1
|
Zeng Y, Wang R, Luo Z, Tang Z, Qiu J, Zou C, Li C, Xie G, Wang X. Robust Tertiary Amine Suspended HCIPs for Catalytic Conversion of CO 2 into Cyclic Carbonates under Mild Conditions. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16950-16962. [PMID: 40062721 DOI: 10.1021/acsami.5c01381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
A series of tertiary amine suspended hyper-cross-linked ionic polymers (HCIPs), characterized by a rich mesoporous structure, high ionic liquid (IL) density, and good CO2 adsorption capability, were readily prepared via a postsynthetic method. The self-polymerization of 1,3,5-tris(bromomethyl) benzene (TBB) or its copolymerization with 4,4'-bis(bromomethyl) biphenyl (BBP) in varying ratios, followed by grafting with N,N,N',N'-tetramethyl-1,3-propanediamine (TMPDA), yielded the target TMPDA-HCIPs. These HCIPs constitute one of the limited categories of heterogeneous water-tolerant catalyst types ever developed for the cycloaddition reaction between CO2 and epoxides. Specifically, chloropropylene carbonate (CPC) was produced in 99.9% yield with 99% selectivity at 80 °C and 1 bar of CO2 pressure in the presence of 22 mol % water relative to the epoxide substrate. Furthermore, when simulated flue gas served as the CO2 source, the same ratio of water enhanced the CPC yield from 81.9% to 91.5% under 1 MPa pressure, with the selectivity only slightly decreasing from 99% to 94.1%. Additionally, the catalyst could be easily recovered and maintained a high catalytic performance after six cycles. In conclusion, this study presents a robust water-tolerant heterogeneous catalyst for the efficient synthesis of cyclic carbonates from CO2 under mild conditions, potentially reducing the high costs of purifying real flue gas that contains water vapor.
Collapse
Affiliation(s)
- Yanbin Zeng
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Rui Wang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Zijun Luo
- School of Materials Science and Engineering, Guangdong Provincial Engineering Technology Research Center of Key Material for High Performance Copper Clad Laminate, Dongguan University of Technology, Dongguan 523808, China
| | - Zhenzhu Tang
- School of Materials Science and Engineering, Guangdong Provincial Engineering Technology Research Center of Key Material for High Performance Copper Clad Laminate, Dongguan University of Technology, Dongguan 523808, China
| | - Jiaxiang Qiu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Chao Zou
- Functional Coordination Material Group, Frontier Research Center, Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Chunshan Li
- Institute of Process Engineering, CAS, Beijing 100049, P. R. China
| | - Guanqun Xie
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xiaoxia Wang
- School of Materials Science and Engineering, Guangdong Provincial Engineering Technology Research Center of Key Material for High Performance Copper Clad Laminate, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
2
|
Zhang J, Li G, Xie J, Hai Y, Wan W, Sun H, Wang B, Wu X, Cheng J, He C, Hu W, Zhang Y, Li Z, Li C. Controllable Active Intermediate in CO 2 Hydrogenation Enabling Highly Selective N, N-Dimethylformamide Synthesis via N-Formylation. J Am Chem Soc 2025; 147:3152-3160. [PMID: 39700414 PMCID: PMC11783538 DOI: 10.1021/jacs.4c12503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
N,N-Dimethylformamide (DMF) is a widely used solvent, and its green and low-carbon synthesis methods are in high demand. Herein, we report a new approach for DMF synthesis using a continuous flow reaction system with a fixed-bed reactor and a ZnO-TiO2 solid solution catalyst. This catalyst effectively utilizes CO2, H2, and dimethylamine (DMA) as feedstocks, demonstrating performance with 99% DMF selectivity and single-pass DMA conversion approaching thermodynamic equilibrium. Moreover, the catalyst demonstrates good stability, with no signs of deactivation over 1000 h of continuous operation. The key to superior activity lies in the synergetic effect of the Zn and Ti sites, which facilitates the formation of active formate species. These species act as crucial intermediates, reacting with DMA to produce DMF. Importantly, the slow hydrogenation kinetics of the formate species prevent the formation of CH2O* species, thereby suppressing the formation of the undesired byproduct, trimethylamine. This work underscores the potential of kinetically controlling active intermediates in CO2 hydrogenation to prepare high-value-added chemicals by coupling them to platform molecules. It presents a promising strategy for the efficient utilization of CO2 resources and offers a valuable solution for large-scale DMF synthesis.
Collapse
Affiliation(s)
- Jieyun Zhang
- Key
Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory
of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Guanna Li
- Biobased
Chemistry and Technology Group, Wageningen
University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Jin Xie
- Key
Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory
of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yang Hai
- School
of Mechanical Engineering, Dongguan University
of Technology, Dongguan, Guangdong 523000, China
| | - Weiming Wan
- Key
Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory
of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Haotian Sun
- Key
Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory
of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Bin Wang
- Key
Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory
of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiaojing Wu
- Key
Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory
of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jiannian Cheng
- Key
Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory
of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Changxin He
- Key
Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory
of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wei Hu
- Key
Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory
of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ying Zhang
- Dalian
National Laboratory for Clean Energy, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian, Liaoning 116023, China
| | - Zelong Li
- Key
Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory
of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese
Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Can Li
- Key
Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory
of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
- Dalian
National Laboratory for Clean Energy, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian, Liaoning 116023, China
| |
Collapse
|
3
|
Hurtado R, Lou L, Klerner L, Inaloo ID, Heineman FW, Harder S, Schmid G, Dorta R. Diarylformamides as a Safe Reservoir and Room Temperature Source of Ultra-Pure CO in the Context of a 'Green' rWGS Reaction. CHEMSUSCHEM 2024; 17:e202400308. [PMID: 38875288 PMCID: PMC11587692 DOI: 10.1002/cssc.202400308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Diphenylformamide 1 and bisformamide 9 are shown to be safe reservoirs and sources of CO. Their perfectly selective decarbonylations are achieved in solution at room temperature with potassium and cesium diarylamide catalysts. 1 is obtained in excellent yields directly from triethylammonium formate, which may be the product of CO2 scrubbing with NEt3 and catalytic hydrogenation. 1 thus represents a key intermediate in a low-temperature rWGS reaction sequence. Moreover, solvent-free decarbonylations of 1 may be run either in the melt at 70 °C or with 9 even in the solid state at 88 °C with improved atom economy. These simple and practical transition-metal-free decarbonylations afford ultra-pure (i. e. dry and solvent-free) CO at moderate temperatures and the diarylamines byproducts are recycled as pure compounds. In the absence of catalysts, diarylformamides 1 and 9 are long-term stable at >200 °C. DFT-calculations indicate a reaction pathway with a rate-determining deprotonation of Ph2NC(O)H and barrier-free CO elimination from Ph2NC(O)-.
Collapse
Affiliation(s)
- Royel Hurtado
- Department of Chemistry and PharmacyChair of Inorganic and General Chemistry and Chair of Inorganic and Organometallic ChemistryFriedrich Alexander Universität Erlangen – NürnbergEgerlandstraße 191058ErlangenGermany
| | - Lisha Lou
- Department of Chemistry and PharmacyChair of Inorganic and General Chemistry and Chair of Inorganic and Organometallic ChemistryFriedrich Alexander Universität Erlangen – NürnbergEgerlandstraße 191058ErlangenGermany
| | - Lukas Klerner
- Department of Chemistry and PharmacyChair of Inorganic and General Chemistry and Chair of Inorganic and Organometallic ChemistryFriedrich Alexander Universität Erlangen – NürnbergEgerlandstraße 191058ErlangenGermany
| | - Iman Dindarloo Inaloo
- Department of Chemistry and PharmacyChair of Inorganic and General Chemistry and Chair of Inorganic and Organometallic ChemistryFriedrich Alexander Universität Erlangen – NürnbergEgerlandstraße 191058ErlangenGermany
| | - Frank W. Heineman
- Department of Chemistry and PharmacyChair of Inorganic and General Chemistry and Chair of Inorganic and Organometallic ChemistryFriedrich Alexander Universität Erlangen – NürnbergEgerlandstraße 191058ErlangenGermany
| | - Sjoerd Harder
- Department of Chemistry and PharmacyChair of Inorganic and General Chemistry and Chair of Inorganic and Organometallic ChemistryFriedrich Alexander Universität Erlangen – NürnbergEgerlandstraße 191058ErlangenGermany
| | - Günter Schmid
- Siemens Energy Global GmbH & Co. KG, New Energy Business – Technology & ProductsFreyeslebenstraße 191058ErlangenGermany
| | - Romano Dorta
- Department of Chemistry and PharmacyChair of Inorganic and General Chemistry and Chair of Inorganic and Organometallic ChemistryFriedrich Alexander Universität Erlangen – NürnbergEgerlandstraße 191058ErlangenGermany
| |
Collapse
|
4
|
Cheng D, Wang M, Tang L, Gao Z, Qin X, Gao Y, Xiao D, Zhou W, Ma D. Catalytic Synthesis of Formamides by Integrating CO 2 Capture and Morpholine Formylation on Supported Iridium Catalyst. Angew Chem Int Ed Engl 2022; 61:e202202654. [PMID: 35394704 DOI: 10.1002/anie.202202654] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 11/05/2022]
Abstract
Herein we report an efficient and recyclable catalytic system for tandem CO2 capture and N-formylation to value-added chemicals. CO2 is apt to be captured by morpholine solution, while a highly efficient heterogeneous catalyst, isolated iridium atoms supported over nanadiamond/graphene, is discovered to be highly reactive for the formylation of morpholine, leading to the formation of N-formylmorpholine with excellent productivity (with a turnover number of 5 120 000 in a single batch reaction) and selectivity (>99 %). In addition, the CO2 captured by morpholine under atmospheric conditions can be converted to N-formylmorpholine with decent conversion (51 %), which realizes the integration of CO2 capture and conversion to value-added chemicals.
Collapse
Affiliation(s)
- Danyang Cheng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Meng Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lipeng Tang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zirui Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xuetao Qin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yongjun Gao
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| | - Dequan Xiao
- Center for Integrative Materials Discovery, Department of Chemistry and Chemical and Biomedical Engineering, University of New Haven, West Haven, CT 06516, USA
| | - Wu Zhou
- School of Physical Sciences and CAS Key Laboratory of Vacuum Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
5
|
Cheng D, Wang M, Tang L, Gao Z, Qin X, Gao Y, Xiao D, Zhou W, Ma D. Catalytic Synthesis of Formamides by Integrating CO2 Capture and Morpholine Formylation on Supported Iridium Catalyst. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | | | | | | | - Dequan Xiao
- University of New Haven chemistry UNITED STATES
| | - Wu Zhou
- University of the Chinese Academy of Sciences physics CHINA
| | - Ding Ma
- Peking University College of Chemistry and Molecular Engineering 202 Chengfu Road 100871 Beijing CHINA
| |
Collapse
|
6
|
Nanocatalysts for Oxidative Desulfurization of Liquid Fuel: Modern Solutions and the Perspectives of Application in Hybrid Chemical-Biocatalytic Processes. Catalysts 2021. [DOI: 10.3390/catal11091131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In this paper, the current advantages and disadvantages of using metal-containing nanocatalysts (NCs) for deep chemical oxidative desulfurization (ODS) of liquid fuels are reviewed. A similar analysis is performed for the oxidative biodesulfurization of oil along the 4S-pathway, catalyzed by various aerobic bacterial cells of microorganisms. The preferences of using NCs for the oxidation of organic sulfur-containing compounds in various oil fractions seem obvious. The text discusses the development of new chemical and biocatalytic approaches to ODS, including the use of both heterogeneous NCs and anaerobic microbial biocatalysts that catalyze the reduction of chemically oxidized sulfur-containing compounds in the framework of methanogenesis. The addition of anaerobic biocatalytic stages to the ODS of liquid fuel based on NCs leads to the emergence of hybrid technologies that improve both the environmental characteristics and the economic efficiency of the overall process. The bioconversion of sulfur-containing extracts from fuels with accompanying hydrocarbon residues into biogas containing valuable components for the implementation of C-1 green chemistry processes, such as CH4, CO2, or H2, looks attractive for the implementation of such a hybrid process.
Collapse
|
7
|
Shen Y, Zheng Q, Chen Z, Wen D, Clark JH, Xu X, Tu T. Highly Efficient and Selective N‐Formylation of Amines with CO
2
and H
2
Catalyzed by Porous Organometallic Polymers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Yajing Shen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Qingshu Zheng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Zhe‐Ning Chen
- Collaborative Innovation Center of Chemistry for Energy Materials MOE Laboratory for Computational Physical Science Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Daheng Wen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - James H. Clark
- Green Chemistry Centre of Excellence University of York York YO105DD UK
| | - Xin Xu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
- Collaborative Innovation Center of Chemistry for Energy Materials MOE Laboratory for Computational Physical Science Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
- College of Chemistry and Molecular Engineering Zhengzhou University 100 Kexue Avenue Zhengzhou 450001 China
| |
Collapse
|
8
|
Zhang K, Zong L, Jia X. Bifunctional Ru‐loaded Porous Organic Polymers with Pyridine Functionality: Recyclable Catalysts for N‐Formylation of Amines with CO
2
and H
2. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Kai Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science MOE College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Lingbo Zong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science MOE College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Xiaofei Jia
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science MOE College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| |
Collapse
|
9
|
Shen Y, Zheng Q, Chen ZN, Wen D, Clark JH, Xu X, Tu T. Highly Efficient and Selective N-Formylation of Amines with CO 2 and H 2 Catalyzed by Porous Organometallic Polymers. Angew Chem Int Ed Engl 2021; 60:4125-4132. [PMID: 33200851 DOI: 10.1002/anie.202011260] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/07/2020] [Indexed: 01/08/2023]
Abstract
The valorization of carbon dioxide (CO2 ) to fine chemicals is one of the most promising approaches for CO2 capture and utilization. Herein we demonstrated a series of porous organometallic polymers could be employed as highly efficient and recyclable catalysts for this purpose. Synergetic effects of specific surface area, iridium content, and CO2 adsorption capability are crucial to achieve excellent selectivity and yields towards N-formylation of diverse amines with CO2 and H2 under mild reaction conditions even at 20 ppm catalyst loading. Density functional theory calculations revealed not only a redox-neutral catalytic pathway but also a new plausible mechanism with the incorporation of the key intermediate formic acid via a proton-relay process. Remarkably, a record turnover number (TON=1.58×106 ) was achieved in the synthesis of N,N-dimethylformamide (DMF), and the solid catalysts can be reused up to 12 runs, highlighting their practical potential in industry.
Collapse
Affiliation(s)
- Yajing Shen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Qingshu Zheng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Zhe-Ning Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Daheng Wen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - James H Clark
- Green Chemistry Centre of Excellence, University of York, York, YO105DD, UK
| | - Xin Xu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China.,Collaborative Innovation Center of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| |
Collapse
|
10
|
Gunasekar GH, Padmanaban S, Park K, Jung KD, Yoon S. An Efficient and Practical System for the Synthesis of N,N-Dimethylformamide by CO 2 Hydrogenation using a Heterogeneous Ru Catalyst: From Batch to Continuous Flow. CHEMSUSCHEM 2020; 13:1735-1739. [PMID: 31970875 DOI: 10.1002/cssc.201903364] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/22/2020] [Indexed: 06/10/2023]
Abstract
In the context of CO2 utilization, a number of CO2 conversion methods have been identified in laboratory-scale research; however, only a very few transformations have been successfully scaled up and implemented industrially. The main bottleneck in realizing industrial application of these CO2 conversions is the lack of industrially viable catalytic systems and the need for practically implementable process developments. In this study, a simple, highly efficient and recyclable ruthenium-grafted bisphosphine-based porous organic polymer (Ru@PP-POP) catalyst has been developed for the hydrogenation of CO2 to N,N-dimethylformamide, which affords a highest ever turnover number of 160 000 and an initial turnover frequency of 29 000 h-1 in a batch process. The catalyst is successfully applied in a trickle-bed reactor and utilized in an industrially feasible continuous-flow process with an excellent durability and productivity of 915 mmol h-1 gRu -1 .
Collapse
Affiliation(s)
- Gunniya Hariyanandam Gunasekar
- Clean Energy Research Center, Korea Institute of Science and Technology, P. O. Box 131, Cheongryang, Seoul, 136-791, Republic of Korea
| | - Sudakar Padmanaban
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea
| | - Kwangho Park
- Department of Applied Chemistry, Kookmin university, 77, Jeongneung-ro, Seongbuk-gu, Seoul, Republic of Korea
| | - Kwang-Deog Jung
- Clean Energy Research Center, Korea Institute of Science and Technology, P. O. Box 131, Cheongryang, Seoul, 136-791, Republic of Korea
| | - Sungho Yoon
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea
| |
Collapse
|
11
|
Wang Z, Zhao Z, Li Y, Zhong Y, Zhang Q, Liu Q, Solan GA, Ma Y, Sun WH. Ruthenium-catalyzed hydrogenation of CO2 as a route to methyl esters for use as biofuels or fine chemicals. Chem Sci 2020. [DOI: 10.1039/d0sc02942d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A novel robust diphosphine–ruthenium(ii) complex has been developed that can efficiently catalyze both the hydrogenation of CO2 to methanol and its in situ condensation with carboxylic acids to give methyl esters.
Collapse
Affiliation(s)
- Zheng Wang
- Hebei Key Laboratory of Organic Functional Molecules
- College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang 050024
- China
| | - Ziwei Zhao
- Hebei Key Laboratory of Organic Functional Molecules
- College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang 050024
- China
| | - Yong Li
- Hebei Key Laboratory of Organic Functional Molecules
- College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang 050024
- China
| | - Yanxia Zhong
- Department of Nursing Shijiazhuang Medical College
- Shijiazhuang 050000
- China
| | - Qiuyue Zhang
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Qingbin Liu
- Hebei Key Laboratory of Organic Functional Molecules
- College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang 050024
- China
| | - Gregory A. Solan
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Yanping Ma
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Wen-Hua Sun
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
12
|
Shen Q, Chen X, Tan Y, Chen J, Chen L, Tan S. Metal-Free N-Formylation of Amines with CO 2 and Hydrosilane by Nitrogen-Doped Graphene Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38838-38848. [PMID: 31566364 DOI: 10.1021/acsami.9b14509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
N-Formylation of amines with carbon dioxide (CO2) as a carbonyl source is emerging as an important way for CO2 transformation into high-value-added chemicals; however, the developed catalytic systems mainly focused on transition-metal-based homogeneous catalysts. Herein, we reported rationally designed nitrogen-doped graphene nanosheets (NG) as metal-free catalysts for N-formylation of various amines with CO2 and hydrosilane to formamide under mild conditions. The NG catalyst displayed a wide amine scope with the desired formamide yields up to >99%, demonstrating its comparable catalytic performance to the reported transition-metal-based catalysts. Our experimental research reveals that the N-formylation of aniline involves an initial NG-promoted CO2 hydrosilylation with PhSiH3 to silyl formate and a subsequent nucleophilic attack of the aniline to give N-formanilide. Moreover, the key step of CO2 hydrosilylation can be simplified to a pseudo-first-order reaction under a high CO2 concentration with an observed reaction rate constant (kobs) of 226 h-1 at 40 °C and an apparent activation energy (Ea) of 34 kJ mol-1. In sharp contrast, a kobs of 23 h-1 and Ea of 47 kJ mol-1 were observed under catalyst-free conditions. Our theoretical investigation indicates that NG-promoted CO2 hydrosilylation corresponds to an exergonic reaction (ΔG = -0.53 eV), which is much lower in energy state than that of catalyst-free conditions (ΔG = -0.44 eV). Finally, the NG showed outstanding recyclability in the N-formylation reaction with almost unchanged catalytic performance during twelve-time recycling. This research thus represented a breakthrough in metal-free transformation of CO2 into fine chemicals with low-cost, environment-friendly, and carbon-based catalysts to replace the scarce and expensive transition-metal-based catalysts.
Collapse
Affiliation(s)
- Qiujuan Shen
- Guangdong Engineering and Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science , Jinan University , No. 601 Huangpu Avenue West , Tianhe District, Guangzhou 510632 , China
| | - Xuehua Chen
- Guangdong Engineering and Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science , Jinan University , No. 601 Huangpu Avenue West , Tianhe District, Guangzhou 510632 , China
| | - Yiyuan Tan
- Guangdong Engineering and Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science , Jinan University , No. 601 Huangpu Avenue West , Tianhe District, Guangzhou 510632 , China
| | - Jinzhu Chen
- Guangdong Engineering and Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science , Jinan University , No. 601 Huangpu Avenue West , Tianhe District, Guangzhou 510632 , China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering , Zhejiang University , 38 Zheda Road , Hangzhou 310027 , China
| | - Limin Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy , South China University of Technology , 382 Zhonghuan Road East , Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou 510006 , China
| | - Shaozao Tan
- Guangdong Engineering and Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science , Jinan University , No. 601 Huangpu Avenue West , Tianhe District, Guangzhou 510632 , China
| |
Collapse
|
13
|
Wu Y, Wang T, Wang H, Wang X, Dai X, Shi F. Active catalyst construction for CO 2 recycling via catalytic synthesis of N-doped carbon on supported Cu. Nat Commun 2019; 10:2599. [PMID: 31197203 PMCID: PMC6565717 DOI: 10.1038/s41467-019-10633-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/21/2019] [Indexed: 11/17/2022] Open
Abstract
Bridging homogeneous and heterogeneous catalysis is a long-term pursuit in the field of catalysis. Herein, we report our results in integration of nano- and molecular catalysis via catalytic synthesis of nitrogen doped carbon layers on AlOx supported nano-Cu which can finely tune the catalytic performance of the supported copper catalyst. This synthetic catalytic material, which can be generated in situ by the reaction of CuAlOx and 1,10-Phen in the presence of hydrogen, could be used for controllable synthesis of N,N-dimethylformamide (DMF) from dimethylamine and CO2/H2 via blocking reaction pathways of further catalytic hydrogenation of DMF to N(CH3)3. Detailed characterizations and DFT calculations reveal that the presence of N-doped layered carbon on the surface of the nano-Cu particles results in higher activation energy barriers during the conversion of DMF to N(CH3)3. Our primary results could promote merging of homogeneous catalysis and heterogeneous catalysis and CO2 recycling. Bridging homogeneous and heterogeneous catalysis is a long-term pursuit in the field of catalysis. Here, the authors present results on integration of nano- and molecular catalysis via catalytic synthesis of nitrogen doped carbon layers on AlOx supported nano-Cu which can finely tune the catalytic performance of the supported copper catalyst.
Collapse
Affiliation(s)
- Yajuan Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, 730000, Lanzhou, China.,University of Chinese Academy of Sciences, No. 19A, Yuquan Road, 100049, Beijing, China
| | - Tao Wang
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Hongli Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, 730000, Lanzhou, China
| | - Xinzhi Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, 730000, Lanzhou, China.,University of Chinese Academy of Sciences, No. 19A, Yuquan Road, 100049, Beijing, China
| | - Xingchao Dai
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, 730000, Lanzhou, China.,University of Chinese Academy of Sciences, No. 19A, Yuquan Road, 100049, Beijing, China
| | - Feng Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, 730000, Lanzhou, China.
| |
Collapse
|
14
|
Bi Q, Huang X, Yin G, Chen T, Du X, Cai J, Xu J, Liu Z, Han Y, Huang F. Cooperative Catalysis of Nickel and Nickel Oxide for Efficient Reduction of CO
2
to CH
4. ChemCatChem 2019. [DOI: 10.1002/cctc.201801896] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Qingyuan Bi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
| | - Xieyi Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
| | - Guoheng Yin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
| | - Tianyuan Chen
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai 200237 P.R. China
| | - Xianlong Du
- Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 P.R. China
| | - Jun Cai
- State Key Laboratory of Functional Materials for Informatics Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 P.R. China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201203 P.R. China
| | - Jing Xu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai 200237 P.R. China
| | - Zhi Liu
- State Key Laboratory of Functional Materials for Informatics Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 P.R. China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201203 P.R. China
| | - Yifan Han
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai 200237 P.R. China
| | - Fuqiang Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201203 P.R. China
- State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P.R. China
| |
Collapse
|
15
|
|
16
|
Ke Z, Yang Z, Liu Z, Yu B, Zhao Y, Guo S, Wu Y, Liu Z. Cobalt-Catalyzed Synthesis of Unsymmetrically N,N-Disubstituted Formamides via Reductive Coupling of Primary Amines and Aldehydes with CO2 and H2. Org Lett 2018; 20:6622-6626. [DOI: 10.1021/acs.orglett.8b02384] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhengang Ke
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenzhen Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhenghui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanfei Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shien Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunyan Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhimin Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Huang K, Zhang JY, Liu F, Dai S. Synthesis of Porous Polymeric Catalysts for the Conversion of Carbon Dioxide. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02151] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Kuan Huang
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Jia-Yin Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Fujian Liu
- National Engineering Research Center for Chemical Fertilizer Catalyst (NERC−CFC), School of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Sheng Dai
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
18
|
Zhang Y, Wang J, Zhu H, Tu T. N-Formylation of Amines with CO2
and H2
by Using NHC-Iridium Coordination Assemblies as Solid Molecular Catalysts. Chem Asian J 2018; 13:3018-3021. [DOI: 10.1002/asia.201800953] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 06/29/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Yang Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; Department of Chemistry; Fudan University; 2205 Songhu Road Shanghai 200438 China
| | - Jiaquan Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; Department of Chemistry; Fudan University; 2205 Songhu Road Shanghai 200438 China
| | - Haibo Zhu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; Department of Chemistry; Fudan University; 2205 Songhu Road Shanghai 200438 China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; Department of Chemistry; Fudan University; 2205 Songhu Road Shanghai 200438 China
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; Shanghai 200032 China
| |
Collapse
|
19
|
|
20
|
Yin G, Yuan X, Du X, Zhao W, Bi Q, Huang F. Efficient Reduction of CO2
to CO Using Cobalt-Cobalt Oxide Core-Shell Catalysts. Chemistry 2018; 24:2157-2163. [DOI: 10.1002/chem.201704596] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Guoheng Yin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Xiaotao Yuan
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 P. R. China
| | - Xianlong Du
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 P. R. China
| | - Wei Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 P. R. China
| | - Qingyuan Bi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 P. R. China
| | - Fuqiang Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 P. R. China
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 P. R. China
| |
Collapse
|
21
|
Liu Q, Xu G, Wang Z, Liu X, Wang X, Dong L, Mu X, Liu H. Iridium Clusters Encapsulated in Carbon Nanospheres as Nanocatalysts for Methylation of (Bio)Alcohols. CHEMSUSCHEM 2017; 10:4748-4755. [PMID: 28948713 DOI: 10.1002/cssc.201701607] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/25/2017] [Indexed: 06/07/2023]
Abstract
C-H methylation is an attractive chemical transformation for C-C bonds construction in organic chemistry, yet efficient methylation of readily available (bio)alcohols in water using methanol as sustainable C1 feedstock is limited. Herein, iridium nanocatalysts encapsulated in yolk-shell-structured mesoporous carbon nanospheres (Ir@YSMCNs) were synthesized for this transformation. Monodispersed Ir clusters (ca. 1.0 nm) were encapsulated in situ and spatially isolated within YSMCNs by a silica-assisted sol-gel emulsion strategy. A selection of (bio)alcohols (19 examples) was selectively methylated in aqueous phase with good-to-high yields over the developed Ir@YSMCNs. The improved catalytic efficiencies in terms of activity and selectivity together with the good stability and recyclability were contributable to the ultrasmall Ir clusters with oxidation chemical state as a consequence of the confinement effect of YSMCNs with interconnected nanostructures.
Collapse
Affiliation(s)
- Qiang Liu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guoqiang Xu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Zhendong Wang
- Key Laboratory of Marine Chemistry Theory and Technology of Ministry of Education, Ocean University of China, Qingdao, 266100, P. R. China
| | - Xiaoran Liu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Xicheng Wang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Linlin Dong
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Xindong Mu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Huizhou Liu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| |
Collapse
|
22
|
Ke Z, Hao L, Gao X, Zhang H, Zhao Y, Yu B, Yang Z, Chen Y, Liu Z. Reductive Coupling of CO 2 , Primary Amine, and Aldehyde at Room Temperature: A Versatile Approach to Unsymmetrically N,N-Disubstituted Formamides. Chemistry 2017; 23:9721-9725. [PMID: 28573742 DOI: 10.1002/chem.201701420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Indexed: 12/17/2022]
Abstract
We present a simple, metal-free, and versatile route to synthesize unsymmetrically N,N-disubstituted formamides (NNFAs) from CO2 , primary amine, and aldehyde promoted by an ionic liquid (1-butyl-3-methylimidazolium chloride) at room temperature. This approach features wide scopes of amines and aldehydes, and various unsymmetrical NNFAs could be obtained in good to excellent yields. The ionic liquid can be reused for at least five runs without obvious activity loss.
Collapse
Affiliation(s)
- Zhengang Ke
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Leiduan Hao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiang Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongye Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yanfei Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Bo Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhenzhen Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yu Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhimin Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
23
|
He Z, Liu H, Liu H, Qian Q, Meng Q, Mei Q, Han B. Heterogeneous Cobalt-Catalyzed DirectN-Formylation of Isoquinolines with CO2and H2. ChemCatChem 2017. [DOI: 10.1002/cctc.201601682] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhenhong He
- Beijing National Laboratory for Molecular Sciences (BNLMS); Institute of Chemistry; Chinese Academy of Sciences; 100190 Beijing China
| | - Hangyu Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS); Institute of Chemistry; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS); Institute of Chemistry; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Qingli Qian
- Beijing National Laboratory for Molecular Sciences (BNLMS); Institute of Chemistry; Chinese Academy of Sciences; 100190 Beijing China
| | - Qinglei Meng
- Beijing National Laboratory for Molecular Sciences (BNLMS); Institute of Chemistry; Chinese Academy of Sciences; 100190 Beijing China
| | - Qingqing Mei
- Beijing National Laboratory for Molecular Sciences (BNLMS); Institute of Chemistry; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences (BNLMS); Institute of Chemistry; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; Beijing China
| |
Collapse
|
24
|
Luo R, Lin X, Chen Y, Zhang W, Zhou X, Ji H. Cooperative Catalytic Activation of Si-H Bonds: CO 2 -Based Synthesis of Formamides from Amines and Hydrosilanes under Mild Conditions. CHEMSUSCHEM 2017; 10:1224-1232. [PMID: 27860420 DOI: 10.1002/cssc.201601490] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Indexed: 06/06/2023]
Abstract
A simple cooperative catalytic system was successfully developed for the solvent-free N-formylation of amines with CO2 and hydrosilanes under ambient conditions, which was composed of a Zn(salen) catalyst and quaternary ammonium salt. These commercially available binary components activated the Si-H bonds effectively, owing to the intermolecular synergistic effect between Lewis base and transition metal center (LB-TM), and subsequently facilitated the insertion of CO2 to form the active silyl formats, thereby leading to excellent catalytic performance at a low catalyst loading. Furthermore, the bifunctional Zn(salen) complexes, with two imidazolium-based ionic-liquid (IL) units at the 3,3'-position of salen ligand, acted as intramolecularly cooperative catalysts, and the solvent-regulated separation resulted in facile catalyst recycling and reuse.
Collapse
Affiliation(s)
- Rongchang Luo
- School of Chemistry, Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xiaowei Lin
- School of Chemistry, Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yaju Chen
- School of Chemistry, Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Wuying Zhang
- School of Chemistry, Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xiantai Zhou
- School of Chemistry, Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Hongbing Ji
- School of Chemistry, Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
25
|
Ji YG, Wei K, Liu T, Wu L, Zhang WH. “Naked” Iridium(IV) Oxide Nanoparticles as Expedient and Robust Catalysts for Hydrogenation of Nitrogen Heterocycles: Remarkable Vicinal Substitution Effect and Recyclability. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201601370] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yi-Gang Ji
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences; Nanjing Agricultural University; Nanjing 210095 People's Republic of China
- Jiangsu Key Laboratory of Biofunction Molecule, Department of Life Sciences and Chemistry; Jiangsu Second Normal University; Nanjing 210013 People's Republic of China
- College of Plant Protection; Nanjing Agricultural University; Nanjing 210095 People's Republic of China
| | - Kai Wei
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences; Nanjing Agricultural University; Nanjing 210095 People's Republic of China
| | - Teng Liu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences; Nanjing Agricultural University; Nanjing 210095 People's Republic of China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences; Nanjing Agricultural University; Nanjing 210095 People's Republic of China
- Beijing National Laboratory for Molecular Sciences and Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 People's Republic of China
| | - Wei-Hua Zhang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences; Nanjing Agricultural University; Nanjing 210095 People's Republic of China
| |
Collapse
|
26
|
Yang Z, Wang H, Ji G, Yu X, Chen Y, Liu X, Wu C, Liu Z. Pyridine-functionalized organic porous polymers: applications in efficient CO2 adsorption and conversion. NEW J CHEM 2017. [DOI: 10.1039/c6nj03899a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pyridine-functionalized porous organic polymers showed excellent CO2 uptake capacity and served as efficient catalysts for the formylation of amines with CO2/H2 after metallization with Ru(0) nanoparticles.
Collapse
Affiliation(s)
- Zhenzhen Yang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid
- Interface and Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Huan Wang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid
- Interface and Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Guipeng Ji
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid
- Interface and Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Xiaoxiao Yu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid
- Interface and Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Yu Chen
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid
- Interface and Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Xinwei Liu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid
- Interface and Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Cailing Wu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid
- Interface and Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Zhimin Liu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid
- Interface and Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
27
|
Fang C, Lu C, Liu M, Zhu Y, Fu Y, Lin BL. Selective Formylation and Methylation of Amines using Carbon Dioxide and Hydrosilane Catalyzed by Alkali-Metal Carbonates. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01856] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Chi Fang
- Department
of Chemistry, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- School
of Physical Science and Technology (SPST), ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Chunlei Lu
- School
of Physical Science and Technology (SPST), ShanghaiTech University, Shanghai 201210, People’s Republic of China
- Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China
| | - Muhua Liu
- School
of Physical Science and Technology (SPST), ShanghaiTech University, Shanghai 201210, People’s Republic of China
- Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China
| | - Yiling Zhu
- School
of Physical Science and Technology (SPST), ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Yao Fu
- Department
of Chemistry, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Bo-Lin Lin
- School
of Physical Science and Technology (SPST), ShanghaiTech University, Shanghai 201210, People’s Republic of China
- Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China
| |
Collapse
|
28
|
Higaki T, Kitazawa H, Yamazoe S, Tsukuda T. Partially oxidized iridium clusters within dendrimers: size-controlled synthesis and selective hydrogenation of 2-nitrobenzaldehyde. NANOSCALE 2016; 8:11371-11374. [PMID: 27193739 DOI: 10.1039/c6nr01460g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Iridium clusters nominally composed of 15, 30 or 60 atoms were size-selectively synthesized within OH-terminated poly(amidoamine) dendrimers of generation 6. Spectroscopic characterization revealed that the Ir clusters were partially oxidized. All the Ir clusters efficiently converted 2-nitrobenzaldehyde to anthranil and 2-aminobenzaldehyde under atmospheric hydrogen at room temperature in toluene via selective hydrogenation of the NO2 group. The selectivity toward 2-aminobenzaldehyde over anthranil was improved with the reduction of the cluster size. The improved selectivity is ascribed to more efficient reduction than intramolecular heterocyclization of a hydroxylamine intermediate on smaller clusters that have a higher Ir(0)-phase population on the surface.
Collapse
Affiliation(s)
- Tatsuya Higaki
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hirokazu Kitazawa
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. and Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Seiji Yamazoe
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. and Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. and Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
29
|
Klankermayer J, Wesselbaum S, Beydoun K, Leitner W. Selective Catalytic Synthesis Using the Combination of Carbon Dioxide and Hydrogen: Catalytic Chess at the Interface of Energy and Chemistry. Angew Chem Int Ed Engl 2016; 55:7296-343. [PMID: 27237963 DOI: 10.1002/anie.201507458] [Citation(s) in RCA: 506] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Indexed: 12/20/2022]
Abstract
The present Review highlights the challenges and opportunities when using the combination CO2 /H2 as a C1 synthon in catalytic reactions and processes. The transformations are classified according to the reduction level and the bond-forming processes, covering the value chain from high volume basic chemicals to complex molecules, including biologically active substances. Whereas some of these concepts can facilitate the transition of the energy system by harvesting renewable energy into chemical products, others provide options to reduce the environmental impact of chemical production already in today's petrochemical-based industry. Interdisciplinary fundamental research from chemists and chemical engineers can make important contributions to sustainable development at the interface of the energetic and chemical value chain. The present Review invites the reader to enjoy this exciting area of "catalytic chess" and maybe even to start playing some games in her or his laboratory.
Collapse
Affiliation(s)
- Jürgen Klankermayer
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany.
| | - Sebastian Wesselbaum
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Kassem Beydoun
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Walter Leitner
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany. .,Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany.
| |
Collapse
|
30
|
Klankermayer J, Wesselbaum S, Beydoun K, Leitner W. Selektive katalytische Synthesen mit Kohlendioxid und Wasserstoff: Katalyse-Schach an der Nahtstelle zwischen Energie und Chemie. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201507458] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jürgen Klankermayer
- Institut für Technische und Makromolekulare Chemie; RWTH Aachen University; Worringerweg 2 52074 Aachen Deutschland
| | - Sebastian Wesselbaum
- Institut für Technische und Makromolekulare Chemie; RWTH Aachen University; Worringerweg 2 52074 Aachen Deutschland
| | - Kassem Beydoun
- Institut für Technische und Makromolekulare Chemie; RWTH Aachen University; Worringerweg 2 52074 Aachen Deutschland
| | - Walter Leitner
- Institut für Technische und Makromolekulare Chemie; RWTH Aachen University; Worringerweg 2 52074 Aachen Deutschland
- Max-Planck-Institut für Kohlenforschung; Mülheim an der Ruhr Deutschland
| |
Collapse
|
31
|
Kumar S, Jain SL. An efficient copper catalyzed formylation of amines utilizing CO2and hydrogen. RSC Adv 2014. [DOI: 10.1039/c4ra12151a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|