, RS, Brasil
| | - V B S Guimarães
- Programa de Pós-graduação em Odontologia - PPGO, Laboratório de Microbiologia Oral, Faculdade de Odontologia, Universidade Federal de Pelotas - UFPel, Rua Gonçalves Chaves, 457, Sala 702/3, CEP , Pelotas, RS, Brasil
| | - A Etges
- Centro de Diagnóstico e Doenças da Boca - CDDB, Faculdade de Odontologia, Universidade Federal de Pelotas - UFPel, Rua Gonçalves Chaves, 457, Sala 607, CEP , Pelotas, RS, Brasil
| | - R G Lund
- Programa de Pós-graduação em Odontologia - PPGO, Laboratório de Microbiologia Oral, Faculdade de Odontologia, Universidade Federal de Pelotas - UFPel, Rua Gonçalves Chaves, 457, Sala 702/3, CEP , Pelotas, RS, Brasil.,Programa de Pós-graduação em Bioquímica e Bioprospecção - PPGBBio, Departamento de Microbiologia e Parasitologia, Laboratório de Micologia, Universidade Federal de Pelotas - UFPel, Campus Universitário Capão do Leão, s/n, , Capão do Leão, RS, Brasil
| |
Collapse
|
38
|
Alqahtani F. Role of oral yeasts in the etiopathogenesis of peri-implantitis: An evidence-based literature review of clinical studies. Arch Oral Biol 2020; 111:104650. [DOI: 10.1016/j.archoralbio.2020.104650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/27/2019] [Accepted: 01/04/2020] [Indexed: 12/11/2022]
|
39
|
Lavaee F, Amanati A, Ramzi M, Naseri S, Shakiba Sefat H. Evaluation of the effect of photodynamic therapy on chemotherapy induced oral mucositis. Photodiagnosis Photodyn Ther 2020; 30:101653. [PMID: 31923632 DOI: 10.1016/j.pdpdt.2020.101653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/27/2019] [Accepted: 01/06/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND In this study the effect of photodynamic therapy on chemotherapy induced mucositis was evaluated. METHODS This randomized single blind clinical pilot evaluation evaluated the effect of PDT with methylene blue on 15 patients with chemotherapy induced bilateral oral mucositis. They were divided into 2 groups (control side and intervention side). Methylene blue was applied on the lesions of both sides, after 10 min the lesion of intervention side was irradiated by a 660 nm diode laser InGaAlP(Azor-2 K) for 10 min (power: 25 mW, dose:19.23 J/CM2, probe diameter: 0.78 cm2) for three sessions (day1,3,5) and followed on day 12. In control side only sham laser was used. Data were analyzed by Wilcoxon and Mann-Whitney test using SPSS version 22. RESULTS Comparing the WCCNR and NCI difference in different sessions between intervention and control group, represented significant improvement in oral mucositis in photodynamic therapy group for sessions 1-0, 2-0, 3-0 (P.value<0.05). CONCLUSION Photodynamic therapy can improve chemotherapy induced oral mucositis.
Collapse
Affiliation(s)
- Fatemeh Lavaee
- Oral and Dental Disease Research Center, Assistant Professor of Oral and Maxillofacial Disease Department, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Amanati
- Professor Alborzi Clinical Microbiology Research Center, Shiraz, Iran.
| | - Mani Ramzi
- Hematology Research Center, Department of Hematology, Oncology, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Setareh Naseri
- School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | |
Collapse
|
40
|
Trevisan E, Menegazzi R, Zabucchi G, Troian B, Prato S, Vita F, Rapozzi V, Grandolfo M, Borelli V. Effect of methylene blue photodynamic therapy on human neutrophil functional responses. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 199:111605. [PMID: 31473428 DOI: 10.1016/j.jphotobiol.2019.111605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 12/23/2022]
Abstract
Photodynamic therapy (PDT) has become an emerging novel therapeutic approach for treating localized microbial infections, particularly those sustained by multidrug-resistant strains. Given the irreplaceable role played by professional phagocytes in limiting infections, such as polymorphonuclear neutrophils, any newly designed antimicrobial therapeutic approach must not interfere with their function. The present investigation presents a detailed analysis of the effect of PDT on the viability and several functional responses of human polymorphonuclear neutrophils loaded with methylene blue (MB), one of the more commonly used photosensitizers in antimicrobial PDT. Taking advantage of the use of a specifically-designed optical LED array for illuminating MB-loaded human polymorphonuclear neutrophils, a number of cell functions have been assayed under miniaturized, strictly controlled and reproducible experimental conditions. The major findings of this study are the following: (1) MB-PDT increases human neutrophils adhesion and does not modify myeloperoxidase release; (2) MB-PDT markedly enhances reactive oxygen species generation that is independent of superoxide-forming phagocytic oxidase and very likely ascribable to LED-dependent excitation of accumulated methylene blue; (3) MB-PDT almost abolishes human neutrophils candidacidal activity by hindering the engulfing machinery. This in vitro study may represent a valuable reference point for future research on PDT applications for treating localized microbial infections.
Collapse
Affiliation(s)
- Elisa Trevisan
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Renzo Menegazzi
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy.
| | - Giuliano Zabucchi
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Barbara Troian
- A.P.E. Research Srl, Area Science Park, Basovizza, Trieste 34012, Italy.
| | - Stefano Prato
- A.P.E. Research Srl, Area Science Park, Basovizza, Trieste 34012, Italy.
| | - Francesca Vita
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Valentina Rapozzi
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
| | - Micaela Grandolfo
- International School for Advenced Studies, Neurobiology sector, Via Bonomea, 265, 34136 Trieste, Italy.
| | - Violetta Borelli
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy.
| |
Collapse
|
41
|
In vitro comparison of the effect of photodynamic therapy with curcumin and methylene blue on Candida albicans colonies. Photodiagnosis Photodyn Ther 2019; 26:193-198. [DOI: 10.1016/j.pdpdt.2019.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/27/2022]
|
42
|
da Silva FC, Fernandes Rodrigues PL, Santos Dantas Araújo T, Sousa Santos M, de Oliveira JM, Pereira Rosa L, de Oliveira Santos GP, de Araújo BP, Bagnato VS. Fluorescence spectroscopy of Candida albicans biofilms in bone cavities treated with photodynamic therapy using blue LED (450 nm) and curcumin. Photodiagnosis Photodyn Ther 2019; 26:366-370. [PMID: 31063859 DOI: 10.1016/j.pdpdt.2019.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/24/2022]
Abstract
Fluorescence spectroscopy may assisst in the diagnosis and control of infectious processes associated with bone lesions of the oral cavity. The aim of this study was to analyze, through fluorescence spectroscopy, Candida albicans biofilms formed in artificial bone cavities treated with photodynamic therapy (PDT) mediated with 450-nm blue light-emitting diode (LED) and curcumin. Another aim of this study was to analyze the existence of a correlation between the effectiveness of the photodynamic treatments and the fluorescence spectroscopy images. Artificial bone lesions (n = 40) were made in bovine bones and inoculated with standard suspensions of Candida albicans (ATCC 18804) for biofilm formation (14 days / 36 °C ± 1 °C). The 40 specimens were distributed among four experimental groups (n = 10): L-C- (control), L + C- (LED for 5 min), L-C+ (curcumin for 5 min), and L + C+ (PDT). Aliquots of 100 μL were collected from the bone cavities after treatments and were seeded in duplicate on Sabouraud dextrose agar for 24 h at 36 °C ± 1 °C and the colony-forming units (CFU/ mL) were counted. Before and after each treatment, the specimens were subjected to spectral fluorescence and the images were compared using the Image J program. The log10 CFU/mL were compared with Kruskal-Wallis and Dunn's Multiple Comparison post-test (significance level at 0.05). The fluorescence histogram values before and after treatment were compared using Wilcoxon test (95%).The correlation between Candida albicans log10 CFU/mL and the number of the fluorescence red pixels spectroscopy was verified using Spearman correlation test. The reduction of Candida albicans log10 CFU/mL in the L + C+ (PDT) group was the most relevant and the fluorescence spectroscopy was correlated to the microbiological result. It was concluded that there was a consistency between the number of Candida albicans log10 CFU/mL and the red pixel data of the fluorescence images, demonstrating that the fluorescence diagnostic device reflects the true microbiological condition of Candida albicans biofilms in the bone cavities during the pre-treatment and post-treatment, thus providing the clinician the ability to dynamically, simply, and instantaneously verify the performance of the treatment used.
Collapse
Affiliation(s)
- Francine Cristina da Silva
- Federal University of Bahia, Multidisciplinary Health Institute, Vitória da Conquista, Bahia, Brazil; University of São Paulo, São Carlos Institute of Physics, São Carlos, São Paulo, Brazil.
| | | | | | - Mariana Sousa Santos
- Federal University of Bahia, Multidisciplinary Health Institute, Vitória da Conquista, Bahia, Brazil.
| | | | - Luciano Pereira Rosa
- Federal University of Bahia, Multidisciplinary Health Institute, Vitória da Conquista, Bahia, Brazil; University of São Paulo, São Carlos Institute of Physics, São Carlos, São Paulo, Brazil.
| | | | - Bruno Pereira de Araújo
- Federal University of Bahia, Multidisciplinary Health Institute, Vitória da Conquista, Bahia, Brazil
| | | |
Collapse
|
43
|
Sakita KM, Conrado PCV, Faria DR, Arita GS, Capoci IRG, Rodrigues-Vendramini FAV, Pieralisi N, Cesar GB, Gonçalves RS, Caetano W, Hioka N, Kioshima ES, Svidzinski TIE, Bonfim-Mendonça PS. Copolymeric micelles as efficient inert nanocarrier for hypericin in the photodynamic inactivation of Candida species. Future Microbiol 2019; 14:519-531. [DOI: 10.2217/fmb-2018-0304] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate the efficacy of photodynamic inactivation (PDI) mediated by hypericin encapsulated in P-123 copolymeric micelles (P123-Hyp) alone and in combination with fluconazole (FLU) against planktonic cells and biofilm formation of Candida species Materials & methods: PDI was performed using P123-Hyp and an LED device with irradiance of 3.0 mW/cm2 . Results: Most of isolates (70%) were completely inhibited with concentrations up to 2.0 μmol/l of HYP and light fluence of 16.2 J/cm2. FLU-resistant strains had synergic effect with P123-HYP-PDI and FLU. The biofilm formation was inhibited in all species, in additional the changes in Candida morphology observed by scanning electron microscopy. Conclusion: P123-Hyp-PDI is a promising option to treat fungal infections and medical devices to prevent biofilm formation and fungal spread.
Collapse
Affiliation(s)
- Karina M Sakita
- Department of Analysis Clinics & Biomedicine, State University of Maringá, Paraná, Brazil
| | - Pollyanna CV Conrado
- Department of Analysis Clinics & Biomedicine, State University of Maringá, Paraná, Brazil
| | - Daniella R Faria
- Department of Analysis Clinics & Biomedicine, State University of Maringá, Paraná, Brazil
| | - Glaucia S Arita
- Department of Analysis Clinics & Biomedicine, State University of Maringá, Paraná, Brazil
| | - Isis RG Capoci
- Department of Analysis Clinics & Biomedicine, State University of Maringá, Paraná, Brazil
| | | | - Neli Pieralisi
- Department of Odontology, State University of Maringá, Paraná, Brazil
| | - Gabriel B Cesar
- Department of Chemistry, State University of Maringá, Paraná, Brazil
| | | | - Wilker Caetano
- Department of Chemistry, State University of Maringá, Paraná, Brazil
| | - Noboru Hioka
- Department of Chemistry, State University of Maringá, Paraná, Brazil
| | - Erika S Kioshima
- Department of Analysis Clinics & Biomedicine, State University of Maringá, Paraná, Brazil
| | | | | |
Collapse
|
44
|
Tunçel A, Öztürk İ, Ince M, Ocakoglu K, Hoşgör-Limoncu M, Yurt F. Antimicrobial photodynamic therapy against Staphylococcus aureus using zinc phthalocyanine and zinc phthalocyanine-integrated TiO2 nanoparticles. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619500238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Antibiotic resistance is an increasing healthcare problem worldwide. In the present study, the effects of antimicrobial photodynamic therapy (APDT) of ZnPc and ZnPc-integrated TiO2 nanoparticles (ZnPc-TiO[Formula: see text] were investigated against Staphylococcus aureus. A light emitting diode (LED) (630–700 nm, 17.4 mW/cm[Formula: see text] was used on S. aureus at different light doses (8 J/cm2 for 11 min, 16 J/cm2 for 22 min, 24 J/cm2 for 33 min) in the presence of the compounds under the minimum inhibitory concentration values. Both compounds showed similar phototoxicity toward S. aureus when high light doses (16 and 24 J/cm[Formula: see text] were applied. In addition, the success of APDT increased with an increasing light dose.
Collapse
Affiliation(s)
- Ayça Tunçel
- Institute of Nuclear Science, Department of Nuclear Applications, Ege University, Bornova, 35100, Izmir, Turkey
| | - İsmail Öztürk
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Izmir Katip Celebi University, Bornova, 35620, Izmir, Turkey
| | - Mine Ince
- Department of Energy Systems Engineering, Faculty of Technology, Tarsus University, TR33400, Tarsus, Turkey
| | - Kasim Ocakoglu
- Department of Energy Systems Engineering, Faculty of Technology, Tarsus University, TR33400, Tarsus, Turkey
| | - Mine Hoşgör-Limoncu
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Ege University, Bornova, 35100, Izmir, Turkey
| | - Fatma Yurt
- Institute of Nuclear Science, Department of Nuclear Applications, Ege University, Bornova, 35100, Izmir, Turkey
| |
Collapse
|
45
|
Photodynamic therapy in the treatment of oral leukoplakia: A systematic review. Photodiagnosis Photodyn Ther 2018; 25:17-22. [PMID: 30391342 DOI: 10.1016/j.pdpdt.2018.10.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/03/2018] [Accepted: 10/29/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The aim of the present study was to systematically review the efficacy of photodynamic therapy (PDT) in the management of oral leukoplakia (OLK). METHODS This systematic review aimed to address the following focused question: "Is photodynamic therapy effective in the management of oral leukoplakia?'' PubMed/Medline, EMBASE, ISI Web of Knowledge, OVID, CNKI, and WANFANG DATA were searched up to and including June 2018 using different combinations of the following keywords: photodynamic therapy, leukoplakia, oral dysplasia, oral precancers, and oral premalignant lesions. RESULTS Sixteen studies were included in the present study. A total of 352 patients was included in this review, with age ranging from 20 to 79 years. Photosensitizers used were aminolevulinic acid, Photofrin, methylene blue, and chlorine-e6. Laser wavelength, duration of irradiation, and power density were 420-660 nm, 60-1000 s, and 100-150 mW/cm2, respectively. On the whole, the rates of complete response and partial response were 32.9% and 43.2%, and the sum was 76.1%. The follow-up period ranged from 1 month to 119 months. The recurrence rate of OLK was 0-60%. CONCLUSION PDT appears to be a useful therapeutic strategy in the management of oral leukoplakia as a non-surgical treatment. Further RCTs with long follow-up period, standardized PDT parameters, and comparing efficacy of PDT with various other therapies are needed to acquire definite conclusions.
Collapse
|
46
|
da Collina GA, Freire F, Santos TPDC, Sobrinho NG, Aquino S, Prates RA, da Silva DDFT, Tempestini Horliana ACR, Pavani C. Controlling methylene blue aggregation: a more efficient alternative to treat Candida albicans infections using photodynamic therapy. Photochem Photobiol Sci 2018; 17:1355-1364. [PMID: 30183793 DOI: 10.1039/c8pp00238j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Methylene Blue (MB) has been widely used in antimicrobial Photodynamic Therapy (aPDT), however, the mechanisms of action (Type I or Type II) are defined by its state of aggregation. In this sense, the identification of the relationships between aggregation, the mechanisms of action and the effectiveness against microorganisms, as well as the establishment of the means and the formulations that may favor the most effective mechanisms, are essential. Thus, the objective of this study was to assess the in vitro aPDT efficacies against Candida albicans, by using MB in vehicles which may influence the aggregation and present an oral formulation (OF) containing MB, to be used in clinical aPDT procedures. The efficacy of MB at 20 mg L-1 was tested in a range of vehicles (water, physiological solution - NaCl 0.9%, phosphate saline buffer - PBS, sodium dodecyl sulfate 0.25% - SDS and urea 1 mol L-1) in a C. albicans planktonic culture, when using 4.68 J cm-2 of 640 ± 12 nm LED for the irradiations, as well as 5 minutes of pre-irradiation time, together with measuring the UFC mL-1. Based upon these analyses, an OF containing MB in the most effective vehicle was tested in the biofilms, as a proposal for clinical applications. When comparing some of the vehicles, sodium dodecyl sulfate was the only one that enhanced an MB aPDT efficacy in a planktonic C. albicans culture. This OF was tested in the biofilms and 50 mg L-1 MB was necessary, in order to achieve some reduction in the cell viabilities after the various treatments. The light dosimetries still need further adaptations, in order for this formulation to be used in clinical applications. The present research has indicated that the development of this formulation for the control of MB aggregations may result in more effective clinical protocols.
Collapse
Affiliation(s)
- Gabriela Alves da Collina
- Post-Graduation Program of Biophotonics Applied to Health Sciences, Universidade Nove de Julho - UNINOVE, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Davoudi A, Ebadian B, Nosouhian S. Role of laser or photodynamic therapy in treatment of denture stomatitis: A systematic review. J Prosthet Dent 2018; 120:498-505. [DOI: 10.1016/j.prosdent.2018.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/05/2018] [Accepted: 01/05/2018] [Indexed: 12/30/2022]
|
48
|
Reinhardt LC, Nascente PDS, Ribeiro JS, Etges A, Lund RG. A single-center 18-year experience with oral candidiasis in Brazil: a retrospective study of 1,534 cases. Braz Oral Res 2018; 32:e92. [PMID: 30231172 DOI: 10.1590/1807-3107bor-2018.vol32.0092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 07/25/2018] [Indexed: 11/22/2022] Open
Abstract
Despite the large number of published studies about oral candidiasis and associated risk factors, reports of large single-center retrospective studies on the prevalence of oral candidiasis, risk factors, and the oral candidiasis types diagnosed more frequently in oral diagnostic reference centers are scarce. The objective of the present study was to retrospectively survey the demographic and clinical profiles of 1,534 patients diagnosed with candidiasis and treated at the Center for Diagnosis of Oral Diseases (CDOD), Pelotas Dental School, Federal University of Pelotas between 1997 and 2014. Using a retrospective, cross-sectional, epidemiological design, data on race, gender, age, systemic diseases, oral candidiasis type and location, symptoms, and harmful habits such as smoking and alcohol consumption were collected. The statistical analysis was performed using STATA version 13.1. Risk factors for chronic atrophic candidiasis (CAC) were evaluated using Poisson regression with robust variance (p ≤ 0.05). The majority of patients with oral candidiasis seen at the CDOD over the 18-year period of analysis were Caucasian women, aged 51-60 years, nonsmokers, and nondrinkers, with no systemic disease, and who wore some form of dental prostheses. CAC was the single most common clinical type of candidiasis detected, and the most frequently affected oral site was the palate. These data from a large single-center in Brazil agree with previous evidence about the clinical and demographic profiles of patients with oral candidiasis.
Collapse
Affiliation(s)
- Leandro Calcagno Reinhardt
- Post-Graduate Program in Dentistry, School of Dentistry, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brazil
| | - Patricia da Silva Nascente
- Department of Microbiology and Parasitology, Institute of Biology, Universidade Federal de Pelotas - UFPel, Capão do Leão, RS, Brazil
| | - Juliana Silva Ribeiro
- Post-Graduate Program in Dentistry, School of Dentistry, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brazil
| | - Adriana Etges
- Post-Graduate Program in Dentistry, School of Dentistry, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brazil
| | - Rafael Guerra Lund
- Post-Graduate Program in Dentistry, School of Dentistry, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brazil
| |
Collapse
|
49
|
Ahrari F, Shahabi M, Fekrazad R, Eslami N, Mazhari F, Ghazvini K, Emrani N. Antimicrobial photodynamic therapy of Lactobacillus acidophilus by indocyanine green and 810-nm diode laser. Photodiagnosis Photodyn Ther 2018; 24:145-149. [PMID: 30153475 DOI: 10.1016/j.pdpdt.2018.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/19/2018] [Accepted: 08/24/2018] [Indexed: 12/29/2022]
Abstract
This study investigated the efficacy of photodynamic therapy (PDT) using EmunDo as a photosensitizer against Lactobacillus acidophilus. A gallium aluminum arsenide diode laser was used in this experiment (810 nm, CW). Standard suspensions of Lactobacillus acidophilus were divided into six groups by treatment: 1) EmunDo, 2) diode laser (100 mW, 90 s), 3) diode laser (300 mW, 30 s); 4) EmunDo + diode laser (100 mW, 90 s), 5) EmunDo + diode laser (300 mW, 30 s), 6) control (no treatment). Bacterial suspensions from each group were subcultured onto the surface of MRS agar plates immediately and 24 h after treatment, and the viable microorganisms of Lactobacillus acidophilus were counted. The data were analyzed by ANOVA and student's t-test at p < 0.05. There was a significant between-group difference in the number of Lactobacillus acidophilus colonies in cell cultures obtained at 24 h after treatment (p < 0.001). The viable counts were significantly lower in EmunDo and both PDT groups, as compared to the other groups (p < 0.05). In the control and laser-irradiated groups, the number of colonies increased significantly at 24 h compared to the immediately after treatment (p < 0.05), whereas in both PDT groups, the number of colonies showed a significant reduction after 24 h of therapy (p < 0.05). Under the conditions used in this study, L. acidophilus colonies were susceptible to PDT after sensitization with EmunDo and exposure to diode laser. These findings imply that PDT is capable to reduce cariogenic bacteria, potentially leading to more conservative cavity preparation.
Collapse
Affiliation(s)
- Farzaneh Ahrari
- Dental Research Center, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Shahabi
- Dental Research Center, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Reza Fekrazad
- Department of Periodontology, Dental Faculty - Laser Research Center in Medical Science, AJA University of Medical Science, Tehran, Iran and International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Neda Eslami
- Dental Research Center, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mazhari
- Dental Material Research Center, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Department of Microbiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Emrani
- Dental Research Center, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
50
|
Affiliation(s)
- Melanie A. Hutnick
- Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Jonathan K. Pokorski
- Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
| |
Collapse
|