1
|
Gutiérrez-Fuentes R, Juárez-Santacruz L, Romero-Ibarra IC, Jiménez-Pérez JL, Netzahual-Lopantzi A. Fabrication of highly biocompatible SiO 2@Au-BSA nanoconjugates: Towards a promising thermal therapy route. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 261:113064. [PMID: 39566158 DOI: 10.1016/j.jphotobiol.2024.113064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024]
Abstract
SiO2@Au nanoshells have gained relevance in recent years, especially in biomedical areas, acting as thermal therapy agents due to their high capacity to absorb light and transform it into heat that increases the temperature of the medium. Therefore, it is important to develop methodological strategies to obtain stable, highly specific and biocompatible nanoparticles. In this work, the synthesis of core-shell structures based on SiO2@Au is reported, where the growth a thin shell ⁓ 46 nm on silica platform was possible. Subsequently, optimal conditions were developed for the binding of a bovine serum albumin (BSA) protein using a thiolated linker such as mercaptoethanol. Likewise, the photothermal conversion capacity was investigated using thermal lens spectroscopy. Thermal diffusivity values were reported for the first time during the conjugation process of gold nanoshells, where an increase of 37.5 % was recorded as the conjugation was completed. Finally, the cytotoxic potential of the developed nanoconjugates was evaluated through their hemolytic rate in human red blood cells. The findings suggest high hemocompatibility of the SiO2@Au-BSA complex because they did not cause significant oxidative stress and are classified as nonhemolytic. Therefore, in this work we propose a synthesis route for a thermal agent based on SiO2@Au and bovine serum albumin, highly biocompatible and with high photothermal conversion. The results of this work aim to clarify the safety of using gold nanoshells as a thermal therapy agent.
Collapse
Affiliation(s)
- Rubén Gutiérrez-Fuentes
- Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas-Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional No. 2580, Col. Barrio la Laguna Ticomán, Del. Gustavo A. Madero, C.P. 07340, Mexico; Tecnológico de Estudios Superiores de Villa Guerrero, División de Ingeniería Electrónica, Carretera Federal Toluca - Ixtapan de La Sal. Km. 64.5, Col. La Finca, Villa Guerrero, Estado de Mexico, Mexico
| | - Libertad Juárez-Santacruz
- Centro de Investigación en Genética y Ambiente-Universidad Autónoma de Tlaxcala, Autopista San Martín-Tlaxcala Km 10.5, Ixtacuixtla, 90120 Tlaxcala, Mexico
| | - Issis Claudette Romero-Ibarra
- Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas-Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional No. 2580, Col. Barrio la Laguna Ticomán, Del. Gustavo A. Madero, C.P. 07340, Mexico
| | - José Luis Jiménez-Pérez
- Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas-Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional No. 2580, Col. Barrio la Laguna Ticomán, Del. Gustavo A. Madero, C.P. 07340, Mexico
| | - Angel Netzahual-Lopantzi
- Centro de Investigación en Genética y Ambiente-Universidad Autónoma de Tlaxcala, Autopista San Martín-Tlaxcala Km 10.5, Ixtacuixtla, 90120 Tlaxcala, Mexico.
| |
Collapse
|
2
|
Li L, Zhou Y, Sun C, Zhou Z, Zhang J, Xu Y, Xiao X, Deng H, Zhong Y, Li G, Chen Z, Deng W, Hu X, Wang Y. Fully integrated wearable microneedle biosensing platform for wide-range and real-time continuous glucose monitoring. Acta Biomater 2024; 175:199-213. [PMID: 38160859 DOI: 10.1016/j.actbio.2023.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Wearable microneedle sensors for continuous glucose monitoring (CGM) have great potential for clinical impact by allowing access to large data sets to provide individualized treatment plans. To date, their development has been challenged by the accurate wide linear range tracking of interstitial fluid (ISF) glucose (Glu) levels. Here, we present a CGM platform consisting of a three-electrode microneedle electrochemical biosensor and a fully integrated radio-chemical analysis system. The long-term performance of the robust CGM on diabetic rats was achieved by electrodepositing Prussian blue (PB), and crosslinking glucose oxidase (GOx) and chitosan to form a 3D network using glutaraldehyde (GA). After redox by GOx, PB rapidly decomposes hydrogen peroxide and mediates charge transfer, while the 3D network and graphite powder provide enrichment and release sites for Glu and catalytic products, enabling a sensing range of 0.25-35 mM. Microneedle CGM has high sensitivity, good stability, and anti-interference ability. In diabetic rats, CGM can accurately monitor Glu levels in the ISF in real-time, which are highly consistent with levels measured by commercial Glu meters. These results indicate the feasibility and application prospects of the PB-based CGM for the clinical management of diabetes. STATEMENT OF SIGNIFICANCE: This study addresses the challenge of continuous glucose monitoring system design where the narrow linear range of sensing due to the miniaturization of sensors fails to meet the monitoring needs of clinical diabetic patients. This was achieved by utilizing a three-dimensional network of glutaraldehyde cross-linked glucose oxidase and chitosan. The unique topology of the 3D network provides a large number of sites for glucose enrichment and anchors the enzyme to the sensing medium and the conductive substrate through covalent bonding, successfully blocking the escape of the enzyme and the sensing medium and shortening the electron transfer and transmission path.
Collapse
Affiliation(s)
- Lei Li
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yujie Zhou
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Chenwei Sun
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Zhengming Zhou
- Department of Nutrition and Food Hygiene, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yuanyuan Xu
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xuanyu Xiao
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Hui Deng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuting Zhong
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Guoyuan Li
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Zhiyu Chen
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Wei Deng
- Department of Orthopedics Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College Chengdu, Sichuan, 611730, China
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
| |
Collapse
|
3
|
Chowdhury NA, Wang L, Gu L, Kaya M. Exploring the Potential of Sensing for Breast Cancer Detection. APPLIED SCIENCES 2023; 13:9982. [DOI: 10.3390/app13179982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Breast cancer is a generalized global problem. Biomarkers are the active substances that have been considered as the signature of the existence and evolution of cancer. Early screening of different biomarkers associated with breast cancer can help doctors to design a treatment plan. However, each screening technique for breast cancer has some limitations. In most cases, a single technique can detect a single biomarker at a specific time. In this study, we address different types of biomarkers associated with breast cancer. This review article presents a detailed picture of different techniques and each technique’s associated mechanism, sensitivity, limit of detection, and linear range for breast cancer detection at early stages. The limitations of existing approaches require researchers to modify and develop new methods to identify cancer biomarkers at early stages.
Collapse
Affiliation(s)
- Nure Alam Chowdhury
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Lulu Wang
- Biomedical Device Innovation Center, Shenzhen Technology University, Shenzhen 518118, China
| | - Linxia Gu
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Mehmet Kaya
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL 32901, USA
| |
Collapse
|
4
|
Gouda M, Ghazzawy HS, Alqahtani N, Li X. The Recent Development of Acoustic Sensors as Effective Chemical Detecting Tools for Biological Cells and Their Bioactivities. Molecules 2023; 28:4855. [PMID: 37375410 PMCID: PMC10304203 DOI: 10.3390/molecules28124855] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
One of the most significant developed technologies is the use of acoustic waves to determine the chemical structures of biological tissues and their bioactivities. In addition, the use of new acoustic techniques for in vivo visualizing and imaging of animal and plant cellular chemical compositions could significantly help pave the way toward advanced analytical technologies. For instance, acoustic wave sensors (AWSs) based on quartz crystal microbalance (QCM) were used to identify the aromas of fermenting tea such as linalool, geraniol, and trans-2-hexenal. Therefore, this review focuses on the use of advanced acoustic technologies for tracking the composition changes in plant and animal tissues. In addition, a few key configurations of the AWS sensors and their different wave pattern applications in biomedical and microfluidic media progress are discussed.
Collapse
Affiliation(s)
- Mostafa Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Department of Nutrition & Food Science, National Research Centre, Dokki, Giza 12622, Egypt
| | - Hesham S. Ghazzawy
- Date Palm Research Center of Excellence, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Central Laboratory for Date Palm Research and Development, Agriculture Research Center, Giza 12511, Egypt
| | - Nashi Alqahtani
- Date Palm Research Center of Excellence, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
5
|
Sanati A, Esmaeili Y, Khavani M, Bidram E, Rahimi A, Dabiri A, Rafienia M, Arbab Jolfaie N, Mofrad MRK, Haghjooy Javanmard S, Shariati L, Zarrabi A. Smartphone-assisted lab-in-a-tube device using gold nanocluster-based aptasensor for detection of MUC1-overexpressed tumor cells. Anal Chim Acta 2023; 1252:341017. [PMID: 36935143 DOI: 10.1016/j.aca.2023.341017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
Developing smartphone technology for point-of-care diagnosis is one of the current favorable trends in the field of biosensors. In fact, using smartphones can provide better accessibility and facility for rapid diagnosis of diseases. On the other hand, the detection of circulating tumor cells (CTCs) is one of the recent methods for the early diagnosis of cancer. Here, a new smartphone-assisted lab-in-a-tube device is introduced for the detection of Mucin 1 (MUC1) overexpressed tumor-derived cell lines using gold nanoclusters (GNCs)-based aptasensor. Accordingly, commercial polyurethane (PU) foam was first coated with graphene oxide (GO) to increase its surface area (8.45-fold), and improve its wettability. The surface of the resulting three-dimensional PU-GO (3DPU-GO) platform was then modified by MUC1 aptamer-GNCs to provide the required sensitivity and specificity through a turn "on/off" detection system. The proposed biosensor was first optimized with a spectrophotometer method. Afterward, findings were evaluated based on the red color intensity of the lab-in-a-tube system; and indicated the high ability of the biosensor for detection of MUC1-overexpressed tumor cell lines in the range of 250-20,000 cells mL-1 with a limit of detection of 221 cells mL-1. In addition, the developed biosensor showed a decent selectivity against positive-control cell lines (MCF-7, and HT-29) in comparison to negative-control cell lines (HEK293, and L929). Notably, the results represented good accordance with reference methods including spectroscopy devices. Ultimately, the results of this work bring a new perspective to the field of point-of-care detection and can be considered in future biosensors.
Collapse
Affiliation(s)
- Alireza Sanati
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Khavani
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Elham Bidram
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Biomaterials, Nanotechnology, And Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azadeh Rahimi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezou Dabiri
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rafienia
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafise Arbab Jolfaie
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Shariati
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Biomaterials, Nanotechnology, And Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey.
| |
Collapse
|
6
|
Alawajji RA, Alsudani ZAN, Biris AS, Kannarpady GK. Biosensor Design for the Detection of Circulating Tumor Cells Using the Quartz Crystal Resonator Technique. BIOSENSORS 2023; 13:bios13040433. [PMID: 37185508 PMCID: PMC10136100 DOI: 10.3390/bios13040433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
A new mass-sensitive biosensing approach for detecting circulating tumor cells (CTCs) using a quartz crystal resonator (QCR) has been developed. A mathematical model was used to design a ring electrode-based QCR to eliminate the Gaussian spatial distribution of frequency response in the first harmonic mode, a characteristic of QCRs, without compromising the sensitivity of frequency response. An ink-dot method was used to validate the ring electrode fabricated based on our model. Furthermore, the ring electrode QCR was experimentally tested for its ability to capture circulating tumor cells, and the results were compared with a commercially available QCR with a keyhole electrode. An indirect method of surface immobilization technique was employed via modification of the SiO2 surface of the ring electrode using a silane, protein, and anti-EpCAM. The ring electrode successfully demonstrated eliminating the spatial nonuniformity of frequency response for three cancer cell lines, i.e., MCF-7, PANC-1, and PC-3, compared with the keyhole QCR, which showed nonuniform spatial response for the same cancer cell lines. These results are promising for developing QCR-based biosensors for the early detection of cancer cells, with the potential for point-of-care diagnosis for cancer screening.
Collapse
Affiliation(s)
- Raad A Alawajji
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA
- Department of Physics, College of Science, University of Basrah, Basrah 61004, Iraq
| | - Zeid A Nima Alsudani
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA
| | - Alexandrus S Biris
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA
| | - Ganesh K Kannarpady
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA
| |
Collapse
|
7
|
Garreau C, Chiappisi L, Micciulla S, Morfin I, Trombotto S, Delair T, Sudre G. Preparation of highly stable and ultrasmooth chemically grafted thin films of chitosan. SOFT MATTER 2023; 19:1606-1616. [PMID: 36752562 DOI: 10.1039/d3sm00003f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chitosan-coated surfaces are of great interest for biomedical applications (antibacterial coatings, implants, would healing, single-cell microfluidics…). However, one major limitation of chitosan-based systems is the high solubility of the polymer under acidic aqueous conditions. Herein, we describe a simple procedure to prepare extremely smooth and stable chitosan coatings. In detail, chitosan films with a low degree of N-acetylation and of thicknesses varying from 40 nm to 10 μm were grafted onto epoxy-functionalized silicon wafers via an optimized water-temperature treatment (WTT). The formation of a grafted chitosan network insoluble in acidic aqueous media (pH 3.5) was evidenced and the films were stable for at least 2 days at pH 3.5. The film morphology and the swelling behavior were characterized by atomic force microscopy (AFM) and neutron reflectivity, which showed that the film roughness was extremely low. The physical cross-linking of the films was demonstrated using infrared spectroscopy, dynamic mechanical analysis (DMA) and wide-angle X-ray scattering (WAXS). Finally, we show that the swelling behavior of such films was largely influenced by the environmental conditions, such as the pH or ionic strength of the solution.
Collapse
Affiliation(s)
- Cyrielle Garreau
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon1, INSA Lyon, Université Jean Monnet, F-69622, Villeurbanne cédex, France.
| | - Leonardo Chiappisi
- Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble F-38000, Cedex 9, France
| | - Samantha Micciulla
- Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble F-38000, Cedex 9, France
| | - Isabelle Morfin
- LIPhy, Université Grenoble Alpes CNRS, UMR 5588, 140 Avenue de la Physique, Saint Martin d'Hères F-38402, France
| | - Stéphane Trombotto
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon1, INSA Lyon, Université Jean Monnet, F-69622, Villeurbanne cédex, France.
| | - Thierry Delair
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon1, INSA Lyon, Université Jean Monnet, F-69622, Villeurbanne cédex, France.
| | - Guillaume Sudre
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon1, INSA Lyon, Université Jean Monnet, F-69622, Villeurbanne cédex, France.
| |
Collapse
|
8
|
Hosseini M, Iraji zad A, Vossoughi M, Hosseini M. L-lysine biodetector based on a TOCNFs-coated Quartz Crystal Microbalance (QCM). Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Bakhshpour M, Piskin AK, Yavuz H, Denizli A. Preparation of Notch-4 Receptor Containing Quartz Crystal Microbalance Biosensor for MDA MB 231 Cancer Cell Detection. Methods Mol Biol 2022; 2393:515-533. [PMID: 34837197 DOI: 10.1007/978-1-0716-1803-5_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Quartz crystal microbalance (QCM) is a highly sensitive system that is used as a biosensor for biomolecules and cells. Detection and characterization of cancer cells in circulation or biopsy samples is of crucial importance for cancer diagnosis. Here, we introduce approaches for breast cancer cell detection via their surface molecules. The sensor system is based on preliminary coating of QCM chip with polymeric nanoparticles to increase the surface area and allow for the attachment of proteins to the chip surface. This is followed by the attachment of a specific protein in order to functionalize the chip. Breast cancer cells and fibroblast cells as control are cultured and applied to this chip. The functionalized QCM system can detect breast cancer cells with high affinity and selectivity. Here, we present the preparation methods of QCM-based sensors for selective detection of MDA MB 231 cancer cells. Selectivity of QCM-based sensor is carried out in the presence of L929 mouse fibroblast cells.
Collapse
Affiliation(s)
| | - Ayse Kevser Piskin
- Faculty of Medicine, Medical Biochemistry Department, Hacettepe University, Ankara, Turkey
| | - Handan Yavuz
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
10
|
Nair MP, Teo AJT, Li KHH. Acoustic Biosensors and Microfluidic Devices in the Decennium: Principles and Applications. MICROMACHINES 2021; 13:24. [PMID: 35056189 PMCID: PMC8779171 DOI: 10.3390/mi13010024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/11/2021] [Accepted: 12/20/2021] [Indexed: 12/27/2022]
Abstract
Lab-on-a-chip (LOC) technology has gained primary attention in the past decade, where label-free biosensors and microfluidic actuation platforms are integrated to realize such LOC devices. Among the multitude of technologies that enables the successful integration of these two features, the piezoelectric acoustic wave method is best suited for handling biological samples due to biocompatibility, label-free and non-invasive properties. In this review paper, we present a study on the use of acoustic waves generated by piezoelectric materials in the area of label-free biosensors and microfluidic actuation towards the realization of LOC and POC devices. The categorization of acoustic wave technology into the bulk acoustic wave and surface acoustic wave has been considered with the inclusion of biological sample sensing and manipulation applications. This paper presents an approach with a comprehensive study on the fundamental operating principles of acoustic waves in biosensing and microfluidic actuation, acoustic wave modes suitable for sensing and actuation, piezoelectric materials used for acoustic wave generation, fabrication methods, and challenges in the use of acoustic wave modes in biosensing. Recent developments in the past decade, in various sensing potentialities of acoustic waves in a myriad of applications, including sensing of proteins, disease biomarkers, DNA, pathogenic microorganisms, acoustofluidic manipulation, and the sorting of biological samples such as cells, have been given primary focus. An insight into the future perspectives of real-time, label-free, and portable LOC devices utilizing acoustic waves is also presented. The developments in the field of thin-film piezoelectric materials, with the possibility of integrating sensing and actuation on a single platform utilizing the reversible property of smart piezoelectric materials, provide a step forward in the realization of monolithic integrated LOC and POC devices. Finally, the present paper highlights the key benefits and challenges in terms of commercialization, in the field of acoustic wave-based biosensors and actuation platforms.
Collapse
Affiliation(s)
| | | | - King Ho Holden Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore; (M.P.N.); (A.J.T.T.)
| |
Collapse
|
11
|
Quartz Crystal Microbalance (QCM) Based Biosensor Functionalized by HER2/neu Antibody for Breast Cancer Cell Detection. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9040080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The heterogeneity and metastatic features of cancer cells lead to a great number of casualties in the world. Additionally, its diagnosis as well as its treatment is highly expensive. Therefore, development of simple but effective diagnostic systems which detect the molecular markers of cancer is of great importance. The molecular changes on cancer cell membranes serve as targets, such as HER2/neu receptor which is detected on the surface of highly metastatic breast cancer cells. We have aimed to develop a specific and simple quartz crystal microbalance (QCM)-based system to identify HER2/neu expressing breast cancer cells via a receptor-specific monoclonal antibody. First, the QCM chip was coated with polymeric nanoparticles composed of hydroxyethylmethacrylate (HEMA) and ethylene glycol dimethacrylate (EDMA). The nanoparticle coated QCM chip was then functionalized by binding of HER2/neu antibody. The breast cancer cells with/without HER2/neu receptor expression, namely, SKBR3, MDA-MB 231 and also mouse fibroblasts were passed over the chip at a rate of 10–500 cells/mL and the mass changes (Δm) on cell/cm2 unit surface of sensor were detected in real-time. The detection limit of the system was 10 cells/mL. Thus, this QCM-based HER2/neu receptor antibody functionalized system might be used effectively in the detection of HER2/neu expressing SKBR3 breast cancer cells.
Collapse
|
12
|
Lee EY, Kim Y, Koo B, Noh GS, Lee H, Shin Y. A novel nucleic acid amplification system based on nano-gap embedded active disk resonators. SENSORS AND ACTUATORS. B, CHEMICAL 2020; 320:128351. [PMID: 32501366 DOI: 10.1016/j.snb.2020.128391] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 05/28/2023]
Abstract
Recent advances in nucleic acid based testing using bio-optical sensor approaches have been introduced but most are based on hybridization between the optical sensor and the bio-molecule and not on an amplification mechanism. Direct nucleic acid amplification on an optical sensor has several technical limitations, such as the sensitivity of the temperature sensor, instrument complexity, and high background signal. We here describe a novel nucleic acid amplification method based on a whispering gallery mode active resonator and discuss its potential molecular diagnostic application. By implanting nanoclusters as active compounds, this active resonator operates without tapered fiber coupling and emits a strong photoluminescence signal with low background in the wavelength of low absorption in an aqueous environment that is typical of biosensors. Our method also offers an extremely low detection threshold down to a single copy within 10 min due to the strong light-matter interaction in a nano-gap structure. We envision that this active resonator provides a high refractive index contrast for tight mode confinement with simple alignment as well as the possibility of reducing the device size so that a point-of-care system with low-cost, high-sensitivity and simplicity.
Collapse
Affiliation(s)
- Eun Yeong Lee
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Yeseul Kim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Bonhan Koo
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Geun Su Noh
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Hansuek Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yong Shin
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| |
Collapse
|
13
|
Soleymani J, Hasanzadeh M, shadjou N, Somi MH, Jouyban A. The role of nanomaterials on the cancer cells sensing based on folate receptor: Analytical approach. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115834] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Bakhshpour M, Piskin AK, Yavuz H, Denizli A. Quartz crystal microbalance biosensor for label-free MDA MB 231 cancer cell detection via notch-4 receptor. Talanta 2019; 204:840-845. [DOI: 10.1016/j.talanta.2019.06.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 01/19/2023]
|
15
|
Poturnayová A, Dzubinová Ľ, Buríková M, Bízik J, Hianik T. Detection of Breast Cancer Cells Using Acoustics Aptasensor Specific to HER2 Receptors. BIOSENSORS 2019; 9:E72. [PMID: 31137893 PMCID: PMC6627288 DOI: 10.3390/bios9020072] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 12/02/2022]
Abstract
Detection of the breast cancer cells is important for early diagnosis of the cancer. We applied thickness shear mode acoustics method (TSM) for detection of SK-BR-3 breast cancer cells using DNA aptamers specific to HER2 positive membrane receptors. The biotinylated aptamers were immobilized at the neutravidin layer chemisorbed at gold surface of TSM transducer. Addition of the cells resulted in decrease of resonant frequency, fs, and in increase of motional resistance, Rm. Using gold nanoparticles (AuNPs), modified by aptamers it was possible improving the limit of detection (LOD) that reached 550 cells/mL, while without amplification the sensitivity of the detection of SK-BR-3 cells was 1574 cells/mL. HER2 negative cell line MDA-MB-231 did not resulted in significant changes of fs. The viability studies demonstrated that cells are stable at experimental conditions used during at least 8 h. AuNPs were not toxic on the cells up to concentration of 1 μg/mL.
Collapse
Affiliation(s)
- Alexandra Poturnayová
- Institute of Animal Biochemistry and Genetics, Center of Biosciences SAS, Dúbravská cesta 9, 840 05 Bratislava, Slovakia.
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F1, 842 48 Bratislava, Slovakia.
| | - Ľudmila Dzubinová
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F1, 842 48 Bratislava, Slovakia.
| | - Monika Buríková
- Cancer Research Institute, Biomedical Research Center SAS, Dúbravská cesta 9, 840 05 Bratislava, Slovakia.
| | - Jozef Bízik
- Cancer Research Institute, Biomedical Research Center SAS, Dúbravská cesta 9, 840 05 Bratislava, Slovakia.
| | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F1, 842 48 Bratislava, Slovakia.
| |
Collapse
|
16
|
Pérez JAC, Sosa-Hernández JE, Hussain SM, Bilal M, Parra-Saldivar R, Iqbal HM. Bioinspired biomaterials and enzyme-based biosensors for point-of-care applications with reference to cancer and bio-imaging. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2018.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Jiang P, Wang Y, Zhao L, Ji C, Chen D, Nie L. Applications of Gold Nanoparticles in Non-Optical Biosensors. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E977. [PMID: 30486293 PMCID: PMC6315477 DOI: 10.3390/nano8120977] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022]
Abstract
Due to their unique properties, such as good biocompatibility, excellent conductivity, effective catalysis, high density, and high surface-to-volume ratio, gold nanoparticles (AuNPs) are widely used in the field of bioassay. Mainly, AuNPs used in optical biosensors have been described in some reviews. In this review, we highlight recent advances in AuNP-based non-optical bioassays, including piezoelectric biosensor, electrochemical biosensor, and inductively coupled plasma mass spectrometry (ICP-MS) bio-detection. Some representative examples are presented to illustrate the effect of AuNPs in non-optical bioassay and the mechanisms of AuNPs in improving detection performances are described. Finally, the review summarizes the future prospects of AuNPs in non-optical biosensors.
Collapse
Affiliation(s)
- Pengfei Jiang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China.
| | - Yulin Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China.
| | - Lan Zhao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China.
| | - Chenyang Ji
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China.
| | - Dongchu Chen
- School of Material Science and Energy Engineering, Foshan University, Foshan 528000, China.
| | - Libo Nie
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China.
| |
Collapse
|
18
|
|
19
|
Amouzadeh Tabrizi M, Shamsipur M, Saber R, Sarkar S. Isolation of HL-60 cancer cells from the human serum sample using MnO 2-PEI/Ni/Au/aptamer as a novel nanomotor and electrochemical determination of thereof by aptamer/gold nanoparticles-poly(3,4-ethylene dioxythiophene) modified GC electrode. Biosens Bioelectron 2018; 110:141-146. [PMID: 29609160 DOI: 10.1016/j.bios.2018.03.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 02/03/2023]
Abstract
Herein, aptamer-modified self-propelled nanomotors were used for transportation of human promyelocytic leukemia cells (HL-60) from a human serum sample. For this purpose, the fabricated manganese oxide nanosheets-polyethyleneimine decorated with nickel/gold nanoparticles (MnO2-PEI/Ni/Au) as nanomotors were added to a vial containing thiolated aptamer KH1C12 solution as a capture aptamer to attach to the gold nanoparticles on the surface of nanomotors covalently. The aptamer-modified self-propelled nanomotors (aptamerKH1C12/nanomotors) were then separated by placing the vial in a magnetic stand. The aptamer-modified self-propelled nanomotors were rinsed three times with water to remove the non-attached aptamers. Then, the resulting aptamerKH1C12/nanomotors were applied for the on-the-fly" transporting of HL-60 cancer cell from a human serum sample. To release of the captured HL-60 cancer cells, the complementary nucleotide sequences of KH1C12 aptamer solution (releasing aptamer) that has a with capture aptamer was added to phosphate buffer solution (1 M, pH 7.4) containing HL-60/aptamerKH1C12/nanomotors. Because of the high affinity of capture aptamer to complementary nucleotide sequences of aptamerKH1C12, the HL-60 cancer cells released on the surface of aptamerKH1C12/nanomotors into the solution. The second goal of the present work was determining the concentration of HL-60 cancer cell in the human serum samples. The electrochemical impedance spectroscopy technique (EIS) was used for the determination of HL-60 cancer cell. The concentration of separated cancer cell was determined by aptamer/gold nanoparticles-poly(3,4-ethylene dioxythiophene) modified GC electrode (GC/PEDOT-Aunano/aptamer KH1C12). The proposed aptasensor exhibited a good response to the concentration of HL-60 cancer cells in the range of 2.5 × 101 to 5 × 105 cells mL-1 with a low limit of detection of 250 cells mL-1.
Collapse
Affiliation(s)
- Mahmoud Amouzadeh Tabrizi
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Reza Saber
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran; School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Sarkar
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Physics and Biomedical Engineering Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Church TL, Bernin D, Garcia-Bennett AE, Hedin N. Dispersed Uniform Nanoparticles from a Macroscopic Organosilica Powder. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2274-2281. [PMID: 29400064 DOI: 10.1021/acs.langmuir.7b03705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A colloidal dispersion of uniform organosilica nanoparticles could be produced via the disassembly of the non-surfactant-templated organosilica powder nanostructured folate material (NFM-1). This unusual reaction pathway was available because the folate and silica-containing moieties in NFM-1 are held together by noncovalent interactions. No precipitation was observed from the colloidal dispersion after a week, though particle growth occurred at a solvent-dependent rate that could be described by the Lifshitz-Slyozov-Wagner equation. An organosilica film that was prepared from the colloidal dispersion adsorbed folate-binding protein from solution but adsorbed ions from a phosphate-buffered saline solution to a larger degree. To our knowledge, this is the first instance of a colloidal dispersion of organosilica nanoparticles being derived from a macroscopic material rather than from molecular precursors.
Collapse
Affiliation(s)
- Tamara L Church
- Materials and Environmental Chemistry, Stockholm University , SE-106 91 Stockholm, Sweden
| | - Diana Bernin
- Materials and Environmental Chemistry, Stockholm University , SE-106 91 Stockholm, Sweden
- Swedish NMR Centre, University of Gothenburg , Box 465, SE-405 30 Göteborg, Sweden
| | - Alfonso E Garcia-Bennett
- Department of Chemistry and Biomolecular Sciences, Australian Research Council Centre for Nanoscale Biophotonics, Macquarie University , Sydney, New South Wales 2109, Australia
| | - Niklas Hedin
- Materials and Environmental Chemistry, Stockholm University , SE-106 91 Stockholm, Sweden
| |
Collapse
|
21
|
Chen JY, Penn LS, Xi J. Quartz crystal microbalance: Sensing cell-substrate adhesion and beyond. Biosens Bioelectron 2018; 99:593-602. [DOI: 10.1016/j.bios.2017.08.032] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/03/2017] [Accepted: 08/12/2017] [Indexed: 10/19/2022]
|
22
|
Damiati S, Küpcü S, Peacock M, Eilenberger C, Zamzami M, Qadri I, Choudhry H, Sleytr UB, Schuster B. Acoustic and hybrid 3D-printed electrochemical biosensors for the real-time immunodetection of liver cancer cells (HepG2). Biosens Bioelectron 2017; 94:500-506. [PMID: 28343102 DOI: 10.1016/j.bios.2017.03.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/09/2017] [Accepted: 03/20/2017] [Indexed: 01/19/2023]
Abstract
This study presents an efficient acoustic and hybrid three-dimensional (3D)-printed electrochemical biosensors for the detection of liver cancer cells. The biosensors function by recognizing the highly expressed tumor marker CD133, which is located on the surface of liver cancer cells. Detection was achieved by recrystallizing a recombinant S-layer fusion protein (rSbpA/ZZ) on the surface of the sensors. The fused ZZ-domain enables immobilization of the anti-CD133 antibody in a defined manner. These highly accessible anti-CD133 antibodies were employed as a sensing layer, thereby enabling the efficient detection of liver cancer cells (HepG2). The recognition of HepG2 cells was investigated in situ using a quartz crystal microbalance with dissipation monitoring (QCM-D), which enabled the label-free, real-time detection of living cells on the modified sensor surface under controlled conditions. Furthermore, the hybrid 3D additive printing strategy for biosensors facilitates both rapid development and small-scale manufacturing. The hybrid strategy of combining 3D-printed parts and more traditionally fabricated parts enables the use of optimal materials: a ceramic substrate with noble metals for the sensing element and 3D-printed capillary channels to guide and constrain the clinical sample. Cyclic voltammetry (CV) measurements confirmed the efficiency of the fabricated sensors. Most importantly, these sensors offer low-cost and disposable detection platforms for real-world applications. Thus, as demonstrated in this study, both fabricated acoustic and electrochemical sensing platforms can detect cancer cells and therefore may have further potential in other clinical applications and drug-screening studies.
Collapse
Affiliation(s)
- Samar Damiati
- Department of Biochemistry, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia; Institute for Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria; Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Seta Küpcü
- Institute for Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | | | - Christoph Eilenberger
- Institute for Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Mazin Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia; Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biology, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia; Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Uwe B Sleytr
- Institute for Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Bernhard Schuster
- Institute for Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
23
|
Yang X, Zhou R, Hao Y, Yang P. A CD44-biosensor for evaluating metastatic potential of breast cancer cells based on quartz crystal microbalance. Sci Bull (Beijing) 2017; 62:923-930. [PMID: 36659462 DOI: 10.1016/j.scib.2017.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 04/20/2017] [Accepted: 04/26/2017] [Indexed: 01/21/2023]
Abstract
A sensitive CD44-biosensor based on quartz crystal microbalance (QCM) was proposed for evaluating metastatic potential of breast cancer cells by using hyaluronan (HA) functionalized substrate film, polydopamine and polyethyleneimine composite film, for the purpose of capturing CD44-positive cancer cells through specific binding of HA to CD44. Two differently CD44-expressed breast cancer cell lines (MDA-MB-231 cells and MCF-7 cells) were put to use as targets for quantitative analysis as well as evaluation of metastatic potential of the cells. The limit of detection for MDA-MB-231 (M231) cells and MCF-7 cells were 300 and 1,000cellsmL-1, respectively. The expression level of CD44 on M231 cells exhibited two times higher than that of MCF-7 cells, indicating of a higher metastatic potential. Moreover, poly-L-lysine modified QCM sensor was applied to monitor the stiffness of breast cancer cells that can reflect metastatic potential of cells. The results revealed that the MCF-7 cells were stiffer than M231 cells, implying that the M231 cells possessed higher metastatic potential. The proposed protocol is simple and rapid to evaluate the metastatic potential of cancer cells, in addition to offering a promising diagnostic tool for metastatic cancer.
Collapse
Affiliation(s)
- Xiaojuan Yang
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Rongcheng Zhou
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Yan Hao
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Peihui Yang
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
24
|
Wang L. Early Diagnosis of Breast Cancer. SENSORS (BASEL, SWITZERLAND) 2017; 17:1572. [PMID: 28678153 PMCID: PMC5539491 DOI: 10.3390/s17071572] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/23/2017] [Accepted: 07/01/2017] [Indexed: 12/24/2022]
Abstract
Early-stage cancer detection could reduce breast cancer death rates significantly in the long-term. The most critical point for best prognosis is to identify early-stage cancer cells. Investigators have studied many breast diagnostic approaches, including mammography, magnetic resonance imaging, ultrasound, computerized tomography, positron emission tomography and biopsy. However, these techniques have some limitations such as being expensive, time consuming and not suitable for young women. Developing a high-sensitive and rapid early-stage breast cancer diagnostic method is urgent. In recent years, investigators have paid their attention in the development of biosensors to detect breast cancer using different biomarkers. Apart from biosensors and biomarkers, microwave imaging techniques have also been intensely studied as a promising diagnostic tool for rapid and cost-effective early-stage breast cancer detection. This paper aims to provide an overview on recent important achievements in breast screening methods (particularly on microwave imaging) and breast biomarkers along with biosensors for rapidly diagnosing breast cancer.
Collapse
Affiliation(s)
- Lulu Wang
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China.
- Institute of Biomedical Technologies, Auckland University of Technology, Auckland 1142, New Zealand.
| |
Collapse
|
25
|
Li F, Mei H, Xie X, Zhang H, Liu J, Lv T, Nie H, Gao Y, Jia L. Aptamer-Conjugated Chitosan-Anchored Liposomal Complexes for Targeted Delivery of Erlotinib to EGFR-Mutated Lung Cancer Cells. AAPS JOURNAL 2017; 19:814-826. [PMID: 28233244 DOI: 10.1208/s12248-017-0057-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 02/07/2017] [Indexed: 11/30/2022]
Abstract
Lung cancer is the leading cancer and has the highest death rate. The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) erlotinib has had a promising response in lung cancer therapy. Unfortunately, individuals with TKI-resistant EGFR mutations often develop acquired resistance against erlotinib. To overcome this resistance, in the present study, we developed liposomes anchored with anti-EGFR aptamer (Apt)-conjugated chitosan (Apt-Cs) as stable carriers to deliver erlotinib to the target. We loaded erlotinib into Apt-Cs-anchored liposomal complexes (Apt-CL-E) and characterized the physicochemistry of Apt-CL-E. The nanoparticles showed good biostability and a binding specificity for EGFR-mutated cancer cells guided by the Apt. The specific binding facilitated the uptake of Apt-CL-E into EGFR-mutated cancer cells. A cytotoxicity study showed an advantage of Apt-CL-E over their nontargeted liposomal counterparts in delivering erlotinib to EGFR-mutated cancer cells, resulting in cell cycle arrest and apoptosis. These results provide a good platform for future in vivo animal studies with Apt-CL-E.
Collapse
Affiliation(s)
- Fengqiao Li
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, 350002, Fujian, China.,Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350002, China
| | - Hao Mei
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, 350002, Fujian, China.,Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350002, China
| | - Xiaodong Xie
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, 350002, Fujian, China.,Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350002, China
| | - Huijuan Zhang
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, 350002, Fujian, China.,Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350002, China
| | - Jian Liu
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, 350002, Fujian, China.,Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350002, China
| | - Tingting Lv
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, 350002, Fujian, China.,Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350002, China
| | - Huifang Nie
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, 350002, Fujian, China.,Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350002, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, 350002, Fujian, China. .,Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350002, China.
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, 350002, Fujian, China. .,Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350002, China.
| |
Collapse
|
26
|
Wu C, Sun Z, Liu LS. Quantitative control of CaCO3 growth on quartz crystal microbalance sensors as a signal amplification method. Analyst 2017; 142:2547-2551. [DOI: 10.1039/c7an00335h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantitative control of mass growth on QCM sensor surfaces was realized, providing a potential signal amplification method.
Collapse
Affiliation(s)
- Congcong Wu
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
- China
- Shandong Province Key Laboratory of Detection Technology of Tumor Markers
| | - Zhaomei Sun
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
- China
- Shandong Province Key Laboratory of Detection Technology of Tumor Markers
| | - Li-Shang Liu
- Shandong Province Key Laboratory of Detection Technology of Tumor Markers
- College of Chemistry and Chemical Engineering
- Linyi University
- Linyi 276005
- China
| |
Collapse
|
27
|
Guryanov I, Fiorucci S, Tennikova T. Receptor-ligand interactions: Advanced biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:890-903. [PMID: 27524092 DOI: 10.1016/j.msec.2016.07.072] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/11/2016] [Accepted: 07/26/2016] [Indexed: 12/24/2022]
Abstract
Receptor-ligand interactions (RLIs) are at the base of all biological events occurring in living cells. The understanding of interactions between complementary macromolecules in biological systems represents a high-priority research area in bionanotechnology to design the artificial systems mimicking natural processes. This review summarizes and analyzes RLIs in some cutting-edge biomedical fields, in particular, for the preparation of novel stationary phases to separate complex biological mixtures in medical diagnostics, for the design of ultrasensitive biosensors for identification of biomarkers of various diseases at early stages, as well as in the development of innovative biomaterials and approaches for regenerative medicine. All these biotechnological fields are closely related, because their success depends on a proper choice, combination and spatial disposition of the single components of ligand-receptor pairs on the surface of appropriately designed support.
Collapse
Affiliation(s)
- Ivan Guryanov
- Institute of Chemistry, St. Petersburg State University, 198504 St. Petersburg, Russia.
| | - Stefano Fiorucci
- Department of Clinical and Experimental Medicine, University of Perugia, 06122 Perugia, Italy.
| | - Tatiana Tennikova
- Institute of Chemistry, St. Petersburg State University, 198504 St. Petersburg, Russia.
| |
Collapse
|
28
|
Zhang S, Bai H, Yang P. Real-time monitoring of mechanical changes during dynamic adhesion of erythrocytes to endothelial cells by QCM-D. Chem Commun (Camb) 2016; 51:11449-51. [PMID: 26087999 DOI: 10.1039/c5cc03264d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A quartz crystal microbalance with dissipation monitoring is used to measure changes in mechanical properties of diabetic red blood cells (RBCs) and normal RBCs. Moreover, the adhesion interaction between these two kinds of RBCs and endothelial cells (ECs) is further investigated using a proposed QCM-D biosensor for the first time.
Collapse
Affiliation(s)
- Shaolian Zhang
- Department of Chemistry, Jinan University, Guangzhou 510632, People's Republic of China.
| | | | | |
Collapse
|
29
|
Bragazzi NL, Amicizia D, Panatto D, Tramalloni D, Valle I, Gasparini R. Quartz-Crystal Microbalance (QCM) for Public Health: An Overview of Its Applications. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 101:149-211. [PMID: 26572979 DOI: 10.1016/bs.apcsb.2015.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanobiotechnologies, from the convergence of nanotechnology and molecular biology and postgenomics medicine, play a major role in the field of public health. This overview summarizes the potentiality of piezoelectric sensors, and in particular, of quartz-crystal microbalance (QCM), a physical nanogram-sensitive device. QCM enables the rapid, real time, on-site detection of pathogens with an enormous burden in public health, such as influenza and other respiratory viruses, hepatitis B virus (HBV), and drug-resistant bacteria, among others. Further, it allows to detect food allergens, food-borne pathogens, such as Escherichia coli and Salmonella typhimurium, and food chemical contaminants, as well as water-borne microorganisms and environmental contaminants. Moreover, QCM holds promises in early cancer detection and screening of new antiblastic drugs. Applications for monitoring biohazards, for assuring homeland security, and preventing bioterrorism are also discussed.
Collapse
Affiliation(s)
- Nicola Luigi Bragazzi
- Department of Health Sciences (DISSAL), Via Antonio Pastore 1, University of Genoa, Genoa, Italy
| | - Daniela Amicizia
- Department of Health Sciences (DISSAL), Via Antonio Pastore 1, University of Genoa, Genoa, Italy
| | - Donatella Panatto
- Department of Health Sciences (DISSAL), Via Antonio Pastore 1, University of Genoa, Genoa, Italy
| | - Daniela Tramalloni
- Department of Health Sciences (DISSAL), Via Antonio Pastore 1, University of Genoa, Genoa, Italy
| | - Ivana Valle
- SSD "Popolazione a rischio," Health Prevention Department, Local Health Unit ASL3 Genovese, Genoa, Italy
| | - Roberto Gasparini
- Department of Health Sciences (DISSAL), Via Antonio Pastore 1, University of Genoa, Genoa, Italy.
| |
Collapse
|
30
|
Lale SV, Kumar A, Prasad S, Bharti AC, Koul V. Folic Acid and Trastuzumab Functionalized Redox Responsive Polymersomes for Intracellular Doxorubicin Delivery in Breast Cancer. Biomacromolecules 2015; 16:1736-52. [DOI: 10.1021/acs.biomac.5b00244] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shantanu V. Lale
- Centre
for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Biomedical
Engineering Unit, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Arun Kumar
- Centre
for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Biomedical
Engineering Unit, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Shyam Prasad
- Division
of Molecular Oncology, Institute of Cytology and Preventive Oncology, Noida 201301, India
| | - Alok C. Bharti
- Division
of Molecular Oncology, Institute of Cytology and Preventive Oncology, Noida 201301, India
| | - Veena Koul
- Centre
for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Biomedical
Engineering Unit, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
31
|
Zhang S, Bai H, Pi J, Yang P, Cai J. Label-Free Quartz Crystal Microbalance with Dissipation Monitoring of Resveratrol Effect on Mechanical Changes and Folate Receptor Expression Levels of Living MCF-7 Cells: A Model for Screening of Drugs. Anal Chem 2015; 87:4797-805. [DOI: 10.1021/acs.analchem.5b00083] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shaolian Zhang
- Department
of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People’s Republic of China
| | - Haihua Bai
- Department
of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People’s Republic of China
| | - Jiang Pi
- Department
of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People’s Republic of China
| | - Peihui Yang
- Department
of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People’s Republic of China
| | - Jiye Cai
- Department
of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People’s Republic of China
| |
Collapse
|
32
|
Ultrasensitive detection of drug resistant cancer cells in biological matrixes using an amperometric nanobiosensor. Biosens Bioelectron 2015; 70:418-25. [PMID: 25845334 DOI: 10.1016/j.bios.2015.03.069] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/10/2015] [Accepted: 03/26/2015] [Indexed: 11/20/2022]
Abstract
Multidrug resistance (MDR) is a key issue in the failure of cancer chemotherapy and its detection will be helpful to develop suitable therapeutic strategies for cancer patients and overcome the death rates. In this direction, we designed a new amperometric sensor (a medical device prototype) to detect drug resistant cancer cells by sensing "Permeability glycoprotein (P-gp)". The sensor probe is fabricated by immobilizing monoclonal P-gp antibody on the gold nanoparticles (AuNPs) conducting polymer composite. The detection relies on a sandwich-type approach using a bioconjugate, where the aminophenyl boronic acid (APBA) served as a recognition molecule which binds with the cell surface glycans and hydrazine (Hyd) served as an electrocatalyst for the reduction of H2O2 which are attached on multi-wall carbon nanotube (MWCNT) (APBA-MWCNT-Hyd). A linear range for the cancer cell detection is obtained between 50 and 100,000 cells/mL with the detection limit of 23±2 cells/mL. The proposed immunosensor is successfully applied to detect MDR cancer cells (MDRCC) in serum and mixed cell samples. Interferences by drug sensitive (SKBr-3 and HeLa), noncancerous cells (HEK-293 and OSE), and other chemical molecules present in the real sample matrix are examined. The sensitivity of the proposed immunosensor is excellent compared with the conventional reporter antibody based assay.
Collapse
|
33
|
Liu LS, Kim JM, Kim WS. Simple and Reliable Quartz Crystal Microbalance Technique for Determination of Solubility by Cooling and Heating Solution. Anal Chem 2015; 87:3329-35. [DOI: 10.1021/ac504492g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Li-Shang Liu
- Department
of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701, South Korea
| | - Jong-Min Kim
- Department
of Chemical Engineering, Dong-A University, Hadan 840, Saha, Busan 604-741, South Korea
| | - Woo-Sik Kim
- Department
of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701, South Korea
| |
Collapse
|