1
|
Toader GA, Mihalache DI, Grigorean VT, Chiticaru EA, Pandele MA, Ionita M. Efficient solid-phase extraction of oligo-DNA from complex media using a nitrocellulose membrane modified with carbon nanotubes and aminated reduced graphene oxide. Sci Rep 2025; 15:5325. [PMID: 39948136 PMCID: PMC11825714 DOI: 10.1038/s41598-025-89705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/07/2025] [Indexed: 02/16/2025] Open
Abstract
Oligonucleotides are essential for gene regulation, expression, and disease biomarker identification, yet their small size presents challenges due to lower abundance and increased susceptibility to degradation in biological samples. Addressing these challenges, a novel approach was developed for effective oligonucleotide extraction, consisting of a commercially available nitrocellulose (NC) membrane non-covalently modified with a combination of single-walled carbon nanotubes (SWCNTs) and polyethylene glycol (PEG) aminated reduced graphene oxide (GA). The membrane was evaluated for the extraction of a fluorescent labelled single-stranded deoxyribonucleic acid (ssDNA), with fewer than 30 nucleotides, from complex solutions containing various ionic species (MnCl2, MgCl2, and MnCl2/MgCl2). Fourier transform infrared spectroscopy confirmed successful modification, revealing characteristic peaks of NC, SWCNT, and GA. Raman spectroscopy and X-ray photoelectron spectroscopy showed distinctive changes after the membrane interaction with divalent cations and ssDNA. Scanning electron microscopy revealed morphological changes in the SWCNTs/GA-NC hybrid membrane, showing a smoother surface compared to the porous structure of the unmodified NC membrane. Wettability assays indicated hydrophobic properties for the SWCNT/GA-NC hybrid membrane, with a water contact angle exceeding 110°, contrasting with the hydrophilic nature of the NC membrane, which exhibits a contact angle of 26.7°. Optimal performance of the SWCNTs/GA-NC hybrid membrane was observed when incubated in MgCl2, demonstrating the highest fluorescence emission at approximately 670 relative fluorescence units. This corresponded to the extraction of approximately 781 pg (≈ 16%) of the total oligo-DNA, highlighting the enhanced efficacy of the hybrid material compared to the unmodified NC membrane, which extracted only 318 pg (≈ 7%) of oligo-DNA.
Collapse
Affiliation(s)
- Georgian Alin Toader
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7, Bucharest, 011061, Romania
| | - Daniel Ioan Mihalache
- Carol Davila University of Medicine and Pharmacy, Dionisie Lupu 37, Bucharest, 020021, Romania
| | | | - Elena Alina Chiticaru
- Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7, Bucharest, 011061, Romania
| | - Madalina Andreea Pandele
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7, Bucharest, 011061, Romania
| | - Mariana Ionita
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7, Bucharest, 011061, Romania.
- Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7, Bucharest, 011061, Romania.
- eBio-Hub Research Centre, National University of Science and Technology, Politehnica Bucharest-Campus, Iuliu Maniu 6, Bucharest, 061344, Romania.
| |
Collapse
|
2
|
Gao Y, Wang Y. Interplay of graphene-DNA interactions: Unveiling sensing potential of graphene materials. APPLIED PHYSICS REVIEWS 2024; 11:011306. [PMID: 38784221 PMCID: PMC11115426 DOI: 10.1063/5.0171364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Graphene-based materials and DNA probes/nanostructures have emerged as building blocks for constructing powerful biosensors. Graphene-based materials possess exceptional properties, including two-dimensional atomically flat basal planes for biomolecule binding. DNA probes serve as excellent selective probes, exhibiting specific recognition capabilities toward diverse target analytes. Meanwhile, DNA nanostructures function as placement scaffolds, enabling the precise organization of molecular species at nanoscale and the positioning of complex biomolecular assays. The interplay of DNA probes/nanostructures and graphene-based materials has fostered the creation of intricate hybrid materials with user-defined architectures. This advancement has resulted in significant progress in developing novel biosensors for detecting DNA, RNA, small molecules, and proteins, as well as for DNA sequencing. Consequently, a profound understanding of the interactions between DNA and graphene-based materials is key to developing these biological devices. In this review, we systematically discussed the current comprehension of the interaction between DNA probes and graphene-based materials, and elucidated the latest advancements in DNA probe-graphene-based biosensors. Additionally, we concisely summarized recent research endeavors involving the deposition of DNA nanostructures on graphene-based materials and explored imminent biosensing applications by seamlessly integrating DNA nanostructures with graphene-based materials. Finally, we delineated the primary challenges and provided prospective insights into this rapidly developing field. We envision that this review will aid researchers in understanding the interactions between DNA and graphene-based materials, gaining deeper insight into the biosensing mechanisms of DNA-graphene-based biosensors, and designing novel biosensors for desired applications.
Collapse
Affiliation(s)
- Yanjing Gao
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Yichun Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
3
|
Kasputis T, He Y, Ci Q, Chen J. On-Site Fluorescent Detection of Sepsis-Inducing Bacteria using a Graphene-Oxide CRISPR-Cas12a (GO-CRISPR) System. Anal Chem 2024; 96:2676-2683. [PMID: 38290431 PMCID: PMC10867801 DOI: 10.1021/acs.analchem.3c05459] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
Sepsis is an extremely dangerous medical condition that emanates from the body's response to a pre-existing infection. Early detection of sepsis-inducing bacterial infections can greatly enhance the treatment process and potentially prevent the onset of sepsis. However, current point-of-care (POC) sensors are often complex and costly or lack the ideal sensitivity for effective bacterial detection. Therefore, it is crucial to develop rapid and sensitive biosensors for the on-site detection of sepsis-inducing bacteria. Herein, we developed a graphene oxide CRISPR-Cas12a (GO-CRISPR) biosensor for the detection of sepsis-inducing bacteria in human serum. In this strategy, single-stranded (ssDNA) FAM probes were quenched with single-layer graphene oxide (GO). Target-activated Cas12a trans-cleavage was utilized for the degradation of the ssDNA probes, detaching the short ssDNA probes from GO and recovering the fluorescent signals. Under optimal conditions, we employed our GO-CRISPR system for the detection of Salmonella Typhimurium (S. Typhimurium) with a detection sensitivity of as low as 3 × 103 CFU/mL in human serum, as well as a good detection specificity toward other competing bacteria. In addition, the GO-CRISPR biosensor exhibited excellent sensitivity to the detection of S. Typhimurium in spiked human serum. The GO-CRISPR system offers superior rapidity for the detection of sepsis-inducing bacteria and has the potential to enhance the early detection of bacterial infections in resource-limited settings, expediting the response for patients at risk of sepsis.
Collapse
Affiliation(s)
- Tom Kasputis
- Department
of Biological Systems Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Yawen He
- Department
of Biological Systems Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Qiaoqiao Ci
- Department
of Biological Systems Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Juhong Chen
- Department
of Biological Systems Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
- Department
of Bioengineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
4
|
Toader GA, Nitu FR, Ionita M. Graphene Oxide/Nitrocellulose Non-Covalent Hybrid as Solid Phase for Oligo-DNA Extraction from Complex Medium. Molecules 2023; 28:4599. [PMID: 37375154 DOI: 10.3390/molecules28124599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
A nitrocellulose-graphene oxide hybrid that consists of a commercially nitrocellulose (NC) membrane non-covalently modified with graphene oxide (GO) microparticles was successfully prepared for oligonucleotide extraction. The modification of NC membrane was confirmed by Fourier Transform Infrared Spectroscopy (FTIR), which highlighted the principal absorption bands of both the NC membrane at 1641, 1276, and 835 cm-1 (NO2) and of GO in the range of 3450 cm-1 (CH2-OH). The SEM analysis underlined the well-dispersed and uniform coverage of NC membrane with GO, which displayed thin spider web morphology. The wettability assay indicated that the NC-GO hybrid membrane exhibited slightly lower hydrophilic behavior, with a water contact angle of 26.7°, compared to the 15° contact angle of the NC control membrane. The NC-GO hybrid membranes were used to separate oligonucleotides that had fewer than 50 nucleotides (nt) from complex solutions. The features of the NC-GO hybrid membranes were tested for extraction periods of 30, 45, and 60 min in three different complex solutions, i.e., an aqueous medium, an α-Minimum Essential Medium (αMEM), and an αMEM supplemented with fetal bovine serum (FBS). The oligonucleotides were desorbed from the surface of the NC-GO hybrid membrane using Tris-HCl buffer with a pH of 8.0. Out of the three media utilized, the best results were achieved after 60 min incubation of the NC-GO membranes in αMEM, as evidenced by the highest fluorescence emission of 294 relative fluorescence units (r.f.u.). This value corresponded to the extraction of approximately 330-370 pg (≈7%) of the total oligo-DNA. This method is an efficient and effortless way to purify short oligonucleotides from complex solutions.
Collapse
Affiliation(s)
- Georgian A Toader
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania
| | - Florentin R Nitu
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania
- Genetic Lab, Str. Milcov, nr. 5, Sector 1, 012273 Bucuresti, Romania
| | - Mariana Ionita
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
- eBio-Hub Research Centre, University Politehnica of Bucharest-Campus, Iuliu Maniu 6, 061344 Bucharest, Romania
| |
Collapse
|
5
|
Pinto AV, Ferreira P, Fernandes PA, Magalhães AL, Ramos MJ. Development of Nanoscale Graphene Oxide Models for the Adsorption of Biological Molecules. J Phys Chem B 2023; 127:557-566. [PMID: 36282235 DOI: 10.1021/acs.jpcb.2c06037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Graphene oxide (GO), a nanomaterial with promising applications that range from water purification to enzyme immobilization, is actively present in scientific research since its discovery. GO studies with computational methodologies such as molecular dynamics are frequently reported in the literature; however, the models used often rely on approximations, such as randomly placing functional groups and the use of generalized force fields. Therefore, it is important to develop new MD models that provide a more accurate description of GO structures and their interaction with an aqueous solvent and other adsorbate molecules. In this paper, we derived new force field non-bonded parameters from linear-scaling density functional theory calculations of nanoscale GO sheets with more than 10,000 atoms through an atoms-in-molecules (AIM) partitioning scheme. The resulting GAFF2-AIM force field, derived from the bonded terms of GAFF2 parameterization, reproduces the solvent structure reported in ab initio MD simulations better than the force field nowadays widely used in the literature. Additionally, we analyzed the effect of the ionic strength of the medium and of the C/O ratio on the distribution of charges surrounding the GO sheets. Finally, we simulated the adsorption of natural amino acid molecules to a GO sheet and estimated their free energy of binding, which compared very favorably to their respective experimental values, validating the force field presented in this work.
Collapse
Affiliation(s)
- Alexandre V Pinto
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007Porto, Portugal
| | - Pedro Ferreira
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007Porto, Portugal
| | - Pedro A Fernandes
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007Porto, Portugal
| | - Alexandre L Magalhães
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007Porto, Portugal
| | - Maria J Ramos
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007Porto, Portugal
| |
Collapse
|
6
|
Peng Z, Wang G, He Y, Wang JJ, Zhao Y. Tyrosinase inhibitory mechanism and anti-browning properties of novel kojic acid derivatives bearing aromatic aldehyde moiety. Curr Res Food Sci 2022; 6:100421. [PMID: 36605465 PMCID: PMC9807860 DOI: 10.1016/j.crfs.2022.100421] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Kojic acid-aromatic aldehydes 6a-6m were synthesized and screened for their anti-tyrosinase activities. These compounds showed potently anti-tyrosinase activity with IC50 values in the range of 5.32 ± 0.23 to 77.89 ± 3.36 μM compared with kojic acid (IC50 = 48.05 ± 3.28 μM). Thereinto, compound 6j with 3-fluorine and 4-aldehyde substitutions showed the most potent anti-tyrosinase activity (IC50 = 5.32 ± 0.23 μM). Enzyme kinetic study revealed that 6j is a noncompetitive tyrosinase inhibitor (Ki = 2.73 μM). The action mechanism of 6j was evaluated by fluorescence spectrum quenching, molecular docking, 1H NMR titration, etc. The anti-browning assay showed that 6j could delay the enzymatic browning of fresh-cut apples. Besides, the cell viability assay proved that 6j had a good safety profile as an anti-browning agent. Hence, these results identify a new class of anti-tyrosinase and anti-browning agents for further investigation in the food industry.
Collapse
Affiliation(s)
- Zhiyun Peng
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Guangcheng Wang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Yan He
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, 528225, China
- Corresponding author. College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Corresponding author.
| |
Collapse
|
7
|
Sugar Moiety Driven Adsorption of Nucleic Acid on Graphene Quantum Dots: Photophysical, Thermodynamic and Theoretical Evidence. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Petrucci S, Ramón Codina Garcia-Andrade J, Moutsiopoulou A, Broyles DB, Dikici E, Daunert S, Deo SK. A Bioluminescent Protein-Graphene Oxide Donor-Quencher Pair in DNA Hybridization Assays. Chempluschem 2022; 87:e202200372. [PMID: 36457160 DOI: 10.1002/cplu.202200372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/02/2022] [Indexed: 11/12/2022]
Abstract
Despite fluorescent quenching with graphene oxide (GO) having shown great success in various applications - bioluminescent quenching has not yet been demonstrated using GO as a quencher. To explore the ability of GO to quench bioluminescence, we used Gaussia luciferase (Gluc) as a donor and GO as a quencher and demonstrated its application in sensing of two target analytes, HIV-1 DNA and IFN-γ. We demonstrated that the incubation of Gluc conjugated HIV-1 and IFN-γ oligonucleotide probes with GO provided for monitoring of probe-target interactions based on bioluminescence measurement in a solution phase sensing system. The limits of detection obtained for IFN-γ and HIV-1 DNA detection were 17 nM and 7.59 nM, respectively. Both sensing systems showed selectivity toward the target analyte. The detection of IFN-γ in saliva matrix was demonstrated. The use of GO as a quencher provides for high sensitivity while maintaining the selectivity of designed probes to their respective targets. The use of GO as a quencher provides for an easy assay design and low cost, environmentally friendly reporter.
Collapse
Affiliation(s)
- Sabrina Petrucci
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Josep Ramón Codina Garcia-Andrade
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Angeliki Moutsiopoulou
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - David B Broyles
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Clinical and Translational Science Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sapna K Deo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
9
|
Bellier N, Baipaywad P, Ryu N, Lee JY, Park H. Recent biomedical advancements in graphene oxide- and reduced graphene oxide-based nanocomposite nanocarriers. Biomater Res 2022; 26:65. [DOI: 10.1186/s40824-022-00313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/30/2022] [Indexed: 11/28/2022] Open
Abstract
AbstractRecently, nanocarriers, including micelles, polymers, carbon-based materials, liposomes, and other substances, have been developed for efficient delivery of drugs, nucleotides, and biomolecules. This review focuses on graphene oxide (GO) and reduced graphene oxide (rGO) as active components in nanocarriers, because their chemical structures and easy functionalization can be valuable assets for in vitro and in vivo delivery. Herein, we describe the preparation, structure, and functionalization of GO and rGO. Additionally, their important properties to function as nanocarriers are presented, including their molecular interactions with various compounds, near-infrared light adsorption, and biocompatibility. Subsequently, their mechanisms and the most appealing examples of their delivery applications are summarized. Overall, GO- and rGO-based nanocomposites show great promise as multipurpose nanocarriers owing to their various potential applications in drug and gene delivery, phototherapy, bioimaging, biosensing, tissue engineering, and as antibacterial agents.
Collapse
|
10
|
Yang C, Yu P, Li Y, Wang J, Ma X, Liu N, Lv T, Zheng H, Wu H, Li H, Sun C. Platform Formed from ZIF-8 and DNAzyme: "Turn-On" Fluorescence Assay for Simple, High-Sensitivity, and High-Selectivity Detection of Pb 2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9567-9576. [PMID: 35880309 DOI: 10.1021/acs.jafc.2c03503] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lead contamination has posed a potential threat to the environment and food safety, arousing extensive concern. In this work, we fabricated a novel fluorescent sensing platform based on zeolitic imidazolate framework-8 (ZIF-8) and DNAzyme for monitoring Pb2+ in water and fish samples. ZIF-8 was proposed as a fluorescence quencher with the advantages of simple synthesis, low cost, and high quenching efficiency. The Pb2+-dependent GR5 DNAzyme containing the large ssDNA loop can be adsorbed onto ZIF-8 accompanied by fluorescence quenching. Upon binding with Pb2+, GR5 DNAzyme was activated and cleaved, leading to the release of FAM-labeled 5-base ssDNA, which restored the fluorescence. The "turn-on" assay can detect Pb2+ through the one-pot procedure in the range of 0.01-10.0 nM with a detection limit of 7.1 pM. The platform is promising for on-site monitoring of Pb2+ owing to the excellent performance of high sensitivity, low background, strong anti-interference ability, and simple operation.
Collapse
Affiliation(s)
- Chuanyu Yang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Peitong Yu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ying Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Junyang Wang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xinyue Ma
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ni Liu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ting Lv
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Hongru Zheng
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Han Wu
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
11
|
Highly sensitive and selective detection of Ochratoxin a using modified graphene oxide-aptamer sensors as well as application. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Shu Y, Ye Q, Dai T, Guan J, Ji Z, Xu Q, Hu X. Incorporation of perovskite nanocrystals into lanthanide metal-organic frameworks with enhanced stability for ratiometric and visual sensing of mercury in aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128360. [PMID: 35152110 DOI: 10.1016/j.jhazmat.2022.128360] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
In-situ growth of CsPbBr3 nanocrystal into Eu-BTC was realized for synthesis of dual-emission CsPbBr3@Eu-BTC by a facile solvothermal method, and a novel ratiometric fluorescence sensor based on the CsPbBr3@Eu-BTC was prepared for rapid, sensitive and visual detection of Hg2+ in aqueous solution. The transmission electron microscopy (TEM), X-ray diffraction pattern (XRD), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) analysis were used to verify the successful incorporation of CsPbBr3 into the Eu-BTC. Meanwhile, the CsPbBr3@Eu-BTC nanocomposite maintained high fluorescence performance and stability in aqueous solution. After adding Hg2+, the green fluorescence of CsPbBr3 was quenched and the red fluorescence of Eu3+ remained unchanged, while the color changed from green to red obviously. The occurrence of dynamic quenching and electron transfer were verified by fluorescence lifetime, Stern-Volmer quenching constant and XPS analysis. The ratiometric fluorescence sensor shows high analytical performance for Hg2+ detection with a wide linear range of 0-1 μM and a low detection limit of 0.116 nM. In addition, it also shows high selectivity for the detection of Hg2+ and can be successfully applied to detect Hg2+ in environmental water samples. More importantly, a novel paper-based sensor based on the CsPbBr3@Eu-BTC ratiometric probe was successfully manufactured for the visual detection of Hg2+ by naked eyes. This new type of ratiometric fluorescent sensor shows great potential for applications in point-of-care diagnostics.
Collapse
Affiliation(s)
- Yun Shu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Qiuyu Ye
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Tao Dai
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Jie Guan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Zhengping Ji
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| |
Collapse
|
13
|
Abdelhalim AOE, Meshcheriakov AA, Maistrenko DN, Molchanov OE, Ageev SV, Ivanova DA, Iamalova NR, Luttsev MD, Vasina LV, Sharoyko VV, Semenov KN. Graphene oxide enriched with oxygen-containing groups: on the way to an increase of antioxidant activity and biocompatibility. Colloids Surf B Biointerfaces 2021; 210:112232. [PMID: 34838416 DOI: 10.1016/j.colsurfb.2021.112232] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022]
Abstract
The article is dedicated to the comprehensive biocompatibility investigation of synthesised graphene oxide (GO) enriched with oxygen-containing functional groups (⁓85%). GO was synthesised through a modified Hummers and Offeman's method and characterised using 13C NMR, Raman, and IR spectroscopy, XRD, HRTEM, along with size dimensions and ζ-potentials in aqueous dispersions. Biocompatibility study included tests on haemocompatibility (haemolysis, platelet aggregation, binding to human serum albumin and its esterase activity), antioxidant activity (2,2-diphenyl-1-picrylhydrazyl reaction, NO-radical uptake, Radachlorin photobleaching, photo-induced haemolysis), genotoxicity using DNA comet assay, as well as metabolic activity and proliferation of HEK293 cells.
Collapse
Affiliation(s)
- Abdelsattar O E Abdelhalim
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Saint Petersburg 198504, Russia; Environmental Research Department, National Center for Social and Criminological Research (NCSCR), 4 Agouza, Giza, 11561, Egypt
| | - Anatolii A Meshcheriakov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Saint Petersburg 198504, Russia; Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Street, Saint Petersburg 197022, Russia
| | - Dmitrii N Maistrenko
- A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya Street, Saint Petersburg 197758, Russia
| | - Oleg E Molchanov
- A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya Street, Saint Petersburg 197758, Russia
| | - Sergei V Ageev
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Saint Petersburg 198504, Russia; Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Street, Saint Petersburg 197022, Russia
| | - Daria A Ivanova
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Street, Saint Petersburg 197022, Russia
| | - Nailia R Iamalova
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Street, Saint Petersburg 197022, Russia
| | - Mikhail D Luttsev
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Street, Saint Petersburg 197022, Russia
| | - Lubov V Vasina
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Street, Saint Petersburg 197022, Russia
| | - Vladimir V Sharoyko
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Saint Petersburg 198504, Russia; Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Street, Saint Petersburg 197022, Russia; A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya Street, Saint Petersburg 197758, Russia.
| | - Konstantin N Semenov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Saint Petersburg 198504, Russia; Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Street, Saint Petersburg 197022, Russia; A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya Street, Saint Petersburg 197758, Russia.
| |
Collapse
|
14
|
Zhang H, Cheng C, Dong N, Ji X, Hu J. Positively charged Ag@Au core-shell nanoparticles as highly stable and enhanced fluorescence quenching platform for one-step nuclease activity detection. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Nitrogen-doped carbon dots aid in the separation of ssDNA molecules of different length by capillary transient isotachophoresis (ctITP) with laser-induced fluorescence (LIF) detection. J Chromatogr A 2021; 1641:461990. [PMID: 33640806 DOI: 10.1016/j.chroma.2021.461990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/19/2021] [Accepted: 02/10/2021] [Indexed: 12/29/2022]
Abstract
This study demonstrates a novel application of nitrogen-doped carbon dots (NCDs) to enable the separation of different lengths of single-stranded DNA (ssDNA) by eletrokinetic means. Carbon dots have recently found widespread application in the fields of sensing, diagnostics, and healthcare due to their biocompatibility and low toxicity. In light of growing interest in the use of ssDNA aptamers over antibodies in the fields of biosensor development and drug delivery, it is important to establish a simple and effective method for aptamer separation. In this study, we employed NCDs as buffer additives in a capillary electrophoresis (CE)-based method, giving rise to the separation of FAM-labeled ssDNA samples ranging from 32 to 100 bases in length, with resolutions ranging from 1.30 - 1.77. In particular, we adopted a capillary transient isotachophoresis (ctITP) system with laser-induced fluorescence (LIF) detection, with both the separation and sample buffers modified by the addition of 30 μg/mL NCDs. These nanomaterials were prepared by a simple hydrothermal method from a mixture of citric acid and ethylenediamine. The NCDs themselves are highly fluorescent and photostable. As components in the background electrolyte, they did not interfere with the fluorescence emission of the FAM-labeled DNA samples. Under the conditions employed, no separation could be achieved in the absence of the NCDs nor with undoped CDs. The results show that NCDs function as buffer additives capable of enhancing electrokinetic-based separations of ssDNA, and hence, provide a new application for these carbon nanomaterials.
Collapse
|
16
|
Karachevtsev MV, Stepanian SG, Valeev VA, Lytvyn OS, Adamowicz L, Karachevtsev VA. Adsorption of Polyadenylic acid on graphene oxide: experiments and computer modeling. J Biomol Struct Dyn 2020; 40:425-437. [PMID: 32897172 DOI: 10.1080/07391102.2020.1814869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this work, we study the adsorption of poly(rA) on graphene oxide (GO) using AFM and UV absorption spectroscopies. A transformation of the homopolynucleotide structure on the GO surface is observed. It is found that an energetically favorable conformation of poly(rA) on GO is achieved after a considerable amount of time (days). It is revealed that GO can induce formation of self-structures of single-stranded poly(rA) including a duplex at pH 7. The phenomenon is analyzed by polymer melting measurements and observed by AFM. Details of the noncovalent interaction of poly(rA) with graphene are also investigated using molecular dynamics simulations. The adsorption of (rA)10 oligonucleotide on graphene is compared with the graphene adsorption of (rC)10. DFT calculations are used to determine equilibrium structures and the corresponding interaction energies of the adenine-GO complexes with different numbers of the oxygen-containing groups. The IR intensities and vibrational frequencies of free and adsorbed adenines on the GO surface are calculated. The obtained spectral transformations are caused by the interaction of adenine with GO.
Collapse
Affiliation(s)
- Maksym V Karachevtsev
- B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Stepan G Stepanian
- B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Vladimir A Valeev
- B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Oksana S Lytvyn
- V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine Kyiv, Borys Grinchenko Kyiv University, Kyiv, Ukraine
| | - Ludwik Adamowicz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA.,Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University, Toruń, PL, Poland
| | - Victor A Karachevtsev
- B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| |
Collapse
|
17
|
Malik SA, Mohanta Z, Srivastava C, Atreya HS. Modulation of protein-graphene oxide interactions with varying degrees of oxidation. NANOSCALE ADVANCES 2020; 2:1904-1912. [PMID: 36132498 PMCID: PMC9419239 DOI: 10.1039/c9na00807a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
The degree of oxidation of graphene oxide (GO) has been shown to be important for its toxicity and drug-loading efficiency. However, the effect of its variations on GO-protein interaction remains unclear. Here, we evaluate the effect of the different oxidation degrees of GO on its interaction with human ubiquitin (8.6 kDa) using solution state nuclear magnetic resonance (NMR) spectroscopy in combination with other biophysical techniques. Our findings show that the interaction between the protein and the different GO samples is weak and electrostatic in nature. It involves fast dynamic exchange of the protein molecules from the surface of the GO. As the oxidation degree of the GO increases, the extent of the interaction with the protein changes. The interaction of the protein with GO can thus be modulated by tuning the degree of oxidation. This study opens up new avenues to design appropriate graphenic materials for use in various biomedical fields such as drug delivery, biomedical devices and imaging.
Collapse
Affiliation(s)
- Shahid A Malik
- Department of Solid State and Structural Chemistry Unit, Indian Institute of Science Bangalore-560012 India
- Nuclear Magnetic Resonance Research Centre, Indian Institute of Science Bangalore-560012 India
| | - Zinia Mohanta
- Nuclear Magnetic Resonance Research Centre, Indian Institute of Science Bangalore-560012 India
- Centre for Bio Systems Science and Engineering, Indian Institute of Science Bangalore-560012 India
| | - Chandan Srivastava
- Department of Materials Engineering, Indian Institute of Science Bangalore-560012 India
| | - Hanudatta S Atreya
- Department of Solid State and Structural Chemistry Unit, Indian Institute of Science Bangalore-560012 India
- Nuclear Magnetic Resonance Research Centre, Indian Institute of Science Bangalore-560012 India
| |
Collapse
|
18
|
Toward Fluorimetric-Paired-Emitter-Detector-Diode test for Bacillus anthracis DNA based on graphene oxide. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Lei X, Ma H, Fang H. Length feature of ssDNA adsorption onto graphene oxide with both large unoxidized and oxidized regions. NANOSCALE 2020; 12:6699-6707. [PMID: 32186546 DOI: 10.1039/c9nr10170e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
DNA/GO functional structures have been widely used in biosensors, biomedicine and materials science. However, most studies about DNA/GO functional structures do not take into account the coexistence of both large unoxidized and oxidized regions on GO sheets. This special local structure provides the boundary region, which is the junction area between unoxidized and oxidized regions, and exhibits a special amphiphilic property of the GO sheets. Here based on molecular dynamics simulations, our results predict that the adsorption efficiency of long strand ssDNA molecules adsorbed on GO is 43%. Further analysis has shown that the ssDNA adsorption behaviors on the GO surface are more likely to start in the boundary region, even for 20 mer ssDNA molecules. Looking into the adsorption dynamic process we can see that the hydrogen bonds between ssDNA and GO are very active and easily broken and formed, especially for the boundary region of the GO surface, resulting in easy capture and adsorption of the ssDNA molecules on this region. The result provides insightful understanding of the adsorption behavior of ssDNA molecules on this amphiphilic GO surface and is helpful in the design of DNA/GO functional structure-based biosensors.
Collapse
Affiliation(s)
- Xiaoling Lei
- Department of Physics, East China University of Science and Technology, Shanghai 200237, China.
| | | | | |
Collapse
|
20
|
Wen J, Liu Y, Li J, Lin H, Zheng Y, Chen Y, Fu X, Chen L. A label-free protamine-assisted colorimetric sensor for highly sensitive detection of S1 nuclease activity. Analyst 2020; 145:2774-2778. [DOI: 10.1039/d0an00060d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A label-free, simple and rapid colorimetric method for the sensitive detection of S1 nuclease activity based on protamine-assisted aggregation of gold nanoparticles.
Collapse
Affiliation(s)
- Jiahui Wen
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| | - Yongming Liu
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| | - Jingwen Li
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| | - Hao Lin
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| | - Yiran Zheng
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| | - Yan Chen
- School of Resources and Environmental Engineering
- Shandong Agriculture and Engineering University
- Jinan 250100
- China
| | - Xiuli Fu
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- The Research Center for Coastal Environmental Engineering and Technology
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
| |
Collapse
|
21
|
Smailii P, Pakroo R, Mohammadkhani R, Jafarian V, Kabiri Esfahani F, Hassani L. Decorations of graphene oxide with cisplatin toward investigation of fluorescence quencher on regulatory sequence of BRCA1 and BRCA2. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01762-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Zhang FR, Lu JY, Yao QF, Zhu QY, Zhang XX, Huang WT, Xia LQ, Ding XZ. Matter, energy and information network of a graphene-peptide-based fluorescent sensing system for molecular logic computing, detection and imaging of cancer stem cell marker CD133 in cells and tumor tissues. Analyst 2019; 144:1881-1891. [DOI: 10.1039/c8an02115e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A graphene-peptide-based fluorescent sensing system for molecular logic operations, sensing and imaging of CD133.
Collapse
Affiliation(s)
- Fu Rui Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish
- Hunan Provincial Key Laboratory of Microbial Molecular Biology
- College of Life Science
- Hunan Normal University
- Changsha 410081
| | - Jiao Yang Lu
- State Key Laboratory of Developmental Biology of Freshwater Fish
- Hunan Provincial Key Laboratory of Microbial Molecular Biology
- College of Life Science
- Hunan Normal University
- Changsha 410081
| | - Qing Feng Yao
- State Key Laboratory of Developmental Biology of Freshwater Fish
- Hunan Provincial Key Laboratory of Microbial Molecular Biology
- College of Life Science
- Hunan Normal University
- Changsha 410081
| | - Qiu Yan Zhu
- State Key Laboratory of Developmental Biology of Freshwater Fish
- Hunan Provincial Key Laboratory of Microbial Molecular Biology
- College of Life Science
- Hunan Normal University
- Changsha 410081
| | - Xin Xing Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish
- Hunan Provincial Key Laboratory of Microbial Molecular Biology
- College of Life Science
- Hunan Normal University
- Changsha 410081
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish
- Hunan Provincial Key Laboratory of Microbial Molecular Biology
- College of Life Science
- Hunan Normal University
- Changsha 410081
| | - Li Qiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish
- Hunan Provincial Key Laboratory of Microbial Molecular Biology
- College of Life Science
- Hunan Normal University
- Changsha 410081
| | - Xue Zhi Ding
- State Key Laboratory of Developmental Biology of Freshwater Fish
- Hunan Provincial Key Laboratory of Microbial Molecular Biology
- College of Life Science
- Hunan Normal University
- Changsha 410081
| |
Collapse
|
23
|
Kim JH, Kim HJ. Fast and simple method for screening of single-stranded DNA breaking photosensitizers using graphene oxide. NANO CONVERGENCE 2018; 5:29. [PMID: 30467652 PMCID: PMC6196149 DOI: 10.1186/s40580-018-0160-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/24/2018] [Indexed: 05/05/2023]
Abstract
A fast and simple method for screening of ssDNA-breaking photosensitizers was developed using graphene oxide. The ultraviolet light-induced DNA breaks are one of the most harmful DNA damages and cause skin cancer if they are left unrepaired. Since graphene oxide showed relatively strong affinity to the broken DNA than intact DNA, and it quenched fluorescence of the DNA labeling dye effectively, the degree of ultraviolet light-induced broken DNAs could be analyzed by measuring decreased fluorescence after mixing the DNA with graphene oxide. The decrease of fluorescence was highly correlated with the ultraviolet light-irradiating time and concentration of the added drugs. As a result, it was possible to evaluate the efficacy of different ssDNA-breaking photosensitizers in a high-throughput manner. However, conventional methods for the damaged-DNA analysis are time-consuming and require additional manipulations such as purification, radio-labeling, enzymatic digestion, or chemical modification of DNA. The phototoxicity of five drugs such as benzophenone, ketoprofen, indomethacin, naproxen, and norfloxacin was tested using the proposed method. The ssDNA-breaking efficiency of the drugs was well matched with reported efficiency of the tested drugs. In contrast to naked gold nanoparticles, graphene oxide is stably dispersed in the presence of salt, the phototoxicity of the drugs could be successfully tested at a physiological condition using the graphene oxide based method.
Collapse
Affiliation(s)
- Joong Hyun Kim
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061 South Korea
| | - Hyun Jin Kim
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061 South Korea
| |
Collapse
|
24
|
Optical Graphene-Based Biosensor for Nucleic Acid Detection; Influence of Graphene Functionalization and Ionic Strength. Int J Mol Sci 2018; 19:ijms19103230. [PMID: 30347651 PMCID: PMC6214132 DOI: 10.3390/ijms19103230] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023] Open
Abstract
A main challenge for optical graphene-based biosensors detecting nucleic acid is the selection of key parameters e.g. graphenic chemical structure, nanomaterial dispersion, ionic strength, and appropriate molecular interaction mechanisms. Herein we study interactions between a fluorescein-labelled DNA (FAM-DNA) probe and target single-stranded complementary DNA (cDNA) on three graphenic species, aiming to determine the most suitable platform for nucleic acid detection. Graphene oxide (GO), carboxyl graphene (GO-COOH) and reduced graphene oxide functionalized with PEGylated amino groups (rGO-PEG-NH2, PEG (polyethylene glycol)) were dispersed and characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The influence of ionic strength on molecular interaction with DNA was examined by fluorescence resonance energy transfer (FRET) comparing fluorescence intensity and anisotropy. Results indicated an effect of graphene functionalization, dispersion and concentration-dependent quenching, with GO and GO-COOH having the highest quenching abilities for FAM-DNA. Furthermore, GO and GO-COOH quenching was accentuated by the addition of either MgCl2 or MgSO4 cations. At 10 mM MgCl2 or MgSO4, the cDNA induced a decrease in fluorescence signal that was 2.7-fold for GO, 3.4-fold for GO-COOH and 4.1-fold for rGO-PEG-NH2. Best results, allowing accurate target detection, were observed when selecting rGO-PEG-NH2, MgCl2 and fluorescence anisotropy as an advantageous combination suitable for nucleic acid detection and further rational design biosensor development.
Collapse
|
25
|
Hu C, Kong XJ, Yu RQ, Chen TT, Chu X. MnO 2 Nanosheet-based Fluorescence Sensing Platform for Sensitive Detection of Endonuclease. ANAL SCI 2018; 33:783-788. [PMID: 28690254 DOI: 10.2116/analsci.33.783] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A novel fluorescence sensing platform for ultrasensitive detection of S1 nuclease activity has been constructed based on MnO2 nanosheets and FAM labeled single-stranded DNA (FAM-ssDNA). In this system, MnO2 nanosheets were found to have different adsorbent ability toward ssDNA and mono- or oligonucleotide fragments. FAM-ssDNA could adsorb on MnO2 nanosheets and resulted in significant fluorescence quenching through fluorescence resonance energy transfer (FRET), while mono- or oligonucleotide fragments could not adsorb on MnO2 nanosheets and still retained strong fluorescence emission. With the addition of S1 nuclease, FAM-ssDNA was cleaved into mono- or oligonucleotide fragments, which were not able to adsorb on MnO2 nanosheets and the fluorescence signal was never quenched. The different fluorescence intensity allowed for examination of S1 nuclease activity. The developed method can detect S1 nuclease activity in the range of 0 - 20 U mL-1 with a detection limit of 0.05 U mL-1. Benefits of the system include less time-consuming processes and more simple design compared to other endonuclease assays. Satisfactory performance for S1 nuclease in complex samples has been successfully demonstrated with the system. The developed assay could potentially provide a new platform in bioimaging and clinical diagnosis.
Collapse
Affiliation(s)
- Chao Hu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
| | - Xiang Juan Kong
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
| | - Ru Qin Yu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
| | - Ting Ting Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
| |
Collapse
|
26
|
Li D, Gao D, Qi J, Chai R, Zhan Y, Xing C. Conjugated Polymer/Graphene Oxide Complexes for Photothermal Activation of DNA Unzipping and Binding to Protein. ACS APPLIED BIO MATERIALS 2018. [DOI: 10.1021/acsabm.8b00047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Guo L, Zhang Z, Tang Y. Cationic conjugated polymers as signal reporter for label-free assay based on targets-mediated aggregation of perylene diimide quencher. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.08.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
28
|
Li J, Zhou J, Liu T, Chen S, Li J, Yang H. Circular DNA: a stable probe for highly efficient mRNA imaging and gene therapy in living cells. Chem Commun (Camb) 2018; 54:896-899. [DOI: 10.1039/c7cc08906f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We integrated circular DNA with graphene oxide to fabricate improved platforms for highly efficient imaging and therapy in living cells.
Collapse
Affiliation(s)
- Jingying Li
- College of Biological Science and Engineering, Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Jie Zhou
- College of Biological Science and Engineering, Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Tong Liu
- College of Biological Science and Engineering, Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Shan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
| |
Collapse
|
29
|
Nguyen TVT, Le BH, Seo YJ. Highly fluorescence quenching graphene oxide-based oligodeoxynucleotide hairpin systems for probing CNG DNA repeat sequences. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.07.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Li S, Fu Y, Ma X, Zhang Y. Label-free fluorometric detection of chymotrypsin activity using graphene oxide/nucleic-acid-stabilized silver nanoclusters hybrid materials. Biosens Bioelectron 2017; 88:210-216. [PMID: 27561443 DOI: 10.1016/j.bios.2016.08.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/01/2016] [Accepted: 08/11/2016] [Indexed: 01/17/2023]
Abstract
Pancreatic function tests are used to determine the presence of chronic pancreatitis, particularly in the early stage of the disease. Chymotrypsin is an indicator of pancreatic function and is thus related to pancreatic diseases. A new fluorescent biosensing method for assay of chymotrypsin activity was developed using DNA (dC12)-templated silver nanoclusters and graphene oxide (GO). A peptide probe was also designed using chymotrypsin-cleavable amino acid sequence and a cysteine terminus. The peptide probe formed Ag-S bond to dC12-AgNCs to enhance the fluorescence of dC12-AgNCs. After the addition of GO, the peptide was adsorbed to the negative GO surface and the fluorescence of dC12-AgNCs was quenched by FRET. The peptide was then degraded into amino acid fragments upon addition of chymotrypsin; these fragments were released from the GO surface, and the FRET was terminated. The developed label-free method features lower cost and higher sensitivity to chymotrypsin activity assay compared with conventional fluorescence analysis. The method can be used to analyze chymotrypsin (as low as 3ng/mL, signal/noise =3) across a dynamic range of 0.0-50.0ng/mL. The proposed biosensing strategy can also be extended to other proteases by using different peptide substrates.
Collapse
Affiliation(s)
- Shuangqin Li
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 PR China; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 PR China
| | - Yuewei Fu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 PR China; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 PR China
| | - Xuejuan Ma
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 PR China; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 PR China
| | - Yaodong Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 PR China; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 PR China.
| |
Collapse
|
31
|
DNA adsorbed on graphene and graphene oxide: Fundamental interactions, desorption and applications. Curr Opin Colloid Interface Sci 2016. [DOI: 10.1016/j.cocis.2016.09.001] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
32
|
An end-point method based on graphene oxide for RNase H analysis and inhibitors screening. Biosens Bioelectron 2016; 90:103-109. [PMID: 27886596 DOI: 10.1016/j.bios.2016.11.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/03/2016] [Accepted: 11/12/2016] [Indexed: 12/12/2022]
Abstract
As a highly conserved damage repair protein, RNase H can hydrolysis DNA-RNA heteroduplex endonucleolytically and cleave RNA-DNA junctions as well. In this study, we have developed an accurate and sensitive RNase H assay based on fluorophore-labeled chimeric substrate hydrolysis and the differential affinity of graphene oxide on RNA strand with different length. This end-point measurement method can detect RNase H in a range of 0.01 to 1 units /mL with a detection limit of 5.0×10-3 units/ mL under optimal conditions. We demonstrate the utility of the assay by screening antibiotics, resulting in the identification of gentamycin, streptomycin and kanamycin as inhibitors with IC50 of 60±5µM, 70±8µM and 300±20µM, respectively. Furthermore, the assay was reliably used to detect RNase H in complicated biosamples and found that RNase H activity in tumor cells was inhibited by gentamycin and streptomycin sulfate in a concentration-dependent manner. The average level of RNase H in serums of HBV infection group was similar to that of control group. In summary, the assay provides an alternative tool for biochemical analysis for this enzyme and indicates the feasibility of high throughput screening inhibitors of RNase H in vitro and in vivo.
Collapse
|
33
|
Lu C, Huang PJJ, Liu B, Ying Y, Liu J. Comparison of Graphene Oxide and Reduced Graphene Oxide for DNA Adsorption and Sensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10776-10783. [PMID: 27668805 DOI: 10.1021/acs.langmuir.6b03032] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fluorescently labeled DNA adsorbed on graphene oxide (GO) is a well-established sensing platform for detecting a diverse range of analytes. GO is a loosely defined material and its oxygen content may vary depending on the condition of preparation. Sometimes, a further reduction step is intentionally performed to decrease the oxygen content, and the resulting material is called reduced GO (rGO). In this study, DNA adsorption and desorption from GO and rGO is systematically compared. Under the same salt concentration, DNA adsorbs slightly faster with a 2.6-fold higher capacity on rGO. At the same time, DNA adsorbed on rGO is more resistant to desorption induced by temperature, pH, urea, and organic solvents. Various lengths and sequences of DNA probes have been tested. When its complementary DNA is added as a model target analyte, the rGO sample has a higher signal-to-background and signal-to-noise ratio, whereas the GO sample has a slightly higher absolute signal increase and faster signaling kinetics. DNAs adsorbed on GO or rGO are still susceptible to nonspecific displacement by other DNA and proteins. Overall, although rGO adsorbs DNA more tightly, it allows efficient DNA sensing with an extremely low background fluorescence signal.
Collapse
Affiliation(s)
- Chang Lu
- College of Biosystems Engineering and Food Science, Zhejiang University , Hangzhou 310058, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo N2L 3G1, Ontario, Canada
| | - Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo N2L 3G1, Ontario, Canada
| | - Biwu Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo N2L 3G1, Ontario, Canada
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University , Hangzhou 310058, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo N2L 3G1, Ontario, Canada
| |
Collapse
|
34
|
Peng L, Fan J, Tong C, Xie Z, Zhao C, Liu X, Zhu Y, Liu B. An ultrasensitive fluorescence method suitable for quantitative analysis of mung bean nuclease and inhibitor screening in vitro and vivo. Biosens Bioelectron 2016; 83:169-76. [DOI: 10.1016/j.bios.2016.04.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/10/2016] [Accepted: 04/18/2016] [Indexed: 02/02/2023]
|
35
|
Zhang Y, Sun Z, Tang L, Zhang H, Zhang GJ. Aptamer based fluorescent cocaine assay based on the use of graphene oxide and exonuclease III-assisted signal amplification. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1923-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Ranganathan SV, Halvorsen K, Myers CA, Robertson NM, Yigit MV, Chen AA. Complex Thermodynamic Behavior of Single-Stranded Nucleic Acid Adsorption to Graphene Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6028-34. [PMID: 27219463 DOI: 10.1021/acs.langmuir.6b00456] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In just over a decade since its discovery, research on graphene has exploded due to a number of potential applications in electronics, materials, and medicine. In its water-soluble form of graphene oxide, the material has shown promise as a biosensor due to its preferential absorption of single-stranded polynucleotides and fluorescence quenching properties. The rational design of these biosensors, however, requires an improved understanding of the binding thermodynamics and ultimately a predictive model of sequence-specific binding. Toward these goals, here we directly measured the binding of nucleosides and oligonucleotides to graphene oxide nanoparticles using isothermal titration calorimetry and used the results to develop molecular models of graphene-nucleic acid interactions. We found individual nucleosides binding KD values lie in the submillimolar range with binding order of rG < rA < rC < dT < rU, while 5mer and 15mer oligonucleotides had markedly higher binding affinities in the range of micromolar and submicromolar KD values, respectively. The molecular models developed here are calibrated to quantitatively reproduce the above-mentioned experimental results. For oligonucleotides, our model predicts complex binding features such as double-stacked bases and a decrease in the fraction of graphene stacked bases with increasing oligonucleotide length until plateauing beyond ∼10-15 nucleotides. These experimental and computational results set the platform for informed design of graphene-based biosensors, further increasing their potential and application.
Collapse
Affiliation(s)
- Srivathsan V Ranganathan
- Department of Chemistry and ‡The RNA Institute, University at Albany, State University of New York , 1400 Washington Avenue, Albany, New York 12222, United States
| | - Ken Halvorsen
- Department of Chemistry and ‡The RNA Institute, University at Albany, State University of New York , 1400 Washington Avenue, Albany, New York 12222, United States
| | - Chris A Myers
- Department of Chemistry and ‡The RNA Institute, University at Albany, State University of New York , 1400 Washington Avenue, Albany, New York 12222, United States
| | - Neil M Robertson
- Department of Chemistry and ‡The RNA Institute, University at Albany, State University of New York , 1400 Washington Avenue, Albany, New York 12222, United States
| | - Mehmet V Yigit
- Department of Chemistry and ‡The RNA Institute, University at Albany, State University of New York , 1400 Washington Avenue, Albany, New York 12222, United States
| | - Alan A Chen
- Department of Chemistry and ‡The RNA Institute, University at Albany, State University of New York , 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
37
|
Li J, Zhao Q, Tang Y. Label-Free Fluorescence Assay of S1 Nuclease and Hydroxyl Radicals Based on Water-Soluble Conjugated Polymers and WS₂ Nanosheets. SENSORS (BASEL, SWITZERLAND) 2016; 16:E865. [PMID: 27304956 PMCID: PMC4934291 DOI: 10.3390/s16060865] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/23/2016] [Accepted: 06/08/2016] [Indexed: 12/24/2022]
Abstract
We developed a new method for detecting S1 nuclease and hydroxyl radicals based on the use of water-soluble conjugated poly[9,9-bis(6,6-(N,N,N-trimethylammonium)-fluorene)-2,7-ylenevinylene-co-alt-2,5-dicyano-1,4-phenylene)] (PFVCN) and tungsten disulfide (WS₂) nanosheets. Cationic PFVCN is used as a signal reporter, and single-layer WS₂ is used as a quencher with a negatively charged surface. The ssDNA forms complexes with PFVCN due to much stronger electrostatic interactions between cationic PFVCN and anionic ssDNA, whereas PFVCN emits yellow fluorescence. When ssDNA is hydrolyzed by S1 nuclease or hydroxyl radicals into small fragments, the interactions between the fragmented DNA and PFVCN become weaker, resulting in PFVCN being adsorbed on the surface of WS₂ and the fluorescence being quenched through fluorescence resonance energy transfer. The new method based on PFVCN and WS₂ can sense S1 nuclease with a low detection limit of 5 × 10(-6) U/mL. Additionally, this method is cost-effective by using affordable WS₂ as an energy acceptor without the need for dye-labeled ssDNA. Furthermore, the method provides a new platform for the nuclease assay and reactive oxygen species, and provides promising applications for drug screening.
Collapse
Affiliation(s)
- Junting Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Qi Zhao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Yanli Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
38
|
A real time S1 assay at neutral pH based on graphene oxide quenched fluorescence probe. SENSING AND BIO-SENSING RESEARCH 2016. [DOI: 10.1016/j.sbsr.2015.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
39
|
Kim HS, Huang SM, Yingling YG. Sequence dependent interaction of single stranded DNA with graphitic flakes: atomistic molecular dynamics simulations. ACTA ACUST UNITED AC 2016. [DOI: 10.1557/adv.2016.91] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
40
|
Feng J, Zhuo C, Ma X, Li S, Zhang Y. A peptide with a cysteine terminus: probe for label-free fluorescent detection of thrombin activity. Analyst 2016; 141:4481-7. [DOI: 10.1039/c6an00366d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A label-free fluorescent method for detection of thrombin activity has been developed by using a probe with a thrombin-cleavable peptide sequence and a cysteine terminus.
Collapse
Affiliation(s)
- Jingjing Feng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
- PR China
| | - Caixia Zhuo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
- PR China
| | - Xuejuan Ma
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
- PR China
| | - Shuangqin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
- PR China
| | - Yaodong Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
- PR China
| |
Collapse
|
41
|
Gao L, Li Q, Li R, Yan L, Zhou Y, Chen K, Shi H. Highly sensitive detection for proteins using graphene oxide-aptamer based sensors. NANOSCALE 2015; 7:10903-10907. [PMID: 25939390 DOI: 10.1039/c5nr01187f] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In recent years, the detection of proteins by using bare graphene oxide (GO) to quench the fluorescence of fluorescein-labeled aptamers has been reported. However, the proteins can be adsorbed on the surface of bare GO to prevent the sensitivity from further being improved. In order to solve this problem, polyethylene glycol (PEG)-protected GO was used to prevent the proteins using thrombin as an example from nonspecific binding. The detection limit was improved compared to bare GO under the optimized ratio of GO to PEG concentration. The results show that our method is a promising technique for the detection of proteins.
Collapse
Affiliation(s)
- Li Gao
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
42
|
He Y, Jiao BN. High performance system for protein assays: synergistic effect of terminal protection strategy and graphene oxide platform. RSC Adv 2015. [DOI: 10.1039/c5ra21116f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A straightforward biosensor for protein assay has been developed based on terminal protection of small molecule-linked DNA by target protein and the difference in affinity of graphene oxide for ssDNA containing different numbers of bases in length.
Collapse
Affiliation(s)
- Yue He
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing)
- Ministry of Agriculture
- Citrus Research Institute
- Southwest University
- Chongqing
| | - Bi-ning Jiao
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing)
- Ministry of Agriculture
- Citrus Research Institute
- Southwest University
- Chongqing
| |
Collapse
|
43
|
Liu CL, Kong XJ, Yuan J, Yu RQ, Chu X. A dual-amplification fluorescent sensing platform for ultrasensitive assay of nuclease and ATP based on rolling circle replication and exonuclease III-aided recycling. RSC Adv 2015. [DOI: 10.1039/c5ra13301g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A ultrasensitive, easy operated and robust assay of S1 nuclease in real samples and ATP has been successfully achieved with the dual-amplification strategy based on rolling circle replication and Exo III-aided recycling.
Collapse
Affiliation(s)
- Chen-Liwei Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Xiang-Juan Kong
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Jing Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Xia Chu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| |
Collapse
|
44
|
Song C, Zhang Q, Han GM, Du YC, Kong DM. A facile fluorescence method for endonuclease detection using exonuclease III-aided signal amplification of a molecular beacon. RSC Adv 2014. [DOI: 10.1039/c4ra09676b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
45
|
Wang L, Ma K, Zhang Y. Label-free fluorometric detection of S1 nuclease activity by using polycytosine oligonucleotide-templated silver nanoclusters. Anal Biochem 2014; 468:34-8. [PMID: 25263815 DOI: 10.1016/j.ab.2014.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/09/2014] [Accepted: 09/17/2014] [Indexed: 12/22/2022]
Abstract
S1 nuclease has an important function in DNA transcription, replication, recombination, and repair. A label-free fluorescent method for the detection of S1 nuclease activity has been developed using polycytosine oligonucleotide-templated silver nanoclusters (dC12-Ag NCs). In this assay, dC12 can function as both the template for the stabilization of Ag NCs and the substrate of the S1 nuclease. Fluorescent Ag NCs could be effectively formed using dC12 as the template without S1 nuclease. In the presence of S1 nuclease, dC12 is degraded to mono- or oligonucleotide fragments, thereby resulting in a reduction in fluorescence. S1 nuclease with an activity as low as 5×10(-8)Uμl(-1) (signal/noise=3) can be determined with a linear range of 5×10(-7) to 1×10(-3)Uμl(-1). The promising application of the proposed method in S1 nuclease inhibitor screening has been demonstrated using pyrophosphate as the model inhibitor. Furthermore, the S1 nuclease concentrations in RPMI 1640 cell medium were validated. The developed method for S1 nuclease is sensitive and facile because its operation does not require any complicated DNA labeling or laborious fluorescent dye synthesis.
Collapse
Affiliation(s)
- Lihui Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Keke Ma
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yaodong Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
46
|
Xue T, Wang Z, Guan W, Hou C, Shi Z, Zheng W, Cui X. Investigating the interaction of dye molecules with graphene oxide by using a surface plasmon resonance technique. RSC Adv 2014. [DOI: 10.1039/c4ra07279k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A surface plasmon resonance technique was used to systematically study the interaction of two dye molecules with graphene oxide (GO) and electrochemically reduced GO (EC-rGO) substrates.
Collapse
Affiliation(s)
- Tianyu Xue
- Key Laboratory of Automobile Materials of MOE and State Key Laboratory of Superhard Materials
- Department of Materials Science
- Jilin University
- Changchun 130012, People's Republic of China
| | - Zhao Wang
- Key Laboratory of Automobile Materials of MOE and State Key Laboratory of Superhard Materials
- Department of Materials Science
- Jilin University
- Changchun 130012, People's Republic of China
| | - Weiming Guan
- State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals
- Kunming, People's Republic of China
| | - Changmin Hou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun, China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun, China
| | - Weitao Zheng
- Key Laboratory of Automobile Materials of MOE and State Key Laboratory of Superhard Materials
- Department of Materials Science
- Jilin University
- Changchun 130012, People's Republic of China
| | - Xiaoqiang Cui
- Key Laboratory of Automobile Materials of MOE and State Key Laboratory of Superhard Materials
- Department of Materials Science
- Jilin University
- Changchun 130012, People's Republic of China
| |
Collapse
|