1
|
Jull EIL, Campos-Villalobos G, Tang Q, Dijkstra M, Tran L. Curvature-directed anchoring and defect structure of colloidal smectic liquid crystals in confinement. PNAS NEXUS 2024; 3:pgae470. [PMID: 39588321 PMCID: PMC11586669 DOI: 10.1093/pnasnexus/pgae470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/04/2024] [Indexed: 11/27/2024]
Abstract
Rod-like objects at high packing fractions can exhibit liquid crystalline ordering. By controlling how the rods align near a boundary, i.e. the anchoring, the defects of a liquid crystal can be selected and tuned. For smectic phases, the rods break rotational and translational symmetry by forming lamellae. Smectic defects thereby include both discontinuities in the rod orientational order (disclinations), as well as in the positional order (dislocations). In this work, we use experiments and simulations to uncover the geometrical conditions necessary for a boundary to set the anchoring of a confined, particle-resolved, smectic liquid crystal. We confine a colloidal smectic within elliptical wells of varying size and shape for a smooth variation of the boundary curvature. We find that the anchoring depends upon the local boundary curvature, with an anchoring transition observed at a critical radius of curvature approximately twice the rod length. Surprisingly, the critical radius of curvature for an anchoring transition holds across a wide range of rod lengths and packing fractions. The anchoring controls the defect structure. By analyzing topological charges and networks composed of maximum density (rod centers) and minimum density (rod ends), we quantify disclinations and dislocations formed with varying confinement geometry. Circular confinements, characterized by planar anchoring, promote disclinations, whereas elliptical confinements, featuring antipodal regions of homeotropic anchoring, promote long-range smectic order and dislocations. Our findings demonstrate how geometrical constraints can control the anchoring and defect structures of liquid crystals-a principle that is applicable from molecular to colloidal length scales.
Collapse
Affiliation(s)
- Ethan I L Jull
- Soft Condensed Matter and Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Gerardo Campos-Villalobos
- Soft Condensed Matter and Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Qianjing Tang
- Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, The Netherlands
| | - Marjolein Dijkstra
- Soft Condensed Matter and Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Lisa Tran
- Soft Condensed Matter and Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
2
|
Zimmermann P, Schletz D, Hoffmann M, Probst PT, Fery A, Nagel J. Molding Process Retaining Gold Nanoparticle Assembly Structures during Transfer to a Polycarbonate Surface. Polymers (Basel) 2024; 16:1553. [PMID: 38891499 PMCID: PMC11174599 DOI: 10.3390/polym16111553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The immobilization of gold nanoparticle (AuNP) linear surface assemblies on polycarbonate (PC) melt surface via molding is investigated. The order of the particle assemblies is preserved during the molding process. The assemblies on PC exhibit plasmonic coupling features and dichroic properties. The structure of the assemblies is quantified based on Scanning Electron Microscopy (SEM) and image analysis data using an orientational order parameter. The transfer process from mold to melt shows high structural fidelity. The order parameter of around 0.98 reflects the orientation of the lines and remains unaffected, independent of the injection direction of the melt relative to the particle lines. This is discussed in the frame of fountain flow during injection molding. The particles were permanently fixed and withstood the injection molding process, detachment of the substrate, and extraction in boiling ethanol. The plasmonic particles coupled strongly within the dense nanoparticle lines to produce anisotropic optical properties, as quantified by dichroic ratios of 0.28 and 0.52 using ultraviolet-visible-near-infrared (UV-Vis-NIR) spectroscopy. AuNP line assemblies on a polymer surface may be a basis for plasmonic devices like surface-enhanced Raman scattering (SERS) sensors or a precursor for nanowires. Their embedding via injection molding constitutes an important link between particle-self-assembly approaches for optically functional surfaces and polymer processing techniques.
Collapse
Affiliation(s)
- Philipp Zimmermann
- Institut für Polymerwerkstoffe, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany;
| | - Daniel Schletz
- Institut für Physikalische Chemie und Physik der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany; (D.S.); (P.T.P.)
| | - Marisa Hoffmann
- Institut für Physikalische Chemie und Physik der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany; (D.S.); (P.T.P.)
| | - Patrick T. Probst
- Institut für Physikalische Chemie und Physik der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany; (D.S.); (P.T.P.)
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
| | - Andreas Fery
- Institut für Physikalische Chemie und Physik der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany; (D.S.); (P.T.P.)
| | - Jürgen Nagel
- Institut für Polymerwerkstoffe, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany;
| |
Collapse
|
3
|
Hoffmann M, Schedel CA, Mayer M, Rossner C, Scheele M, Fery A. Heading toward Miniature Sensors: Electrical Conductance of Linearly Assembled Gold Nanorods. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091466. [PMID: 37177011 PMCID: PMC10179793 DOI: 10.3390/nano13091466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
Metal nanoparticles are increasingly used as key elements in the fabrication and processing of advanced electronic systems and devices. For future device integration, their charge transport properties are essential. This has been exploited, e.g., in the development of gold-nanoparticle-based conductive inks and chemiresistive sensors. Colloidal wires and metal nanoparticle lines can also be used as interconnection structures to build directional electrical circuits, e.g., for signal transduction. Our scalable bottom-up, template-assisted self-assembly creates gold-nanorod (AuNR) lines that feature comparably small widths, as well as good conductivity. However, the bottom-up approach poses the question about the consistency of charge transport properties between individual lines, as this approach leads to heterogeneities among those lines with regard to AuNR orientation, as well as line defects. Therefore, we test the conductance of the AuNR lines and identify requirements for a reliable performance. We reveal that multiple parallel AuNR lines (>11) are necessary to achieve predictable conductivity properties, defining the level of miniaturization possible in such a setup. With this system, even an active area of only 16 µm2 shows a higher conductance (~10-5 S) than a monolayer of gold nanospheres with dithiolated-conjugated ligands and additionally features the advantage of anisotropic conductance.
Collapse
Affiliation(s)
- Marisa Hoffmann
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Bergstr. 66, 01069 Dresden, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Helmholtzstr. 18, 01069 Dresden, Germany
| | - Christine Alexandra Schedel
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Martin Mayer
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany
| | - Christian Rossner
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, 01069 Dresden, Germany
| | - Marcus Scheele
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Bergstr. 66, 01069 Dresden, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Helmholtzstr. 18, 01069 Dresden, Germany
| |
Collapse
|
4
|
Rizvi MH, Wang R, Schubert J, Crumpler WD, Rossner C, Oldenburg AL, Fery A, Tracy JB. Magnetic Alignment for Plasmonic Control of Gold Nanorods Coated with Iron Oxide Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203366. [PMID: 35679599 DOI: 10.1002/adma.202203366] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Plasmonic nanoparticles that can be manipulated with magnetic fields are of interest for advanced optical applications, diagnostics, imaging, and therapy. Alignment of gold nanorods yields strong polarization-dependent extinction, and use of magnetic fields is appealing because they act through space and can be quickly switched. In this work, cationic polyethyleneimine-functionalized superparamagnetic Fe3 O4 nanoparticles (NPs) are deposited on the surface of anionic gold nanorods coated with bovine serum albumin. The magnetic gold nanorods (MagGNRs) obtained through mixing maintain the distinct optical properties of plasmonic gold nanorods that are minimally perturbed by the magnetic overcoating. Magnetic alignment of the MagGNRs arising from magnetic dipolar interactions on the anisotropic gold nanorod core is comprehensively characterized, including structural characterization and enhancement (suppression) of the longitudinal surface plasmon resonance and suppression (enhancement) of the transverse surface plasmon resonance for light polarized parallel (orthogonal) to the magnetic field. The MagGNRs can also be driven in rotating magnetic fields to rotate at frequencies of at least 17 Hz. For suitably large gold nanorods (148 nm long) and Fe3 O4 NPs (13.4 nm diameter), significant alignment is possible even in modest (<500 Oe) magnetic fields. An analytical model provides a unified understanding of the magnetic alignment of MagGNRs.
Collapse
Affiliation(s)
- Mehedi H Rizvi
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Ruosong Wang
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute for Physical Chemistry and Polymer Physics, 01069, Dresden, Germany
| | - Jonas Schubert
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute for Physical Chemistry and Polymer Physics, 01069, Dresden, Germany
| | - William D Crumpler
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Christian Rossner
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute for Physical Chemistry and Polymer Physics, 01069, Dresden, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, 01069, Dresden, Germany
| | - Amy L Oldenburg
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute for Physical Chemistry and Polymer Physics, 01069, Dresden, Germany
- Chair for Physical Chemistry of Polymeric Materials, Technische Universität Dresden, 01062, Dresden, Germany
| | - Joseph B Tracy
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
5
|
Wang R, Zimmermann P, Schletz D, Hoffmann M, Probst P, Fery A, Nagel J, Rossner C. Nano meets macro: Furnishing the surface of polymer molds with gold‐nanoparticle arrays. NANO SELECT 2022. [DOI: 10.1002/nano.202200110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ruosong Wang
- Leibniz‐Institut für Polymerforschung Dresden e.V. Institut für Physikalische Chemie und Physik der Polymere Hohe Straße 6 Dresden Germany
| | - Philipp Zimmermann
- Leibniz‐Institut für Polymerforschung Dresden e.V. Institut für Polymerwerkstoffe Hohe Straße 6 Dresden Germany
| | - Daniel Schletz
- Leibniz‐Institut für Polymerforschung Dresden e.V. Institut für Physikalische Chemie und Physik der Polymere Hohe Straße 6 Dresden Germany
- Physical Chemistry of Polymeric Materials Technische Universität Dresden Bergstraße 66 Dresden Germany
| | - Marisa Hoffmann
- Leibniz‐Institut für Polymerforschung Dresden e.V. Institut für Physikalische Chemie und Physik der Polymere Hohe Straße 6 Dresden Germany
- Physical Chemistry of Polymeric Materials Technische Universität Dresden Bergstraße 66 Dresden Germany
| | - Patrick Probst
- Leibniz‐Institut für Polymerforschung Dresden e.V. Institut für Physikalische Chemie und Physik der Polymere Hohe Straße 6 Dresden Germany
| | - Andreas Fery
- Leibniz‐Institut für Polymerforschung Dresden e.V. Institut für Physikalische Chemie und Physik der Polymere Hohe Straße 6 Dresden Germany
- Physical Chemistry of Polymeric Materials Technische Universität Dresden Bergstraße 66 Dresden Germany
| | - Jürgen Nagel
- Leibniz‐Institut für Polymerforschung Dresden e.V. Institut für Polymerwerkstoffe Hohe Straße 6 Dresden Germany
| | - Christian Rossner
- Leibniz‐Institut für Polymerforschung Dresden e.V. Institut für Physikalische Chemie und Physik der Polymere Hohe Straße 6 Dresden Germany
- Dresden Center for Intelligent Materials (DCIM) Technische Universität Dresden Dresden Germany
| |
Collapse
|
6
|
Fan X, Walther A. 1D Colloidal chains: recent progress from formation to emergent properties and applications. Chem Soc Rev 2022; 51:4023-4074. [PMID: 35502721 DOI: 10.1039/d2cs00112h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrating nanoscale building blocks of low dimensionality (0D; i.e., spheres) into higher dimensional structures endows them and their corresponding materials with emergent properties non-existent or only weakly existent in the individual building blocks. Constructing 1D chains, 2D arrays and 3D superlattices using nanoparticles and colloids therefore continues to be one of the grand goals in colloid and nanomaterial science. Amongst these higher order structures, 1D colloidal chains are of particular interest, as they possess unique anisotropic properties. In recent years, the most relevant advances in 1D colloidal chain research have been made in novel synthetic methodologies and applications. In this review, we first address a comprehensive description of the research progress concerning various synthetic strategies developed to construct 1D colloidal chains. Following this, we highlight the amplified and emergent properties of the resulting materials, originating from the assembly of the individual building blocks and their collective behavior, and discuss relevant applications in advanced materials. In the discussion of synthetic strategies, properties, and applications, particular attention will be paid to overarching concepts, fresh trends, and potential areas of future research. We believe that this comprehensive review will be a driver to guide the interdisciplinary field of 1D colloidal chains, where nanomaterial synthesis, self-assembly, physical property studies, and material applications meet, to a higher level, and open up new research opportunities at the interface of classical disciplines.
Collapse
Affiliation(s)
- Xinlong Fan
- Institute for Macromolecular Chemistry, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 31, 79104, Freiburg, Germany.
| | - Andreas Walther
- A3BMS Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
7
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
8
|
Hwang EY, Lee JH, Lim DW. Janus bimetallic nanorod clusters-poly(aniline) nanocomposites with temperature-responsiveness for Raman scattering-based biosensing. J Mater Chem B 2021; 9:5293-5308. [PMID: 34137769 DOI: 10.1039/d1tb00699a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, Janus bimetallic nanorod clusters-poly(aniline) nanocomposites (JRCPCs) with gold nanorod clusters (GNRCs) in side-by-side (SBS) or end-to-end (ETE) configuration are synthesized, and applied to surface-enhanced Raman scattering (SERS)-based biosensing of carcinoembryonic antigen (CEA). Taking advantage of their geometrical and chemical anisotropy, GNRCs in both SBS and ETE configurations are prepared by addition of negatively charged citrate anions and poly(acrylic acid)-block-poly(N-isopropylacrylamide) (PAAc-b-PNIPAM), respectively, to electrostatically interact with cationic cetyltrimethylammonium bromide surfactant on the side of the gold nanorods (GNRs). Subsequently, the JRCPCs are prepared by unidirectional growth of polyaniline and additional growth of Ag onto these GNRCs. JRCPCs with GNRCs in either the SBS or the ETE configuration show strong enhancement of electromagnetic field at both GNR aggregates and GNRC core-Ag shell gaps of bimetallic nanorod cluster components. In particular, because temperature-responsive PAAc-b-PNIPAM of JRCPCs is embedded at GNR junctions, interparticle gaps generated in GNRCs in ETE configuration are controlled via temperature-triggered hydration-dehydration of the PAAc-b-PNIPAM chains such that optical properties are largely changed. With distinct surface functionalities from JRCPCs, SERS-based quantitative analysis of CEA is achieved using JRCPCs as SERS nanoprobes. This work presents the great potential of advanced Janus nanocomposites for SERS-based biosensing applications.
Collapse
Affiliation(s)
- Eun Young Hwang
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea.
| | - Jae Hee Lee
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea.
| | - Dong Woo Lim
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea.
| |
Collapse
|
9
|
Chiang N, Scarabelli L, Vinnacombe-Willson GA, Pérez LA, Dore C, Mihi A, Jonas SJ, Weiss PS. Large-Scale Soft-Lithographic Patterning of Plasmonic Nanoparticles. ACS MATERIALS LETTERS 2021; 3:282-289. [PMID: 34337418 PMCID: PMC8323846 DOI: 10.1021/acsmaterialslett.0c00535] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Micro- and nanoscale patterned monolayers of plasmonic nanoparticles were fabricated by combining concepts from colloidal chemistry, self-assembly, and subtractive soft lithography. Leveraging chemical interactions between the capping ligands of pre-synthesized gold colloids and a polydimethylsiloxane stamp, we demonstrated patterning gold nanoparticles over centimeter-scale areas with a variety of micro- and nanoscale geometries, including islands, lines, and chiral structures (e.g., square spirals). By successfully achieving nanoscale manipulation over a wide range of substrates and patterns, we establish a powerful and straightforward strategy, nanoparticle chemical lift-off lithography (NP-CLL), for the economical and scalable fabrication of functional plasmonic materials with colloidal nanoparticles as building blocks, offering a transformative solution for designing next-generation plasmonic technologies.
Collapse
Affiliation(s)
- Naihao Chiang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Leonardo Scarabelli
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Spain
| | - Gail A. Vinnacombe-Willson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Luis A. Pérez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Spain
| | - Camilla Dore
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Spain
| | - Agustín Mihi
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Spain
| | - Steven J. Jonas
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Children’s Discovery and Innovation Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Paul S. Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
10
|
Handrea-Dragan M, Botiz I. Multifunctional Structured Platforms: From Patterning of Polymer-Based Films to Their Subsequent Filling with Various Nanomaterials. Polymers (Basel) 2021; 13:445. [PMID: 33573248 PMCID: PMC7866561 DOI: 10.3390/polym13030445] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
There is an astonishing number of optoelectronic, photonic, biological, sensing, or storage media devices, just to name a few, that rely on a variety of extraordinary periodic surface relief miniaturized patterns fabricated on polymer-covered rigid or flexible substrates. Even more extraordinary is that these surface relief patterns can be further filled, in a more or less ordered fashion, with various functional nanomaterials and thus can lead to the realization of more complex structured architectures. These architectures can serve as multifunctional platforms for the design and the development of a multitude of novel, better performing nanotechnological applications. In this work, we aim to provide an extensive overview on how multifunctional structured platforms can be fabricated by outlining not only the main polymer patterning methodologies but also by emphasizing various deposition methods that can guide different structures of functional nanomaterials into periodic surface relief patterns. Our aim is to provide the readers with a toolbox of the most suitable patterning and deposition methodologies that could be easily identified and further combined when the fabrication of novel structured platforms exhibiting interesting properties is targeted.
Collapse
Affiliation(s)
- Madalina Handrea-Dragan
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Str. 400271 Cluj-Napoca, Romania;
- Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Str. 400084 Cluj-Napoca, Romania
| | - Ioan Botiz
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Str. 400271 Cluj-Napoca, Romania;
| |
Collapse
|
11
|
Candreva A, Di Maio G, La Deda M. A quick one-step synthesis of luminescent gold nanospheres. SOFT MATTER 2020; 16:10865-10868. [PMID: 33305775 DOI: 10.1039/d0sm02024a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Gold nanospheres, coated with luminescent molecules (1-pyrenemethylamine hydrochloride, fluorescein isothiocyanate or cresyl violet perchlorate), have been synthesized and purified by a fast one-step procedure. Luminescent nanoparticles have been obtained, in which the match of the plasmonic and emissive properties gives nanosized fluorophores useful in different application fields.
Collapse
Affiliation(s)
- Angela Candreva
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende (CS), Italy.
| | | | | |
Collapse
|
12
|
Lee JB, Walker H, Li Y, Nam TW, Rakovich A, Sapienza R, Jung YS, Nam YS, Maier SA, Cortés E. Template Dissolution Interfacial Patterning of Single Colloids for Nanoelectrochemistry and Nanosensing. ACS NANO 2020; 14:17693-17703. [PMID: 33270433 DOI: 10.1021/acsnano.0c09319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Deterministic positioning and assembly of colloidal nanoparticles (NPs) onto substrates is a core requirement and a promising alternative to top-down lithography to create functional nanostructures and nanodevices with intriguing optical, electrical, and catalytic features. Capillary-assisted particle assembly (CAPA) has emerged as an attractive technique to this end, as it allows controlled and selective assembly of a wide variety of NPs onto predefined topographical templates using capillary forces. One critical issue with CAPA, however, lies in its final printing step, where high printing yields are possible only with the use of an adhesive polymer film. To address this problem, we have developed a template dissolution interfacial patterning (TDIP) technique to assemble and print single colloidal AuNP arrays onto various dielectric and conductive substrates in the absence of any adhesion layer, with printing yields higher than 98%. The TDIP approach grants direct access to the interface between the AuNP and the target surface, enabling the use of colloidal AuNPs as building blocks for practical applications. The versatile applicability of TDIP is demonstrated by the creation of direct electrical junctions for electro- and photoelectrochemistry and nanoparticle-on-mirror geometries for single-particle molecular sensing.
Collapse
Affiliation(s)
- Joong Bum Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Harriet Walker
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Yi Li
- School of Microelectronics, MOE Engineering Research Center of Integrated Circuits for Next Generation Communications, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| | - Tae Won Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | | | - Riccardo Sapienza
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yoon Sung Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KAIST Institute for Nanocentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Stefan A Maier
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
- Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 München, Germany
| | - Emiliano Cortés
- Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 München, Germany
| |
Collapse
|
13
|
Kang H, Kim K, Sohn BH. Shearing with solvent vapor annealing on block copolymer thin films for templates with macroscopically aligned nanodomains. NANOTECHNOLOGY 2020; 31:455302. [PMID: 32702675 DOI: 10.1088/1361-6528/aba8bf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A template with macroscopically aligned nanopatterns can be an effective vehicle for arranging nanoscale particles or rods in a particular orientation to achieve their anisotropic properties. A room-temperature process is also desirable for nanoscale patterning of heat-sensitive functional molecules such as organic fluorophores. Here, large-area orientation of nanodomains of block copolymers is demonstrated by simultaneous shearing and solvent vapor annealing at room temperature. The shear-aligned nanodomains are applied to a chemical template for nanoscale patterning of green fluorescent molecules. In addition, the grooved nanochannels obtained from the macroscopically aligned nanodomains work as a physical template for guiding Au nanorods to end-to-end assemblies which exhibit the polarization-dependent plasmonic extinction.
Collapse
Affiliation(s)
- Heejung Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | | | | |
Collapse
|
14
|
Ritchhart A, Monahan M, Mars J, Toney MF, De Yoreo JJ, Cossairt BM. Covalently Linked, Two-Dimensional Quantum Dot Assemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9944-9951. [PMID: 32787121 DOI: 10.1021/acs.langmuir.0c01668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Using nanoscale building blocks to construct hierarchical materials is a radical new branch point in materials discovery that promises new structures and emergent functionality. Understanding the design principles that govern nanoparticle assembly is critical to moving this field forward. By exploiting mixed ligand environments to target patchy nanoparticle surfaces, we have demonstrated a novel method of colloidal quantum dot (QD) assembly that gives rise to 2D structures. The equilibration of solutions of spherical and quasispherical QDs, including CdS, CdSe, and InP, with 2,2'-bipyridine-5,5'-diacrylic acid resulted in the preferential formation of 2D assemblies over the course of days as determined by transmission electron microscopy analysis. Small-angle X-ray scattering confirms the existence of the QD assemblies in solution. The dependence of the assembly on linker properties (length and rigidity), linker concentration, and total concentration was investigated, together with the data point to a mechanism involving ligand redistribution to create a patchy surface that maximizes the steric repulsion of neighboring QDs. By operating in an underexchanged regime, the arising patchiness results in enthalpically preferred directions of cross-linking that can be accessed by thermal equilibration.
Collapse
Affiliation(s)
- Andrew Ritchhart
- University of Washington, Department of Chemistry, Box 351700, Seattle, Washington 98195-1700, United States
| | - Madison Monahan
- University of Washington, Department of Chemistry, Box 351700, Seattle, Washington 98195-1700, United States
| | - Julian Mars
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Michael F Toney
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - James J De Yoreo
- University of Washington, Department of Chemistry, Box 351700, Seattle, Washington 98195-1700, United States
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Brandi M Cossairt
- University of Washington, Department of Chemistry, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
15
|
Baiyasi R, Gallagher MJ, McCarthy LA, Searles EK, Zhang Q, Link S, Landes CF. Quantitative Analysis of Nanorod Aggregation and Morphology from Scanning Electron Micrographs Using SEMseg. J Phys Chem A 2020; 124:5262-5270. [DOI: 10.1021/acs.jpca.0c03190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Rashad Baiyasi
- Department of Electrical and Computer Engineering, Rice University, MS 366, Houston, Texas 77005, United States
| | - Miranda J. Gallagher
- Department of Chemistry, Rice University, MS 60, Houston, Texas 77005, United States
| | - Lauren A. McCarthy
- Department of Chemistry, Rice University, MS 60, Houston, Texas 77005, United States
| | - Emily K. Searles
- Department of Chemistry, Rice University, MS 60, Houston, Texas 77005, United States
| | - Qingfeng Zhang
- Department of Chemistry, Rice University, MS 60, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Stephan Link
- Department of Electrical and Computer Engineering, Rice University, MS 366, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, MS 60, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Christy F. Landes
- Department of Electrical and Computer Engineering, Rice University, MS 366, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, MS 60, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
16
|
Hu H, Wang S, Feng X, Pauly M, Decher G, Long Y. In-plane aligned assemblies of 1D-nanoobjects: recent approaches and applications. Chem Soc Rev 2020; 49:509-553. [DOI: 10.1039/c9cs00382g] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
One-dimensional (1D) nanoobjects have strongly anisotropic physical properties which are averaged out and cannot be exploited in disordered systems. We reviewed the in plane alignment approaches and potential applications with perspectives shared.
Collapse
Affiliation(s)
- Hebing Hu
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE)
- Nanomaterials for Energy and Energy-Water Nexus (NEW)
| | - Shancheng Wang
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE)
- Nanomaterials for Energy and Energy-Water Nexus (NEW)
| | - Xueling Feng
- Key Laboratory of Science and Technology of Eco-Textile
- Ministry of Education
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Matthias Pauly
- Université de Strasbourg
- CNRS
- Institut Charles Sadron
- F-67000 Strasbourg
- France
| | - Gero Decher
- Université de Strasbourg
- CNRS
- Institut Charles Sadron
- F-67000 Strasbourg
- France
| | - Yi Long
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE)
- Nanomaterials for Energy and Energy-Water Nexus (NEW)
| |
Collapse
|
17
|
Yu Y, Ng C, König TAF, Fery A. Tackling the Scalability Challenge in Plasmonics by Wrinkle-Assisted Colloidal Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8629-8645. [PMID: 30883131 DOI: 10.1021/acs.langmuir.8b04279] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electromagnetic radiation of a certain frequency can excite the collective oscillation of the free electrons in metallic nanostructures using localized surface plasmon resonances (LSPRs), and this phenomenon can be used for a variety of optical and electronic functionalities. However, nanostructure design over a large area using controlled LSPR features is challenging and requires high accuracy. In this article, we offer an overview of the efforts made by our group to implement a wrinkle-assisted colloidal particle assembly method to approach this challenge from a different angle. First, we introduce the controlled wrinkling process and discuss the underlying theoretical framework. We then set out how the wrinkled surfaces are utilized to guide the self-assembly of colloidal nanoparticles of various surface chemistry, size, and shape. Subsequently, template-assisted colloidal self-assembly mechanisms and a general guide for particle assembly beyond plasmonics will be presented. In addition, we also discuss the collective plasmonic behavior in depth, including strong plasmonic coupling due to nanoscale gap size as well as magnetic mode excitation and demonstrate the potential applications of wrinkle-assisted colloidal particle assembly method in the field of mechanoresponsive metasurfaces and surface-enhanced spectroscopy. Lastly, a general perspective in the field of template-assisted colloidal assembly with regard to potential applications in plasmonic photocatalysis, solar cells, optoelectronics, and sensing devices is provided.
Collapse
Affiliation(s)
- Ye Yu
- Leibniz-Institut für Polymerforschung Dresden e.V. , Institute of Physical Chemistry and Polymer Physics , 01069 Dresden , Germany
| | - Charlene Ng
- Leibniz-Institut für Polymerforschung Dresden e.V. , Institute of Physical Chemistry and Polymer Physics , 01069 Dresden , Germany
| | - Tobias A F König
- Leibniz-Institut für Polymerforschung Dresden e.V. , Institute of Physical Chemistry and Polymer Physics , 01069 Dresden , Germany
- Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed) , Technische Universität Dresden , 01062 Dresden , Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V. , Institute of Physical Chemistry and Polymer Physics , 01069 Dresden , Germany
- Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed) , Technische Universität Dresden , 01062 Dresden , Germany
- Technische Universität Dresden , Department of Physical Chemistry of Polymer Materials , 01062 Dresden , Germany
| |
Collapse
|
18
|
Mayer M, Potapov PL, Pohl D, Steiner AM, Schultz J, Rellinghaus B, Lubk A, König TAF, Fery A. Direct Observation of Plasmon Band Formation and Delocalization in Quasi-Infinite Nanoparticle Chains. NANO LETTERS 2019; 19:3854-3862. [PMID: 31117756 PMCID: PMC6571934 DOI: 10.1021/acs.nanolett.9b01031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Chains of metallic nanoparticles sustain strongly confined surface plasmons with relatively low dielectric losses. To exploit these properties in applications, such as waveguides, the fabrication of long chains of low disorder and a thorough understanding of the plasmon-mode properties, such as dispersion relations, are indispensable. Here, we use a wrinkled template for directed self-assembly to assemble chains of gold nanoparticles. With this up-scalable method, chain lengths from two particles (140 nm) to 20 particles (1500 nm) and beyond can be fabricated. Electron energy-loss spectroscopy supported by boundary element simulations, finite-difference time-domain, and a simplified dipole coupling model reveal the evolution of a band of plasmonic waveguide modes from degenerated single-particle modes in detail. In striking difference from plasmonic rod-like structures, the plasmon band is confined in excitation energy, which allows light manipulations below the diffraction limit. The non-degenerated surface plasmon modes show suppressed radiative losses for efficient energy propagation over a distance of 1500 nm.
Collapse
Affiliation(s)
- Martin Mayer
- Institute of Physical Chemistry and Polymer Physics and Department of Physical Chemistry
of Polymeric Materials, Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
- Cluster
of Excellence Center for Advancing Electronics Dresden (cfaed) and Dresden Center
for Nanoanalysis, Technische Universität
Dresden, D-01062 Dresden, Germany
| | - Pavel L. Potapov
- Institute
for Solid State Research and Institute for Metallic Materials, Leibniz-Institut für Festkörper und
Werkstoffforschung, Helmholtzstrasse
20, 01069 Dresden, Germany
| | - Darius Pohl
- Cluster
of Excellence Center for Advancing Electronics Dresden (cfaed) and Dresden Center
for Nanoanalysis, Technische Universität
Dresden, D-01062 Dresden, Germany
- Institute
for Solid State Research and Institute for Metallic Materials, Leibniz-Institut für Festkörper und
Werkstoffforschung, Helmholtzstrasse
20, 01069 Dresden, Germany
| | - Anja Maria Steiner
- Institute of Physical Chemistry and Polymer Physics and Department of Physical Chemistry
of Polymeric Materials, Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
- Cluster
of Excellence Center for Advancing Electronics Dresden (cfaed) and Dresden Center
for Nanoanalysis, Technische Universität
Dresden, D-01062 Dresden, Germany
| | - Johannes Schultz
- Institute
for Solid State Research and Institute for Metallic Materials, Leibniz-Institut für Festkörper und
Werkstoffforschung, Helmholtzstrasse
20, 01069 Dresden, Germany
| | - Bernd Rellinghaus
- Cluster
of Excellence Center for Advancing Electronics Dresden (cfaed) and Dresden Center
for Nanoanalysis, Technische Universität
Dresden, D-01062 Dresden, Germany
- Institute
for Solid State Research and Institute for Metallic Materials, Leibniz-Institut für Festkörper und
Werkstoffforschung, Helmholtzstrasse
20, 01069 Dresden, Germany
| | - Axel Lubk
- Institute
for Solid State Research and Institute for Metallic Materials, Leibniz-Institut für Festkörper und
Werkstoffforschung, Helmholtzstrasse
20, 01069 Dresden, Germany
- E-mail:
| | - Tobias A. F. König
- Institute of Physical Chemistry and Polymer Physics and Department of Physical Chemistry
of Polymeric Materials, Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
- Cluster
of Excellence Center for Advancing Electronics Dresden (cfaed) and Dresden Center
for Nanoanalysis, Technische Universität
Dresden, D-01062 Dresden, Germany
- E-mail:
| | - Andreas Fery
- Institute of Physical Chemistry and Polymer Physics and Department of Physical Chemistry
of Polymeric Materials, Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
- Cluster
of Excellence Center for Advancing Electronics Dresden (cfaed) and Dresden Center
for Nanoanalysis, Technische Universität
Dresden, D-01062 Dresden, Germany
- E-mail:
| |
Collapse
|
19
|
Prathapan R, Glatz BA, Ghosh AK, Michel S, Fery A, Garnier G, Tabor RF. Enhancing Printing Resolution on Hydrophobic Polymer Surfaces Using Patterned Coatings of Cellulose Nanocrystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7155-7160. [PMID: 31050434 DOI: 10.1021/acs.langmuir.9b00733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
High-resolution inkjet printing of a hydrophobic polymer surface (polystyrene, PS) was accomplished using a patterned coating of cellulose nanocrystals (CNCs) that prevents the ink from bleeding. A periodically crack-free, wrinkled (wavelength of around 850 nm) stamp was prepared by surface oxidation of an uniaxially stretched poly(dimethylsiloxane) elastomeric substrate and was used as a template to transfer aligned patterns of cellulose nanocrystals (CNCs) onto PS surfaces by wet stamping. The morphology of the aligned CNC coatings on PS was then compared with randomly deposited CNCs on PS using atomic force microscopy. The wettability of the CNCs and polymer surfaces with water and ink was measured and analyzed in the context of inkjet printing. This biomaterial coating technique enables high-resolution printing of modern water-based inks onto hydrophobic surfaces for applications in renewable packaging and printing of biomolecules for high throughput diagnostics. Further, with suitable modifications, the technology is scalable to roll-to-roll manufacturing for industrial flexo printing.
Collapse
Affiliation(s)
| | - Bernhard Alexander Glatz
- Institute of Physical Chemistry and Polymer Physics , Leibniz Institute of Polymer Research , 01069 Dresden , Germany
- University of Bayreuth Graduate School , University of Bayreuth , Universitätsstr. 30 , 95477 Bayreuth , Germany
| | - Anik Kumar Ghosh
- Institute of Physical Chemistry and Polymer Physics , Leibniz Institute of Polymer Research , 01069 Dresden , Germany
| | - Stefan Michel
- Institute of Physical Chemistry and Polymer Physics , Leibniz Institute of Polymer Research , 01069 Dresden , Germany
| | - Andreas Fery
- Institute of Physical Chemistry and Polymer Physics , Leibniz Institute of Polymer Research , 01069 Dresden , Germany
- Physical Chemistry of Polymeric Materials , Technical University Dresden . Mommsenstr. 4 , 01062 Dresden , Germany
| | | | | |
Collapse
|
20
|
Liu X, Qi G, Park AMG, Rodriguez-Gonzalez A, Enotiadis A, Pan W, Kosma V, Fuchs GD, Kirby BJ, Giannelis EP. Scalable Synthesis of Switchable Assemblies of Gold Nanorod Lyotropic Liquid Crystal Nanocomposites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901666. [PMID: 31021500 DOI: 10.1002/smll.201901666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Indexed: 06/09/2023]
Abstract
A new class of solvent free, lyotropic liquid crystal nanocomposites based on gold nanorods (AuNRs) with high nanorod content is reported. Application of shear results in switchable, highly ordered alignment of the nanorods over several centimeters with excellent storage stability for months. For the synthesis, AuNRs are surface functionalized with a charged, covalently tethered corona, which induces fluid-like properties. This honey-like material can be deposited on a substrate and a high orientational order parameter of 0.72 is achieved using a simple shearing protocol. Switching shearing direction results in realignment of the AuNRs. For a film containing 75 wt% of AuNRs the alignment persists for several months. In addition to the lyotropic liquid crystal characteristics, the AuNRs films also exhibit anisotropic electrical conductivity with an order of magnitude difference between the conductivities in direction parallel and perpendicular to the alignment of the AuNRs.
Collapse
Affiliation(s)
- Xiao Liu
- Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Genggeng Qi
- Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Albert Min Gyu Park
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | | | - Apostolos Enotiadis
- Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Wenyang Pan
- Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Vasiliki Kosma
- Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Gregory D Fuchs
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Brian J Kirby
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | | |
Collapse
|
21
|
Hanske C, Hill EH, Vila-Liarte D, González-Rubio G, Matricardi C, Mihi A, Liz-Marzán LM. Solvent-Assisted Self-Assembly of Gold Nanorods into Hierarchically Organized Plasmonic Mesostructures. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11763-11771. [PMID: 30844239 PMCID: PMC6439440 DOI: 10.1021/acsami.9b00334] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/07/2019] [Indexed: 05/18/2023]
Abstract
Plasmonic supercrystals and periodically structured arrays comprise a class of materials with unique optical properties that result from the interplay of plasmon resonances, as well as near- and far-field coupling. Controlled synthesis of such hierarchical structures remains a fundamental challenge, as it demands strict control over the assembly morphology, array size, lateral spacing, and macroscale homogeneity. Current fabrication approaches involve complicated multistep procedures lacking scalability and reproducibility, which has hindered the practical application of plasmonic supercrystal arrays. Herein, these challenges are addressed by adding an organic solvent to achieve kinetic control over the template-assisted colloidal assembly of nanoparticles from aqueous dispersion. This method yields highly regular periodic arrays, with feature sizes ranging from less than 200 nm up to tens of microns. A combined experimental/computational approach reveals that the underlying mechanism is a combination of the removal of interfacial surfactant micelles from the particle interface and altered capillary flows. Assessing the efficacy of such square arrays for surface-enhanced Raman scattering spectroscopy, we find that a decrease of the lattice periodicity from 750 nm down to 400 nm boosts the signal by more than an order of magnitude, thereby enabling sensitive detection of analytes, such as the bacterial quorum sensing molecule pyocyanin, even in complex biological media.
Collapse
Affiliation(s)
- Christoph Hanske
- CIC biomaGUNE and
Ciber-BBN, Paseo de Miramón
182, 20014 Donostia−San
Sebastián, Spain
- E-mail: (C.H.)
| | - Eric H. Hill
- CIC biomaGUNE and
Ciber-BBN, Paseo de Miramón
182, 20014 Donostia−San
Sebastián, Spain
| | - David Vila-Liarte
- CIC biomaGUNE and
Ciber-BBN, Paseo de Miramón
182, 20014 Donostia−San
Sebastián, Spain
| | | | - Cristiano Matricardi
- Institut de Ciència
de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Catalonia, Spain
| | - Agustín Mihi
- Institut de Ciència
de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Catalonia, Spain
| | - Luis M. Liz-Marzán
- CIC biomaGUNE and
Ciber-BBN, Paseo de Miramón
182, 20014 Donostia−San
Sebastián, Spain
- Ikerbasque, Basque Foundation of Science, 48013 Bilbao, Spain
- E-mail: (L.M.L.-M.)
| |
Collapse
|
22
|
Glatz BA, Fery A. The influence of plasma treatment on the elasticity of the in situ oxidized gradient layer in PDMS: towards crack-free wrinkling. SOFT MATTER 2018; 15:65-72. [PMID: 30512027 DOI: 10.1039/c8sm01910j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Controlled surface wrinkling is widely applied for structuring surfaces in the micro- and nano-range. The formation of cracks in the wrinkling process is however limiting applications, and developing approaches towards crack-free wrinkles is therefore vital. To understand crack-formation, we systematically characterized the thickness and mechanics of thin layers formed by O2-plasma-oxidation of polydimethyl siloxane (PDMS) as a function of plasma power and pressure using Atomic Force Microscopy Quantitative Nano-mechanical Mapping (AFM-QNM). We found a nearly constant layer thickness with simultaneously changing Young's moduli for both power and pressure screenings. We determined the respective crack densities, revealing conditions for crack-free wrinkling. Thus we could identify correlations between the intensity of plasma treatment and the cracking behavior. The primary cause for crack-suppression is a continuous elasticity gradient starting within the soft bulk PDMS, and rising up to several hundred MPa at the oxidized layer's surface. With mechanical simulations via the Finite Elements Method (FEM) we were able to demonstrate a noticeable difference in maximal stress intensity σmax between a comparable, but theoretical single layer and a gradient interface. A threshold in tensile stress of σcrit = 14 MPa distinguishes between intact and cracked layers.
Collapse
Affiliation(s)
- Bernhard Alexander Glatz
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany. and University of Bayreuth Graduate School, University of Bayreuth, Universitätsstr. 30, 95477 Bayreuth, Germany
| | - Andreas Fery
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany. and Chair for Physical Chemistry of Polymeric Materials, Technical University Dresden, Mommsenstr. 4, 01062 Dresden, Germany
| |
Collapse
|
23
|
Park K, Woo MA, Lim JA, Kim YR, Choi SW, Lim MC. In situ synthesis of directional gold nanoparticle arrays along ridge cracks of PDMS wrinkles. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.08.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Kinnear C, Cadusch J, Zhang H, Lu J, James TD, Roberts A, Mulvaney P. Directed Chemical Assembly of Single and Clustered Nanoparticles with Silanized Templates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7355-7363. [PMID: 29806979 DOI: 10.1021/acs.langmuir.8b00775] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The assembly of nanoscale materials into arbitrary, organized structures remains a major challenge in nanotechnology. Herein, we report a general method for creating 2D structures by combining top-down lithography with bottom-up chemical assembly. Under optimal conditions, the assembly of gold nanoparticles was achieved in less than 30 min. Single gold nanoparticles, from 10 to 100 nm, can be placed in predetermined patterns with high fidelity, and higher-order structures can be generated consisting of dimers or trimers. It is shown that the nanoparticle arrays can be transferred to, and embedded within, polymer films. This provides a new method for the large-scale fabrication of nanoparticle arrays onto diverse substrates using wet chemistry.
Collapse
Affiliation(s)
| | | | | | | | - Timothy D James
- Reserve Bank of Australia , Craigieburn , Victoria 3064 , Australia
| | | | | |
Collapse
|
25
|
Ni S, Isa L, Wolf H. Capillary assembly as a tool for the heterogeneous integration of micro- and nanoscale objects. SOFT MATTER 2018; 14:2978-2995. [PMID: 29611588 DOI: 10.1039/c7sm02496g] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
During the past decade, capillary assembly in topographical templates has evolved into an efficient method for the heterogeneous integration of micro- and nano-scale objects on a variety of surfaces. This assembly route has been applied to a large spectrum of materials of micrometer to nanometer dimensions, supplied in the form of aqueous colloidal suspensions. Using systems produced via bulk synthesis affords a huge flexibility in the choice of materials, holding promise for the realization of novel superior devices in the fields of optics, electronics and health, if they can be integrated into surface structures in a fast, simple, and reliable way. In this review, the working principles of capillary assembly and its fundamental process parameters are first presented and discussed. We then examine the latest developments in template design and tool optimization to perform capillary assembly in more robust and efficient ways. This is followed by a focus on the broad range of functional materials that have been realized using capillary assembly, from single components to large-scale heterogeneous multi-component assemblies. We then review current applications of capillary assembly, especially in optics, electronics, and in biomaterials. We conclude with a short summary and an outlook for future developments.
Collapse
Affiliation(s)
- Songbo Ni
- IBM Research - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
| | | | | |
Collapse
|
26
|
Modifying Thermal Switchability of Liquid Crystalline Nanoparticles by Alkyl Ligands Variation. NANOMATERIALS 2018. [PMID: 29518916 PMCID: PMC5869638 DOI: 10.3390/nano8030147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
By coating plasmonic nanoparticles (NPs) with thermally responsive liquid crystals (LCs) it is possible to prepare reversibly reconfigurable plasmonic nanomaterials with prospective applications in optoelectronic devices. However, simple and versatile methods to precisely tailor properties of liquid-crystalline nanoparticles (LC NPs) are still required. Here, we report a new method for tuning structural properties of assemblies of nanoparticles grafted with a mixture of promesogenic and alkyl thiols, by varying design of the latter. As a model system, we used Ag and Au nanoparticles that were coated with three-ring promesogenic molecules and dodecanethiol ligand. These LC NPs self-assemble into switchable lamellar (Ag NPs) or tetragonal (Au NPs) aggregates, as determined with small angle X-ray diffraction and transmission electron microscopy. Reconfigurable assemblies of Au NPs with different unit cell symmetry (orthorombic) are formed if hexadecanethiol and 1H,1H,2H,2H-perfluorodecanethiol were used in the place of dodecanethiol; in the case of Ag NPs the use of 11-hydroxyundecanethiol promotes formation of a lamellar structure as in the reference system, although with substantially broader range of thermal stability (140 vs. 90 °C). Our results underline the importance of alkyl ligand functionalities in determining structural properties of liquid-crystalline nanoparticles, and, more generally, broaden the scope of synthetic tools available for tailoring properties of reversibly reconfigurable plasmonic nanomaterials.
Collapse
|
27
|
Probst PT, Sekar S, König TAF, Formanek P, Decher G, Fery A, Pauly M. Highly Oriented Nanowire Thin Films with Anisotropic Optical Properties Driven by the Simultaneous Influence of Surface Templating and Shear Forces. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3046-3057. [PMID: 29268607 DOI: 10.1021/acsami.7b15042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The functional properties of nanoparticle thin films depend strongly on the arrangement of the nanoparticles within the material. In particular, anisotropic optoelectronic properties can be achieved through the aligned assembly of 1D nanomaterials such as silver nanowires (AgNWs). However, the control of the hierarchical organization of these nanoscale building blocks across multiple length scales and over large areas is still a challenge. Here, we show that the oriented deposition of AgNWs using grazing incidence spraying of the nano-object suspensions on a substrate comprising parallel surface wrinkles readily produces highly oriented monolayer thin films on macroscopic areas (>5 × 5 mm2). The use of textured substrates enhances the degree of ordering as compared to flat ones and increases the area over which AgNWs are oriented. The resulting microscopic linear arrangement of AgNWs evaluated by scanning electron microscopy (SEM) reflects in a pronounced macroscopic optical anisotropy measured by conventional polarized UV-vis-NIR spectroscopy. The enhanced ordering obtained when spraying is done in the same direction as the wrinkles makes this approach more robust against small rotational offsets during preparation. On the contrary, the templating effect of the wrinkle topography can even dominate the shear-driven alignment when spraying is performed perpendicular to the wrinkles: the concomitant but opposing influence of topographic confinement (alignment along the wrinkles) and of spray-induced shear forces (orientation along the spraying direction) lead to films in which the predominant orientation of AgNWs gradually changes from one direction to its perpendicular one over the same substrate in a single processing step. This demonstrates that exploiting the subtle balance between shear forces and substrate-nanowire interactions mediated by wrinkles offers a new way to control the self-assembly of nanoparticles into more complex patterns.
Collapse
Affiliation(s)
- Patrick T Probst
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics , Hohe Str. 6, D-01069 Dresden, Germany
| | - Sribharani Sekar
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics , Hohe Str. 6, D-01069 Dresden, Germany
- Université de Strasbourg, CNRS, Institut Charles Sadron, F-67000 Strasbourg, France
| | - Tobias A F König
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics , Hohe Str. 6, D-01069 Dresden, Germany
- Cluster of Excellence Centre for Advancing Electronics Dresden (CFAED), Technische Universität Dresden , D-01062 Dresden, Germany
| | - Petr Formanek
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics , Hohe Str. 6, D-01069 Dresden, Germany
| | - Gero Decher
- Université de Strasbourg, CNRS, Institut Charles Sadron, F-67000 Strasbourg, France
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics , Hohe Str. 6, D-01069 Dresden, Germany
- Cluster of Excellence Centre for Advancing Electronics Dresden (CFAED), Technische Universität Dresden , D-01062 Dresden, Germany
- Department of Physical Chemistry of Polymeric Materials, Technische Universität Dresden , Hohe Str. 6, D-01069 Dresden, Germany
| | - Matthias Pauly
- Université de Strasbourg, CNRS, Institut Charles Sadron, F-67000 Strasbourg, France
| |
Collapse
|
28
|
Kreuzer L, Männel MJ, Schubert J, Höller RPM, Chanana M. Enzymatic Catalysis at Nanoscale: Enzyme-Coated Nanoparticles as Colloidal Biocatalysts for Polymerization Reactions. ACS OMEGA 2017; 2:7305-7312. [PMID: 30023545 PMCID: PMC6044838 DOI: 10.1021/acsomega.7b00700] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/27/2017] [Indexed: 05/23/2023]
Abstract
Enzyme-catalyzed controlled radical polymerization represents a powerful approach for the polymerization of a wide variety of water-soluble monomers. However, in such an enzyme-based polymerization system, the macromolecular catalyst (i.e., enzyme) has to be separated from the polymer product. Here, we present a compelling approach for the separation of the two macromolecular species, by taking the catalyst out of the molecular domain and locating it in the colloidal domain, ensuring quasi-homogeneous catalysis as well as easy separation of precious biocatalysts. We report on gold nanoparticles coated with horseradish peroxidase that can catalyze the polymerization of various monomers (e.g., N-isopropylacrylamide), yielding thermoresponsive polymers. Strikingly, these biocatalyst-coated nanoparticles can be recovered completely and reused in more than three independent polymerization cycles, without significant loss of their catalytic activity.
Collapse
Affiliation(s)
- Lucas
Philipp Kreuzer
- Physical
Chemistry II, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| | - Max Julius Männel
- Physical
Chemistry II, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
- Leibniz
Institute for Polymer Research, Hohe Str. 6, 01069 Dresden, Germany
| | - Jonas Schubert
- Physical
Chemistry II, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
- Leibniz
Institute for Polymer Research, Hohe Str. 6, 01069 Dresden, Germany
- Physical
Chemistry of Polymer Materials, Technische
Universität Dresden, D-01062 Dresden, Germany
| | - Roland P. M. Höller
- Physical
Chemistry II, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
- Leibniz
Institute for Polymer Research, Hohe Str. 6, 01069 Dresden, Germany
- Physical
Chemistry of Polymer Materials, Technische
Universität Dresden, D-01062 Dresden, Germany
| | - Munish Chanana
- Physical
Chemistry II, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
- Institute
of Building Materials, ETH Zürich, Stefano-Franscini-Platz 3, 8093 Zürich, Switzerland
- Laboratory
for Applied Wood Materials, EMPA Dübendorf, Ueberlandstr. 129, 8600 Dübendorf, Switzerland
| |
Collapse
|
29
|
Steiner AM, Mayer M, Seuss M, Nikolov S, Harris KD, Alexeev A, Kuttner C, König TAF, Fery A. Macroscopic Strain-Induced Transition from Quasi-infinite Gold Nanoparticle Chains to Defined Plasmonic Oligomers. ACS NANO 2017; 11:8871-8880. [PMID: 28719741 DOI: 10.1021/acsnano.7b03087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We investigate the formation of chains of few plasmonic nanoparticles-so-called plasmonic oligomers-by strain-induced fragmentation of linear particle assemblies. Detailed investigations of the fragmentation process are conducted by in situ atomic force microscopy and UV-vis-NIR spectroscopy. Based on these experimental results and mechanical simulations computed by the lattice spring model, we propose a formation mechanism that explains the observed decrease of chain polydispersity upon increasing strain and provides experimental guidelines for tailoring chain length distribution. By evaluation of the strain-dependent optical properties, we find a reversible, nonlinear shift of the dominant plasmonic resonance. We could quantitatively explain this feature based on simulations using generalized multiparticle Mie theory (GMMT). Both optical and morphological characterization show that the unstrained sample is dominated by chains with a length above the so-called infinite chain limit-above which optical properties show no dependency on chain length-while during deformation, the average chain length decrease below this limit and chain length distribution becomes more narrow. Since the formation mechanism results in a well-defined, parallel orientation of the oligomers on macroscopic areas, the effect of finite chain length can be studied even using conventional UV-vis-NIR spectroscopy. The scalable fabrication of oriented, linear plasmonic oligomers opens up additional opportunities for strain-dependent optical devices and mechanoplasmonic sensing.
Collapse
Affiliation(s)
- Anja Maria Steiner
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics , Hohe Str. 6, 01069 Dresden, Germany
| | - Martin Mayer
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics , Hohe Str. 6, 01069 Dresden, Germany
- Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed), Technische Universität Dresden , 01062 Dresden, Germany
| | - Maximilian Seuss
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics , Hohe Str. 6, 01069 Dresden, Germany
| | - Svetoslav Nikolov
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology , 771 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Kenneth D Harris
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics , Hohe Str. 6, 01069 Dresden, Germany
- National Institute for Nanotechnology , 11421 Saskatchewan Drive, Edmonton, AB T6G 2M9, Canada
| | - Alexander Alexeev
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology , 771 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Christian Kuttner
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics , Hohe Str. 6, 01069 Dresden, Germany
- Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed), Technische Universität Dresden , 01062 Dresden, Germany
| | - Tobias A F König
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics , Hohe Str. 6, 01069 Dresden, Germany
- Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed), Technische Universität Dresden , 01062 Dresden, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics , Hohe Str. 6, 01069 Dresden, Germany
- Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed), Technische Universität Dresden , 01062 Dresden, Germany
- Department of Physical Chemistry of Polymeric Materials, Technische Universität Dresden , Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
30
|
Caseri WR. Dichroic nanocomposites based on polymers and metallic particles: from biology to materials science. POLYM INT 2017. [DOI: 10.1002/pi.5455] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Walter R Caseri
- Eidgenössische Technische Hochschule (ETH) Zürich; Department of Materials; Zürich Switzerland
| |
Collapse
|
31
|
Ashkar R, Hore MJA, Ye X, Natarajan B, Greybush NJ, Lam T, Kagan CR, Murray CB. Rapid Large-Scale Assembly and Pattern Transfer of One-Dimensional Gold Nanorod Superstructures. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25513-25521. [PMID: 28686407 DOI: 10.1021/acsami.7b06273] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The utility of gold nanorods for plasmonic applications largely depends on the relative orientation and proximity of the nanorods. Though side-by-side or chainlike nanorod morphologies have been previously demonstrated, a simple reliable method to obtain high-yield oriented gold nanorod assemblies remains a significant challenge. We present a facile, scalable approach which exploits meniscus drag, evaporative self-assembly, and van der Waals interactions to precisely position and orient gold nanorods over macroscopic areas of 1D nanostructured substrates. By adjusting the ratio of the nanorod diameter to the width of the nanochannels, we demonstrate the formation of two highly desired translationally ordered nanorod patterns. We further demonstrate a method to transfer the aligned nanorods into a polymer matrix which exhibits anisotropic optical properties, allowing for rapid fabrication and deployment of flexible optical and electronic materials in future nanoscale devices.
Collapse
Affiliation(s)
- Rana Ashkar
- Center for Neutron Research, National Institute of Standards and Technology (NIST) , Gaithersburg, Maryland 20899, United States
- Materials Science and Engineering Department, University of Maryland , College Park, Maryland 20742, United States
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Michael J A Hore
- Department of Macromolecular Science & Engineering, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Xingchen Ye
- Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Bharath Natarajan
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology (NIST) , Gaithersburg, Maryland 20899, United States
| | - Nicholas J Greybush
- Department of Materials Science & Engineering, University of Pennsylvania , 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Thomas Lam
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology (NIST) , Gaithersburg, Maryland 20899, United States
| | - Cherie R Kagan
- Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
- Department of Electrical and Systems Engineering, University of Pennsylvania , 200 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
- Department of Materials Science & Engineering, University of Pennsylvania , 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
- Department of Materials Science & Engineering, University of Pennsylvania , 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
32
|
Hughes RA, Menumerov E, Neretina S. When lithography meets self-assembly: a review of recent advances in the directed assembly of complex metal nanostructures on planar and textured surfaces. NANOTECHNOLOGY 2017; 28:282002. [PMID: 28590253 DOI: 10.1088/1361-6528/aa77ce] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
One of the foremost challenges in nanofabrication is the establishment of a processing science that integrates wafer-based materials, techniques, and devices with the extraordinary physicochemical properties accessible when materials are reduced to nanoscale dimensions. Such a merger would allow for exacting controls on nanostructure positioning, promote cooperative phenomenon between adjacent nanostructures and/or substrate materials, and allow for electrical contact to individual or groups of nanostructures. With neither self-assembly nor top-down lithographic processes being able to adequately meet this challenge, advancements have often relied on a hybrid strategy that utilizes lithographically-defined features to direct the assembly of nanostructures into organized patterns. While these so-called directed assembly techniques have proven viable, much of this effort has focused on the assembly of periodic arrays of spherical or near-spherical nanostructures comprised of a single element. Work directed toward the fabrication of more complex nanostructures, while still at a nascent stage, has nevertheless demonstrated the possibility of forming arrays of nanocubes, nanorods, nanoprisms, nanoshells, nanocages, nanoframes, core-shell structures, Janus structures, and various alloys on the substrate surface. In this topical review, we describe the progress made in the directed assembly of periodic arrays of these complex metal nanostructures on planar and textured substrates. The review is divided into three broad strategies reliant on: (i) the deterministic positioning of colloidal structures, (ii) the reorganization of deposited metal films at elevated temperatures, and (iii) liquid-phase chemistry practiced directly on the substrate surface. These strategies collectively utilize a broad range of techniques including capillary assembly, microcontact printing, chemical surface modulation, templated dewetting, nanoimprint lithography, and dip-pen nanolithography and employ a wide scope of chemical processes including redox reactions, alloying, dealloying, phase separation, galvanic replacement, preferential etching, template-mediated reactions, and facet-selective capping agents. Taken together, they highlight the diverse toolset available when fabricating organized surfaces of substrate-supported nanostructures.
Collapse
Affiliation(s)
- Robert A Hughes
- College of Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | | | | |
Collapse
|
33
|
Binary plasmonic honeycomb structures: High-resolution EDX mapping and optical properties. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.06.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Mayer M, Tebbe M, Kuttner C, Schnepf MJ, König TAF, Fery A. Template-assisted colloidal self-assembly of macroscopic magnetic metasurfaces. Faraday Discuss 2016; 191:159-176. [PMID: 27411967 PMCID: PMC5058348 DOI: 10.1039/c6fd00013d] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 02/22/2016] [Indexed: 01/01/2023]
Abstract
We demonstrate a template-assisted colloidal self-assembly approach for magnetic metasurfaces on macroscopic areas. The choice of anisotropic colloidal particle geometry, assembly pattern and metallic film is based on rational design criteria, taking advantage of mirror-charge effects for gold nanorods placed on gold film. Monodisperse gold nanorods prepared utilizing wet-chemistry are arranged with high precision on wrinkled templates to form linear array-type assemblies and subsequently transferred to a thin gold film. Due to the obtained particle-to-film distance of 1.1 nm, the plasmonic mode of the nanorod is able to couple efficiently with the supporting metallic film, giving rise to a magnetic mode in the visible spectrum (721 nm). Conventional UV-vis-NIR measurements in close correlation with electromagnetic simulations provide evidence for the presence of a magnetic resonance on the macroscopic area. The herein presented scalable lithography-free fabrication process paves the road towards colloidal functional metasurfaces with an optical response in the effective magnetic permeability.
Collapse
Affiliation(s)
- Martin Mayer
- Leibniz-Institut für Polymerforschung Dresden e.V. , Institute of Physical Chemistry and Polymer Physics , Hohe Str. 6 , 01069 Dresden , Germany . ;
- Cluster of Excellence Centre for Advancing Electronics Dresden (CFAED) , Technische Universität Dresden , 01062 Dresden , Germany
| | - Moritz Tebbe
- Department of Physical Chemistry II , University of Bayreuth , Universitätsstr. 30, 95440 Bayreuth , Germany
| | - Christian Kuttner
- Leibniz-Institut für Polymerforschung Dresden e.V. , Institute of Physical Chemistry and Polymer Physics , Hohe Str. 6 , 01069 Dresden , Germany . ;
- Cluster of Excellence Centre for Advancing Electronics Dresden (CFAED) , Technische Universität Dresden , 01062 Dresden , Germany
| | - Max J. Schnepf
- Leibniz-Institut für Polymerforschung Dresden e.V. , Institute of Physical Chemistry and Polymer Physics , Hohe Str. 6 , 01069 Dresden , Germany . ;
| | - Tobias A. F. König
- Leibniz-Institut für Polymerforschung Dresden e.V. , Institute of Physical Chemistry and Polymer Physics , Hohe Str. 6 , 01069 Dresden , Germany . ;
- Cluster of Excellence Centre for Advancing Electronics Dresden (CFAED) , Technische Universität Dresden , 01062 Dresden , Germany
- Technische Universität Dresden , Fakultät Mathematik und Naturwissenschaften , 01062 Dresden , Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V. , Institute of Physical Chemistry and Polymer Physics , Hohe Str. 6 , 01069 Dresden , Germany . ;
- Cluster of Excellence Centre for Advancing Electronics Dresden (CFAED) , Technische Universität Dresden , 01062 Dresden , Germany
- Department of Physical Chemistry of Polymeric Materials , Technische Universität Dresden , Hohe Str. 6 , 01069 Dresden , Germany
| |
Collapse
|
35
|
Höller RPM, Dulle M, Thomä S, Mayer M, Steiner AM, Förster S, Fery A, Kuttner C, Chanana M. Protein-Assisted Assembly of Modular 3D Plasmonic Raspberry-like Core/Satellite Nanoclusters: Correlation of Structure and Optical Properties. ACS NANO 2016; 10:5740-50. [PMID: 26982386 PMCID: PMC4928146 DOI: 10.1021/acsnano.5b07533] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We present a bottom-up assembly route for a large-scale organization of plasmonic nanoparticles (NPs) into three-dimensional (3D) modular assemblies with core/satellite structure. The protein-assisted assembly of small spherical gold or silver NPs with a hydrophilic protein shell (as satellites) onto larger metal NPs (as cores) offers high modularity in sizes and composition at high satellite coverage (close to the jamming limit). The resulting dispersions of metal/metal nanoclusters exhibit high colloidal stability and therefore allow for high concentrations and a precise characterization of the nanocluster architecture in dispersion by small-angle X-ray scattering (SAXS). Strong near-field coupling between the building blocks results in distinct regimes of dominant satellite-to-satellite and core-to-satellite coupling. High robustness against satellite disorder was proved by UV/vis diffuse reflectance (integrating sphere) measurements. Generalized multiparticle Mie theory (GMMT) simulations were employed to describe the electromagnetic coupling within the nanoclusters. The close correlation of structure and optical property allows for the rational design of core/satellite nanoclusters with tailored plasmonics and well-defined near-field enhancement, with perspectives for applications such as surface-enhanced spectroscopies.
Collapse
Affiliation(s)
- Roland P. M. Höller
- Physical Chemistry II, University of Bayreuth, 95440 Bayreuth, Germany
- Leibniz-Institut für Polymerforschung
Dresden e.V., Institute of Physical Chemistry
and Polymer Physics, Hohe Straße 6, 01069 Dresden, Germany
| | - Martin Dulle
- Physical Chemistry
I, University of Bayreuth, 95440 Bayreuth, Germany
| | - Sabrina Thomä
- Physical Chemistry II, University of Bayreuth, 95440 Bayreuth, Germany
| | - Martin Mayer
- Leibniz-Institut für Polymerforschung
Dresden e.V., Institute of Physical Chemistry
and Polymer Physics, Hohe Straße 6, 01069 Dresden, Germany
| | - Anja Maria Steiner
- Leibniz-Institut für Polymerforschung
Dresden e.V., Institute of Physical Chemistry
and Polymer Physics, Hohe Straße 6, 01069 Dresden, Germany
| | - Stephan Förster
- Physical Chemistry
I, University of Bayreuth, 95440 Bayreuth, Germany
| | - Andreas Fery
- Physical Chemistry II, University of Bayreuth, 95440 Bayreuth, Germany
- Leibniz-Institut für Polymerforschung
Dresden e.V., Institute of Physical Chemistry
and Polymer Physics, Hohe Straße 6, 01069 Dresden, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Hohe Straße 6, 01069 Dresden, Germany
- Cluster of Excellence Centre for Advancing Electronics
Dresden (cfaed), Technische Universität
Dresden, 01062 Dresden, Germany
| | - Christian Kuttner
- Physical Chemistry II, University of Bayreuth, 95440 Bayreuth, Germany
- Leibniz-Institut für Polymerforschung
Dresden e.V., Institute of Physical Chemistry
and Polymer Physics, Hohe Straße 6, 01069 Dresden, Germany
- Cluster of Excellence Centre for Advancing Electronics
Dresden (cfaed), Technische Universität
Dresden, 01062 Dresden, Germany
- E-mail:
| | - Munish Chanana
- Physical Chemistry II, University of Bayreuth, 95440 Bayreuth, Germany
- Institute of Building Materials, ETH Zürich, 8093 Zürich, Switzerland
- E-mail:
| |
Collapse
|
36
|
Tian XD, Chen S, Zhang YJ, Dong JC, Panneerselvam R, Zhang Y, Yang ZL, Li JF, Tian ZQ. Self-assembly of subwavelength nanostructures with symmetry breaking in solution. NANOSCALE 2016; 8:2951-2959. [PMID: 26782014 DOI: 10.1039/c5nr06738c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nanostructures with symmetry breaking can allow the coupling between dark and bright plasmon modes to induce strong Fano resonance. However, it is still a daunting challenge to prepare bottom-up self-assembled subwavelength asymmetric nanostructures with appropriate gaps between the nanostructures especially below 5 nm in solution. Here we present a viable self-assembly method to prepare symmetry-breaking nanostructures consisting of Ag nanocubes and Au nanospheres both with tunable size (90-250 nm for Au nanospheres; 100-160 nm for Ag nanocubes) and meanwhile control the nanogaps through ultrathin silica shells of 1-5 nm thickness. The Raman tag of 4-mercaptobenzoic acid (MBA) assists the self-assembly process and endows the subwavelength asymmetric nanostructures with surface-enhanced Raman scattering (SERS) activity. Moreover, thick silica shells (above 50 nm thickness) can be coated on the self-assembled nanostructures in situ to stabilize the whole nanostructures, paving the way toward bioapplications. Single particle scattering spectroscopy with a 360° polarization resolution is performed on individual Ag nanocube and Au nanosphere dimers, correlated with high-resolution TEM characterization. The asymmetric dimers exhibit strong configuration and polarization dependence Fano resonance properties. Overall, the solution-based self-assembly method reported here is opening up new opportunities to prepare diverse multicomponent nanomaterials with optimal performance.
Collapse
Affiliation(s)
- Xiang-Dong Tian
- Xiamen Institute of Rare-earth Materials, Chinese Academy of Sciences, Xiamen 361005, China.
| | - Shu Chen
- Department of Physics, Xiamen University, Xiamen 361005, China
| | - Yue-Jiao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Jin-Chao Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Rajapandiyan Panneerselvam
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yun Zhang
- Xiamen Institute of Rare-earth Materials, Chinese Academy of Sciences, Xiamen 361005, China.
| | - Zhi-Lin Yang
- Department of Physics, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
37
|
Kirillova A, Stoychev G, Synytska A. Programmed assembly of oppositely charged homogeneously decorated and Janus particles. Faraday Discuss 2016; 191:89-104. [DOI: 10.1039/c6fd00008h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The exploitation of colloidal building blocks with morphological and functional anisotropy facilitates the generation of complex structures with unique properties, which are not exhibited by isotropic particle assemblies. Herein, we demonstrate an easy and scalable bottom-up approach for the programmed assembly of hairy oppositely charged homogeneously decorated and Janus particles based on electrostatic interactions mediated by polyelectrolytes grafted onto their surface. Two different assembly routes are proposed depending on the target structures: raspberry-like/half-raspberry-like or dumbbell-like micro-clusters. Ultimately, stable symmetric and asymmetric micro-structures could be obtained in a well-controlled manner for the homogeneous–homogeneous and homogeneous–Janus particle assemblies, respectively. The spatially separated functionalities of the asymmetric Janus particle-based micro-clusters allow their further assembly into complex hierarchical constructs, which may potentially lead to the design of materials with tailored plasmonics and optical properties.
Collapse
Affiliation(s)
- Alina Kirillova
- Leibniz Institute of Polymer Research Dresden
- 01069 Dresden
- Germany
- Technische Universität Dresden
- Fakultät Mathematik und Naturwissenschaften
| | - Georgi Stoychev
- Leibniz Institute of Polymer Research Dresden
- 01069 Dresden
- Germany
- Technische Universität Dresden
- Fakultät Mathematik und Naturwissenschaften
| | - Alla Synytska
- Leibniz Institute of Polymer Research Dresden
- 01069 Dresden
- Germany
- Technische Universität Dresden
- Fakultät Mathematik und Naturwissenschaften
| |
Collapse
|
38
|
Karg M. Functional Materials Design through Hydrogel Encapsulation of Inorganic Nanoparticles: Recent Developments and Challenges. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500334] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Matthias Karg
- Physical Chemistry I; University of Bayreuth; Universitaetsstr. 30 95440 Bayreuth Germany
| |
Collapse
|
39
|
Agthe M, Høydalsvik K, Mayence A, Karvinen P, Liebi M, Bergström L, Nygård K. Controlling Orientational and Translational Order of Iron Oxide Nanocubes by Assembly in Nanofluidic Containers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:12537-12543. [PMID: 26509355 DOI: 10.1021/acs.langmuir.5b03678] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We demonstrate that spatial confinement can be used to control the orientational and translational order of cubic nanoparticles. For this purpose we have combined X-ray scattering and scanning electron microscopy to study the ordering of iron oxide nanocubes that have self-assembled from toluene-based dispersions in nanofluidic channels. An analysis of scattering vector components with directions parallel and perpendicular to the slit walls shows that the confining walls induce a preferential parallel alignment of the nanocube (100) faces. Moreover, slit wall separations that are commensurate with an integer multiple of the edge length of the oleic acid-capped nanocubes result in a more pronounced translational order of the self-assembled arrays compared to incommensurate confinement. These results show that the confined assembly of anisotropic nanocrystals is a promising route to nanoscale devices with tunable anisotropic properties.
Collapse
Affiliation(s)
- Michael Agthe
- Department of Materials and Environmental Chemistry, Stockholm University , SE-10691 Stockholm, Sweden
| | - Kristin Høydalsvik
- Department of Chemistry and Molecular Biology, University of Gothenburg , SE-41296 Gothenburg, Sweden
- Department of Materials Science and Engineering, Norwegian University of Science and Technology , NO-7491 Trondheim, Norway
| | - Arnaud Mayence
- Department of Materials and Environmental Chemistry, Stockholm University , SE-10691 Stockholm, Sweden
| | - Petri Karvinen
- Institute of Photonics, University of Eastern Finland , FI-80100 Joensuu, Finland
- Finnlitho Ltd, FI-80140 Joensuu, Finland
| | - Marianne Liebi
- Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry, Stockholm University , SE-10691 Stockholm, Sweden
| | - Kim Nygård
- Department of Chemistry and Molecular Biology, University of Gothenburg , SE-41296 Gothenburg, Sweden
| |
Collapse
|
40
|
Lin XM, Sun Y, Shevchenko EV, Sankaranarayanan SKRS, John D, Fedin I, Bresme F, Möhwald H, Moriarty P, Sorensen CM, Law BM. Highlights of the Faraday Discussion on Nanoparticle Synthesis and Assembly, Argonne, USA, April 2015. Chem Commun (Camb) 2015; 51:13725-30. [PMID: 26281789 DOI: 10.1039/c5cc90369f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Xiao-Min Lin
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|