1
|
Sayed Tabatabaei M, Sayed Tabatabaei FA, Moghimi HR. Drug self-delivery systems: A comprehensive review on small molecule nanodrugs. BIOIMPACTS : BI 2024; 15:30161. [PMID: 40161942 PMCID: PMC11954755 DOI: 10.34172/bi.30161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 04/02/2025]
Abstract
Drug self-delivery systems are nanostructures composed of a drug as the main structural unit, having the ability of intracellular trafficking with no additional carrier. In these systems, the drug itself undertakes the functional and structural roles; thereby, the ancillary role of excipients and carrier-related limitations are circumvented and therapeutic effect is achieved at a much lower dose. Such advantages -which are mainly but not exclusively beneficial in cancer treatment- have recently led to an upsurge of research on these systems. Subsequently, various terminologies were utilized to describe them, referring to the same concept with different words. However, not all the systems developed based on the self-delivery approach are introduced using one of these keywords. Using a scoping strategy, this review aims to encompass the systems that have been developed as yet -inspired by the concept of self-delivery- and classify them in a coherent taxonomy. Two main groups are introduced based on the type of building blocks: small molecule-based nanomedicines and self-assembling hybrid prodrugs. Due to the diversity, covering the whole gamut of topics is beyond the scope of a single article, and, inevitably, the latter is just briefly introduced here, whereas the features of the former group are meticulously presented. Depending on whether the drug is merely a carrier for itself or carries a second drug as cargo, two classes of small molecule-based nanomedicines are defined (i.e., pure nanodrugs and carrier-mimicking systems, respectively), each having sub-branches. After introducing each branch and giving some examples, possible strategies for designing each particular system are visually displayed. The resultant mind map can create a macro view of the taken path and its prospects, give a profound insight into opportunities, spark new ideas, and facilitate overcoming obstacles. Taken together, one can foresee a brilliant future for self-delivery systems as a pioneering candidate for the next generation of drug delivery systems.
Collapse
Affiliation(s)
- Mahsa Sayed Tabatabaei
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamid Reza Moghimi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Zhong H, Li X, Yu N, Zhang X, Mu J, Liu T, Yuan B, Yuan X, Guo S. Fine-tuning the sequential drug release of nano-formulated mutual prodrugs dictates the combination effects. Chem Sci 2023; 14:3789-3799. [PMID: 37035705 PMCID: PMC10074403 DOI: 10.1039/d3sc00550j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Nanoformulated mutual prodrugs able to release two drugs either in order or simultaneously which significantly affected the combination effects consistently in vitro and in vivo, and links the in vitro–in vivo optimization of therapeutic effects.
Collapse
Affiliation(s)
- Haiping Zhong
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xingwei Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Na Yu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xi Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jingqing Mu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tao Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Bo Yuan
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiaoyong Yuan
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
- School of Medicine, Nankai University, Tianjin, 300071, China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300052, China
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
3
|
Guanidine–Curcumin Complex-Loaded Amine-Functionalised Hollow Mesoporous Silica Nanoparticles for Breast Cancer Therapy. Cancers (Basel) 2022; 14:cancers14143490. [PMID: 35884549 PMCID: PMC9323383 DOI: 10.3390/cancers14143490] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 01/27/2023] Open
Abstract
The current study focuses on developing a tumour-targeted functionalised nanocarrier that wraps hollow mesoporous silica nanoparticles. The guanidine carbonate and curcumin are immobilised on the surface of 3-aminopropyl-triethoxy silane (APTES)-decorated hollow mesoporous silica nanoparticles (HMSNP), as confirmed through XPS and NMR analysis. XPS analysis demonstrates that the shape of the hysteresis loops is modified and that pore volume and pore diameter are consequently decreased compared to control. Guanidine (85%) and guanidine–curcumin complex (90%) were successfully encapsulated in HMSNAP and showed a 90% effective and sustained release at pH 7.4 for up to 72 h. Acridine orange/ethidium bromide dual staining determined that GuC-HMNSAP induced more late apoptosis and necrosis at 48 and 72 h compared with Gu-HMNSAP-treated cells. Molecular investigation of guanidine-mediated apoptosis was analysed using western blotting. It was found that cleaved caspases, c-PARP, and GSK-3β (Ser9) had increased activity in MCF-7 cells. GuC-HMSNAP increased the activity of phosphorylation of oncogenic proteins such as Akt (Ser473), c-Raf (Ser249), PDK1 (Ser241), PTEN (Ser380), and GSK-3β (Ser9), thus inducing cell death in MCF-7 cells. Altogether, our findings confirm that GuC-HMNSAP induces cell death by precisely associating with tumour-suppressing proteins, which may lead to new therapeutic approaches for breast cancer therapy.
Collapse
|
4
|
Hughes JR, Miller AS, Wallace CE, Vemuri GN, Iovine PM. Biomedically Relevant Applications of Bolaamphiphiles and Bolaamphiphile-Containing Materials. Front Chem 2021; 8:604151. [PMID: 33553103 PMCID: PMC7855593 DOI: 10.3389/fchem.2020.604151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/15/2020] [Indexed: 12/28/2022] Open
Abstract
Bolaamphiphiles (BAs) are structurally segmented molecules with rich assembly characteristics and diverse physical properties. Interest in BAs as standalone active agents or as constituents of more complex therapeutic formulations has increased substantially in recent years. The preorganized amphiphilicity of BAs allows for a range of biological activities including applications that rely on multivalency. This review summarizes BA-related research in biomedically relevant areas. In particular, we review BA-related literature in four areas: gene delivery, antimicrobial materials, hydrogels, and prodrugs. We also discuss several distinguishing characteristics of BAs that impact their utility as biomedically relevant compounds.
Collapse
Affiliation(s)
| | | | | | | | - Peter M. Iovine
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA, United States
| |
Collapse
|
5
|
Yan J, Xu X, Zhou J, Liu C, Zhang L, Wang D, Yang F, Zhang H. Fabrication of a pH/Redox-Triggered Mesoporous Silica-Based Nanoparticle with Microfluidics for Anticancer Drugs Doxorubicin and Paclitaxel Codelivery. ACS APPLIED BIO MATERIALS 2020; 3:1216-1225. [DOI: 10.1021/acsabm.9b01111] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jiaqi Yan
- The Center for Drug Research and Development and Engineering & Technology Research Center for Topical Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong China
- Pharmaceutical Sciences Laboratory and Turku Bioscience Center, Åbo Akademi University, FI-20520 Turku, Finland
| | - Xiaoyu Xu
- Pharmaceutical Sciences Laboratory and Turku Bioscience Center, Åbo Akademi University, FI-20520 Turku, Finland
| | - Junnian Zhou
- Pharmaceutical Sciences Laboratory and Turku Bioscience Center, Åbo Akademi University, FI-20520 Turku, Finland
- Experimental Hematology and Biochemistry Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chang Liu
- Pharmaceutical Sciences Laboratory and Turku Bioscience Center, Åbo Akademi University, FI-20520 Turku, Finland
| | - Lirong Zhang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Jiangsu University, 212001 Zhenjiang, P.R. China
| | - Dongqing Wang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Jiangsu University, 212001 Zhenjiang, P.R. China
| | - Fan Yang
- The Center for Drug Research and Development and Engineering & Technology Research Center for Topical Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory and Turku Bioscience Center, Åbo Akademi University, FI-20520 Turku, Finland
- Department of Radiology, Affiliated Hospital of Jiangsu University, Jiangsu University, 212001 Zhenjiang, P.R. China
| |
Collapse
|
6
|
Mura S, Fattal E, Nicolas J. From poly(alkyl cyanoacrylate) to squalene as core material for the design of nanomedicines. J Drug Target 2019; 27:470-501. [PMID: 30720372 DOI: 10.1080/1061186x.2019.1579822] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review article covers the most important steps of the pioneering work of Patrick Couvreur and tries to shed light on his outstanding career that has been a source of inspiration for many decades. His discovery of biodegradable poly(alkyl cyanoacrylate) (PACA) nanoparticles (NPs) has opened large perspectives in nanomedicine. Indeed, NPs made from various types of alkyl cyanoacrylate monomers have been used in different applications, such as the treatment of intracellular infections or the treatment of multidrug resistant hepatocarcinoma. This latest application led to the Phase III clinical trial of Livatag®, a PACA nanoparticulate formulation of doxorubicin. Despite the success of PACA NPs, the development of a novel type of NP with higher drug loadings and lower burst release was tackled by the discovery of squalene-based nanomedicines where the drug is covalently linked to the lipid derivative and the resulting conjugate is self-assembled into NPs. This pioneering work was accompanied by a wide range of novel applications which mainly dealt with the management of unmet medical needs (e.g. pancreatic cancer, brain ischaemia and spinal cord injury).
Collapse
Affiliation(s)
- Simona Mura
- a Institut Galien Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay , Châtenay-Malabry , France
| | - Elias Fattal
- a Institut Galien Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay , Châtenay-Malabry , France
| | - Julien Nicolas
- a Institut Galien Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay , Châtenay-Malabry , France
| |
Collapse
|
7
|
Kushwah V, Katiyar SS, Agrawal AK, Saraf I, Singh IP, Lamprou DA, Gupta RC, Jain S. Implication of linker length on cell cytotoxicity, pharmacokinetic and toxicity profile of gemcitabine-docetaxel combinatorial dual drug conjugate. Int J Pharm 2018; 548:357-374. [PMID: 29981409 DOI: 10.1016/j.ijpharm.2018.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 01/23/2023]
Abstract
The present study investigates effect of linkers [zero length (without linker), short length linker (glycine and lysine) and long length linker (PEG1000, PEG2000 and PEG3500)] on pharmacokinetics and toxicity of docetaxel (DTX) and gemcitabine (GEM) bio-conjugates. Conjugates were synthesized via carbodiimide chemistry and characterized by 1H NMR and FTIR. Conjugation of DTX and GEM via linkers showed diverse physiochemical and plasma stability profile. Cellular uptake mechanism in MCF-7 and MDA-MB-231 cell lines revealed clathrin mediated internalization of bio-conjugates developed by using long length linkers, leading to higher cytotoxicity compared with free drug congeners. DTX-PEG3500-GEM and DTX-PEG2000-GEM demonstrated 4.21 and 3.81-fold higher AUC(0-∞) of GEM in comparison with GEM alone. DTX-PEG2000-GEM and DTX-PEG3500-GEM exhibited reduced hepato-, nephro- and haemolytic toxicity as evident via histopathology, biochemical markers and SEM analysis of RBCs. Conclusively, PEG2000 and PEG3500 significantly improved pharmacokinetics without any sign of toxicity and hence can be explored further for the development of dual-drug conjugates for better therapeutic efficacy.
Collapse
Affiliation(s)
- Varun Kushwah
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab, India; James Graham Brown Cancer Centre, University of Louisville, Louisville, KY, USA; Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, United Kingdom
| | - Sameer S Katiyar
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab, India
| | - Ashish Kumar Agrawal
- James Graham Brown Cancer Centre, University of Louisville, Louisville, KY, USA; Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (IIT BHU), Varanasi, Uttar Pradesh, India
| | - Isha Saraf
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab, India
| | - Inder Pal Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab, India
| | - Dimitrios A Lamprou
- Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, United Kingdom; School of Pharmacy, Queen's University Belfast, Lisburn Road, Belfast, United Kingdom
| | - Ramesh C Gupta
- James Graham Brown Cancer Centre, University of Louisville, Louisville, KY, USA
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab, India.
| |
Collapse
|
8
|
Emamzadeh M, Desmaële D, Couvreur P, Pasparakis G. Dual controlled delivery of squalenoyl-gemcitabine and paclitaxel using thermo-responsive polymeric micelles for pancreatic cancer. J Mater Chem B 2018; 6:2230-2239. [DOI: 10.1039/c7tb02899g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A thermoresponsive block copolymer has been developed with the capability to co-carry two drug molecules and to augment their cytotoxic properties via direct cell membrane interaction with cancer cells.
Collapse
Affiliation(s)
| | - Didier Desmaële
- Institut Galien
- UMR 8612
- CNRS
- Université Paris-Sud, Université Paris-Saclay
- Faculté de Pharmacie
| | - Patrick Couvreur
- Institut Galien
- UMR 8612
- CNRS
- Université Paris-Sud, Université Paris-Saclay
- Faculté de Pharmacie
| | | |
Collapse
|
9
|
Fumagalli G, Marucci C, Christodoulou MS, Stella B, Dosio F, Passarella D. Self-assembly drug conjugates for anticancer treatment. Drug Discov Today 2016; 21:1321-9. [DOI: 10.1016/j.drudis.2016.06.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/10/2016] [Accepted: 06/15/2016] [Indexed: 12/28/2022]
|
10
|
Meng Z, Lv Q, Lu J, Yao H, Lv X, Jiang F, Lu A, Zhang G. Prodrug Strategies for Paclitaxel. Int J Mol Sci 2016; 17:E796. [PMID: 27223283 PMCID: PMC4881612 DOI: 10.3390/ijms17050796] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 01/08/2023] Open
Abstract
Paclitaxel is an anti-tumor agent with remarkable anti-tumor activity and wide clinical uses. However, it is also faced with various challenges especially for its poor water solubility and low selectivity for the target. To overcome these disadvantages of paclitaxel, approaches using small molecule modifications and macromolecule modifications have been developed by many research groups from all over the world. In this review, we discuss the different strategies especially prodrug strategies that are currently used to make paclitaxel more effective.
Collapse
Affiliation(s)
- Ziyuan Meng
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Quanxia Lv
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Jun Lu
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Houzong Yao
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Xiaoqing Lv
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Feng Jiang
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
- The State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Aiping Lu
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Ge Zhang
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| |
Collapse
|
11
|
Gilmore KA, Lampley MW, Boyer C, Harth E. Matrices for combined delivery of proteins and synthetic molecules. Adv Drug Deliv Rev 2016; 98:77-85. [PMID: 26656604 DOI: 10.1016/j.addr.2015.11.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023]
Abstract
With the increasing advancement of synergistic, multimodal approaches to influence the treatment of infectious and non-infectious diseases, we witness the development of enabling techniques merging necessary complexity with leaner designs and effectiveness. Systems- and polypharmacology ask for multi-potent drug combinations with many targets to engage with the biological system. These demand drug delivery designs for one single drug, dual drug release systems and multiple release matrices in which the macromolecular structure allows for higher solubilization, protection and sequential or combined release profiles. As a result, nano- and micromaterials have been evolved from mono- to dual drug carriers but are also an essential part to establish multimodality in polymeric matrices. Surface dynamics of particles creating interfaces between polymer chains and hydrogels inspired the development not only of biomedical adhesives but also of injectable hydrogels in which the nanoscale material is both, adhesive and delivery tool. These complex delivery systems are segmented into two delivery subunits, a polymer matrix and nanocarrier, to allow for an even higher tolerance of the incorporated drugs without adding further synthetic demands to the nanocarrier alone. The opportunities in these quite novel approaches for the delivery of small and biological therapeutics are remarkable and selected examples for applications in cancer and bone treatments are discussed.
Collapse
Affiliation(s)
- Kelly A Gilmore
- Department of Chemistry, Vanderbilt University, 7665 Stevenson Center, Nashville, TN 37235, USA
| | - Michael W Lampley
- Department of Chemistry, Vanderbilt University, 7665 Stevenson Center, Nashville, TN 37235, USA
| | - Cyrille Boyer
- Australian Centre for Nanomedicine (ACN), School of Chemical Sciences and Engineering, University of NSW, Australia.
| | - Eva Harth
- Department of Chemistry, Vanderbilt University, 7665 Stevenson Center, Nashville, TN 37235, USA.
| |
Collapse
|
12
|
Buchy E, Valetti S, Mura S, Mougin J, Troufflard C, Couvreur P, Desmaële D. Synthesis and Cytotoxic Activity of Self-Assembling Squalene Conjugates of 3-[(Pyrrol-2-yl)methylidene]-2,3-dihydro-1H-indol-2-one Anticancer Agents. European J Org Chem 2014. [DOI: 10.1002/ejoc.201403088] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Luo C, Sun J, Sun B, He Z. Prodrug-based nanoparticulate drug delivery strategies for cancer therapy. Trends Pharmacol Sci 2014; 35:556-66. [PMID: 25441774 DOI: 10.1016/j.tips.2014.09.008] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 08/25/2014] [Accepted: 09/19/2014] [Indexed: 01/17/2023]
Abstract
Despite the rapid developments in nanotechnology and biomaterials, the efficient delivery of chemotherapeutic agents is still challenging. Prodrug-based nanoassemblies have many advantages as a potent platform for anticancer drug delivery, such as improved drug availability, high drug loading efficiency, resistance to recrystallization upon encapsulation, and spatially and temporally controllable drug release. In this review, we discuss prodrug-based nanocarriers for cancer therapy, including nanosystems based on polymer-drug conjugates, self-assembling small molecular weight prodrugs and prodrug-encapsulated nanoparticles (NPs). In addition, we discuss new trends in the field of prodrug-based nanoassemblies that enhance the delivery efficiency of anticancer drugs, with special emphasis on smart stimuli-triggered drug release, hybrid nanoassemblies, and combination drug therapy.
Collapse
Affiliation(s)
- Cong Luo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jin Sun
- Department of Biopharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, PR China.
| | - Bingjun Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Zhonggui He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|