1
|
Hassan MS, Irfan HM, Alamgeer, Sarwar M, Jabbar Z, Nawaz S. Emerging therapeutic frontiers in prostate health: Novel molecular targets and classical pathways in comparison with BPH and prostate cancer. Crit Rev Oncol Hematol 2025; 206:104590. [PMID: 39647642 DOI: 10.1016/j.critrevonc.2024.104590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/30/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024] Open
Abstract
Current therapeutic strategies for benign prostatic hyperplasia (BPH) and prostate cancer focus mainly on androgen receptors (AR) and 5-alpha reductase inhibition to suppress androgen-driven prostate growth. However, these methods often result in side effects and resistance. Recent research identifies novel targets like integrin and cadherin inhibitors, gene regulation, microRNAs, cellular senescence, and metabolomics pathways to overcome these limitations. These innovations offer more personalized approaches with potentially fewer adverse effects and reduced resistance compared to traditional androgen-focused therapies. Novel target sites and pathways, either suppressed or overexpressed, offer control points for modulating signaling in prostate diseases, suggesting future potential for treatment through innovative exogenous substances. Data was compiled from Google Scholar, PubMed, and Google to highlight the comparative potential of these emerging methods in enhancing treatment efficacy for prostate health.
Collapse
Affiliation(s)
- Muhammad Sajjad Hassan
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Punjab 40100, Pakistan.
| | - Hafiz Muhammad Irfan
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Punjab 40100, Pakistan.
| | - Alamgeer
- Punjab University College of Pharmacy, University of the Punjab Lahore, Punjab, Pakistan
| | - Muavia Sarwar
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Punjab 40100, Pakistan
| | - Zeeshan Jabbar
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Punjab 40100, Pakistan
| | - Shoaib Nawaz
- Department of Pharmacy, The University of Lahore, Sargodha campus, Sargodha, Punjab, Pakistan.
| |
Collapse
|
2
|
Trivedi R, Upadhyay TK. Exploring the Potential of Medicinal Mushroom β-Glucans as a Natural Frontier in Prostate Cancer Treatment. Int J Med Mushrooms 2025; 27:1-11. [PMID: 40096532 DOI: 10.1615/intjmedmushrooms.2024056585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The global increase in cancer cases, particularly prostate cancer, poses a significant health challenge worldwide. Conventional treatments such as surgery, radiation therapy, hormone therapy, chemotherapy, and immunotherapy offer valuable options but are associated with limitations and potential side effects. As a result, there is growing interest in complementary therapies, including natural compounds such as β-glucans, derived from sources such as yeast and mushrooms. In this review, we explored the potential therapeutic role of medicinal mushrooms β-glucan in prostate cancer treatment. β-glucans has demonstrated anti-cancer properties in preclinical studies, including inhibition of proliferation, induction of apoptosis, and modulation of immune responses. Studies in prostate cancer cell lines and animal models have shown promising results, with β-glucan inhibiting tumor growth, inducing DNA damage, and regulating tumor markers such as p53 and prostate specific antigen. β-glucans acts through various pathways, including stimulation of dendritic cells, modulation of cytokine secretion, suppression of myeloid-derived suppressor cells, and enhancement of immune responses. Moreover, β-glucans exhibits anti-androgenic and immune-modulatory effects, making it a promising candidate for prostate cancer treatment. In this study, we also focused on the mechanism of action of β-glucans through various pathways including tumor cell death by oxidative stress created through ROS generation and autophagy. Although preclinical studies support the potential therapeutic efficacy of medicinal mushrooms β-glucans, further research is needed to elucidate its clinical utility and safety in human trials.
Collapse
Affiliation(s)
| | - Tarun Kumar Upadhyay
- Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, Gujarat-India
| |
Collapse
|
3
|
Liu J, Zhang J, Fu X, Yang S, Li Y, Liu J, DiSanto ME, Chen P, Zhang X. The Emerging Role of Cell Adhesion Molecules on Benign Prostatic Hyperplasia. Int J Mol Sci 2023; 24:2870. [PMID: 36769190 PMCID: PMC9917596 DOI: 10.3390/ijms24032870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/01/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a common disease in elderly men. It is characterized by prostatic enlargement and urethral compression and often causes lower urinary tract symptoms (LUTs) such as urinary frequency, urgency, and nocturia. Existing studies have shown that the pathological process of prostate hyperplasia is mainly related to the imbalance of cell proliferation and apoptosis, inflammation, epithelial-mesenchymal transition (EMT), and growth factors. However, the exact molecular mechanisms remain incompletely elucidated. Cell adhesion molecules (CAMs) are a group of cell surface proteins that mediate cell-cell adhesion and cell migration. Modulating adhesion molecule expression can regulate cell proliferation, apoptosis, EMT, and fibrotic processes, engaged in the development of prostatic hyperplasia. In this review, we went over the important roles and molecular mechanisms of cell adhesion molecules (mainly integrins and cadherins) in both physiological and pathological processes. We also analyzed the mechanisms of CAMs in prostate hyperplasia and explored the potential value of targeting CAMs as a therapeutic strategy for BPH.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Junchao Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xun Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shu Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yan Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jianmin Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Michael E. DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
4
|
Dulay RM, Valdez B, Chakrabarti S, Dhillon B, Cabrera E, Kalaw S, Reyes R. Cytotoxicity of edible mushrooms Oudemansiella canarii (Jungh.) Höhn. and Ganoderma lucidum (W. Curt.: Fr.) P. Karst. against hematologic malignant cells via activation of apoptosis-related markers. Int J Med Mushrooms 2022; 24:83-95. [DOI: 10.1615/intjmedmushrooms.2022045306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Chyau CC, Wang HF, Zhang WJ, Chen CC, Huang SH, Chang CC, Peng RY. Antrodan Alleviates High-Fat and High-Fructose Diet-Induced Fatty Liver Disease in C57BL/6 Mice Model via AMPK/Sirt1/SREBP-1c/PPARγ Pathway. Int J Mol Sci 2020; 21:ijms21010360. [PMID: 31935815 PMCID: PMC6981486 DOI: 10.3390/ijms21010360] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/18/2019] [Accepted: 12/26/2019] [Indexed: 12/20/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and -steatohepatitis (NASH) imply a state of excessive fat built-up in livers with/or without inflammation and have led to serious medical concerns in recent years. Antrodan (Ant), a purified β-glucan from A. cinnamomea has been shown to exhibit tremendous bioactivity, including hepatoprotective, antihyperlipidemic, antiliver cancer, and anti-inflammatory effects. Considering the already well-known alleviating bioactivity of A. cinnamomea for the alcoholic steatohepatitis (ASH), we propose that Ant can be beneficial to NAFLD, and that the AMPK/Sirt1/PPARγ/SREBP-1c pathways may be involved in such alleviations. To uncover this, we carried out this study with 60 male C57BL/6 mice fed high-fat high-fructose diet (HFD) for 60 days, in order to induce NAFLD/NASH. Mice were then grouped and treated (by oral administration) as: G1: control; G2: HFD (HFD control); G3: Ant, 40 mgkg (Ant control); G4: HFD+Orlistat (10 mg/kg) (as Orlistat control); G5: HFD+Ant L (20 mg/kg); and G6: HFD+Ant H (40 mg/kg) for 45 days. The results indicated Ant at 40 mg/kg effectively suppressed the plasma levels of malondialdehyde, total cholesterol, triglycerides, GOT, GPT, uric acid, glucose, and insulin; upregulated leptin, adiponectin, pAMPK, Sirt1, and down-regulated PPARγ and SREBP-1c. Conclusively, Ant effectively alleviates NAFLD via AMPK/Sirt1/CREBP-1c/PPARγ pathway.
Collapse
Affiliation(s)
- Charng-Cherng Chyau
- Research Institute of Biotechnology, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan;
- Correspondence: (C.-C.C.); (C.-C.C.); (R.Y.P.); Tel.: +886-4-26318652 (C.-C.C.); Fax: +886-4-26525386 (C.-C.C.)
| | - Hsueh-Fang Wang
- Institute of Biomedical Nutrition, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan; (H.-F.W.); (W.-J.Z.)
| | - Wen-Juan Zhang
- Institute of Biomedical Nutrition, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan; (H.-F.W.); (W.-J.Z.)
| | - Chin-Chu Chen
- Grape King Biotechnology Center, 60, Sec 3, Longgang Rd., Chung-Li City, Taoyuan County 320, Taiwan;
| | - Shiau-Huei Huang
- Research Institute of Biotechnology, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan;
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11301, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11301, Taiwan
- Correspondence: (C.-C.C.); (C.-C.C.); (R.Y.P.); Tel.: +886-4-26318652 (C.-C.C.); Fax: +886-4-26525386 (C.-C.C.)
| | - Robert Y. Peng
- Research Institute of Medical Sciences, School of Medicine, Taipei Medical University, Taipei 11301, Taiwan
- School of Medicine and Health, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan
- Correspondence: (C.-C.C.); (C.-C.C.); (R.Y.P.); Tel.: +886-4-26318652 (C.-C.C.); Fax: +886-4-26525386 (C.-C.C.)
| |
Collapse
|
6
|
Wang C, Zhang W, Wong JH, Ng T, Ye X. Diversity of potentially exploitable pharmacological activities of the highly prized edible medicinal fungus Antrodia camphorata. Appl Microbiol Biotechnol 2019; 103:7843-7867. [PMID: 31407039 DOI: 10.1007/s00253-019-10016-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022]
Abstract
Antrodia camphorata, also known as A. cinnamomea, is a precious medicinal basidiomycete fungus endemic to Taiwan. This article summarizes the recent advances in research on the multifarious pharmacological effects of A. camphorata. The mushroom exhibits anticancer activity toward a large variety of cancers including breast, cervical, ovarian, prostate, bladder, colorectal, pancreatic, liver, and lung cancers; melanoma; leukemia; lymphoma; neuroblastoma; and glioblastoma. Other activities encompass antiinflammatory, antiatopic dermatitis, anticachexia, immunoregulatory, antiobesity, antidiabetic, antihyperlipidemic, antiatherosclerotic, antihypertensive, antiplatelet, antioxidative, antiphotodamaging, hepatoprotective, renoprotective, neuroprotective, testis protecting, antiasthmatic, osteogenic, osteoprotective, antiviral, antibacterial, and wound healing activities. This review aims to provide a reference for further development and utilization of this highly prized mushroom.
Collapse
Affiliation(s)
- Caicheng Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Weiwei Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Tzibun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xiujuan Ye
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China. .,Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China. .,Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
7
|
Ganesan N, Baskaran R, Velmurugan BK, Thanh NC. Antrodia cinnamomea-An updated minireview of its bioactive components and biological activity. J Food Biochem 2019; 43:e12936. [PMID: 31368557 DOI: 10.1111/jfbc.12936] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/06/2019] [Accepted: 05/12/2019] [Indexed: 12/11/2022]
Abstract
Antrodia cinnamomea or Antrodia camphorata is a distinctive mushroom of Taiwan, which is being used as a traditional medicine to treat various health-related conditions. More than 78 compounds have been identified in A. cinnamomea. Large numbers of phytochemical studies have been carried out in A. cinnamomea due to the high amount of terpenoids. Besides that, the extracts and active components of A. cinnamomea were reported to have various biological activities including hepatoprotective, antihypertensive, antihyperlipidemic, anti-inflammatory, antioxidant, antitumor, and immunomodulatory activities. In this review article, we have summarized the recent findings of A. cinnamomea and its molecular mechanisms of action in various disease models. PRACTICAL APPLICATIONS: A. cinnamomea, medicinal fungus used in traditional medicine in Taiwan also possess high market value. Aim of the present review is to highlight the compounds present in A. cinnamomea and their different pharmacological activities in preventing/cure various diseases/disorders. A. cinnamomea can be potentially developed into health foods or drugs.
Collapse
Affiliation(s)
- Nagarajan Ganesan
- Basic Sciences Department, Preparatory Year Deanship, King Faisal University, Al Hofuf, Saudi Arabia
| | - Rathinasamy Baskaran
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | | | - Nguyen Chi Thanh
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
8
|
Vieira Gomes DC, de Alencar MVOB, dos Reis AC, de Lima RMT, de Oliveira Santos JV, da Mata AMOF, Soares Dias AC, da Costa JS, de Medeiros MDGF, Paz MFCJ, Gayoso e Almendra Ibiapina Moreno LC, Castro e Sousa JMD, Islam MT, Melo Cavalcante AADC. Antioxidant, anti-inflammatory and cytotoxic/antitumoral bioactives from the phylum Basidiomycota and their possible mechanisms of action. Biomed Pharmacother 2019; 112:108643. [DOI: 10.1016/j.biopha.2019.108643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 01/16/2023] Open
|
9
|
Liu X, Yu X, Xu X, Zhang X, Zhang X. The protective effects of Poria cocos-derived polysaccharide CMP33 against IBD in mice and its molecular mechanism. Food Funct 2019; 9:5936-5949. [PMID: 30378628 DOI: 10.1039/c8fo01604f] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this study, the protective effects of a carboxymethyl polysaccharide CMP33 from Poria cocos against inflammatory bowel disease (IBD) were investigated using TNBS-induced colitis in mice. The results showed that CMP33 markedly ameliorated the severity of colitis, including a 2-fold decrease in the mortality rate, a 50% decrease in disease activity index, and a 36%-44% decrease in macro- or microscopic histopathological score, compared with TNBS administration. Moreover, CMP33 decreased the levels of pro-inflammatory cytokines and increased the levels of anti-inflammatory cytokines in the colon tissue and serum of colitic mice. Using iTRAQ-coupled- nano-HPLC-MS/MS-based proteomics, the protein profiles after TNBS, high- or low-dose CMP33 and salazosulfapyridine (SASP) treatments were compared and many differentially expressed proteins were identified. Among them, 7 proteins (Hmgcs2, Fabp2, Hp, B4galnt2, B3gnt6, Sap and Ca1) were proposed to be the common targeting protein group (TPG) of CMP33 and drug SASP. Particularly, some targeting proteins were CMP33-dose-specific: high-dose-specific TPG (Mtco3, Gal-6, Mptx, S100 g and Hpx) and low-dose-specific TPG (Zg16, Hexb, Insl5, Cept1, Hspb6 and Ifi27l2b), suggesting the complex acting mechanism of CMP33. GC-TOF-MS-based metabolomics revealed that oleic acid and dihydrotestosterone could be the common targets of CMP33 and SASP. By integrative analysis of proteomics and metabolomics, key protein-metabolite pathways (PMP) were identified, PMP for high-dose: 2-hydroxybutyric acid - (GPT, GGH) - glutathione - ALB - testosterone - TTR - dihydrotestosterone; PMP for low-dose: (PYY, FABP2, HMGCS2) - oleic acid - TTR - dihydrotestosterone. In total, these results demonstrated the protective effects of CMP33 against IBD in mice through the potential TPG and PMP.
Collapse
Affiliation(s)
- Xiaofei Liu
- College of Food Science and Engineering, South China University of Technology, Guangzhou, PR China.
| | | | | | | | | |
Collapse
|
10
|
Xiong Y, Zhou L, Qiu X, Miao C. Anti-inflammatory and anti-hyperplastic effect of Bazhengsan in a male rat model of chronic nonbacterial prostatitis. J Pharmacol Sci 2019; 139:201-208. [DOI: 10.1016/j.jphs.2019.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/16/2019] [Accepted: 01/23/2019] [Indexed: 02/07/2023] Open
|
11
|
Zhang Y, Zheng Z, Yang X, Pan X, Yin L, Huang X, Li Q, Shu Y, Zhang Q, Wang K. A sensitive and rapid radiolabelling method for the in vivo pharmacokinetic study of lentinan. Food Funct 2018; 9:3114-3125. [PMID: 29876541 DOI: 10.1039/c8fo00272j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aim of this study is to establish a rapid and sensitive method for detecting lentinan (LNT) in biosamples and to evaluate the pharmacokinetics of LNT in mice and rats. A diethylenetriaminepentaacetic acid (DTPA) derivative of LNT (DTPA-LNT) was synthesized first to allow labelling with 99m-technetium (99mTc). After purification and identification, 99mTc-DTPA-LNT was intravenously administered to mice (2 mg kg-1) and rats at different doses (0.5, 2 and 8 mg kg-1). The results showed that the 99mTc-labelling method was suitable for the quantification of the LNT concentration in biological samples, with satisfactory linearity (r2 > 0.998), precision (<7%), accuracy (95.01-104.51%) and total recovery (∼90%). The blood concentration-time profiles of 99mTc-DTPA-LNT were consistent with the two-compartment model and showed a rapid distribution phase and a slow elimination, and no significant difference in the blood level of LNT was found among the tested doses (0.5, 2 and 8 mg kg-1). LNT was predominantly incorporated into the liver and spleen, and there was a small amount of aggregation in the bile, kidneys, lungs and stomach. Approximately 40% of the administered radioactivity was detected in urine and faeces within 24 h post-dosing. In addition, SPECT imaging of 99mTc-DTPA-LNT was performed to visually reveal the pharmacokinetic characteristics of LNT. These findings provide a reference for further study and for use of LNT and other β-glucans.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chen SY, Lee YR, Hsieh MC, Omar HA, Teng YN, Lin CY, Hung JH. Enhancing the Anticancer Activity of Antrodia cinnamomea in Hepatocellular Carcinoma Cells via Cocultivation With Ginger: The Impact on Cancer Cell Survival Pathways. Front Pharmacol 2018; 9:780. [PMID: 30072899 PMCID: PMC6058215 DOI: 10.3389/fphar.2018.00780] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/26/2018] [Indexed: 01/10/2023] Open
Abstract
Antrodia cinnamomea (AC) is a medicinal fungal species that has been widely used traditionally in Taiwan for the treatment of diverse health-related conditions including cancer. It possesses potent anti-inflammatory and antioxidant properties in addition to its ability to promote cancer cell death in several human tumors. Our aim was to improve the anticancer activity of AC in hepatocellular carcinoma (HCC) through its cocultivation with ginger aiming at tuning the active ingredients. HCC cell lines, Huh-7 and HepG2 were used to study the in vitro anticancer activity of the ethanolic extracts of AC (EAC) alone or after the cocultivation in presence of ginger (EACG). The results indicated that the cocultivation of AC with ginger significantly induced the production of important triterpenoids and EACG was significantly more potent than EAC in targeting HCC cell lines. EACG effectively inhibited cancer cells growth via the induction of cell cycle arrest at G2/M phase and induction of apoptosis in Huh-7 and HepG2 cells as indicated by MTT assay, cell cycle analysis, Annexin V assay, and the activation of caspase-3. In addition, EACG modulated cyclin proteins expression and mitogen-activated protein kinase (MAPK) signaling pathways in favor of the inhibition of cancer cell survival. Taken together, the current study highlights an evidence that EACG is superior to EAC in targeting cancer cell survival and inducing apoptotic cell death in HCC. These findings support that EACG formula can serve as a potential candidate for HCC adjuvant therapy.
Collapse
Affiliation(s)
- San-Yuan Chen
- Department of Chinese Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan.,Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan
| | - Ying-Ray Lee
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Ming-Chia Hsieh
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Hany A Omar
- Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.,Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Yen-Ni Teng
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Ching-Yen Lin
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Jui-Hsiang Hung
- Drug Discovery and Development Center, Chia Nan University of Pharmacy and Science, Tainan, Taiwan.,Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| |
Collapse
|
13
|
Chen PC, Chen CC, Ker YB, Chang CH, Chyau CC, Hu ML. Anti-Metastatic Effects of Antrodan with and without Cisplatin on Lewis Lung Carcinomas in a Mouse Xenograft Model. Int J Mol Sci 2018; 19:E1565. [PMID: 29794990 PMCID: PMC6032389 DOI: 10.3390/ijms19061565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/13/2018] [Accepted: 05/21/2018] [Indexed: 12/13/2022] Open
Abstract
Antrodan, a unique protein-bound polysaccharide derived from the fungal mycelia of Antrodia cinnamomea, has been reported to exhibit antitumor and anti-metastatic effects on Lewis lung carcinoma (LLC) cells through direct action and immunomodulation in vitro. In this study, we investigated the combined treatment of antrodan with an anti-cancer drug-cisplatin-and its underlying molecular mechanisms of action in a mouse xenograft tumor model. C57BL/6 mice were implanted (s.c.) with LLCs for nine days, before administration with only antrodan (20 mg/kg and 40 mg/kg; p.o.) daily, only cisplatin (1 mg/kg; i.p.) twice per week, or a combination of both for an additional 28 days. As expected, antrodan on its own significantly inhibited metastasis of lung and liver tissues, while treatment with cisplatin only merely inhibited metastasis of the liver. Antrodan exhibited efficient adjuvant therapy in combination with cisplatin, by inhibiting the activities of the plasma urokinase plasminogen activator (uPA) and the liver matrix metalloproteinase 9 (MMP-9), as well as by inhibiting the phosphorylation of p38 and extracellular signal-regulated kinase 2 (ERK2) in lung and liver tissues. In addition, antrodan effectively ameliorated cisplatin-induced kidney dysfunction when treated combinatorially, as evidenced by a decrease in cisplatin-induced blood urea nitrogen (BUN) levels in plasma and in the level of p38 phosphorylation in the kidney. Mechanistically, the actions of antrodan on its own involved (i) reducing the activities of uPA and MMP-2 and -9 in plasma; (ii) reducing protein expression of MMP-2/9, and the phosphorylation of signal transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinases (JNKs), and p38 in lung and liver tissues; and (iii) enhancing immune system functions resulting in the promotion of an anti-metastatic response through immunomodulation, by increasing interferon-γ (IFN-γ) levels and decreasing interleukin-6 (IL-6) levels in plasma. These results demonstrated that antrodan provides a novel, complementary therapeutic strategy against cancer metastasis, by attenuating the activities of MMP-2 and -9 through the modulation of STAT3/MAPK/ERK/JNK signaling pathways, and of the host's immune system.
Collapse
Affiliation(s)
- Pei-Chun Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan.
| | - Chin-Chu Chen
- Grape King Biotechnology Center, 60, Sec 3, Longgang Rd., Chung-Li City, Taoyuan County 320, Taiwan.
| | - Yaw-Bee Ker
- Department of Food Science and Technology, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan.
| | - Chi-Huang Chang
- Research Institute of Biotechnology, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan.
| | - Charng-Cherng Chyau
- Research Institute of Biotechnology, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan.
| | - Miao-Lin Hu
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan.
| |
Collapse
|
14
|
Methyl jasmonate reduces testosterone-induced benign prostatic hyperplasia through regulation of inflammatory and apoptotic processes in rats. Biomed Pharmacother 2017; 95:1493-1503. [DOI: 10.1016/j.biopha.2017.08.106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/15/2017] [Accepted: 08/23/2017] [Indexed: 01/18/2023] Open
|
15
|
Mukhopadhyay SK, Naskar D, Bhattacharjee P, Mishra A, Kundu SC, Dey S. Silk fibroin-Thelebolan matrix: A promising chemopreventive scaffold for soft tissue cancer. Colloids Surf B Biointerfaces 2017; 155:379-389. [DOI: 10.1016/j.colsurfb.2017.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 03/20/2017] [Accepted: 04/05/2017] [Indexed: 02/07/2023]
|