1
|
Wang W, Xu Y, Tang Y, Li Q. Self-Assembled Metal Complexes in Biomedical Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416122. [PMID: 39713915 DOI: 10.1002/adma.202416122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/29/2024] [Indexed: 12/24/2024]
Abstract
Cisplatin is widely used in clinical cancer treatment; however, its application is often hindered by severe side effects, particularly inherent or acquired resistance of target cells. To address these challenges, an effective strategy is to modify the metal core of the complex and introduce alternative coordination modes or valence states, leading to the development of a series of metal complexes, such as platinum (IV) prodrugs and cyclometalated complexes. Recent advances in nanotechnology have facilitated the development of multifunctional nanomaterials that can selectively deliver drugs to tumor cells, thereby overcoming the pharmacological limitations of metal-based drugs. This review first explores the self-assembly of metal complexes into spherical, linear, and irregular nanoparticles in the context of biomedical applications. The mechanisms underlying the self-assembly of metal complexes into nanoparticles are subsequently analyzed, followed by a discussion of their applications in biomedical fields, including detection, imaging, and antitumor research.
Collapse
Affiliation(s)
- Wenting Wang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yang Xu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yuqi Tang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
2
|
Wang H, Li D, Wang H, Ren Q, Pan Y, Dao A, Wang D, Wang Z, Zhang P, Huang H. Enhanced Sonodynamic Therapy for Deep Tumors Using a Self-Assembled Organoplatinum(II) Sonosensitizer. J Med Chem 2024; 67:18356-18367. [PMID: 39360515 DOI: 10.1021/acs.jmedchem.4c01671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Despite the promising advances in photodynamic therapy (PDT), it remains challenging to target and treat deep-seated solid tumors effectively. Herein, we developed an organoplatinum(II) complex (Pt-TPE) with self-assembly properties for sonodynamic therapy (SDT). Pt-TPE forms a nanofiber network structure through Pt-Pt and π-π stacking interactions. Notably, under ultrasound (US), Pt-TPE demonstrates unique self-assembly-induced singlet oxygen (1O2) generation due to a significantly enhanced singlet-triplet intersystem crossing (ISC). This generation of 1O2 occurs exclusively in the self-assembled state of Pt-TPE. Additionally, Pt-TPE exhibits sono-cytotoxicity against cancer cells by impairing mitochondrial membrane potential (MMP), inhibiting glucose uptake, and aerobic glycolysis. Furthermore, US-activated Pt-TPE significantly inhibits deep solid tumors in mice, achieving remarkable therapeutic efficacy even at penetration depths greater than 10 cm. This study highlights the potential of self-assembled metal complexes to enhance the efficacy of SDT for treating deep tumors.
Collapse
Affiliation(s)
- Haobing Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dan Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hanqiang Wang
- Department of Chemistry and Dongguan Key Laboratory for Data Science and Intelligent Medicine, Great Bay University, Dongguan 523000, China
| | - Qingyan Ren
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Anyi Dao
- School of Pharmaceutical Science, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Deliang Wang
- Department of Materials Chemistry, Huzhou University, Huzhou 313000, China
| | - Zhigang Wang
- School of Pharmacy, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Huaiyi Huang
- School of Pharmaceutical Science, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
3
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
4
|
Zhang Z, Ye H, Cai F, Sun Y. Recent advances on the construction of long-wavelength emissive supramolecular coordination complexes for photo-diagnosis and therapy. Dalton Trans 2023; 52:15193-15202. [PMID: 37476886 DOI: 10.1039/d3dt01893h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Recently, metal-based drugs have attracted relentless interest in the biomedical field. However, their short excitation/emission wavelengths and unsatisfactory therapeutic efficiency limit their biological applications in vivo. Currently, the second near-infrared window (NIR-II, 1000-1700 nm) provides more accurate imaging and therapeutic options. Thus, there has been a constant focus on developing multifunctional NIR metal agents for imaging and therapy that have deeper tissue penetration. Fortunately, supramolecular coordination complexes (SCCs) formed by the coordination-driven self-assembly of NIR-II emissive ligands can address the above issues. Importantly, metal receptors with chemotherapeutic properties in SCCs can bind to luminescent ligands, thus becoming a versatile therapeutic platform for chemotherapy, imaging and phototherapy. In this context, we systematically summarize the evolution of NIR-II emissive SCCs for biomedical applications and discuss future challenges and prospects.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Xianning Medical College, Hubei University of Science & Technology, Xianning 437000, P. R. China.
| | - Huan Ye
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Fei Cai
- Xianning Medical College, Hubei University of Science & Technology, Xianning 437000, P. R. China.
| | - Yao Sun
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
5
|
Wei F, Chen Z, Shen XC, Ji L, Chao H. Recent progress in metal complexes functionalized nanomaterials for photodynamic therapy. Chem Commun (Camb) 2023. [PMID: 37184685 DOI: 10.1039/d3cc01355c] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Metal complexes have shown promise as photosensitizers for cancer diagnosis and therapeutics. However, the vast majority of metal photosensitizers are not ideal and associated with several limitations including pharmacokinetic limitations, off-target toxicity, fast systemic clearance, poor membrane permeability, and hypoxic tumour microenvironments. Metal complex functionalized nanomaterials have the potential to construct multifunctional systems, which not only overcome the above defects of metal complexes but are also conducive to modulating the tumour microenvironment (TME) and employing combination therapies to boost photodynamic therapy (PDT) efficacy. In this review, we first introduce the current challenges of photodynamic therapy and summarize the recent research strategies (such as metal coordination bonds, self-assembly, π-π stacking, physisorption, and so on) used for preparing metal complexes functionalized nanomaterials in the application of PDT.
Collapse
Affiliation(s)
- Fangmian Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, MOE Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Zhuoli Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, MOE Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.
| |
Collapse
|
6
|
Borah ST, Das B, Biswas P, Mallick AI, Gupta P. Aqua-friendly organometallic Ir-Pt complexes: pH-responsive AIPE-guided imaging of bacterial cells. Dalton Trans 2023; 52:2282-2292. [PMID: 36723088 DOI: 10.1039/d2dt03390a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this work, the aggregation-induced photoluminescence emission (AIPE) of three water-soluble heterobimetallic Ir-Pt complexes was reported with insight into their photophysical and electrochemical properties and imaging of bacterial cells. An alkyne appended Schiff's base L, bridges bis-cyclometalated iridium(III) and platinum(II) terpyridine centre. The Schiff's base (N-N fragment) serves as the ancillary ligand to the iridium(III) centre, while the alkynyl end is coordinated to platinum(II). The pH and ionic strength influence the aggregation kinetics of the alkynylplatinum(II) fragment, leading to metal-metal and π-π interactions with the emergence of a triplet metal-metal-to-ligand charge transfer (3MMLCT) emission. The excellent reversibility and photostability of aggregation-induced emission (AIE) of these aqua-friendly complexes were tested for their ability to sense and selectively image E. coli cells at various pH values.
Collapse
Affiliation(s)
- Sakira Tabassum Borah
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| | - Bishnu Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| | - Prakash Biswas
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Amirul I Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Parna Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| |
Collapse
|
7
|
Faizullin B, Dayanova I, Strelnik I, Kholin K, Nizameev I, Gubaidullin A, Voloshina A, Gerasimova T, Kashnik I, Brylev K, Sibgatullina G, Samigullin D, Petrov K, Musina E, Karasik A, Mustafina A. pH-Driven Intracellular Nano-to-Molecular Disassembly of Heterometallic [Au 2L 2]{Re 6Q 8} Colloids (L = PNNP Ligand; Q = S 2- or Se 2-). NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183229. [PMID: 36145017 PMCID: PMC9505965 DOI: 10.3390/nano12183229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 06/02/2023]
Abstract
The present work introduces a simple, electrostatically driven approach to engineered nanomaterial built from the highly cytotoxic [Au2L2]2+ complex (Au2, L = 1,5-bis(p-tolyl)-3,7-bis(pyridine-2-yl)-1,5-diaza-3,7-diphosphacyclooctane (PNNP) ligand) and the pH-sensitive red-emitting [{Re6Q8}(OH)6]4- (Re6-Q, Q = S2- or Se2-) cluster units. The protonation/deprotonation of the Re6-Q unit is a prerequisite for the pH-triggered assembly of Au2 and Re6-Q into Au2Re6-Q colloids, exhibiting disassembly in acidic (pH = 4.5) conditions modeling a lysosomal environment. The counter-ion effect of polyethylenimine causes the release of Re6-Q units from the colloids, while the binding with lysozyme restricts their protonation in acidified conditions. The enhanced luminescence response of Re6-S on the disassembly of Au2Re6-S colloids in the lysosomal environment allows us to determine their high lysosomal localization extent through the colocalization assay, while the low luminescence of Re6-Se units in the same conditions allows us to reveal the rapture of the lysosomal membrane through the use of the Acridine Orange assay. The lysosomal pathway of the colloids, followed by their endo/lysosomal escape, correlates with their cytotoxicity being on the same level as that of Au2 complexes, but the contribution of the apoptotic pathway differentiates the cytotoxic effect of the colloids from that of the Au2 complex arisen from the necrotic processes.
Collapse
Affiliation(s)
- Bulat Faizullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia
| | - Irina Dayanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia
| | - Igor Strelnik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia
| | - Kirill Kholin
- Department of Nanotechnology in Electronics, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 10 K. Marx Street, 420111 Kazan, Russia
| | - Irek Nizameev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia
| | - Aidar Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia
| | - Tatiana Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia
| | - Ilya Kashnik
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Academician Lavrentiev Avenue, 630090 Novosibirsk, Russia
| | - Konstantin Brylev
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Academician Lavrentiev Avenue, 630090 Novosibirsk, Russia
| | - Guzel Sibgatullina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevski Street, 420111 Kazan, Russia
| | - Dmitry Samigullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevski Street, 420111 Kazan, Russia
- Institute for Radio-Electronics and Telecommunications, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 10 K. Marx Street, 420111 Kazan, Russia
| | - Konstantin Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia
| | - Elvira Musina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia
| | - Andrey Karasik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia
| | - Asiya Mustafina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia
| |
Collapse
|
8
|
Metal Peptide Conjugates in Cell and Tissue Imaging and Biosensing. Top Curr Chem (Cham) 2022; 380:30. [PMID: 35701677 PMCID: PMC9197911 DOI: 10.1007/s41061-022-00384-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/10/2022] [Indexed: 11/05/2022]
Abstract
Metal complex luminophores have seen dramatic expansion in application as imaging probes over the past decade. This has been enabled by growing understanding of methods to promote their cell permeation and intracellular targeting. Amongst the successful approaches that have been applied in this regard is peptide-facilitated delivery. Cell-permeating or signal peptides can be readily conjugated to metal complex luminophores and have shown excellent response in carrying such cargo through the cell membrane. In this article, we describe the rationale behind applying metal complexes as probes and sensors in cell imaging and outline the advantages to be gained by applying peptides as the carrier for complex luminophores. We describe some of the progress that has been made in applying peptides in metal complex peptide-driven conjugates as a strategy for cell permeation and targeting of transition metal luminophores. Finally, we provide key examples of their application and outline areas for future progress.
Collapse
|
9
|
|
10
|
Li J, Zeng L, Wang Z, Chen H, Fang S, Wang J, Cai C, Xing E, Liao X, Li Z, Ashby CR, Chen Z, Chao H, Pan Y. Cycloruthenated Self-Assembly with Metabolic Inhibition to Efficiently Overcome Multidrug Resistance in Cancers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2100245. [PMID: 34613635 PMCID: PMC11468970 DOI: 10.1002/adma.202100245] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 09/20/2021] [Indexed: 06/13/2023]
Abstract
The synthesis and the evaluation of the efficacy of a cycloruthenated complex, RuZ, is reported, to overcome multi-drug resistance (MDR) in cancer cells. RuZ can self-assemble into nanoaggregates in the cell culture medium, resulting in a high intracellular concentration of RuZ in MDR cancer cells. The self-assembly significantly decreases oxygen consumption and inhibits glycolysis, which decreases cellular adenosine triphosphate (ATP) levels. The decrease in ATP levels and its low affinity for the ABCB1 and ABCG2 transporters (which mediate MDR) significantly increase the retention of RuZ by MDR cancer cells. Furthermore, RuZ increases cellular oxidative stress, inducing DNA damage, and, in combination with the aforementioned effects of RuZ, increases the apoptosis of cancer cells. Proteomic profiling analysis suggests that the RuZ primarily decreases the expression of proteins that mediate glycolysis and aerobic mitochondrial respiration and increases the expression of proteins involved in apoptosis. RuZ inhibits the proliferation of 35 cancer cell lines, of which 7 cell lines are resistant to clinical drugs. It is also active in doxorubicin-resistant MDA-MB-231/Adr mouse tumor xenografts. To the best of our knowledge, the results are the first to show that self-assembled cycloruthenated complexes are efficacious in inhibiting the growth of MDR cancer cells.
Collapse
Affiliation(s)
- Jia Li
- Guangdong Provincial Key Laboratory of Digestive Cancer ResearchPrecision Medicine CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenGuangdong518107P. R. China
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer ResearchPrecision Medicine CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenGuangdong518107P. R. China
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhou510275P. R. China
- College of Pharmacy and Health SciencesSt. John's UniversityNew YorkNY11439USA
| | - Zheng Wang
- College of Chemistry and Chemical EngineeringKey Laboratory of Chemical Additives for China National Light IndustryShaanxi University of Science and TechnologyXi'an710021P. R. China
| | - Hengxing Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer ResearchPrecision Medicine CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenGuangdong518107P. R. China
| | - Shuo Fang
- Guangdong Provincial Key Laboratory of Digestive Cancer ResearchPrecision Medicine CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenGuangdong518107P. R. China
| | - Jinquan Wang
- Guangdong Province Key Laboratory for Biotechnology Drug CandidatesSchool of Bioscience and BiopharmaceuticsGuangdong Pharmaceutical UniversityGuangzhou510006P. R. China
| | - Chao‐Yun Cai
- College of Pharmacy and Health SciencesSt. John's UniversityNew YorkNY11439USA
| | - Enming Xing
- Guangdong Provincial Key Laboratory of Digestive Cancer ResearchPrecision Medicine CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenGuangdong518107P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Zhi‐Wei Li
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Charles R. Ashby
- College of Pharmacy and Health SciencesSt. John's UniversityNew YorkNY11439USA
| | - Zhe‐Sheng Chen
- College of Pharmacy and Health SciencesSt. John's UniversityNew YorkNY11439USA
| | - Hui Chao
- Guangdong Provincial Key Laboratory of Digestive Cancer ResearchPrecision Medicine CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenGuangdong518107P. R. China
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer ResearchPrecision Medicine CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenGuangdong518107P. R. China
| |
Collapse
|
11
|
The structure and spectroscopic properties of the metallophilic Pt/Pd complexes based on pyridine/pyrazol ligands: A computational investigation. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Kutlu E, Emen FM, Kismali G, Kınaytürk NK, Karacolak AI, Kilic D, Asim Ali M, Kutlu HM, Demirdogen RE. Synthesis and investigation of in vitro cytotoxic activities and thermal stability of novel pyridine derivative platinum (II) complexes vis a vis DFT studies. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Tong KC, Wan PK, Lok CN, Che CM. Dynamic supramolecular self-assembly of platinum(ii) complexes perturbs an autophagy-lysosomal system and triggers cancer cell death. Chem Sci 2021; 12:15229-15238. [PMID: 34976343 PMCID: PMC8635173 DOI: 10.1039/d1sc02841c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/17/2021] [Indexed: 12/27/2022] Open
Abstract
Self-assembly of platinum(ii) complexes to form supramolecular structures/nanostructures due to intermolecular ligand π-π stacking and metal-ligand dispersive interactions is widely used to develop functional molecular materials, but the application of such non-covalent molecular interactions has scarcely been explored in medical science. Herein is described the unprecedented biological properties of platinum(ii) complexes relevant to induction of cancer cell death via manifesting such intermolecular interactions. With conjugation of a glucose moiety to the planar platinum(ii) terpyridyl scaffold, the water-soluble complex [Pt(tpy)(C[triple bond, length as m-dash]CArOGlu)](CF3SO3) (1a, tpy = 2,2':6',2''-terpyridine, Glu = glucose) is able to self-assemble into about 100 nm nanoparticles in physiological medium, be taken up by lung cancer cells via energy-dependent endocytosis, and eventually transform into other superstructures distributed in endosomal/lysosomal and mitochondrial compartments apparently following cleavage of the glycosidic linkage. Accompanying the formation of platinum-containing superstructures are increased autophagic vacuole formation, lysosomal membrane permeabilization, and mitochondrial membrane depolarization, as well as anti-tumor activity of 1a in a mouse xenograft model. These findings highlight the dynamic, multi-stage extracellular and intracellular supramolecular self-assembly of planar platinum(ii) complexes driven by modular intermolecular interactions with potential anti-cancer application.
Collapse
Affiliation(s)
- Ka-Chung Tong
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China .,Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503-1511, 15/F., Building 17W, Hong Kong Science Park, New Territories Hong Kong China
| | - Pui-Ki Wan
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China .,Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503-1511, 15/F., Building 17W, Hong Kong Science Park, New Territories Hong Kong China
| | - Chun-Nam Lok
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China .,Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503-1511, 15/F., Building 17W, Hong Kong Science Park, New Territories Hong Kong China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China .,Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503-1511, 15/F., Building 17W, Hong Kong Science Park, New Territories Hong Kong China
| |
Collapse
|
14
|
Basuyaux G, Amar A, Troufflard C, Boucekkine A, Métivier R, Raynal M, Moussa J, Bouteiller L, Amouri H. Cyclometallated Pt(II) Complexes Containing a Functionalized Bis‐Urea Alkynyl Ligand: Probing Aggregation Mediated by Hydrogen Bonds
versus
Pt⋅⋅⋅Pt and π−π Interactions. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gaëtan Basuyaux
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire 4 place Jussieu 75005 Paris France
| | - Anissa Amar
- Laboratoire de Chimie et de Physique Quantiques Faculté des Sciences, U.M.M.T.O 15000 Tizi-Ouzou Algeria
| | - Claire Troufflard
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire 4 place Jussieu 75005 Paris France
| | - Abdou Boucekkine
- Univ. Rennes ISCR UMR 6226 CNRS Campus de Beaulieu 35042 Rennes Cedex France
| | - Rémi Métivier
- PPSM, ENS Paris-Saclay, CNRS Université Paris-Saclay 91190 Gif-sur-Yvette France
| | - Matthieu Raynal
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire 4 place Jussieu 75005 Paris France
| | - Jamal Moussa
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire 4 place Jussieu 75005 Paris France
| | - Laurent Bouteiller
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire 4 place Jussieu 75005 Paris France
| | - Hani Amouri
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire 4 place Jussieu 75005 Paris France
| |
Collapse
|
15
|
Zhou X, Mytiliniou M, Hilgendorf J, Zeng Y, Papadopoulou P, Shao Y, Dominguez MP, Zhang L, Hesselberth MBS, Bos E, Siegler MA, Buda F, Brouwer AM, Kros A, Koning RI, Heinrich D, Bonnet S. Intracellular Dynamic Assembly of Deep-Red Emitting Supramolecular Nanostructures Based on the Pt…Pt Metallophilic Interaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008613. [PMID: 34338371 PMCID: PMC11469088 DOI: 10.1002/adma.202008613] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Many drug delivery systems end up in the lysosome because they are built from covalent or kinetically inert supramolecular bonds. To reach other organelles, nanoparticles hence need to either be made from a kinetically labile interaction that allows re-assembly of the nanoparticles inside the cell following endocytic uptake, or, be taken up by a mechanism that short-circuits the classical endocytosis pathway. In this work, the intracellular fate of nanorods that self-assemble via the Pt…Pt interaction of cyclometalated platinum(II) compounds, is studied. These deep-red emissive nanostructures (638 nm excitation, ≈700 nm emission) are stabilized by proteins in cell medium. Once in contact with cancer cells, they cross the cell membrane via dynamin- and clathrin-dependent endocytosis. However, time-dependent confocal colocalization and cellular electron microscopy demonstrate that they directly move to mitochondria without passing by the lysosomes. Altogether, this study suggests that Pt…Pt interaction is strong enough to generate emissive, aggregated nanoparticles inside cells, but labile enough to allow these nanostructures to reach the mitochondria without being trapped in the lysosomes. These findings open new venues to the development of bioimaging nanoplatforms based on the Pt…Pt interaction.
Collapse
Affiliation(s)
- Xue‐Quan Zhou
- Leiden Institute of ChemistryUniversiteit LeidenEinsteinweg 55Leiden2333 CCNetherlands
| | - Maria Mytiliniou
- Leiden Institute of PhysicsHuygens‐Kamerlingh Onnes LaboratoryUniversiteit LeidenLeiden2300 RAThe Netherlands
| | - Jonathan Hilgendorf
- Leiden Institute of ChemistryUniversiteit LeidenEinsteinweg 55Leiden2333 CCNetherlands
| | - Ye Zeng
- Leiden Institute of ChemistryUniversiteit LeidenEinsteinweg 55Leiden2333 CCNetherlands
| | | | - Yang Shao
- Leiden Institute of ChemistryUniversiteit LeidenEinsteinweg 55Leiden2333 CCNetherlands
| | - Maximilian Paradiz Dominguez
- Molecular Photonics GroupVan't Hoff Institute for Molecular Sciences (HIMS)Universiteit van AmsterdamScience Park 904Amsterdam1098 XHNetherlands
| | - Liyan Zhang
- Leiden Institute of ChemistryUniversiteit LeidenEinsteinweg 55Leiden2333 CCNetherlands
| | - Marcel B. S. Hesselberth
- Leiden Institute of PhysicsHuygens‐Kamerlingh Onnes LaboratoryUniversiteit LeidenLeiden2300 RAThe Netherlands
| | - Erik Bos
- Department of Cell and Chemical BiologyLeiden University Medical CenterEinthovenweg 20Leiden2333 ZCThe Netherlands
| | | | - Francesco Buda
- Leiden Institute of ChemistryUniversiteit LeidenEinsteinweg 55Leiden2333 CCNetherlands
| | - Albert M. Brouwer
- Molecular Photonics GroupVan't Hoff Institute for Molecular Sciences (HIMS)Universiteit van AmsterdamScience Park 904Amsterdam1098 XHNetherlands
- Materials DepartmentAdvanced Research Center for NanolithographyScience Park 106Amsterdam1098 XGThe Netherlands
| | - Alexander Kros
- Leiden Institute of ChemistryUniversiteit LeidenEinsteinweg 55Leiden2333 CCNetherlands
| | - Roman I. Koning
- Department of Cell and Chemical BiologyLeiden University Medical CenterEinthovenweg 20Leiden2333 ZCThe Netherlands
| | - Doris Heinrich
- Leiden Institute of PhysicsHuygens‐Kamerlingh Onnes LaboratoryUniversiteit LeidenLeiden2300 RAThe Netherlands
- Institute for Bioprocessing and Analytical Measurement TechniquesRosenhof37308Heilbad HeiligenstadtGermany
- Faculty for Mathematics and Natural SciencesIlmenau University of Technology98693IlmenauGermany
- Frauenhofer Attract 3DNanoCellFraunhofer Institute for Silicate Research ISC97082WürzburgGermany
| | - Sylvestre Bonnet
- Leiden Institute of ChemistryUniversiteit LeidenEinsteinweg 55Leiden2333 CCNetherlands
| |
Collapse
|
16
|
Xu J, Wang J, Ye J, Jiao J, Liu Z, Zhao C, Li B, Fu Y. Metal-Coordinated Supramolecular Self-Assemblies for Cancer Theranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101101. [PMID: 34145984 PMCID: PMC8373122 DOI: 10.1002/advs.202101101] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/25/2021] [Indexed: 05/07/2023]
Abstract
Metal-coordinated supramolecular nanoassemblies have recently attracted extensive attention as materials for cancer theranostics. Owing to their unique physicochemical properties, metal-coordinated supramolecular self-assemblies can bridge the boundary between traditional inorganic and organic materials. By tailoring the structural components of the metal ions and binding ligands, numerous multifunctional theranostic nanomedicines can be constructed. Metal-coordinated supramolecular nanoassemblies can modulate the tumor microenvironment (TME), thus facilitating the development of TME-responsive nanomedicines. More importantly, TME-responsive organic-inorganic hybrid nanomaterials can be constructed in vivo by exploiting the metal-coordinated self-assembly of a variety of functional ligands, which is a promising strategy for enhancing the tumor accumulation of theranostic molecules. In this review, recent advancements in the design and fabrication of metal-coordinated supramolecular nanomedicines for cancer theranostics are highlighted. These supramolecular compounds are classified according to the order in which the coordinated metal ions appear in the periodic table. Furthermore, the prospects and challenges of metal-coordinated supramolecular self-assemblies for both technical advances and clinical translation are discussed. In particular, the superiority of TME-responsive nanomedicines for in vivo coordinated self-assembly is elaborated, with an emphasis on strategies that enhance the accumulation of functional components in tumors for an ideal theranostic outcome.
Collapse
Affiliation(s)
- Jiating Xu
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Jun Wang
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Jin Ye
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Jiao Jiao
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Zhiguo Liu
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Chunjian Zhao
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Bin Li
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Yujie Fu
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| |
Collapse
|
17
|
Wu S, Wu Z, Ge Q, Zheng X, Yang Z. Antitumor activity of tridentate pincer and related metal complexes. Org Biomol Chem 2021; 19:5254-5273. [PMID: 34059868 DOI: 10.1039/d1ob00577d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Pincer complexes featuring tunable tridentate ligand frameworks are one of the most actively studied classes of metal-based complexes. Currently, growing attention is devoted to the cytotoxicity of pincer and related metal complexes. The antiproliferative activity of numerous pincer complexes has been reported. Pincer tridentate ligand scaffolds show different coordination modes and offer multiple options for directed structural modifications. This review summarizes the significant progress in the research studies of the antitumor activity of pincer and related platinum(ii), gold(iii), palladium(ii), copper(ii), iron(iii), ruthenium(ii), nickel(ii) and some other metal complexes, in order to provide a reference for designing novel metal coordination drug candidates with promising antitumor activity.
Collapse
Affiliation(s)
- Shulei Wu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Zaoduan Wu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Qianyi Ge
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Xing Zheng
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Zehua Yang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| |
Collapse
|
18
|
Gao Q, Peng F, Wang C, Lin J, Chang X, Zou C, Lu W. Phosphorescent Zwitterionic Pt(
II
)
N
‐Heterocyclic
Allenylidene Complexes: Metallophilicity and Ionic
Self‐Assembly
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Qin Gao
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Fei Peng
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chuanfei Wang
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Jinqiang Lin
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xiaoyong Chang
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chao Zou
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Wei Lu
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
19
|
Oh JS, Kim KY, Park J, Lee H, Park Y, Cho J, Lee SS, Kim H, Jung SH, Jung JH. Dynamic Transformation of a Ag+-Coordinated Supramolecular Nanostructure from a 1D Needle to a 1D Helical Tube via a 2D Ribbon Accompanying the Conversion of Complex Structures. J Am Chem Soc 2021; 143:3113-3123. [DOI: 10.1021/jacs.0c10678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jeong Sang Oh
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ka Young Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jaehyeon Park
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyeonju Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Younwoo Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Shim Sung Lee
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sung Ho Jung
- Department of Liberal Arts, Gyeongnam National University of Science and Technology (GNTECH), Jinju 52725, Republic of Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
20
|
Dong N, Song Z, Zhu T, Qin Y, Li Z, Li H. Co-cross-linked lanthanide-containing nanocomposite luminescent hydrogels. NEW J CHEM 2021. [DOI: 10.1039/d0nj06083f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We report a hydrogel with co-cross-linked networks synthesized via in situ polymerization of NIPA, LAPONITE® and lanthanide complex, endowing the hydrogel with thermoresponsive mechanical and luminescent performance.
Collapse
Affiliation(s)
- Ningning Dong
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization
- Tianjin Key Laboratory of Chemical Process Safety
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Guangrong Dao 8
| | - Zhihua Song
- School of Pharmacy
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University)
- Ministry of Education
- Yantai University
| | - Tiyun Zhu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization
- Tianjin Key Laboratory of Chemical Process Safety
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Guangrong Dao 8
| | - Yan Qin
- Inner Mongolia Yitai Coal Based New Materials Research Institute Co., Ltd
- High Tech Industrial Park
- Ordos
- P. R. China
| | - Zhiqiang Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization
- Tianjin Key Laboratory of Chemical Process Safety
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Guangrong Dao 8
| | - Huanrong Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization
- Tianjin Key Laboratory of Chemical Process Safety
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Guangrong Dao 8
| |
Collapse
|
21
|
Ovais M, Hoque MZ, Khalil AT, Ayaz M, Ahmad I. Mechanisms underlying the anticancer applications of biosynthesized nanoparticles. BIOGENIC NANOPARTICLES FOR CANCER THERANOSTICS 2021:229-248. [DOI: 10.1016/b978-0-12-821467-1.00006-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
22
|
Cheng Q, Hao A, Xing P. Stimulus-responsive luminescent hydrogels: Design and applications. Adv Colloid Interface Sci 2020; 286:102301. [PMID: 33160099 DOI: 10.1016/j.cis.2020.102301] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 11/15/2022]
Abstract
Luminescent hydrogels are emerging soft materials with applications in photoelectric, biomedicine, sensors and actuators, which are fabricated via covalently conjugation of luminophors to hydrogelators or physical loading of luminescent organic/inorganic materials into hydrogel matrices. Due to the intrinsic stimulus-responsiveness for hydrogels such as thermo-, pH, ionic strength, light and redox, luminescent hydrogels could respond to external physical or chemical stimuli through varying the luminescent properties such as colors, fluorescent intensity and so on, affording diverse application potential in addition to the pristine individual hydrogels or luminescent materials. Based on the rapid development of such area, here we systematically summarize and discuss the design protocols, properties as well as the applications of stimulus-responsive luminescent hydrogels. Because of the stimuli-responsiveness, biocompatibility, injectable and controllability of luminescent hydrogels, they are widely used as functional smart materials. We illustrate the applications of luminescent hydrogels. The future developments about luminescent hydrogels are also presented.
Collapse
Affiliation(s)
- Qiuhong Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| |
Collapse
|
23
|
Hao X, Xiong B, Ni M, Tang B, Ma Y, Peng H, Zhou X, Smalyukh II, Xie X. Highly Luminescent Liquid Crystals in Aggregation Based on Platinum(II) Complexes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53058-53066. [PMID: 33174425 DOI: 10.1021/acsami.0c13935] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Luminescent liquid crystals (LLCs) attract considerable attention because of their broad applications in displays, chemosensors, and anti-counterfeiting. However, it remains challenging to achieve a high luminescence efficiency in LCs because of the common aggregation-caused quenching effect. Herein, we demonstrate a facile approach to designing LLCs with a high quantum yield up to 88% by deliberately tuning the aggregation behavior of platinum(II) complexes with alkoxy chains (CnH2n+1O-). LLCs in hexagonal columnar and rectangular columnar phases are achieved when n = 12 and 16, respectively, as revealed by one-dimensional wide-angle X-ray diffraction and small-angle X-ray scattering. These LLCs are able to not only exhibit strong emission at elevated temperatures but also show attractive reversible vapochromism upon alternative CH2Cl2 and EtOH fuming, which imparts added functions and promises technological utility.
Collapse
Affiliation(s)
- Xingtian Hao
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, and National Anti-Counterfeit Engineering Research Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bijin Xiong
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, and National Anti-Counterfeit Engineering Research Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mingli Ni
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, and National Anti-Counterfeit Engineering Research Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bing Tang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ying Ma
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haiyan Peng
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, and National Anti-Counterfeit Engineering Research Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xingping Zhou
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, and National Anti-Counterfeit Engineering Research Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ivan I Smalyukh
- Department of Physics and Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Xiaolin Xie
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, and National Anti-Counterfeit Engineering Research Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
24
|
Kergreis A, Lord RM, Pike SJ. Influence of Ligand and Nuclearity on the Cytotoxicity of Cyclometallated C^N^C Platinum(II) Complexes. Chemistry 2020; 26:14938-14946. [PMID: 32520417 PMCID: PMC7756510 DOI: 10.1002/chem.202002517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Indexed: 01/25/2023]
Abstract
A series of cyclometallated mono- and di-nuclear platinum(II) complexes and the parent organic ligand, 2,6-diphenylpyridine 1 (HC^N^CH), have been synthesized and characterized. This library of compounds includes [(C^N^C)PtII (L)] (L=dimethylsulfoxide (DMSO) 2 and triphenylphosphine (PPh3 ) 3) and [((C^N^C)PtII )2 (L')] (where L'=N-heterocycles (pyrazine (pyr) 4, 4,4'-bipyridine (4,4'-bipy) 5 or diphosphine (1,4-bis(diphenylphosphino)butane (dppb) 6). Their cytotoxicity was assessed against four cancerous cell lines and one normal cell line, with results highlighting significantly increased antiproliferative activity for the dinuclear complexes (4-6), when compared to the mononucleated species (2 and 3). Complex 6 is the most promising candidate, displaying very high selectivity towards cancerous cells, with selectivity index (SI) values >29.5 (A2780) and >11.2 (A2780cisR), and outperforming cisplatin by >4-fold and >18-fold, respectively.
Collapse
Affiliation(s)
- Angélique Kergreis
- School of Chemistry and BiosciencesFaculty of Life SciencesUniversity of BradfordBradford, West YorkshireBD7 1DPUK
| | - Rianne M. Lord
- School of Chemistry and BiosciencesFaculty of Life SciencesUniversity of BradfordBradford, West YorkshireBD7 1DPUK
- School of ChemistryUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Sarah J. Pike
- School of Chemistry and BiosciencesFaculty of Life SciencesUniversity of BradfordBradford, West YorkshireBD7 1DPUK
- School of ChemistryUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| |
Collapse
|
25
|
To WP, Wan Q, Tong GSM, Che CM. Recent Advances in Metal Triplet Emitters with d6, d8, and d10 Electronic Configurations. TRENDS IN CHEMISTRY 2020. [DOI: 10.1016/j.trechm.2020.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
26
|
Abdolla NSY, Davies DL, Lowe MP, Singh K. Bis-cyclometallated Ir(III) complexes containing 2-(1 H-pyrazol-3-yl)pyridine ligands; influence of substituents and cyclometallating ligands on response to changes in pH. Dalton Trans 2020; 49:12025-12036. [PMID: 32869811 DOI: 10.1039/d0dt02434a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bis-cyclometallated Ir(iii) complexes containing 2-(1H-pyrazol-3-yl)pyridine ligands have been synthesised. Their absorption is almost unchanged with changes in pH however the emission intensities vary by a factor of up to three and the complexes have emission pKas in the range 8.0 to 10.0. Substituents on the pyrazole have only a minor effect on the emission pKa. Surprisingly the complexes with phenylpyrazole cyclometallated ligands 3aL1-3 showed an intensity decrease with increasing pH (switch off) whilst the corresponding phenylpyridine ones 3cL1-3 showed an increase in emission intensity with increasing pH. Putting electron-withdrawing CF3 substituents on the cyclometallating phenyls reduced the pKa of the complexes to 6.8-7.8, thereby extending the useful pKa range; however, in general it tended to reduce the magnitude of the change in emission intensity. Surprisingly the CF3-substituted complexes also showed a complete reversal in the direction of the intensity change when compared to their respective unsubstituted congeners.
Collapse
Affiliation(s)
| | - David L Davies
- School of Chemistry, University of Leicester, Leicester LE1 7RH, Libya.
| | - Mark P Lowe
- School of Chemistry, University of Leicester, Leicester LE1 7RH, Libya.
| | - Kuldip Singh
- School of Chemistry, University of Leicester, Leicester LE1 7RH, Libya.
| |
Collapse
|
27
|
Liu HY, Zhang SQ, Cui MC, Gao LH, Zhao H, Wang KZ. pH-Sensitive Near-IR Emitting Dinuclear Ruthenium Complex for Recognition, Two-Photon Luminescent Imaging, and Subcellular Localization of Cancer Cells. ACS APPLIED BIO MATERIALS 2020; 3:5420-5427. [PMID: 35021715 DOI: 10.1021/acsabm.0c00712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A dinuclear Ru(II) complex of [(bpy)2Ru(Hdip)Ru(H2bip)](ClO4)4 {bpy is 2,2'-bipyridine, Hdip is 2-(2,6-di(pyridin-2-yl)-pyridin-4-yl)-1H-imidazo[4,5-f]-[1,10]phenanthroline, and H2bip is 2,6-bis(imidazole-2-yl)-pyridine} was synthesized and characterized by elemental analysis, mass spectrometry, and 1H NMR spectroscopy. Spectrophotometric pH titrations in aqueous buffer and in vitro cell experiments indicated the response ability of the complex to pH fluctuations in the physiological pH range (6.0-8.0). The complex was found to be capable of differentiating live HeLa cells from healthy HEK293 cells by selectively accumulating in lysosomes of the HeLa cells. The low cytotoxicity (IC50 > 100 μM), a large Stokes shift (∼200 nm), strong near-IR emission at ∼700 nm, a relatively long excited state lifetime, high photostability, and solubility make this complex considerably promising in real-time tracking and visualization of lysosomes in live cells. More interestingly, the tumor cell-specific two-photon luminescent imaging properties also endow this Ru complex with potential for applications in high-resolution tumor imaging and luminescence-guided tumor resection.
Collapse
Affiliation(s)
- Hui-Yu Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Si-Qi Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Meng-Chao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Li-Hua Gao
- School of Science, Beijing Technology and Business University, Key Laboratory of Cosmetic (Beijing Technology and Business University), China National Light Industry, Beijing 100048, China
| | - Hua Zhao
- School of Science, Beijing Technology and Business University, Key Laboratory of Cosmetic (Beijing Technology and Business University), China National Light Industry, Beijing 100048, China
| | - Ke-Zhi Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
28
|
Han Y, Gao Z, Wang C, Zhong R, Wang F. Recent progress on supramolecular assembly of organoplatinum(II) complexes into long-range ordered nanostructures. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213300] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Bispicolyamine-Based Supramolecular Polymeric Gels Induced by Distinct Different Driving Forces with and Without Zn 2. Int J Mol Sci 2020; 21:ijms21134617. [PMID: 32610553 PMCID: PMC7369882 DOI: 10.3390/ijms21134617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 01/04/2023] Open
Abstract
Metal-coordination polymeric gels are interesting areas as organic/inorganic hybrid supramolecular materials. The bispicolylamine (BPA) based gelator (1) showed excellent gelation with typical fibrillar morphology in acetonitrile. Upon complexing 1 with Zn2+, complexes ([1 + Zn + ACN]2+ and [1 + zinc trifluoromethanesulfonate (ZnOTf)]+) with four coordination numbers were formed, which determine the gel structure significantly. A gel-sol transition was induced, driven by the ratio of the two metal complexes produced. Through nuclear magnetic resonance analysis, the driving forces in the gel formation (i.e., hydrogen-bonding and π-π stacking) were observed in detail. In the absence and the presence of Zn2+, the intermolecular hydrogen-bonds and π-π stacking were the primary driving forces in the gel formation, respectively. In addition, the supramolecular gels exhibited a monolayer lamellar structure irrespective of Zn2+. Conclusively, the gels' elasticity and viscosity reduced in the presence of Zn2+.
Collapse
|
30
|
Zhou XQ, Xiao M, Ramu V, Hilgendorf J, Li X, Papadopoulou P, Siegler MA, Kros A, Sun W, Bonnet S. The Self-Assembly of a Cyclometalated Palladium Photosensitizer into Protein-Stabilized Nanorods Triggers Drug Uptake In Vitro and In Vivo. J Am Chem Soc 2020; 142:10383-10399. [PMID: 32378894 PMCID: PMC7291344 DOI: 10.1021/jacs.0c01369] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Enhanced passive
diffusion is usually considered to be the primary
cause of the enhanced cellular uptake of cyclometalated drugs because
cyclometalation lowers the charge of a metal complex and increases
its lipophilicity. However, in this work, monocationic cyclometalated
palladium complexes [1]OAc (N^N^C^N) and [2]OAc (N^N^N^C) were found
to self-assemble, in aqueous solutions, into soluble supramolecular
nanorods, while their tetrapyridyl bicationic analogue [3](OAc)2 (N^N^N^N) dissolved
as
isolated molecules. These nanorods formed via metallophilic Pd···Pd
interaction and π–π stacking and were stabilized
in the cell medium by serum proteins, in the absence of which the
nanorods precipitated. In cell cultures, these protein-stabilized
self-assembled nanorods were responsible for the improved cellular
uptake of the cyclometalated compounds, which took place via endocytosis
(i.e., an active uptake pathway). In addition to triggering self-assembly,
cyclometalation in [1]OAc also led to dramatically enhanced
photodynamic properties under blue light irradiation. These combined
penetration and photodynamic properties were observed in multicellular
tumor spheroids and in a mice tumor xenograft, demonstrating that
protein-stabilized nanoaggregation of cyclometalated drugs such as [1]OAc also allows efficient cellular uptake in 3D tumor models.
Overall, serum proteins appear to be a major element in drug design
because they strongly influence the size and bioavailability of supramolecular
drug aggregates and hence their efficacy in vitro and in vivo.
Collapse
Affiliation(s)
- Xue-Quan Zhou
- Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Ming Xiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Vadde Ramu
- Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Jonathan Hilgendorf
- Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Xuezhao Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Panagiota Papadopoulou
- Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Alexander Kros
- Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
31
|
Mikherdov AS, Katkova SA, Novikov AS, Efremova MM, Reutskaya EY, Kinzhalov MA. (Isocyano group)⋯lone pair interactions involving coordinated isocyanides: experimental, theoretical and CSD studies. CrystEngComm 2020. [DOI: 10.1039/c9ce01741k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Both carbon and nitrogen centers in the coordinated isocyano group are capable of acting as a π-hole donor toward lone pairs.
Collapse
Affiliation(s)
| | | | | | - Mariia M. Efremova
- Saint Petersburg State University
- 199034 Saint Petersburg
- Russian Federation
| | | | | |
Collapse
|
32
|
Anti-cancer gold, platinum and iridium compounds with porphyrin and/or N-heterocyclic carbene ligand(s). Med Chem 2020. [DOI: 10.1016/bs.adioch.2019.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
Alam P, Climent C, Alemany P, Laskar IR. “Aggregation-induced emission” of transition metal compounds: Design, mechanistic insights, and applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.100317] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Choi H, Heo S, Lee S, Kim KY, Lim JH, Jung SH, Lee SS, Miyake H, Lee JY, Jung JH. Kinetically controlled Ag +-coordinated chiral supramolecular polymerization accompanying a helical inversion. Chem Sci 2019; 11:721-730. [PMID: 34123045 PMCID: PMC8146097 DOI: 10.1039/c9sc04958d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/11/2019] [Indexed: 11/21/2022] Open
Abstract
We report kinetically controlled chiral supramolecular polymerization based on ligand-metal complex with a 3 : 2 (L : Ag+) stoichiometry accompanying a helical inversion in water. A new family of bipyridine-based ligands (d-L1, l-L1, d-L2, and d-L3) possessing hydrazine and d- or l-alanine moieties at the alkyl chain groups has been designed and synthesized. Interestingly, upon addition of AgNO3 (0.5-1.3 equiv.) to the d-L1 solution, it generated the aggregate I composed of the d-L1AgNO3 complex (d-L1 : Ag+ = 1 : 1) as the kinetic product with a spherical structure. Then, aggregate I (nanoparticle) was transformed into the aggregate II (supramolecular polymer) based on the (d-L1)3Ag2(NO3)2 complex as the thermodynamic product with a fiber structure, which led to the helical inversion from the left-handed (M-type) to the right-handed (P-type) helicity accompanying CD amplification. In contrast, the spherical aggregate I (nanoparticle) composed of the d-L1AgNO3 complex with the left-handed (M-type) helicity formed in the presence of 2.0 equiv. of AgNO3 and was not additionally changed, which indicated that it was the thermodynamic product. The chiral supramolecular polymer based on (d-L1)3Ag2(NO3)2 was produced via a nucleation-elongation mechanism with a cooperative pathway. In thermodynamic study, the standard ΔG° and ΔH e values for the aggregates I and II were calculated using the van't Hoff plot. The enhanced ΔG° value of the aggregate II compared to that of the formation of aggregate I confirms that aggregate II was thermodynamically more stable. In the kinetic study, the influence of concentration of AgNO3 confirmed the initial formation of the aggregate I (nanoparticle), which then evolved to the aggregate II (supramolecular polymer). Thus, the concentration of the (d-L1)3Ag2(NO3)2 complex in the initial state plays a critical role in generating aggregate II (supramolecular polymer). In particular, NO3 - acts as a critical linker and accelerator in the transformation from the aggregate I to the aggregate II. This is the first example of a system for a kinetically controlled chiral supramolecular polymer that is formed via multiple steps with coordination structural change.
Collapse
Affiliation(s)
- Heekyoung Choi
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University Jinju 660-701 Republic of Korea
| | - Sojeong Heo
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University Jinju 660-701 Republic of Korea
| | - Seonae Lee
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University Jinju 660-701 Republic of Korea
| | - Ka Young Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University Jinju 660-701 Republic of Korea
| | - Jong Hyeon Lim
- Department of Chemistry, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Sung Ho Jung
- Department of Liberal Arts, Gyeongnam National University of Science and Technology (GNTECH) Jinju 52725 Republic of Korea
| | - Shim Sung Lee
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University Jinju 660-701 Republic of Korea
| | - Hiroyuki Miyake
- Department of Chemistry, Graduate School of Science, Osaka City University Osaka 558-8585 Japan
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University Jinju 660-701 Republic of Korea
| |
Collapse
|
35
|
Qiu K, Zhu H, Rees TW, Ji L, Zhang Q, Chao H. Recent advances in lysosome-targeting luminescent transition metal complexes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
36
|
Kang J, Ni J, Li Y, Zhang J. Synthesis, structure and dual-stimulus-responsive luminescence switching of a new platinum(II) complex based on 3-trimethylsilylethynyl-1,10-phenanthroline. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Ding F, Chen Z, Kim WY, Sharma A, Li C, Ouyang Q, Zhu H, Yang G, Sun Y, Kim JS. A nano-cocktail of an NIR-II emissive fluorophore and organoplatinum(ii) metallacycle for efficient cancer imaging and therapy. Chem Sci 2019; 10:7023-7028. [PMID: 31588269 PMCID: PMC6676325 DOI: 10.1039/c9sc02466b] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
The scarcity of efficient imaging technologies for precise cancer treatment greatly drives the development of new nanotheranostic based platforms that enable both diagnostic and therapeutic functions, together in a single formulation. Owing to the complicated physiological microenvironment, nanosystems designed with the possibility of noninvasive real-time monitoring of therapeutic progression in the second near-infrared channel (NIR-II, 1000-1700 nm) could substantially improve the current cancer therapies. Herein, we design a novel NIR-II theranostic nanoprobe, PSY (size ∼110 nm), by incorporating organoplatinum(ii) metallacycles P1 and an organic NIR-II molecular dye, SY1030, into the FDA-approved polymer Pluronic F127. Preliminary in vitro and in vivo studies suggest that PSY is capable of being internalized into glioma U87MG-cells with no significant internalization in non-cancerous tissues. In addition, it shows excellent photostability and minimal background for real-time monitoring the process of therapy in the NIR-II region. Furthermore, in U87MG xenografts and orthotopic breast tumor, PSY demonstrat significantly improved anticancer efficacy compared to a clinically approved Pt(ii)-based anticancer drug, cisplatin. The engineered nano-cocktail PSY offers a simple strategy for delivering the organoplatinum(ii) macrocycle P1 and NIR-II fluorophore SY1030 as a cocktail of diagnostic and therapeutic functions and highlights its promising capacity for future cancer treatment.
Collapse
Affiliation(s)
- Feng Ding
- Key Laboratory of Pesticides and Chemical Biology , Ministry of Education , International Joint Research Center for Intelligent Biosensor Technology and Health , Center of Chemical Biology , College of Chemistry , Central China Normal University , Wuhan 430079 , China .
| | - Zhao Chen
- Key Laboratory of Pesticides and Chemical Biology , Ministry of Education , International Joint Research Center for Intelligent Biosensor Technology and Health , Center of Chemical Biology , College of Chemistry , Central China Normal University , Wuhan 430079 , China .
| | - Won Young Kim
- Department of Chemistry , Korea University , Seoul 02841 , Korea .
| | - Amit Sharma
- Department of Chemistry , Korea University , Seoul 02841 , Korea .
| | - Chonglu Li
- Key Laboratory of Pesticides and Chemical Biology , Ministry of Education , International Joint Research Center for Intelligent Biosensor Technology and Health , Center of Chemical Biology , College of Chemistry , Central China Normal University , Wuhan 430079 , China .
| | - Qingying Ouyang
- Key Laboratory of Pesticides and Chemical Biology , Ministry of Education , International Joint Research Center for Intelligent Biosensor Technology and Health , Center of Chemical Biology , College of Chemistry , Central China Normal University , Wuhan 430079 , China .
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research , Ministry of Education , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Guangfu Yang
- Key Laboratory of Pesticides and Chemical Biology , Ministry of Education , International Joint Research Center for Intelligent Biosensor Technology and Health , Center of Chemical Biology , College of Chemistry , Central China Normal University , Wuhan 430079 , China .
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology , Ministry of Education , International Joint Research Center for Intelligent Biosensor Technology and Health , Center of Chemical Biology , College of Chemistry , Central China Normal University , Wuhan 430079 , China .
| | - Jong Seung Kim
- Department of Chemistry , Korea University , Seoul 02841 , Korea .
| |
Collapse
|
38
|
Le NHT, Inoue R, Kawamorita S, Komiya N, Naota T. Phosphorescent Molecules That Resist Concentration Quenching in the Solution State: Concentration-Driven Emission Enhancement of Vaulted trans-Bis[2-(iminomethyl)imidazolato]platinum(II) Complexes. Inorg Chem 2019; 58:9076-9084. [DOI: 10.1021/acs.inorgchem.9b00608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ngoc Ha-Thu Le
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Ryo Inoue
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Soichiro Kawamorita
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Naruyoshi Komiya
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- Chemistry Laboratory, The Jikei University School of Medicine, Kokuryo, Chofu, Tokyo 182-8570, Japan
| | - Takeshi Naota
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
39
|
Zhu Y, Zhang M, Luo L, Gill MR, De Pace C, Battaglia G, Zhang Q, Zhou H, Wu J, Tian Y, Tian X. NF-κB hijacking theranostic Pt(ll) complex in cancer therapy. Am J Cancer Res 2019; 9:2158-2166. [PMID: 31149035 PMCID: PMC6531303 DOI: 10.7150/thno.30886] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
Platinum complexes have been used for anti-cancer propose for decades, however, their high side effects resulting from damage to healthy cells cannot be neglected and prevent further clinical utilisation. Here, we designed a cyclometalated platinum (II) complex that can bind the endogenous nuclear factor-κB (NF-κB) protein. Employing detailed colocalization studies in co-culture cell line models, we show that by binding to NF-κB, the platinum (II) complex is capable of upregulated nuclear translocation specifically in cancer but not normal cells, thereby impairing cancer proliferation without disturbing healthy cells. In a murine tumour model, the platinum (II) complex prevents tumour growth to a greater extent than cisplatin and with considerably lower side-effects and kidney damage. Considering its weak damage to normal cells combined with high toxicity to cancer cells, this NF-κB-binding platinum complex is a potential anti-cancer candidate and acts to verify the strategy of hijacking endogenous trans-nuclear proteins to achieve cancer-cell specificity and enhance therapeutic indices.
Collapse
|
40
|
Lai L, Luo D, Liu T, Zheng W, Chen T, Li D. Self-Assembly of Copper Polypyridyl Supramolecular Metallopolymers to Achieve Enhanced Anticancer Efficacy. ChemistryOpen 2019; 8:434-437. [PMID: 30984487 PMCID: PMC6445060 DOI: 10.1002/open.201900036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/18/2019] [Indexed: 11/10/2022] Open
Abstract
Self‐assembled functional supramolecular metallopolymers have demonstrated application potential in cancer therapy. Herein, a copper polypyridyl complex was found able to self‐assemble into a supramolecular metallopolymer driven by the intermolecular interactions, which could enhance the uptake in cancer cells through endocytosis, and thus effectively inhibiting tumor growth in vivo without damaging to the major organs. This study provides a facile way to achieve enhanced anticancer efficacy by using self‐assembled metallopolymers.
Collapse
Affiliation(s)
- Lanhai Lai
- Department of Chemistry Jinan University Guangzhou 510632 GuangDong Province China)
| | - Dong Luo
- Department of Chemistry Jinan University Guangzhou 510632 GuangDong Province China)
| | - Ting Liu
- Department of Chemistry Jinan University Guangzhou 510632 GuangDong Province China)
| | - Wenjie Zheng
- Department of Chemistry Jinan University Guangzhou 510632 GuangDong Province China)
| | - Tianfeng Chen
- Department of Chemistry Jinan University Guangzhou 510632 GuangDong Province China)
| | - Dan Li
- Department of Chemistry Jinan University Guangzhou 510632 GuangDong Province China)
| |
Collapse
|
41
|
Ranieri AM, Burt LK, Stagni S, Zacchini S, Skelton BW, Ogden MI, Bissember AC, Massi M. Anionic Cyclometalated Platinum(II) Tetrazolato Complexes as Viable Photoredox Catalysts. Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00913] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Anna Maria Ranieri
- Curtin Institute for Functional Molecules and Interfaces, and School of Molecular and Life Sciences, Curtin University, Bentley 6102 WA, Australia
| | - Liam K. Burt
- School of Natural Sciences − Chemistry, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Stefano Stagni
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, viale del Risorgimento 4, 40136 Bologna, Italy
| | - Stefano Zacchini
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, viale del Risorgimento 4, 40136 Bologna, Italy
| | - Brian W. Skelton
- School of Molecular Sciences, The University of Western Australia, Perth 6009 WA, Australia
| | - Mark I. Ogden
- Curtin Institute for Functional Molecules and Interfaces, and School of Molecular and Life Sciences, Curtin University, Bentley 6102 WA, Australia
| | - Alex C. Bissember
- School of Natural Sciences − Chemistry, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Massimiliano Massi
- Curtin Institute for Functional Molecules and Interfaces, and School of Molecular and Life Sciences, Curtin University, Bentley 6102 WA, Australia
| |
Collapse
|
42
|
Huang GB, Chen S, Qin QP, Luo JR, Tan MX, Wang ZF, Zou BQ, Liang H. In vitro and in vivo activity of novel platinum(ii) complexes with naphthalene imide derivatives inhibiting human non-small cell lung cancer cells. NEW J CHEM 2019. [DOI: 10.1039/c9nj01076a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
3 induced NCI-H460 cell apoptosis via inhibition of the telomerase and dysfunction of mitochondria. Remarkably, 3 obviously inhibited NCI-H460 xenograft tumor growth in vivo.
Collapse
Affiliation(s)
- Guo-Bao Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Shan Chen
- College of Physical Science and Technology
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Jin-Rong Luo
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Zhen-Feng Wang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Bi-Qun Zou
- Department of Chemistry
- Guilin Normal College
- 9 Feihu Road
- Gulin 541001
- P. R. China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University
- Guilin 541004
- P. R. China
| |
Collapse
|
43
|
Current State of Platinum Complexes for the Treatment of Advanced and Drug-Resistant Breast Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1152:253-270. [DOI: 10.1007/978-3-030-20301-6_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
|
45
|
Ma D, Chen Z, Yi L, Xi Z. Development of improved dual-diazonium reagents for faster crosslinking of tobacco mosaic virus to form hydrogels. RSC Adv 2019; 9:29070-29077. [PMID: 35528434 PMCID: PMC9071817 DOI: 10.1039/c9ra05630k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
New bench-stable reagents with two diazonium sites were designed and synthesized for protein crosslinking. Because of the faster diazonium-tyrosine coupling reaction, hydrogels from the crosslinking of tobacco mosaic virus and the reagent DDA-3 could be prepared within 1 min at room temperature. Furthermore, hydrogels with the introduction of disulfide bonds viaDDA-4 could be chemically degraded by dithiothreitol. Our results provided a facile approach for the direct construction of virus-based hydrogels. Improved dual-diazonium reagents were developed for more efficient crosslinking of tobacco mosaic virus to form hydrogels.![]()
Collapse
Affiliation(s)
- Dejun Ma
- State Key Laboratory of Elemento-Organic Chemistry
- Department of Chemical Biology
- National Pesticide Engineering Research Center (Tianjin)
- Nankai University
- Tianjin
| | - Zhuoyue Chen
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry
- Department of Chemical Biology
- National Pesticide Engineering Research Center (Tianjin)
- Nankai University
- Tianjin
| |
Collapse
|
46
|
Zhang Q, Wang Q, Chen XX, Zhang P, Ding CF, Li Z, Jiang YB. Developing the spectral sensing scheme with in situ generated chromophores. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
McPherson JN, Das B, Colbran SB. Tridentate pyridine–pyrrolide chelate ligands: An under-appreciated ligand set with an immensely promising coordination chemistry. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.01.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
48
|
Deo KM, Ang DL, McGhie B, Rajamanickam A, Dhiman A, Khoury A, Holland J, Bjelosevic A, Pages B, Gordon C, Aldrich-Wright JR. Platinum coordination compounds with potent anticancer activity. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.11.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
49
|
Kinzhalov MA, Kashina MV, Mikherdov AS, Katkova SA, Suslonov VV. Synthesis of Platinum(II) Phoshine Isocyanide Complexes and Study of Their Stability in Isomerization and Ligand Disproportionation Reactions. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s107036321806021x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
50
|
Wilde S, González-Abradelo D, Daniliuc CG, Böckmann M, Doltsinis NL, Strassert CA. Fluorination-controlled Aggregation and Intermolecular Interactions in Pt(II) Complexes with Tetradentate Luminophores. Isr J Chem 2018. [DOI: 10.1002/ijch.201800050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sebastian Wilde
- Physikalisches Institut and Center for Nanotechnology; Westfälische Wilhelms-Universität Münster; Heisenbergstraße 11 D-48149 Germany Münster
| | - Darío González-Abradelo
- Physikalisches Institut and Center for Nanotechnology; Westfälische Wilhelms-Universität Münster; Heisenbergstraße 11 D-48149 Germany Münster
| | - Constantin-Gabriel Daniliuc
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 D-48149 Germany Münster
| | - Marcus Böckmann
- Institut für Festkörpertheorie and Center for Multiscale Theory and Computation; Westfälische Wilhelms-Universität Münster; Wilhelm-Klemm Straße 10 D-48149 Germany Münster
| | - Nikos L. Doltsinis
- Institut für Festkörpertheorie and Center for Multiscale Theory and Computation; Westfälische Wilhelms-Universität Münster; Wilhelm-Klemm Straße 10 D-48149 Germany Münster
| | - Cristian A. Strassert
- Physikalisches Institut and Center for Nanotechnology; Westfälische Wilhelms-Universität Münster; Heisenbergstraße 11 D-48149 Germany Münster
| |
Collapse
|