1
|
Hua K, Xie F, Ye S, Zhang MT. Three Distinct Oxidation States (II/II, II/III, and III/III) of Diorganocopper Complexes. JACS AU 2024; 4:4406-4414. [PMID: 39610740 PMCID: PMC11600190 DOI: 10.1021/jacsau.4c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 11/30/2024]
Abstract
In this report, we present a structurally and spectroscopically characterized diorganocopper system in three distinct oxidation states: [CuIICuII] (1), [CuIICuIII] (2), and [CuIIICuIII] (3). These states are stabilized by a macrocyclic ligand scaffold featuring two square-planar coordination {C2 NHCN2 pyrazole}. We have analyzed the geometric and electronic structures using X-ray diffraction (XRD) and multiple spectroscopic methods including nuclear magnetic resonance (NMR), UV-vis, and electron paramagnetic resonance (EPR) spectroscopies, in combination with density functional theory (DFT) calculations. Remarkably, this study provides a structural determination of mixed-valence diorganocopper(II,III) complex 2, which is at the borderline between valence-trapped or charge-localized class I systems and charge moderately delocalized class II systems in Robin and Day classification. These findings enhance our understanding of the systematic structural and electronic changes that occur in diorganocopper complexes in response to redox transformations.
Collapse
Affiliation(s)
- Kai Hua
- Center
of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Fei Xie
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shengfa Ye
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ming-Tian Zhang
- Center
of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Takahashi S, Kazama Y, Nakata N, Baceiredo A, Hashizume D, Saffon-Merceron N, Branchadell V, Kato T. Silyliumylidene Ion Stabilized by Two σ-Donating Ni(0)- and Pd(0)-Fragments. Chemistry 2024; 30:e202400054. [PMID: 38779843 DOI: 10.1002/chem.202400054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Indexed: 05/25/2024]
Abstract
A silyliumylidene ion 2 stabilized by two σ-donating Ni(0)- and Pd(0)-fragments was successfully synthesized. Due to the σ-donation of M→Si interactions, 2 presents a pyramidalized cationic silicon center with a localized lone pair. The additional coordination of basic Pd(0) fragment to the mono-Ni(0)-stabilized silyliumylidene 1 results in a higher HOMO level and an unchanged HOMO-LUMO gap and thus, 2 remains highly reactive. Interestingly, the coordination mode at the Si center is closely related to the nature of M-ligands. Indeed, the donor/donor-stabilized silyliumylidene ion 2 has been transformed into a donor/acceptor-stabilized ion 13, featuring a trigonal planar Si center with a vacant orbital, just via a ligand exchange reaction from PCy3/NHC toward PMe3.
Collapse
Affiliation(s)
- Shintaro Takahashi
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, F-31062, Toulouse, France
| | - Yugo Kazama
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Norio Nakata
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Antoine Baceiredo
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, F-31062, Toulouse, France
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Nathalie Saffon-Merceron
- Institut de Chimie de Toulouse, UAR 2599), UPS, CNRS, ICT UAR2599 118 route de Narbonne, F-31062, Toulouse, France
| | - Vicenç Branchadell
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Tsuyoshi Kato
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, F-31062, Toulouse, France
| |
Collapse
|
3
|
Minnick JL, Raincrow J, Meinders G, Latifi R, Tahsini L. Synthesis, Characterization, and Spectroscopic Studies of 2,6-Dimethylpyridyl-Linked Cu(I)-CNC Complexes: The Electronic Influence of Aryl Wingtips on Copper Centers. Inorg Chem 2023; 62:15912-15926. [PMID: 37715709 DOI: 10.1021/acs.inorgchem.3c01973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
Abstract
Six new Cu(I) complexes containing pincer ligands of the type 2,6-bis(3-alkyl/arylimidazol-2-ylidene) methylpyridine I(R/R'Ar) ĈN̂C, where R = trifluoroethyl (TFE) and R' = 4-CF3, 4-NO2, 4-CN, 4-H, and 4-CH3, have been synthesized. These complexes, namely, [Cu(I(TFE)ĈN̂C)]PF6, 1-TFE; [Cu(ICF3Ar ĈN̂C]PF6, 2-CF3; [Cu(INO2Ar ĈN̂C)]PF6, 3-NO2; [Cu(ICNAr ĈN̂C]PF6, 4-CN; [Cu(IHAr ĈN̂C)]2(PF6)2, 5-H; and [Cu(ICH3Ar ĈN̂C)]2(PF6)2, 6-CH3, were fully characterized by 1H, 13C, and HMBC NMR spectroscopy, elemental analysis, electrochemical studies, and single-crystal X-ray crystallography. The crystallographic data revealed different structures and copper nuclearities for the complexes bearing aryl wingtips with electron-withdrawing (2-CF3, 3-NO2, and 4-CN) and electron-donating (5-H and 6-CH3) substituents. The solution-phase conductivity measurements in acetonitrile revealed a mix-electrolyte behavior for these complexes, supporting the presence of both mono- and binuclear forms of each complex. The fast monomer-dimer equilibrium of the Cu-CNC complexes at room temperature is reflected in their simple 1H NMR spectra in acetonitrile. However, both mono- and binuclear forms were identifiable in 1H diffusion-ordered spectroscopy (DOSY) at low temperatures. The dynamic behavior of these complexes in solution was further examined by variable-temperature 1H NMR (VT 1H NMR) experiments, and the relevant thermodynamic parameters were determined. The process was also probed by one-dimensional rotating-frame Overhauser enhancement spectroscopy (1D ROESY) experiments to elucidate the coexisting species in solution. The 2,6-dimethylpyridyl-linked Cu-CNC complexes also presented a quasi-reversible Cu(II)/Cu(I) couple in cyclic voltammetry studies, wherein a clear influence of the aryl wingtips on the E1/2 values was observed. Furthermore, the percent buried volumes (% Vbur) of the complexes were calculated, showing a similar steric hindrance around copper in all complexes. These findings support the importance of electronic effects, induced by the aryl wingtips, on the preferred coordination geometry, copper nuclearity, and redox properties of the Cu-CNC complexes.
Collapse
Affiliation(s)
- Jennifer L Minnick
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - John Raincrow
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Grace Meinders
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Reza Latifi
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Laleh Tahsini
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
4
|
Synthesis, characterization, in vitro antibacterial, and anticancer studies of Ag(I)-N-heterocyclic carbene (NHC) complexes. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02498-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Fontes JV, Santos IA, Rosa LB, Lima RLA, Jardim ACG, Miguel DC, Abbehausen C. Antileishmanial and Anti‐Chikungunya Activity of Cu(I)‐N‐Heterocyclic Carbenes. ChemistrySelect 2022. [DOI: 10.1002/slct.202201560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Josielle V. Fontes
- Institute of Chemistry University of Campinas - UNICAMP PO Box 6154 13083-970 Campinas SP Brazil
| | - Igor A. Santos
- Institute of Biomedical Sciences Federal University of Uberlândia Uberlandia MG Brazil
| | - Letícia B. Rosa
- Institute of Biology University of Campinas - UNICAMP 13083-862 Campinas SP Brazil
| | - Rochanna L. A. Lima
- Institute of Chemistry University of Campinas - UNICAMP PO Box 6154 13083-970 Campinas SP Brazil
| | - Ana C. G. Jardim
- Institute of Biomedical Sciences Federal University of Uberlândia Uberlandia MG Brazil
| | - Danilo C. Miguel
- Institute of Biology University of Campinas - UNICAMP 13083-862 Campinas SP Brazil
| | - Camilla Abbehausen
- Institute of Chemistry University of Campinas - UNICAMP PO Box 6154 13083-970 Campinas SP Brazil
| |
Collapse
|
6
|
Sharma M, Adhikari B, Awoyemi RF, Perkins AM, Duckworth AK, Donnadieu B, Wipf DO, Stokes SL, Emerson JP. Copper(II) NHC Catalyst for the Formation of Phenol from Arylboronic Acid. CHEMISTRY (BASEL, SWITZERLAND) 2022; 4:560-575. [PMID: 38031556 PMCID: PMC10686634 DOI: 10.3390/chemistry4020040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Arylboronic acids are commonly used in modern organic chemistry to form new C-C and C-heteroatom bonds. These activated organic synthons show reactivity with heteroatoms in a range of substrates under ambient oxidative conditions. This broad reactivity has limited their use in protic, renewable solvents like water, ethanol, and methanol. Here, we report our efforts to study and optimize the activation of arylboronic acids by a copper(II) N-heterocyclic carbene (NHC) complex in aqueous solution and in a range of alcohols to generate phenol and aryl ethers, respectively. The optimized reactivity showcases the ability to make targeted C-O bonds, but also identifies conditions where water and alcohol activation could be limiting for C-C and C-heteroatom bond-forming reactions. This copper(II) complex shows strong reactivity toward arylboronic acid activation in aqueous medium at ambient temperature. The relationship between product formation and temperature and catalyst loading are described. Additionally, the effects of buffer, pH, base, and co-solvent are explored with respect to phenol and ether generation reactions. Characterization of the new copper(II) NCN-pincer complex by X-ray crystallography, HR-MS, cyclic voltammetry, FT-IR and UV-Vis spectral studies is reported.
Collapse
Affiliation(s)
- Mitu Sharma
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762-9573, USA
| | - Bhupendra Adhikari
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762-9573, USA
| | - Raymond Femi Awoyemi
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762-9573, USA
| | - Amanda M. Perkins
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762-9573, USA
| | - Alison K. Duckworth
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762-9573, USA
| | - Bruno Donnadieu
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762-9573, USA
| | - David O. Wipf
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762-9573, USA
| | - Sean L. Stokes
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762-9573, USA
| | - Joseph P. Emerson
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762-9573, USA
| |
Collapse
|
7
|
Flores JC, Silbestri GF, de Jesús E. Water-soluble transition-metal complexes with hydrophilic N-heterocyclic carbene ligands for aqueous-phase applications. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2022. [DOI: 10.1016/bs.adomc.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Aggarwal K, Bsoul S, Douglin JC, Li S, Dekel DR, Diesendruck C. Alkaline Stability of Low Oxophilicity Metallopolymer Anion-Exchange Membranes. Chemistry 2021; 28:e202103744. [PMID: 34878688 DOI: 10.1002/chem.202103744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 11/06/2022]
Abstract
Anion-exchange membrane fuel cells (AEMFCs) are promising energy conversion devices due to their high efficiency and relatively low cost. Nonetheless, AEMFC operation time is currently limited by the low chemical stability of their polymeric anion-exchange membranes. In recent years, metallopolymers, where the metal centers assume the ion transport function, have been proposed as a chemically stable alternative. Here we present a systematic study using a polymer backbone with side-chain N-heterocyclic carbene (NHC) ligands complexed to various metals with low oxophilicity, such as copper, zinc, nickel, and gold. The golden metallopolymer, using the metal with the lowest oxophilicity, demonstrates exceptional alkaline stability, far superior to state-of-the-art quaternary ammonium cations, as well as good in-situ AEMFC results. These results demonstrate that judiciously designed metallopolymers may be superior to purely organic membranes and provides a scientific base for further developments in the field.
Collapse
Affiliation(s)
| | - Saja Bsoul
- Technion Israel Institute of Technology, Chemical Engineering, ISRAEL
| | - John C Douglin
- Technion Israel Institute of Technology, Chemical Engineering, ISRAEL
| | - Songlin Li
- Technion Israel Institute of Technology, Chemical Engineering, ISRAEL
| | - Dario R Dekel
- Technion Israel Institute of Technology, Chemical Engineering, ISRAEL
| | - Charles Diesendruck
- Technion - Israel Institute of Technology, Schulich Faculty of Chemistry, Kiryat Hatechnion, 3200008, Haifa, ISRAEL
| |
Collapse
|
9
|
Mikhaylov VN, Balova IA. Alternative Transformations of N-Heterocyclic Carbene Complexes of the Group 11 Metals in Transmetalation Reactions (A Review). RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221110098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Nayak S, Gaonkar SL. Coinage Metal N-Heterocyclic Carbene Complexes: Recent Synthetic Strategies and Medicinal Applications. ChemMedChem 2021; 16:1360-1390. [PMID: 33277791 DOI: 10.1002/cmdc.202000836] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Indexed: 12/15/2022]
Abstract
New weapons are constantly needed in the fight against cancer. The discovery of cisplatin as an anticancer drug prompted the search for new metal complexes. The successful history of cisplatin motivated chemists to develop a plethora of metal-based molecules. Among them, metal-N-heterocyclic carbene (NHC) complexes have gained significant attention because of their suitable qualities for efficient drug design. The enhanced applications of coinage metal-NHC complexes have encouraged a gradually increasing number of studies in the fields of medicinal chemistry that benefit from the fascinating chemical properties of these complexes. This review aims to present recent developments in synthetic strategies and medicinal applications of copper, silver and gold complexes supported by NHC ligands.
Collapse
Affiliation(s)
- Swarnagowri Nayak
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Santosh L Gaonkar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
11
|
Dileepan AB, Ganeshkumar A, Ranjith R, Maruthamuthu D, Rajaram R, Rajam S. Killing effects of Candida albicans through alteration of cellular morphology and growth metabolism using Tris-NHC ligand coordinated to AgI and CuI. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Krahfuss MJ, Radius U. N-Heterocyclic silylenes as ambiphilic activators and ligands. Dalton Trans 2021; 50:6752-6765. [DOI: 10.1039/d1dt00617g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent developments of the use of N-heterocyclic silylenes (NHSis), higher homologues of Arduengo-carbenes, as ambiphilic activators and ligands are highlighted and a comparison of NHSi ligands with NHC and phosphine ligands is provided.
Collapse
Affiliation(s)
- Mirjam J. Krahfuss
- Institut für Anorganische Chemie
- Julius-Maximilians-Universität Würzburg
- D-97074 Würzburg
- Germany
| | - Udo Radius
- Institut für Anorganische Chemie
- Julius-Maximilians-Universität Würzburg
- D-97074 Würzburg
- Germany
| |
Collapse
|
13
|
Veinot AJ, Al-Rashed A, Padmos JD, Singh I, Lee DS, Narouz MR, Lummis PA, Baddeley CJ, Crudden CM, Horton JH. N-Heterocyclic Carbenes Reduce and Functionalize Copper Oxide Surfaces in One Pot. Chemistry 2020; 26:11431-11434. [PMID: 32428330 DOI: 10.1002/chem.202002308] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Indexed: 01/15/2023]
Abstract
Benzimidazolium hydrogen carbonate salts have been shown to act as N-heterocyclic carbene precursors, which can remove oxide from copper oxide surfaces and functionalize the resulting metallic surfaces in a single pot. Both the surfaces and the etching products were fully characterized by spectroscopic methods. Analysis of surfaces before and after NHC treatment by X-ray photoelectron spectroscopy demonstrates the complete removal of copper(II) oxide. By using 13 C-labelling, we determined that the products of this transformation include a cyclic urea, a ring-opened formamide and a bis-carbene copper(I) complex. These results illustrate the potential of NHCs to functionalize a much broader class of metals, including those prone to oxidation, greatly facilitating the preparation of NHC-based films on metals other than gold.
Collapse
Affiliation(s)
- Alex J Veinot
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario, K7L 3N6, Canada
| | - Abrar Al-Rashed
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario, K7L 3N6, Canada
| | - J Daniel Padmos
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario, K7L 3N6, Canada
| | - Ishwar Singh
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario, K7L 3N6, Canada
| | - Dianne S Lee
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario, K7L 3N6, Canada
| | - Mina R Narouz
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario, K7L 3N6, Canada
| | - Paul A Lummis
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario, K7L 3N6, Canada
| | - Christopher J Baddeley
- EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, United Kingdom
| | - Cathleen M Crudden
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario, K7L 3N6, Canada.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - J Hugh Horton
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
14
|
Krahfuss MJ, Radius U. N-Heterocyclic Silylenes as Metal–Metal Bridges and Metal–Halide Activators in Transition Metal Complexes. Inorg Chem 2020; 59:10976-10985. [DOI: 10.1021/acs.inorgchem.0c01462] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mirjam J. Krahfuss
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
15
|
Wu T, Zhao F, Hu Q, Cui Y, Huang T, Zheng D, Liu Q, Lei Y, Jia L, Luo C. Structural characterization, DFT studied, luminescent properties of cationic/neutral three‐coordinated copper (I) complexes and application in warm‐white light‐emitting diode. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tian‐Cheng Wu
- School of Chemical Engineering Sichuan University of Science & Engineering Zigong 643000 China
| | - Fang‐Zheng Zhao
- School of Chemical Engineering Sichuan University of Science & Engineering Zigong 643000 China
| | - Qiao‐Long Hu
- School of Chemical Engineering Sichuan University of Science & Engineering Zigong 643000 China
| | - Yi‐Shun Cui
- School of Chemical Engineering Sichuan University of Science & Engineering Zigong 643000 China
| | - Ting‐Hong Huang
- School of Chemical Engineering Sichuan University of Science & Engineering Zigong 643000 China
- School of Materials and Energy University of Electronic Science and Technology of China Chengdu 611731 China
| | - Dan Zheng
- School of Chemical Engineering Sichuan University of Science & Engineering Zigong 643000 China
| | - Qiang Liu
- College of Chemistry and Environmental Protection Engineering Southwest University for Nationalities Chengdu 610041 China
| | - Ying Lei
- School of Chemical Engineering Sichuan University of Science & Engineering Zigong 643000 China
| | - Lin Jia
- School of Chemical Engineering Sichuan University of Science & Engineering Zigong 643000 China
| | - Cheng Luo
- School of Chemical Engineering Sichuan University of Science & Engineering Zigong 643000 China
| |
Collapse
|
16
|
Matavos-Aramyan S, Soukhakian S, Jazebizadeh MH. Mononuclear Cu Complexes Based on Nitrogen Heterocyclic Carbene: A Comprehensive Review. Top Curr Chem (Cham) 2020; 378:39. [PMID: 32367181 DOI: 10.1007/s41061-020-00304-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/16/2020] [Indexed: 11/28/2022]
Abstract
During the last decade, organometallic, coordination, and catalytic chemistry of the three-dimensional metals such as copper (Cu) has been greatly affected by the emergence of nitrogen heterocyclic carbene (NHC) complexes. The NHCs, and in particular the mononuclear CuI-based ones, have been proven vastly useful in several applications such as in biosynthesis, catalysis, photochemistry, etc. This review tries to thoroughly describe a series of mononuclear CuI NHC complexes and their subcategories such as heteroleptics, and bidentate and tridentate heteroatom complexes, and give some detailed insights on their development, emergence, and applications. A brief outlook is also disclosed to enable other researchers to further develop a platform for future advances and studies in the field of CuI-based NHCs.
Collapse
Affiliation(s)
- Sina Matavos-Aramyan
- Research and Development Department, Division of Chemistry, Raazi Environmental Protection Foundation, Shiraz, Iran.
| | - Sadaf Soukhakian
- Research and Development Department, Division of Chemistry, Raazi Environmental Protection Foundation, Shiraz, Iran
| | - Mohammad Hossein Jazebizadeh
- Research and Development Department, Division of Chemistry, Raazi Environmental Protection Foundation, Shiraz, Iran
| |
Collapse
|
17
|
Cervantes‐Reyes A, Rominger F, Hashmi ASK. Sterically Demanding Ag I and Cu I N-Heterocyclic Carbene Complexes: Synthesis, Structures, Steric Parameters, and Catalytic Activity. Chemistry 2020; 26:5530-5540. [PMID: 32104933 PMCID: PMC7216994 DOI: 10.1002/chem.202000600] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/27/2020] [Indexed: 12/13/2022]
Abstract
The synthesis and full characterization of new air-stable AgI and CuI complexes bearing structurally bulky expanded-ring N-heterocyclic carbene (erNHC) ligands is presented. The condensation of protonated NHC salts with Ag2 O afforded a collection of AgI complexes, and their first use as ligand transfer reagents led to novel isostructural CuI or AuI complexes. In situ deprotonation of the NHC salts in the presence of a copper(I) source, provides a library of new CuI complexes. The solid-state structures feature large N-CNHC -N angles (118-128°) and almost identical angles between the aryl groups on the nitrogen atoms and the plane of the N-C-N unit of the carbene (i.e. torsion angles close to 0°). Among the steric parameters, the percent buried volume (%Vbur ) values span easily in the 50-57 % range, and that one of (9-Dipp)CuBr complex (%Vbur =57.5) overcomes to other known erNHC-metal complexes reported to date. Preliminary catalytic experiments in the copper-catalyzed coupling between N-tosylhydrazone and phenylacetylene, afforded 76-93 % product at the 0.5-2.5 mol % catalyst loading, proving the stability of CuI erNHC complexes at elevated temperatures (100 °C).
Collapse
Affiliation(s)
| | - Frank Rominger
- Organisch-Chemisches InstitutHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches InstitutHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz UniversityJeddah21589Saudi Arabia
| |
Collapse
|
18
|
Liu Y, Resch SG, Klawitter I, Cutsail GE, Demeshko S, Dechert S, Kühn FE, DeBeer S, Meyer F. An Adaptable N‐Heterocyclic Carbene Macrocycle Hosting Copper in Three Oxidation States. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yang Liu
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Stefan G. Resch
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Iris Klawitter
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - George E. Cutsail
- Department of Inorganic Spectroscopy Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Sebastian Dechert
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Fritz E. Kühn
- Department of Chemistry & Catalysis Research Center Technische Universität München Lichtenbergstrasse 4 85748 Garching bei München Germany
| | - Serena DeBeer
- Department of Inorganic Spectroscopy Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | - Franc Meyer
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
19
|
Liu Y, Resch SG, Klawitter I, Cutsail GE, Demeshko S, Dechert S, Kühn FE, DeBeer S, Meyer F. An Adaptable N-Heterocyclic Carbene Macrocycle Hosting Copper in Three Oxidation States. Angew Chem Int Ed Engl 2020; 59:5696-5705. [PMID: 31769151 PMCID: PMC7154638 DOI: 10.1002/anie.201912745] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Indexed: 11/07/2022]
Abstract
A neutral hybrid macrocycle with two trans-positioned N-heterocyclic carbenes (NHCs) and two pyridine donors hosts copper in three oxidation states (+I-+III) in a series of structurally characterized complexes (1-3). Redox interconversion of [LCu]+/2+/3+ is electrochemically (quasi)reversible and occurs at moderate potentials (E1/2 =-0.45 V and +0.82 V (vs. Fc/Fc+ )). A linear CNHC -Cu-CNHC arrangement and hemilability of the two pyridine donors allows the ligand to adapt to the different stereoelectronic and coordination requirements of CuI versus CuII /CuIII . Analytical methods such as NMR, UV/Vis, IR, electron paramagnetic resonance, and Cu Kβ high-energy-resolution fluorescence detection X-ray absorption spectroscopies, as well as DFT calculations, give insight into the geometric and electronic structures of the complexes. The XAS signatures of 1-3 are textbook examples for CuI , CuII , and CuIII species. Facile 2-electron interconversion combined with the exposure of two basic pyridine N sites in the reduced CuI form suggest that [LCu]+/2+/3+ may operate in catalysis via coupled 2 e- /2 H+ transfer.
Collapse
Affiliation(s)
- Yang Liu
- Institute of Inorganic ChemistryUniversity of GöttingenTammannstrasse 437077GöttingenGermany
| | - Stefan G. Resch
- Institute of Inorganic ChemistryUniversity of GöttingenTammannstrasse 437077GöttingenGermany
| | - Iris Klawitter
- Institute of Inorganic ChemistryUniversity of GöttingenTammannstrasse 437077GöttingenGermany
| | - George E. Cutsail
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Serhiy Demeshko
- Institute of Inorganic ChemistryUniversity of GöttingenTammannstrasse 437077GöttingenGermany
| | - Sebastian Dechert
- Institute of Inorganic ChemistryUniversity of GöttingenTammannstrasse 437077GöttingenGermany
| | - Fritz E. Kühn
- Department of Chemistry & Catalysis Research CenterTechnische Universität MünchenLichtenbergstrasse 485748Garching bei MünchenGermany
| | - Serena DeBeer
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Franc Meyer
- Institute of Inorganic ChemistryUniversity of GöttingenTammannstrasse 437077GöttingenGermany
| |
Collapse
|
20
|
|
21
|
Khazipov OV, Shevchenko MA, Pasyukov DV, Chernenko AY, Astakhov AV, Tafeenko VA, Chernyshev VM, Ananikov VP. Preventing Pd–NHC bond cleavage and switching from nano-scale to molecular catalytic systems: amines and temperature as catalyst activators. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02041a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heating Pd/NHC complexes with aliphatic amines induces Pd–NHC bond cleavage, while treating the complexes with primary or secondary aliphatic amines in the presence of strong bases promotes the activation of molecular Pd/NHC catalysis.
Collapse
Affiliation(s)
- Oleg V. Khazipov
- Platov South-Russian State Polytechnic University (NPI)
- Novocherkassk
- Russia
- Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
| | - Maxim A. Shevchenko
- Platov South-Russian State Polytechnic University (NPI)
- Novocherkassk
- Russia
- Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
| | - Dmitry V. Pasyukov
- Platov South-Russian State Polytechnic University (NPI)
- Novocherkassk
- Russia
| | | | - Alexander V. Astakhov
- Platov South-Russian State Polytechnic University (NPI)
- Novocherkassk
- Russia
- Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
| | | | - Victor M. Chernyshev
- Platov South-Russian State Polytechnic University (NPI)
- Novocherkassk
- Russia
- Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
| | - Valentine P. Ananikov
- Platov South-Russian State Polytechnic University (NPI)
- Novocherkassk
- Russia
- Lomonosov Moscow State University
- 119991 Moscow
| |
Collapse
|
22
|
Evans KJ, Campbell CL, Haddow MF, Luz C, Morton PA, Mansell SM. Lithium Complexes with Bridging and Terminal NHC Ligands: The Decisive Influence of an Anionic Tether. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201901003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kieren J. Evans
- Institute of Chemical Sciences Heriot‐Watt University EH14 4AS Edinburgh UK
| | | | - Mairi F. Haddow
- Institute of Chemical Sciences Heriot‐Watt University EH14 4AS Edinburgh UK
| | - Christian Luz
- Institute of Chemical Sciences Heriot‐Watt University EH14 4AS Edinburgh UK
| | - Paul A. Morton
- Institute of Chemical Sciences Heriot‐Watt University EH14 4AS Edinburgh UK
| | - Stephen M. Mansell
- Institute of Chemical Sciences Heriot‐Watt University EH14 4AS Edinburgh UK
| |
Collapse
|
23
|
Willot J, Lugan N, Valyaev DA. Binuclear Cu(I) and Mn(0) Complexes with a Tridentate Pyridine-NHC-Phosphane Ligand in a µ-κ2
Ĉ,N
-M;κ1
P
-M Coordination Mode. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jérémy Willot
- LCC-CNRS; Université de Toulouse; CNRS, UPS, Toulouse, France; 205 route de Narbonne 31077 Toulouse Cedex 4 France
| | - Noël Lugan
- LCC-CNRS; Université de Toulouse; CNRS, UPS, Toulouse, France; 205 route de Narbonne 31077 Toulouse Cedex 4 France
| | - Dmitry A. Valyaev
- LCC-CNRS; Université de Toulouse; CNRS, UPS, Toulouse, France; 205 route de Narbonne 31077 Toulouse Cedex 4 France
| |
Collapse
|
24
|
Li D, Ollevier T. Synthesis of Imidazolidinone, Imidazolone, and Benzimidazolone Derivatives through Oxidation Using Copper and Air. Org Lett 2019; 21:3572-3575. [PMID: 31058508 DOI: 10.1021/acs.orglett.9b00973] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new synthetic method of urea derivatives using copper and air was developed. These mild conditions provided moderate to very good yields for 15 examples (53-93%), while low yields were obtained with sterically hindered substrates (3 examples). The reaction was found to go through an in situ generated copper- N-heterocyclic carbene, which was then oxidized into cyclic urea derivatives possessing alkyl, benzyl, aryl, hydroxy, Boc-protected, and tertiary amine groups.
Collapse
Affiliation(s)
- Dazhi Li
- Département de chimie , Université Laval , 1045 avenue de la Médecine , Québec , QC , G1V 0A6 , Canada
| | - Thierry Ollevier
- Département de chimie , Université Laval , 1045 avenue de la Médecine , Québec , QC , G1V 0A6 , Canada
| |
Collapse
|
25
|
Paesch AN, Kreyenschmidt AK, Herbst-Irmer R, Stalke D. Side-Arm Functionalized Silylene Copper(I) Complexes in Catalysis. Inorg Chem 2019; 58:7000-7009. [DOI: 10.1021/acs.inorgchem.9b00629] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexander N. Paesch
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Anne-Kathrin Kreyenschmidt
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| |
Collapse
|
26
|
Danopoulos AA, Simler T, Braunstein P. N-Heterocyclic Carbene Complexes of Copper, Nickel, and Cobalt. Chem Rev 2019; 119:3730-3961. [PMID: 30843688 DOI: 10.1021/acs.chemrev.8b00505] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The emergence of N-heterocyclic carbenes as ligands across the Periodic Table had an impact on various aspects of the coordination, organometallic, and catalytic chemistry of the 3d metals, including Cu, Ni, and Co, both from the fundamental viewpoint but also in applications, including catalysis, photophysics, bioorganometallic chemistry, materials, etc. In this review, the emergence, development, and state of the art in these three areas are described in detail.
Collapse
Affiliation(s)
- Andreas A Danopoulos
- Laboratory of Inorganic Chemistry , National and Kapodistrian University of Athens , Panepistimiopolis Zografou , Athens GR 15771 , Greece.,Université de Strasbourg, CNRS, Institut de Chimie UMR 7177 , Laboratoire de Chimie de Coordination , Strasbourg 67081 Cedex , France
| | - Thomas Simler
- Université de Strasbourg, CNRS, Institut de Chimie UMR 7177 , Laboratoire de Chimie de Coordination , Strasbourg 67081 Cedex , France
| | - Pierre Braunstein
- Université de Strasbourg, CNRS, Institut de Chimie UMR 7177 , Laboratoire de Chimie de Coordination , Strasbourg 67081 Cedex , France
| |
Collapse
|
27
|
Parida R, Das S, Karas LJ, Wu JIC, Roymahapatra G, Giri S. Superalkali ligands as a building block for aromatic trinuclear Cu(i)–NHC complexes. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00873j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imidazole and benz-imidazole based different NHC ligands have been designed to make tri nuclear aromatic Cu(i)@NHC complex. First principle calculation suggest that all the ligands are superalkali and the complexes are sp2 hybridized.
Collapse
Affiliation(s)
- Rakesh Parida
- School of Applied Sciences and Humanities
- Haldia Institute of Technology
- Haldia-721657
- India
- Department of Chemistry
| | - Subhra Das
- School of Applied Sciences and Humanities
- Haldia Institute of Technology
- Haldia-721657
- India
- Dept. of Chemistry
| | | | | | | | - Santanab Giri
- School of Applied Sciences and Humanities
- Haldia Institute of Technology
- Haldia-721657
- India
| |
Collapse
|
28
|
Teng Q, Wu W, Duong HA, Huynh HV. Ring-expanded N-heterocyclic carbenes as ligands in iron-catalysed cross-coupling reactions of arylmagnesium reagents and aryl chlorides. Chem Commun (Camb) 2018; 54:6044-6047. [PMID: 29799033 DOI: 10.1039/c8cc01808a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The structure-activity relationship of expanded-ring N-heterocyclic carbenes (NHCs) in the iron-catalysed Kumada aryl-aryl coupling reaction was explored. This was achieved by comparing the catalytic performance of Fe-NHC catalysts generated in situ containing NHCs that differ in steric bulk. In particular, the influences of ring sizes (5-8) and N-aryl substituents were explored in terms of spectroscopic and structural features, which affect their %Vbur values. The three best performing ligands were found on a diagonal of a 5 × 4 structural matrix revealing an optimal steric bulk and significant influences of subtle steric variations on the catalytic activities.
Collapse
Affiliation(s)
- Qiaoqiao Teng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| | | | | | | |
Collapse
|
29
|
Howard JL, Cao Q, Browne DL. Mechanochemistry as an emerging tool for molecular synthesis: what can it offer? Chem Sci 2018; 9:3080-3094. [PMID: 29780455 PMCID: PMC5933221 DOI: 10.1039/c7sc05371a] [Citation(s) in RCA: 428] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/26/2018] [Indexed: 12/11/2022] Open
Abstract
Mechanochemistry is becoming more widespread as a technique for molecular synthesis with new mechanochemical reactions being discovered at increasing frequency. Whilst mechanochemical methods are solvent free and can therefore lead to improved sustainability metrics, it is more likely that the significant differences between reaction outcomes, reaction selectivities and reduced reaction times will make it a technique of interest to synthetic chemists. Herein, we provide an overview of mechanochemistry reaction examples, with 'direct' comparators to solvent based reactions, which collectively seemingly show that solid state grinding can lead to reduced reaction times, different reaction outcomes in product selectivity and in some instances different reaction products, including products not accessible in solution.
Collapse
Affiliation(s)
- Joseph L Howard
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff , CF10 3AT , UK .
| | - Qun Cao
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff , CF10 3AT , UK .
| | - Duncan L Browne
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff , CF10 3AT , UK .
| |
Collapse
|
30
|
Charra V, de Frémont P, Braunstein P. Multidentate N-heterocyclic carbene complexes of the 3d metals: Synthesis, structure, reactivity and catalysis. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.03.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Beillard A, Bantreil X, Métro TX, Martinez J, Lamaty F. Mechanochemistry for facilitated access to N,N-diaryl NHC metal complexes. NEW J CHEM 2017. [DOI: 10.1039/c6nj02895k] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A solvent-free synthesis of NHC–silver, gold, copper and palladium complexes in a ball-mill was achieved.
Collapse
Affiliation(s)
- Audrey Beillard
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Xavier Bantreil
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Thomas-Xavier Métro
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Frédéric Lamaty
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| |
Collapse
|
32
|
Dinda J, Roymahapatra G, Sarkar D, Mondal TK, Al-Deyab SS, Sinha C, Hwang W. Cu(I)-N heterocyclic carbene complexes: Synthesis, catalysis and DFT studies. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.07.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
33
|
Domyati D, Hope SL, Latifi R, Hearns MD, Tahsini L. Cu(I) Complexes of Pincer Pyridine-Based N-Heterocyclic Carbenes with Small Wingtip Substituents: Synthesis and Structural and Spectroscopic Studies. Inorg Chem 2016; 55:11685-11693. [DOI: 10.1021/acs.inorgchem.6b01646] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Doaa Domyati
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Sydney L. Hope
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Reza Latifi
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Micah D. Hearns
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Laleh Tahsini
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
34
|
Beillard A, Métro TX, Bantreil X, Martinez J, Lamaty F. Cu(0), O 2 and mechanical forces: a saving combination for efficient production of Cu-NHC complexes. Chem Sci 2016; 8:1086-1089. [PMID: 28451247 PMCID: PMC5369405 DOI: 10.1039/c6sc03182j] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/16/2016] [Indexed: 12/23/2022] Open
Abstract
Mechanical forces induced by ball-milling agitation enabled the highly efficient and widely applicable synthesis of Cu-carbene complexes from N,N-diaryl-imidazolium salts and metallic copper. The required amount of gaseous dioxygen and insoluble copper could be reduced down to stoichiometric quantities, while reaction rates clearly outperformed those obtained in solution. Utilisation of Cu(0) as the copper source enabled the application of this approach to a wide array of N,N-diaryl-imidazolium salts (Cl-, BF4- and PF6-) that transferred their counter anion directly to the organometallic complexes. Cu-NHC complexes could be produced in excellent yields, including utilisation of highly challenging substrates. In addition, five unprecedented organometallic complexes are reported.
Collapse
Affiliation(s)
- Audrey Beillard
- Institut des Biomolécules Max Mousseron (IBMM) , UMR 5247 , CNRS , Université de Montpellier , ENSCM , Campus Triolet, Place Eugène Bataillon , 34095 Montpellier cedex 5 , France . ; ;
| | - Thomas-Xavier Métro
- Institut des Biomolécules Max Mousseron (IBMM) , UMR 5247 , CNRS , Université de Montpellier , ENSCM , Campus Triolet, Place Eugène Bataillon , 34095 Montpellier cedex 5 , France . ; ;
| | - Xavier Bantreil
- Institut des Biomolécules Max Mousseron (IBMM) , UMR 5247 , CNRS , Université de Montpellier , ENSCM , Campus Triolet, Place Eugène Bataillon , 34095 Montpellier cedex 5 , France . ; ;
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM) , UMR 5247 , CNRS , Université de Montpellier , ENSCM , Campus Triolet, Place Eugène Bataillon , 34095 Montpellier cedex 5 , France . ; ;
| | - Frédéric Lamaty
- Institut des Biomolécules Max Mousseron (IBMM) , UMR 5247 , CNRS , Université de Montpellier , ENSCM , Campus Triolet, Place Eugène Bataillon , 34095 Montpellier cedex 5 , France . ; ;
| |
Collapse
|
35
|
Bouché M, Mordan M, Kariuki BM, Coles SJ, Christensen J, Newman PD. Mono- and dimeric complexes of an asymmetric heterotopic P,CNHC,pyr ligand. Dalton Trans 2016; 45:13347-60. [PMID: 27461718 DOI: 10.1039/c6dt02476a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An asymmetric heterotopic ligand (S-N(Me)CP) containing a central bicyclic, expanded-ring NHC with one pyridyl and one phosphine exo-substituent has been synthesised and its coordination chemistry with selected late transition metals investigated. The amidinium precursor [S-N(Me)CHP]PF6 shows variable coordination modes with Ag(i), Cu(i) and Au(i) depending on the L : M ratio. The reaction of two mols of [S-N(Me)CHP]PF6 with [Cu(MeCN)4]BF4, AgBF4 or Au(THT)Cl gives the bis-ligand complexes [Cu(κ-P-N(Me)CHP)2(CH3CN)2]BF4·(PF6)2, 1, and [M(κ-P-N(Me)CHP)2]X·(PF6)2 (3: M = Ag, X = BF4; 6: M = Au, X = Cl) respectively. The 1 : 1 reaction of [S-N(Me)CHP]PF6 with AgOTf gave the head-to-tail dimer H,T-[Ag2(μ-N,P-N(Me)CHP)2(μ-OTf)2](PF6)2, 2, whereas the analogous reaction with Au(THT)Cl gave monomeric [Au(κ-P-N(Me)CHP)Cl]PF6, 5. Complex 2 was converted to H,T-[Ag2(μ-C,P-N(Me)CP)2](PF6)2, 4, upon addition of base, while 6 gave [Au(κ-C-N(Me)CP)2]Cl, 8, when treated likewise. Reaction of [S-N(Me)CHP]PF6 with Ni(1,5-COD)2 gave the oxidative addition/insertion product [Ni(κ(3)-N,C,P-N(Me)CP)(η(3)-C8H13)]PF6, 9, which converted to [Ni(κ(3)-N,C,P-N(Me)CP)Cl]PF6, 10, upon exposure of a CHCl3 solution to air. Complex 10 showed conformational isomerism that was also present in [Rh(κ(3)-N,C,P-N(Me)CP)(CO)]PF6, 14, prepared from the precursor complex [Rh(κ-P-N(Me)CHP)(acac)(CO)]PF6, 13, upon heating in C6H5Cl. [Pt(κ(3)-N,C,P-N(Me)CP)(Cl)]PF6, 12, derived from trans-[Pt(κ-P-N(Me)CHP)2(Cl)2](PF6)2, 11, was isolated as a single conformer.
Collapse
Affiliation(s)
- Mathilde Bouché
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK.
| | | | | | | | | | | |
Collapse
|
36
|
Kariofillis SK, Cesanek LA, Kassel WS, Piro NA, Swails RJ. Synthesis and Catalytic Activity of a Cationic Pd(II) N-heterocyclic Carbene Complex. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Andrew RE, Storey CM, Chaplin AB. Well-defined coinage metal transfer agents for the synthesis of NHC-based nickel, rhodium and palladium macrocycles. Dalton Trans 2016; 45:8937-44. [PMID: 27157720 PMCID: PMC5783018 DOI: 10.1039/c6dt01263a] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/27/2016] [Indexed: 11/21/2022]
Abstract
With a view to use as carbene transfer agents, well-defined silver(i) and copper(i) complexes of a macrocyclic NHC-based pincer ligand, bearing a central lutidine donor and a dodecamethylene spacer [CNC-(CH2)12, 1], have been prepared. Although the silver adduct is characterised by X-ray diffraction as a dinuclear species anti-[Ag(μ-1)]2(2+), variable temperature measurements indicate dynamic structural interchange in solution involving fragmentation into mononuclear [Ag(1)](+) on the NMR time scale. In contrast, a mononuclear structure is evident in both solution and the solid-state for the analogous copper adduct partnered with the weakly coordinating [BAr(F)4](-) counter anion. A related copper derivative, bearing instead the more coordinating cuprous bromide dianion [Cu2Br4](2-), is notable for the adoption of an interesting tetranuclear assembly in the solid-state, featuring two cuprophilic interactions and two bridging NHC donors, but is not retained on dissolution. Coinage metal precursors [M(1)]n[BAr(F)4]n (M = Ag, n = 2; M = Cu, n = 1) both act as carbene transfer agents to afford palladium, rhodium and nickel complexes of 1 and the effectiveness of these precursors has been evaluated under equivalent reaction conditions.
Collapse
Affiliation(s)
- Rhiann E. Andrew
- Department of Chemistry , University of Warwick , Gibbet Hill Road ,
Coventry CV4 7AL , UK .
| | - Caroline M. Storey
- Department of Chemistry , University of Warwick , Gibbet Hill Road ,
Coventry CV4 7AL , UK .
| | - Adrian B. Chaplin
- Department of Chemistry , University of Warwick , Gibbet Hill Road ,
Coventry CV4 7AL , UK .
| |
Collapse
|
38
|
Gu S, Du J, Huang J, Xia H, Yang L, Xu W, Lu C. Bi- and trinuclear copper(I) complexes of 1,2,3-triazole-tethered NHC ligands: synthesis, structure, and catalytic properties. Beilstein J Org Chem 2016; 12:863-73. [PMID: 27340477 PMCID: PMC4901887 DOI: 10.3762/bjoc.12.85] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/10/2016] [Indexed: 11/23/2022] Open
Abstract
A series of copper complexes (3–6) stabilized by 1,2,3-triazole-tethered N-heterocyclic carbene ligands have been prepared via simple reaction of imidazolium salts with copper powder in good yields. The structures of bi- and trinuclear copper complexes were fully characterized by NMR, elemental analysis (EA), and X-ray crystallography. In particular, [Cu2(L2)2](PF6)2 (3) and [Cu2(L3)2](PF6)2 (4) were dinuclear copper complexes. Complexes [Cu3(L4)2](PF6)3 (5) and [Cu3(L5)2](PF6)3 (6) consist of a triangular Cu3 core. These structures vary depending on the imidazolium backbone and N substituents. The copper–NHC complexes tested are highly active for the Cu-catalyzed azide–alkyne cycloaddition (CuAAC) reaction in an air atmosphere at room temperature in a CH3CN solution. Complex 4 is the most efficient catalyst among these polynuclear complexes in an air atmosphere at room temperature.
Collapse
Affiliation(s)
- Shaojin Gu
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, People's Republic of China
| | - Jiehao Du
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, People's Republic of China
| | - Jingjing Huang
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, People's Republic of China
| | - Huan Xia
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, People's Republic of China; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, People's Republic of China
| | - Ling Yang
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, People's Republic of China
| | - Weilin Xu
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, People's Republic of China
| | - Chunxin Lu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, People's Republic of China
| |
Collapse
|
39
|
Bistoni G, Belpassi L, Tarantelli F. Advances in Charge Displacement Analysis. J Chem Theory Comput 2016; 12:1236-44. [DOI: 10.1021/acs.jctc.5b01166] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Giovanni Bistoni
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce
di Sotto 8, 06123 Perugia, Italy
- Istituto di Scienze e Tecnologie Molecolari del CNR, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Leonardo Belpassi
- Istituto di Scienze e Tecnologie Molecolari del CNR, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Francesco Tarantelli
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce
di Sotto 8, 06123 Perugia, Italy
- Istituto di Scienze e Tecnologie Molecolari del CNR, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
40
|
Nakamura T, Ogushi S, Arikawa Y, Umakoshi K. Preparations of a series of coinage metal complexes with pyridine-based bis(N-heterocyclic carbene) ligands including transmetalation to palladium complexes. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2015.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Ourri B, Tillement O, Tu T, Jeanneau E, Darbost U, Bonnamour I. Copper complexes bearing an NHC–calixarene unit: synthesis and application in click chemistry. NEW J CHEM 2016. [DOI: 10.1039/c6nj02089e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Novel N-heterocyclic carbene (NHC) copper complexes supported by calix[4]arene were synthesized and showed good catalytic activity when applied in click chemistry.
Collapse
Affiliation(s)
- Benjamin Ourri
- Univ. Lyon
- Université Claude Bernard Lyon 1
- ICBMS UMR CNRS 5246
- Equipe Chimie Supramoléculaire Appliquée CSAp
- Villeurbanne
| | - Olivier Tillement
- Univ. Lyon
- Université Claude Bernard Lyon 1
- ILM UMR CNRS 5306
- Equipe FENNEC
- Université de Lyon
| | - Tao Tu
- Department of Chemistry
- Fudan University
- 200433 Shanghai
- China
| | - Erwann Jeanneau
- Univ. Lyon
- Université Claude Bernard Lyon 1
- ICBMS UMR CNRS 5246
- Equipe Chimie Supramoléculaire Appliquée CSAp
- Villeurbanne
| | - Ulrich Darbost
- Univ. Lyon
- Université Claude Bernard Lyon 1
- ILM UMR CNRS 5306
- Equipe FENNEC
- Université de Lyon
| | - Isabelle Bonnamour
- Univ. Lyon
- Université Claude Bernard Lyon 1
- ICBMS UMR CNRS 5246
- Equipe Chimie Supramoléculaire Appliquée CSAp
- Villeurbanne
| |
Collapse
|
42
|
Barsoum DN, Okashah N, Zhang X, Zhu L. Mechanism of Copper(I)-Catalyzed 5-Iodo-1,2,3-triazole Formation from Azide and Terminal Alkyne. J Org Chem 2015; 80:9542-51. [PMID: 26352108 DOI: 10.1021/acs.joc.5b01536] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
5-Iodo-1,2,3-triazole (iodotriazole) can be prepared from a copper(I)-catalyzed reaction between azide and terminal alkyne in the presence of an iodinating agent, with 5-protio-1,2,3-triazole (protiotriazole) as the side product. The increasing utilities of iodotriazoles in synthetic and supramolecular chemistry drive the efforts in improving their selective syntheses based on a sound mechanistic understanding. A routinely proposed mechanism takes the cue from the copper(I)-catalyzed azide-alkyne cycloaddition, which includes copper(I) acetylide and triazolide as the early and the late intermediates, respectively. Instead of being protonated to afford protiotriazole, an iodinating agent presumably intercepts the copper(I) triazolide to give iodotriazole. The current work shows that copper(I) triazolide can be iodinated to afford iodotriazoles. However, when the reaction starts from a terminal alkyne as under the practical circumstances, 1-iodoalkyne (iodoalkyne) is an intermediate while copper(I) triazolide is bypassed on the reaction coordinate. The production of protiotriazole commences after almost all of the iodoalkyne is consumed. Using (1)H NMR to follow a homogeneous iodotriazole forming reaction, the rapid formation of an iodoalkyne is shown to dictate the selectivity of an iodotriazole over a protiotriazole. To ensure the exclusive production of iodotriazole, the complete conversion of an alkyne to an iodoalkyne has to, and can be, achieved at the early stage of the reaction.
Collapse
Affiliation(s)
- David N Barsoum
- Department of Chemistry and Biochemistry, Florida State University , 95 Chieftan Way, Tallahassee, Florida 32306-4390, United States
| | - Najeah Okashah
- Department of Chemistry and Biochemistry, Florida State University , 95 Chieftan Way, Tallahassee, Florida 32306-4390, United States
| | - Xiaoguang Zhang
- Department of Chemistry and Biochemistry, Florida State University , 95 Chieftan Way, Tallahassee, Florida 32306-4390, United States
| | - Lei Zhu
- Department of Chemistry and Biochemistry, Florida State University , 95 Chieftan Way, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
43
|
Riener K, Pöthig A, Cokoja M, Herrmann WA, Kühn FE. Structure and spectroscopic properties of the dimeric copper(I) N-heterocyclic carbene complex [Cu2(CNCt-Bu)2](PF6)2. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2015; 71:643-6. [DOI: 10.1107/s2053229615012140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/24/2015] [Indexed: 11/10/2022]
Abstract
In recent years, the use of copper N-heterocyclic carbene (NHC) complexes has expanded to fields besides catalysis, namely medicinal chemistry and luminescence applications. In the latter case, multinuclear copper NHC compounds have attracted interest, however, the number of these complexes in the literature is still quite limited. Bis[μ-1,3-bis(3-tert-butylimidazolin-2-yliden-1-yl)pyridine]-1κ4C2,N:N,C2′;2κ4C2,N:N,C2′-dicopper(I) bis(hexafluoridophosphate), [Cu2(C19H25N5)2](PF6)2, is a dimeric copper(I) complex bridged by two CNC,i.e.bis(N-heterocyclic carbene)pyridine, ligands. Each CuIatom is almost linearly coordinated by two NHC ligands and interactions are observed between the pyridine N atoms and the metal centres, while no cuprophilic interactions were observed. Very strong absorption bands are evident in the UV–Vis spectrum at 236 and 274 nm, and an emission band is observed at 450 nm. The reported complex is a new example of a multinuclear copper NHC complex and a member of a compound class which has only rarely been reported.
Collapse
|
44
|
Nelson DJ. Accessible Syntheses of Late Transition Metal (Pre)Catalysts Bearing N-Heterocyclic Carbene Ligands. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500061] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|