1
|
Wu Y, Zhang H, Lin Q, Zhu R, Zhao L, Wang X, Ren J, Meng L. Fractionation of lignin and fermentable sugars from wheat straw using an alkaline hydrogen peroxide/pentanol biphasic pretreatment. J Biotechnol 2024; 396:62-71. [PMID: 39426411 DOI: 10.1016/j.jbiotec.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
To breakthrough the delignification saturation point (DSP) of alkaline hydrogen peroxide (AHP) pretreatment, a biphasic AHP/pentanol (AHPP) pretreatment was proposed in this work. The temperature and H2O2 concentration were evaluated. Under the optimal conditions (110 °C, 2 h, 4 % H2O2), 70.73 % of lignin was removed, which was increased by 11.65 % than the traditional AHP pretreatment, indicating successful overcoming of the DSP by adding pentanol. 85.74 % and 88.62 % of glucan and xylan digestibility were achieved, respectively, which increased by 7.41 % and 5.87 % as compared to AHP pretreatment. Furthermore, the lignin extracted from the organic phase accounted for 38.51 % of the delignification, and it had a low molecular weight, effectively preserving the β-O-4 bonds. Finally, satisfied pentanol recovery (77.91 %) and delignification (57.19 %) along with excellent glucan (76.11 %) and xylan (77.52 %) digestibility were reached after fourth recycling of AHPP pretreatment. Therefore, AHPP pretreatment was a promising method for biomass valorization within biorefinery concept.
Collapse
Affiliation(s)
- Yue Wu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Hui Zhang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Qixuan Lin
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Ruonan Zhu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Lihong Zhao
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Xingjie Wang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China.
| | - Ling Meng
- Huangpu Hydrogen Energy Innovation Centre, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| |
Collapse
|
2
|
Liu C, Otsuka K, Kawai T. Recent advances in microscale separation techniques for glycome analysis. J Sep Sci 2024; 47:e2400170. [PMID: 38863084 DOI: 10.1002/jssc.202400170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 06/13/2024]
Abstract
The glycomic analysis holds significant appeal due to the diverse roles that glycans and glycoconjugates play, acting as modulators and mediators in cellular interactions, cell/organism structure, drugs, energy sources, glyconanomaterials, and more. The glycomic analysis relies on liquid-phase separation technologies for molecular purification, separation, and identification. As a miniaturized form of liquid-phase separation technology, microscale separation technologies offer various advantages such as environmental friendliness, high resolution, sensitivity, fast speed, and integration capabilities. For glycan analysis, microscale separation technologies are continuously evolving to address the increasing challenges in their unique manners. This review discusses the fundamentals and applications of microscale separation technologies for glycomic analysis. It covers liquid-phase separation technologies operating at scales generally less than 100 µm, including capillary electrophoresis, nanoflow liquid chromatography, and microchip electrophoresis. We will provide a brief overview of glycomic analysis and describe new strategies in microscale separation and their applications in glycan analysis from 2014 to 2023.
Collapse
Affiliation(s)
- Chenchen Liu
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Koji Otsuka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Research Administration Center, Osaka Metropolitan University, Osaka, Japan
| | - Takayuki Kawai
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
- RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| |
Collapse
|
3
|
Huang C, Zhan Y, Cheng J, Wang J, Meng X, Fang G, Ragauskas AJ. The bamboo delignification saturation point in alkaline hydrogen peroxide pretreatment and its association with enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2022; 359:127462. [PMID: 35700894 DOI: 10.1016/j.biortech.2022.127462] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
A delignification saturation point (DSP) was observed for bamboo alkaline hydrogen peroxide pretreatment (AHP). Lignin removal was increased from 52.23% to ∼70% when increasing H2O2 dosage from 0% to 2% at the optimum pH, but it cannot be further reinforced as increasing the H2O2. With partial lignin preserved, the glucan hydrolysis yield was found to have a ceiling of ∼80%. This study indicated a strong association between enzymatic digestibility and lignin removal. Anatomical analysis by fluorescence microscope and confocal Raman microscope revealed that the undegradable lignin was mainly existing in the cell corner of sclerenchyma fibers, causing the DSP in the bamboo AHP. Finally, the residual lignin in pretreated bamboo was characterized with GPC, HSQC NMR, and 31P NMR, which revealed the nature of DSP. This study could help to understand the lignin modification during the AHP and further contribute to the establishment of a chemical-saving biorefinery.
Collapse
Affiliation(s)
- Chen Huang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042
| | - Yunni Zhan
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042
| | - Jinyuan Cheng
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042
| | - Jia Wang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Guigan Fang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; UTK-ORNL Joint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
4
|
Crowe JD, Hao P, Pattathil S, Pan H, Ding SY, Hodge DB, Jensen JK. Xylan Is Critical for Proper Bundling and Alignment of Cellulose Microfibrils in Plant Secondary Cell Walls. FRONTIERS IN PLANT SCIENCE 2021; 12:737690. [PMID: 34630488 PMCID: PMC8495263 DOI: 10.3389/fpls.2021.737690] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/24/2021] [Indexed: 05/07/2023]
Abstract
Plant biomass represents an abundant and increasingly important natural resource and it mainly consists of a number of cell types that have undergone extensive secondary cell wall (SCW) formation. These cell types are abundant in the stems of Arabidopsis, a well-studied model system for hardwood, the wood of eudicot plants. The main constituents of hardwood include cellulose, lignin, and xylan, the latter in the form of glucuronoxylan (GX). The binding of GX to cellulose in the eudicot SCW represents one of the best-understood molecular interactions within plant cell walls. The evenly spaced acetylation and 4-O-methyl glucuronic acid (MeGlcA) substitutions of the xylan polymer backbone facilitates binding in a linear two-fold screw conformation to the hydrophilic side of cellulose and signifies a high level of molecular specificity. However, the wider implications of GX-cellulose interactions for cellulose network formation and SCW architecture have remained less explored. In this study, we seek to expand our knowledge on this by characterizing the cellulose microfibril organization in three well-characterized GX mutants. The selected mutants display a range of GX deficiency from mild to severe, with findings indicating even the weakest mutant having significant perturbations of the cellulose network, as visualized by both scanning electron microscopy (SEM) and atomic force microscopy (AFM). We show by image analysis that microfibril width is increased by as much as three times in the severe mutants compared to the wild type and that the degree of directional dispersion of the fibrils is approximately doubled in all the three mutants. Further, we find that these changes correlate with both altered nanomechanical properties of the SCW, as observed by AFM, and with increases in enzymatic hydrolysis. Results from this study indicate the critical role that normal GX composition has on cellulose bundle formation and cellulose organization as a whole within the SCWs.
Collapse
Affiliation(s)
- Jacob D. Crowe
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, United States
| | - Pengchao Hao
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, United States
| | - Henry Pan
- Department of Chemical Engineering, University of Texas, Austin, TX, United States
| | - Shi-You Ding
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Department of Energy Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States
| | - David B. Hodge
- Department of Chemical & Biological Engineering, Montana State University, Bozeman, MT, United States
| | - Jacob Krüger Jensen
- Section for Plant Glycobiology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Jacob Krüger Jensen
| |
Collapse
|
5
|
Synergistic enhancement of nanocellulose foam with dual in situ mineralization and crosslinking reaction. Int J Biol Macromol 2020; 165:3198-3205. [PMID: 33736295 DOI: 10.1016/j.ijbiomac.2020.10.162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 11/27/2022]
Abstract
Cellulose nanocrystals (CNCs) foams have recently gained research interests because they are renewable, abundant, biodegradable and exhibit high surface area. However, the application of CNCs-based foams is still challenging, which is attributed to its lack of effective entanglements between the CNCs particles, thus lowering foam properties. In this study, a synergistic enhancement strategy was proposed, based on the in situ mineralization with hydroxyapatite (HAP) layer onto the CNCs surface, followed by a chemical crosslinking reaction. The physical and chemical structures of the composites were analyzed with SEM, STEM, XRD, FTIR, and TGA. By controlling the amount of coated HAP and the crosslinker, it is possible to manufacture a series of CNCs-based foams that are lightweight (50-75 mg/cm3), highly porous (~90%) with high water absorption (>1300%) and outstanding mechanical strength properties (as high as 1.37 MPa). Moreover, our study further indicated that these CNCs/HAP materials could increase the proliferation of rat osteoblast cells. The method developed in this study presents a novel approach to design improved networked CNCs foam, which has the potential to be used in thermal-retardant material, wastewater treatment, tissue engineering, and personal care applications.
Collapse
|
6
|
Investigation of alkaline hydrogen peroxide pretreatment to enhance enzymatic hydrolysis and phenolic compounds of oil palm trunk. 3 Biotech 2020; 10:179. [PMID: 32231960 DOI: 10.1007/s13205-020-02169-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/16/2020] [Indexed: 10/24/2022] Open
Abstract
Alkaline hydrogen peroxide (AHP) as a pretreatment effectively enhances the increasing enzymatic digestibility of oil palm trunk (OPT) for conversion to biofuels and bioproducts in the biorefinery processes. The effect of hydrogen peroxide concentration (1-5%), temperature (50-90 °C), and time (30-90 min) were studied to find out the optimum condition for the removal of lignin. The optimum condition attained at 70 °C, 30 min, and 3% H2O2 g /g of biomass not only increased the cellulose content from 38.67% in raw material to 73.96% but also removed lignin and hemicellulose up to 50% and 57.12%, respectively. The AHP-treated fibers subjected to enzyme hydrolysis showed significant improvement in glucose concentration that increased from 11.77 (± 0.84) g/L (raw material) to 46.15 (± 0.32) g/L with 59.82% enzyme digestibility at 96 h. Scanning electron microscopy (SEM) and Fourier transformation infrared (FT-IR) were employed to analyze the morphology and structural changes of untreated and AHP-treated fibers. SEM results showed disruption of the intact OPT structure resulting in increase of enzyme accessibility to cellulose. The FT-IR identified changes in peaks which indicated structural transformation and dissolution of both lignin and hemicellulose molecules caused by AHP treatment. The black liquor obtained from AHP treatment contained about 5.13 mg gallic acid equivalent (GAE)/g of dry sample of total phenolic content (TPC) and an antioxidant activity of 59.80% and 65.51% inhibitions of DPPH and ABTS assays, respectively. Hence, it is a sustainable approach to utilize waste for the recovery of multiple value-added products during pretreatment process.
Collapse
|
7
|
Zhang H, Huang S, Wei W, Zhang J, Xie J. Investigation of alkaline hydrogen peroxide pretreatment and Tween 80 to enhance enzymatic hydrolysis of sugarcane bagasse. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:107. [PMID: 31073331 PMCID: PMC6498686 DOI: 10.1186/s13068-019-1454-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/25/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Due to the intact structure of lignocellulosic biomass, pretreatment was a prerequisite to improve the enzymatic hydrolysis by disrupting the recalcitrant lignocellulose and increasing the accessibility of cellulose to enzyme. In this study, an alkaline hydrogen peroxide (AHP) pretreatment of sugarcane bagasse with various loadings of H2O2 (1.25-6.25 wt%) at temperatures of 60-160 °C was proposed to degrade hemicellulose/lignin and improve the enzymatic digestibility. RESULTS It was found that increasing H2O2 loadings during pretreatment lead to the enhancement of substrate digestibility, whereas the alkali (only NaOH)-pretreated solid generated higher glucose yield than that pretreated under AHP pretreatment with lower loading of H2O2. This enhancement of enzymatic digestibility was due to the degradation of hemicellulose and lignin. Furthermore, Tween 80 was added to promote enzymatic digestibility, however, the increased yields were different with various substrates and hydrolysis time. The highest glucose yield of 77.6% was obtained after pretreatment at 160 °C for 60 min with 6.25% H2O2 and the addition of Tween 80, representing 89.1% of glucose in pretreated substrate. CONCLUSIONS This study demonstrated that the AHP pretreatment could greatly enhance the enzymatic saccharification. The addition of Tween 80 played remarkable performances in promoting the glucose yield during enzymatic hydrolysis by stabilizing and protecting the enzyme activity. This study provided an economical feasible and gradual process for the generation of glucose, which will be subsequently converted to bioethanol and bio-chemicals.
Collapse
Affiliation(s)
- Hongdan Zhang
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Guangzhou, 510640 People’s Republic of China
| | - Shihang Huang
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Weiqi Wei
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Jiajie Zhang
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Jun Xie
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| |
Collapse
|
8
|
Figueiredo R, Araújo P, Llerena JPP, Mazzafera P. Suberin and hemicellulose in sugarcane cell wall architecture and crop digestibility: A biotechnological perspective. Food Energy Secur 2019. [DOI: 10.1002/fes3.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Raquel Figueiredo
- Department of Plant Biology Institute of Biology State University of Campinas Campinas Brazil
| | - Pedro Araújo
- Department of Genetics, Evolution and Bioagents Institute of Biology State University of Campinas Campinas Brazil
| | - Juan Pablo P. Llerena
- Department of Plant Biology Institute of Biology State University of Campinas Campinas Brazil
| | - Paulo Mazzafera
- Department of Plant Biology Institute of Biology State University of Campinas Campinas Brazil
- Department of Crop Science College of Agriculture Luiz de Queiroz University of São Paulo Piracicaba Brazil
| |
Collapse
|
9
|
Li J, Lu M, Guo X, Zhang H, Li Y, Han L. Insights into the improvement of alkaline hydrogen peroxide (AHP) pretreatment on the enzymatic hydrolysis of corn stover: Chemical and microstructural analyses. BIORESOURCE TECHNOLOGY 2018; 265:1-7. [PMID: 29860078 DOI: 10.1016/j.biortech.2018.05.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
The alkaline hydrogen peroxide (AHP) pretreatment (0.5 g H2O2/g corn stover, 30 °C, 24 h) removed 91.53% of the initial lignin and 55.77% of the initial hemicellulose in corn stover and afforded a considerable glucose yield (88.34%) through enzymatic hydrolysis. A combination of chemical and microstructural analyses was used to illustrate the mechanism of the effect of AHP pretreatment on enzymatic hydrolysis. During pretreatment, H2O2-derived radicals effectively spread into and destroyed the cell wall of various parts (vascular bundle sheath, xylem vessels, tracheid, phloem, and parenchyma) of corn stover to remove most of the lignin, acetyl group, and partial hemicellulose. They destroyed the compact structure of the cellulose-hemicellulose-lignin network, increased the cellulase-accessible pore volume by 6 times, doubled the area of exposed cellulose, and decreased the unproductive adsorption of enzymes onto lignin. Combining all the effects, AHP pretreatment effectively improved the cellulose accessibility to enhance the subsequent enzymatic hydrolysis efficiency.
Collapse
Affiliation(s)
- Junbao Li
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Minsheng Lu
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Xiaomiao Guo
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Haiyan Zhang
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Yaping Li
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Lujia Han
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China.
| |
Collapse
|
10
|
Williams DL, Crowe JD, Ong RG, Hodge DB. Water sorption in pretreated grasses as a predictor of enzymatic hydrolysis yields. BIORESOURCE TECHNOLOGY 2017; 245:242-249. [PMID: 28892697 DOI: 10.1016/j.biortech.2017.08.200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 05/05/2023]
Abstract
This work investigated the impact of two alkaline pretreatments, ammonia fiber expansion (AFEX) and alkaline hydrogen peroxide (AHP) delignification performed over a range of conditions on the properties of corn stover and switchgrass. Changes in feedstock properties resulting from pretreatment were subsequently compared to enzymatic hydrolysis yields to examine the relationship between enzymatic hydrolysis and cell wall properties. The pretreatments function to increase enzymatic hydrolysis yields through different mechanisms; AFEX pretreatment through lignin relocalization and some xylan solubilization and AHP primarily through lignin solubilization. An important outcome of this work demonstrated that while changes in lignin content in AHP-delignified biomass could be clearly correlated to improved response to hydrolysis, compositional changes alone in AFEX-pretreated biomass could not explain differences in hydrolysis yields. We determined the water retention value, which characterizes the association of water with the cell wall of the pretreated biomass, can be used to predict hydrolysis yields for all pretreated biomass within this study.
Collapse
Affiliation(s)
- Daniel L Williams
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, USA; DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Jacob D Crowe
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, USA
| | - Rebecca G Ong
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - David B Hodge
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, USA; DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA; Department Biosystems & Agricultural Engineering, Michigan State University, East Lansing, MI, USA; Division of Chemical Engineering. Luleå University of Technology, SE-971 87 Luleå, Sweden.
| |
Collapse
|
11
|
Gunawan C, Xue S, Pattathil S, da Costa Sousa L, Dale BE, Balan V. Comprehensive characterization of non-cellulosic recalcitrant cell wall carbohydrates in unhydrolyzed solids from AFEX-pretreated corn stover. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:82. [PMID: 28360940 PMCID: PMC5372267 DOI: 10.1186/s13068-017-0757-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 03/11/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND Inefficient carbohydrate conversion has been an unsolved problem for various lignocellulosic biomass pretreatment technologies, including AFEX, dilute acid, and ionic liquid pretreatments. Previous work has shown 22% of total carbohydrates are typically unconverted, remaining as soluble or insoluble oligomers after hydrolysis (72 h) with excess commercial enzyme loading (20 mg enzymes/g biomass). Nearly one third (7 out of 22%) of these total unconverted carbohydrates are present in unhydrolyzed solid (UHS) residues. The presence of these unconverted carbohydrates leads to a considerable sugar yield loss, which negatively impacts the overall economics of the biorefinery. Current commercial enzyme cocktails are not effective to digest specific cross-linkages in plant cell wall glycans, especially some of those present in hemicelluloses and pectins. Thus, obtaining information about the most recalcitrant non-cellulosic glycan cross-linkages becomes a key study to rationally improve commercial enzyme cocktails, by supplementing the required enzyme activities for hydrolyzing those unconverted glycans. RESULTS In this work, cell wall glycans that could not be enzymatically converted to monomeric sugars from AFEX-pretreated corn stover (CS) were characterized using compositional analysis and glycome profiling tools. The pretreated CS was hydrolyzed using commercial enzyme mixtures comprising cellulase and hemicellulase at 7% glucan loading (~20% solid loading). The carbohydrates present in UHS and liquid hydrolysate were evaluated over a time period of 168 h enzymatic hydrolysis. Cell wall glycan-specific monoclonal antibodies (mAbs) were used to characterize the type and abundance of non-cellulosic polysaccharides present in UHS over the course of enzymatic hydrolysis. 4-O-methyl-d-glucuronic acid-substituted xylan and pectic-arabinogalactan were found to be the most abundant epitopes recognized by mAbs in UHS and liquid hydrolysate, suggesting that the commercial enzyme cocktails used in this work are unable to effectively target those substituted polysaccharide residues. CONCLUSION To our knowledge, this is the first report using glycome profiling as a tool to dynamically monitor recalcitrant cell wall carbohydrates during the course of enzymatic hydrolysis. Glycome profiling of UHS and liquid hydrolysates unveiled some of the glycans that are not cleaved and enriched after enzyme hydrolysis. The major polysaccharides include 4-O-methyl-d-glucuronic acid-substituted xylan and pectic-arabinogalactan, suggesting that enzymes with glucuronidase and arabinofuranosidase activities are required to maximize monomeric sugar yields. This methodology provides a rapid tool to assist in developing new enzyme cocktails, by supplementing the existing cocktails with the required enzyme activities for achieving complete deconstruction of pretreated biomass in the future.
Collapse
Affiliation(s)
- Christa Gunawan
- Biomass Conversion Research Lab (BCRL), Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Lansing, MI 48910 USA
- DOE Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing, MI USA
| | - Saisi Xue
- Biomass Conversion Research Lab (BCRL), Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Lansing, MI 48910 USA
- DOE Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing, MI USA
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
- Oak Ridge National Laboratory, Biosciences Division, BioEnergy Science Center (BESC), Oak Ridge, TN 37830 USA
- Mascoma, LLC (Lallemand Inc.), 67 Etna Road, Lebanon, NH 03766 USA
| | - Leonardo da Costa Sousa
- Biomass Conversion Research Lab (BCRL), Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Lansing, MI 48910 USA
- DOE Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing, MI USA
| | - Bruce E. Dale
- Biomass Conversion Research Lab (BCRL), Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Lansing, MI 48910 USA
- DOE Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing, MI USA
| | - Venkatesh Balan
- Biomass Conversion Research Lab (BCRL), Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Lansing, MI 48910 USA
- DOE Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing, MI USA
| |
Collapse
|
12
|
Damm T, Pattathil S, Günl M, Jablonowski ND, O'Neill M, Grün KS, Grande PM, Leitner W, Schurr U, Usadel B, Klose H. Insights into cell wall structure of Sida hermaphrodita and its influence on recalcitrance. Carbohydr Polym 2017; 168:94-102. [PMID: 28457468 DOI: 10.1016/j.carbpol.2017.03.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/27/2017] [Accepted: 03/18/2017] [Indexed: 01/25/2023]
Abstract
The perennial plant Sida hermaphrodita (Sida) is attracting attention as potential energy crop. Here, the first detailed view on non-cellulosic Sida cell wall polysaccharide composition, structure and architecture is given. Cell walls were prepared from Sida stems and sequentially extracted with aqueous buffers and alkali. The structures of the quantitatively predominant polysaccharides present in each fraction were determined by biochemical characterization, glycome profiling and mass spectrometry. The amounts of glucose released by Accellerase-1500® treatment of the cell wall and the cell wall residue remaining after each extraction were used to assess the roles of pectin and hemicellulose in the recalcitrance of Sida biomass. 4-O-Methyl glucuronoxylan with a low proportion of side substitutions was identified as the major non-cellulosic glycan component of Sida stem cell walls. Pectic polysaccharides and xylans were found to be associated with lignin, suggesting that these polysaccharides have roles in Sida cell wall recalcitrance to enzymatic hydrolysis.
Collapse
Affiliation(s)
- Tatjana Damm
- Institute for Botany and Molecular Genetics, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany; Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Rd. Athens, GA, USA.
| | - Markus Günl
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany.
| | - Nicolai David Jablonowski
- Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany; Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany.
| | - Malcolm O'Neill
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Rd. Athens, GA, USA.
| | - Katharina Susanne Grün
- Institute for Botany and Molecular Genetics, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany.
| | - Philipp Michael Grande
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 1-2, 52074 Aachen Germany.
| | - Walter Leitner
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 1-2, 52074 Aachen Germany; Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany.
| | - Ulrich Schurr
- Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany; Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany.
| | - Björn Usadel
- Institute for Botany and Molecular Genetics, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany; Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany; Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany.
| | - Holger Klose
- Institute for Botany and Molecular Genetics, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany; Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany.
| |
Collapse
|
13
|
da Costa RMF, Pattathil S, Avci U, Lee SJ, Hazen SP, Winters A, Hahn MG, Bosch M. A cell wall reference profile for Miscanthus bioenergy crops highlights compositional and structural variations associated with development and organ origin. THE NEW PHYTOLOGIST 2017; 213:1710-1725. [PMID: 27859277 PMCID: PMC5324610 DOI: 10.1111/nph.14306] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/29/2016] [Indexed: 05/17/2023]
Abstract
Miscanthus spp. are promising lignocellulosic energy crops, but cell wall recalcitrance to deconstruction still hinders their widespread use as bioenergy and biomaterial feedstocks. Identification of cell wall characteristics desirable for biorefining applications is crucial for lignocellulosic biomass improvement. However, the task of scoring biomass quality is often complicated by the lack of a reference for a given feedstock. A multidimensional cell wall analysis was performed to generate a reference profile for leaf and stem biomass from several miscanthus genotypes harvested at three developmentally distinct time points. A comprehensive suite of 155 monoclonal antibodies was used to monitor changes in distribution, structure and extractability of noncellulosic cell wall matrix glycans. Glycan microarrays complemented with immunohistochemistry elucidated the nature of compositional variation, and in situ distribution of carbohydrate epitopes. Key observations demonstrated that there are crucial differences in miscanthus cell wall glycomes, which may impact biomass amenability to deconstruction. For the first time, variations in miscanthus cell wall glycan components were comprehensively characterized across different harvests, organs and genotypes, to generate a representative reference profile for miscanthus cell wall biomass. Ultimately, this portrait of the miscanthus cell wall will help to steer breeding and genetic engineering strategies for the development of superior energy crops.
Collapse
Affiliation(s)
- Ricardo M. F. da Costa
- Institute of BiologicalEnvironmental and Rural SciencesAberystwyth UniversityPlas GogerddanAberystwythCeredigionSY23 3EEUK
| | - Sivakumar Pattathil
- Complex Carbohydrate Research CenterThe University of Georgia315 Riverbend RoadAthensGA30602USA
- US Department of Energy Bioenergy Science CenterOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Utku Avci
- Complex Carbohydrate Research CenterThe University of Georgia315 Riverbend RoadAthensGA30602USA
- US Department of Energy Bioenergy Science CenterOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Scott J. Lee
- Biology DepartmentUniversity of MassachusettsAmherstMA01003USA
| | - Samuel P. Hazen
- Biology DepartmentUniversity of MassachusettsAmherstMA01003USA
| | - Ana Winters
- Institute of BiologicalEnvironmental and Rural SciencesAberystwyth UniversityPlas GogerddanAberystwythCeredigionSY23 3EEUK
| | - Michael G. Hahn
- Complex Carbohydrate Research CenterThe University of Georgia315 Riverbend RoadAthensGA30602USA
- US Department of Energy Bioenergy Science CenterOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Maurice Bosch
- Institute of BiologicalEnvironmental and Rural SciencesAberystwyth UniversityPlas GogerddanAberystwythCeredigionSY23 3EEUK
| |
Collapse
|
14
|
Walker JA, Pattathil S, Bergeman LF, Beebe ET, Deng K, Mirzai M, Northen TR, Hahn MG, Fox BG. Determination of glycoside hydrolase specificities during hydrolysis of plant cell walls using glycome profiling. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:31. [PMID: 28184246 PMCID: PMC5288845 DOI: 10.1186/s13068-017-0703-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/06/2017] [Indexed: 05/29/2023]
Abstract
BACKGROUND Glycoside hydrolases (GHs) are enzymes that hydrolyze polysaccharides into simple sugars. To better understand the specificity of enzyme hydrolysis within the complex matrix of polysaccharides found in the plant cell wall, we studied the reactions of individual enzymes using glycome profiling, where a comprehensive collection of cell wall glycan-directed monoclonal antibodies are used to detect polysaccharide epitopes remaining in the walls after enzyme treatment and quantitative nanostructure initiator mass spectrometry (oxime-NIMS) to determine soluble sugar products of their reactions. RESULTS Single, purified enzymes from the GH5_4, GH10, and GH11 families of glycoside hydrolases hydrolyzed hemicelluloses as evidenced by the loss of specific epitopes from the glycome profiles in enzyme-treated plant biomass. The glycome profiling data were further substantiated by oxime-NIMS, which identified hexose products from hydrolysis of cellulose, and pentose-only and mixed hexose-pentose products from the hydrolysis of hemicelluloses. The GH10 enzyme proved to be reactive with the broadest diversity of xylose-backbone polysaccharide epitopes, but was incapable of reacting with glucose-backbone polysaccharides. In contrast, the GH5 and GH11 enzymes studied here showed the ability to react with both glucose- and xylose-backbone polysaccharides. CONCLUSIONS The identification of enzyme specificity for a wide diversity of polysaccharide structures provided by glycome profiling, and the correlated identification of soluble oligosaccharide hydrolysis products provided by oxime-NIMS, offers a unique combination to understand the hydrolytic capabilities and constraints of individual enzymes as they interact with plant biomass.
Collapse
Affiliation(s)
- Johnnie A. Walker
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706 USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Sivakumar Pattathil
- US Department of Energy Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - Lai F. Bergeman
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706 USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Emily T. Beebe
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706 USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Kai Deng
- US Department of Energy Joint Bioenergy Institute, Emeryville, CA 94608 USA
- Sandia National Laboratories, Livermore, CA 94551 USA
| | - Maryam Mirzai
- US Department of Energy Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - Trent R. Northen
- US Department of Energy Joint Bioenergy Institute, Emeryville, CA 94608 USA
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Michael G. Hahn
- US Department of Energy Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - Brian G. Fox
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706 USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| |
Collapse
|
15
|
Zheng Y, Yang G, Zhao Z, Guo T, Shi H, Zhou Y, Sun L. Structural analysis of ginseng polysaccharides extracted by EDTA solution. RSC Adv 2016. [DOI: 10.1039/c5ra22751h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polysaccharides extracted from Panax ginseng by EDTA solution are composed of both starch-like glucan and pectin.
Collapse
Affiliation(s)
- Yan Zheng
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain
- School of Life Sciences
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Guang Yang
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain
- School of Life Sciences
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Zihan Zhao
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain
- School of Life Sciences
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Te Guo
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain
- School of Life Sciences
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Huimin Shi
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain
- School of Life Sciences
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Yifa Zhou
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain
- School of Life Sciences
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Lin Sun
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain
- School of Life Sciences
- Northeast Normal University
- Changchun 130024
- P. R. China
| |
Collapse
|
16
|
Pattathil S, Avci U, Zhang T, Cardenas CL, Hahn MG. Immunological Approaches to Biomass Characterization and Utilization. Front Bioeng Biotechnol 2015; 3:173. [PMID: 26579515 PMCID: PMC4623462 DOI: 10.3389/fbioe.2015.00173] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/12/2015] [Indexed: 11/13/2022] Open
Abstract
Plant biomass is the major renewable feedstock resource for sustainable generation of alternative transportation fuels to replace fossil carbon-derived fuels. Lignocellulosic cell walls are the principal component of plant biomass. Hence, a detailed understanding of plant cell wall structure and biosynthesis is an important aspect of bioenergy research. Cell walls are dynamic in their composition and structure, varying considerably among different organs, cells, and developmental stages of plants. Hence, tools are needed that are highly efficient and broadly applicable at various levels of plant biomass-based bioenergy research. The use of plant cell wall glycan-directed probes has seen increasing use over the past decade as an excellent approach for the detailed characterization of cell walls. Large collections of such probes directed against most major cell wall glycans are currently available worldwide. The largest and most diverse set of such probes consists of cell wall glycan-directed monoclonal antibodies (McAbs). These McAbs can be used as immunological probes to comprehensively monitor the overall presence, extractability, and distribution patterns among cell types of most major cell wall glycan epitopes using two mutually complementary immunological approaches, glycome profiling (an in vitro platform) and immunolocalization (an in situ platform). Significant progress has been made recently in the overall understanding of plant biomass structure, composition, and modifications with the application of these immunological approaches. This review focuses on such advances made in plant biomass analyses across diverse areas of bioenergy research.
Collapse
Affiliation(s)
- Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Oak Ridge National Laboratory, BioEnergy Science Center (BESC), Oak Ridge, TN, USA
| | - Utku Avci
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Oak Ridge National Laboratory, BioEnergy Science Center (BESC), Oak Ridge, TN, USA
| | - Tiantian Zhang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Claudia L. Cardenas
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Michael G. Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Oak Ridge National Laboratory, BioEnergy Science Center (BESC), Oak Ridge, TN, USA
| |
Collapse
|
17
|
Pattathil S, Hahn MG, Dale BE, Chundawat SPS. Insights into plant cell wall structure, architecture, and integrity using glycome profiling of native and AFEXTM-pre-treated biomass. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4279-94. [PMID: 25911738 PMCID: PMC4493783 DOI: 10.1093/jxb/erv107] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cell walls, which constitute the bulk of plant biomass, vary considerably in their structure, composition, and architecture. Studies on plant cell walls can be conducted on both native and pre-treated plant biomass samples, allowing an enhanced understanding of these structural and compositional variations. Here glycome profiling was employed to determine the relative abundance of matrix polysaccharides in several phylogenetically distinct native and pre-treated plant biomasses. Eight distinct biomass types belonging to four different subgroups (i.e. monocot grasses, woody dicots, herbaceous dicots, and softwoods) were subjected to various regimes of AFEX™ (ammonia fiber expansion) pre-treatment [AFEX is a trademark of MBI, Lansing (http://www.mbi.org]. This approach allowed detailed analysis of close to 200 cell wall glycan epitopes and their relative extractability using a high-throughput platform. In general, irrespective of the phylogenetic origin, AFEX™ pre-treatment appeared to cause loosening and improved accessibility of various xylan epitope subclasses in most plant biomass materials studied. For most biomass types analysed, such loosening was also evident for other major non-cellulosic components including subclasses of pectin and xyloglucan epitopes. The studies also demonstrate that AFEX™ pre-treatment significantly reduced cell wall recalcitrance among diverse phylogenies (except softwoods) by inducing structural modifications to polysaccharides that were not detectable by conventional gross composition analyses. It was found that monitoring changes in cell wall glycan compositions and their relative extractability for untreated and pre-treated plant biomass can provide an improved understanding of variations in structure and composition of plant cell walls and delineate the role(s) of matrix polysaccharides in cell wall recalcitrance.
Collapse
Affiliation(s)
- Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Michael G Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Bruce E Dale
- DOE Great Lakes Bioenergy Research Center, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | - Shishir P S Chundawat
- DOE Great Lakes Bioenergy Research Center, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA Present address: Department of Chemical and Biochemical Engineering, C-150A Engineering Building, Rutgers The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
18
|
Klein‐Marcuschamer D, Blanch HW. Renewable fuels from biomass: Technical hurdles and economic assessment of biological routes. AIChE J 2015. [DOI: 10.1002/aic.14755] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Daniel Klein‐Marcuschamer
- Dow Centre for Sustainable Engineering InnovationUniversity of QueenslandBrisbane QLD Australia
- Joint BioEnergy Institute (JBEI)Lawrence Berkeley National LaboratoryBerkeley CA94720
| | - Harvey W. Blanch
- Joint BioEnergy Institute (JBEI)Lawrence Berkeley National LaboratoryBerkeley CA94720
- Dept. of Chemical and Biomolecular EngineeringUniversity of California BerkeleyBerkeley CA 94720
| |
Collapse
|
19
|
Li Z, Bansal N, Azarpira A, Bhalla A, Chen CH, Ralph J, Hegg EL, Hodge DB. Chemical and structural changes associated with Cu-catalyzed alkaline-oxidative delignification of hybrid poplar. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:123. [PMID: 26300970 PMCID: PMC4546027 DOI: 10.1186/s13068-015-0300-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/30/2015] [Indexed: 05/11/2023]
Abstract
BACKGROUND Alkaline hydrogen peroxide pretreatment catalyzed by Cu(II) 2,2'-bipyridine complexes has previously been determined to substantially improve the enzymatic hydrolysis of woody plants including hybrid poplar as a consequence of moderate delignification. In the present work, cell wall morphological and lignin structural changes were characterized for this pretreatment approach to gain insights into pretreatment outcomes and, specifically, to identify the extent and nature of lignin modification. RESULTS Through TEM imaging, this catalytic oxidation process was shown to disrupt cell wall layers in hybrid poplar. Cu-containing nanoparticles, primarily in the Cu(I) oxidation state, co-localized with the disrupted regions, providing indirect evidence of catalytic activity whereby soluble Cu(II) complexes are reduced and precipitated during pretreatment. The concentration of alkali-soluble polymeric and oligomeric lignin was substantially higher for the Cu-catalyzed oxidative pretreatment. This alkali-soluble lignin content increased with time during the catalytic oxidation process, although the molecular weight distributions were unaltered. Yields of aromatic monomers (including phenolic acids and aldehydes) were found to be less than 0.2 % (wt/wt) on lignin. Oxidation of the benzylic alcohol in the lignin side-chain was evident in NMR spectra of the solubilized lignin, whereas minimal changes were observed for the pretreatment-insoluble lignin. CONCLUSIONS These results provide indirect evidence for catalytic activity within the cell wall. The low yields of lignin-derived aromatic monomers, together with the detailed characterization of the pretreatment-soluble and pretreatment-insoluble lignins, indicate that the majority of both lignin pools remained relatively unmodified. As such, the lignins resulting from this process retain features closely resembling native lignins and may, therefore, be amenable to subsequent valorization.
Collapse
Affiliation(s)
- Zhenglun Li
- />Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI USA
- />DOE-Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
- />College of Agricultural Sciences, Oregon State University, Corvallis, OR USA
| | - Namita Bansal
- />DOE-Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
- />Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI USA
| | - Ali Azarpira
- />DOE-Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI USA
| | - Aditya Bhalla
- />DOE-Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
- />Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI USA
| | - Charles H Chen
- />Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI USA
- />Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD USA
| | - John Ralph
- />DOE-Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI USA
- />Department of Biochemistry, University of Wisconsin, Madison, WI USA
| | - Eric L Hegg
- />DOE-Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
- />Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI USA
| | - David B Hodge
- />Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI USA
- />DOE-Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
- />Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, WI USA
- />Division of Sustainable Process Engineering, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
20
|
Gaur R, Agrawal R, Kumar R, Ramu E, Bansal VR, Gupta RP, Kumar R, Tuli DK, Das B. Evaluation of recalcitrant features impacting enzymatic saccharification of diverse agricultural residues treated by steam explosion and dilute acid. RSC Adv 2015. [DOI: 10.1039/c5ra12475a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Exploring agricultural biomass for biofuel production necessitates pretreatment as a prerequisite step.
Collapse
Affiliation(s)
- Ruchi Gaur
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil Corporation Ltd
- Research and Development Centre
- Faridabad-121007
- India
| | - Ruchi Agrawal
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil Corporation Ltd
- Research and Development Centre
- Faridabad-121007
- India
| | - Rahul Kumar
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil Corporation Ltd
- Research and Development Centre
- Faridabad-121007
- India
| | - E. Ramu
- Analytical Division
- Indian Oil Corporation Ltd
- Research and Development Centre
- Faridabad-121007
- India
| | - Veena Rani Bansal
- Analytical Division
- Indian Oil Corporation Ltd
- Research and Development Centre
- Faridabad-121007
- India
| | - Ravi P. Gupta
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil Corporation Ltd
- Research and Development Centre
- Faridabad-121007
- India
| | - Ravindra Kumar
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil Corporation Ltd
- Research and Development Centre
- Faridabad-121007
- India
| | - Deepak K. Tuli
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil Corporation Ltd
- Research and Development Centre
- Faridabad-121007
- India
| | - Biswapriya Das
- Indian Oil Corporation Ltd
- Research and Development Centre
- Faridabad-121007
- India
| |
Collapse
|