1
|
Aydin AO, de Lichtenberg C, Liang F, Forsman J, Graça AT, Chernev P, Zhu S, Mateus A, Magnuson A, Cheah MH, Schröder WP, Ho F, Lindblad P, Debus RJ, Mamedov F, Messinger J. Probing substrate water access through the O1 channel of Photosystem II by single site mutations and membrane inlet mass spectrometry. PHOTOSYNTHESIS RESEARCH 2025; 163:28. [PMID: 40263146 PMCID: PMC12014804 DOI: 10.1007/s11120-025-01147-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/18/2025] [Indexed: 04/24/2025]
Abstract
Light-driven water oxidation by photosystem II sustains life on Earth by providing the electrons and protons for the reduction of CO2 to carbohydrates and the molecular oxygen we breathe. The inorganic core of the oxygen evolving complex is made of the earth-abundant elements manganese, calcium and oxygen (Mn4CaO5 cluster), and is situated in a binding pocket that is connected to the aqueous surrounding via water-filled channels that allow water intake and proton egress. Recent serial crystallography and infrared spectroscopy studies performed with PSII isolated from Thermosynechococcus vestitus (T. vestitus) support that one of these channels, the O1 channel, facilitates water access to the Mn4CaO5 cluster during its S2→S3 and S3→S4→S0 state transitions, while a subsequent CryoEM study concluded that this channel is blocked in the cyanobacterium Synechocystis sp. PCC 6803, questioning the role of the O1 channel in water delivery. Employing site-directed mutagenesis we modified the two O1 channel bottleneck residues D1-E329 and CP43-V410 (T. vestitus numbering) and probed water access and substrate exchange via time resolved membrane inlet mass spectrometry. Our data demonstrates that water reaches the Mn4CaO5 cluster via the O1 channel in both wildtype and mutant PSII. In addition, the detailed analysis provides functional insight into the intricate protein-water-cofactor network near the Mn4CaO5 cluster that includes the pentameric, near planar 'water wheel' of the O1 channel.
Collapse
Affiliation(s)
- A Orkun Aydin
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala, 751 20, Sweden
| | - Casper de Lichtenberg
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala, 751 20, Sweden
| | - Feiyan Liang
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala, 751 20, Sweden
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, 1871, Denmark
| | - Jack Forsman
- Department of Chemistry, Chemical Biology Centre, Umeå University, Umeå, 907 36, Sweden
- Department of Plant Physiology, Umeå Plant Science Center (UPSC), Umeå University, Umeå, 901 87, Sweden
| | - André T Graça
- Department of Chemistry, Chemical Biology Centre, Umeå University, Umeå, 907 36, Sweden
- European Molecular Biology Laboratory, EMBL Grenoble, Grenoble, 38042, France
| | - Petko Chernev
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala, 751 20, Sweden
| | - Shaochun Zhu
- Department of Chemistry, Chemical Biology Centre, Umeå University, Umeå, 907 36, Sweden
| | - André Mateus
- Department of Chemistry, Chemical Biology Centre, Umeå University, Umeå, 907 36, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, 907 36, Sweden
| | - Ann Magnuson
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala, 751 20, Sweden
| | - Mun Hon Cheah
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala, 751 20, Sweden
| | - Wolfgang P Schröder
- Department of Chemistry, Chemical Biology Centre, Umeå University, Umeå, 907 36, Sweden
- Department of Plant Physiology, Umeå Plant Science Center (UPSC), Umeå University, Umeå, 901 87, Sweden
| | - Felix Ho
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala, 751 20, Sweden
| | - Peter Lindblad
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala, 751 20, Sweden
| | - Richard J Debus
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala, 751 20, Sweden
| | - Johannes Messinger
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala, 751 20, Sweden.
- Department of Plant Physiology, Umeå Plant Science Center (UPSC), Umeå University, Umeå, 901 87, Sweden.
| |
Collapse
|
2
|
Chrysina M, Drosou M, Pantazis DA, DeBeer S. Ammonia Binding to the Oxygen-Evolving Complex Probed by High-Energy Resolution Fluorescence Detected X-Ray Absorption Spectroscopy. J Phys Chem B 2025; 129:3776-3787. [PMID: 40178509 PMCID: PMC12010325 DOI: 10.1021/acs.jpcb.5c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025]
Abstract
The insertion pathways and binding sites of substrate water molecules at the catalytic Mn4CaO5 cluster of the oxygen-evolving complex (OEC) in photosystem II (PSII) remain a fundamentally unresolved question toward understanding biological water oxidation. To address this question, small molecules have been employed as "water analogues" to probe substrate binding to the OEC. In this context, the binding of ammonia has been extensively investigated and discussed using spectroscopic, structural, and quantum chemical methods, but a definitive answer regarding the ammonia binding site has not yet been achieved. Herein, we present high-energy resolution fluorescence detected (HERFD) Mn K-edge X-ray absorption spectroscopy (XAS) in ammonia-treated S2 state samples of the OEC. Pre-edge features were correlated with possible structural models with the aid of quantum chemical calculations. The comparison of calculated and experimental difference spectra between the native and ammonia-treated samples allows us to evaluate different modes of ammonia interaction with the OEC. The combined spectroscopic and theoretical investigation suggests the substitution of the terminal water ligand W2 on Mn4 as the most plausible ammonia binding mode, followed closely by the substitution of the second terminal water ligand (W1), and the coordination of ammonia on Mn1 as a sixth ligand. Our results are in line with the leading interpretations of other spectroscopic and kinetic studies, converging on the conclusion that the Mn4 ion is either the most accessible or the strongest binding site for substrate analogues.
Collapse
Affiliation(s)
- Maria Chrysina
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, Mülheim an der Ruhr 45470, Germany
- Institute
of Nanoscience & Nanotechnology, NCSR
“Demokritos”, Athens 15310, Greece
| | - Maria Drosou
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
3
|
Guo Y, Kloo L, Sun L. Quantum Chemical Understanding of the O 2 Release Process from Nature's Water Splitting Cofactor. Angew Chem Int Ed Engl 2025; 64:e202421383. [PMID: 39963749 DOI: 10.1002/anie.202421383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/16/2025] [Indexed: 02/26/2025]
Abstract
Natural photosynthesis plays a vital role in the supply of energy and oxygen necessary for the survival of biological organisms. The current leading proposal of the O-O bond formation in photosystem II suggests the coupling between the central μ-oxo (O5) and the additional oxygenic ligand (Ox) of the manganese-calcium oxide cofactor. However, the subsequent process through which molecular dioxygen is formed and released remains elusive. In this report, quantum chemical calculations reveal that the O2 release process is initiated by the cleavage of the Mn-O5 bond, without a preliminary conformational change of the peroxide [O5-Ox]2- group. Subsequently, the [O5-Ox] moiety is converted from the superoxide to the weakly bound quasi-O2 where the Mn-Ox bond is cleaved, and after a twist of the quasi-O2 unit, the free O2 is ultimately released. Alternative pathways display significantly slower kinetics, due to the lower structural stabilities of the rate-limiting transition states. The cause of the difference is associated with the Jahn-Teller axial orientation and the local ring strain within the Mn cluster. These findings contribute to unravelling the intricate mechanism involved in an important step of photosynthetic oxygen evolution for a deeper understanding of nature's water oxidation catalysis.
Collapse
Affiliation(s)
- Yu Guo
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Lars Kloo
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-10044, Stockholm, Sweden
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou, 310000, Zhejiang, China
| |
Collapse
|
4
|
Yukawa H, Kono H, Ishiwata H, Igarashi R, Takakusagi Y, Arai S, Hirano Y, Suhara T, Baba Y. Quantum life science: biological nano quantum sensors, quantum technology-based hyperpolarized MRI/NMR, quantum biology, and quantum biotechnology. Chem Soc Rev 2025; 54:3293-3322. [PMID: 39874046 DOI: 10.1039/d4cs00650j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The emerging field of quantum life science combines principles from quantum physics and biology to study fundamental life processes at the molecular level. Quantum mechanics, which describes the properties of small particles, can help explain how quantum phenomena such as tunnelling, superposition, and entanglement may play a role in biological systems. However, capturing these effects in living systems is a formidable challenge, as it involves dealing with dissipation and decoherence caused by the surrounding environment. We overview the current status of the quantum life sciences from technologies and topics in quantum biology. Technologies such as biological nano quantum sensors, quantum technology-based hyperpolarized MRI/NMR, high-speed 2D electronic spectrometers, and computer simulations are being developed to address these challenges. These interdisciplinary fields have the potential to revolutionize our understanding of living organisms and lead to advancements in genetics, molecular biology, medicine, and bioengineering.
Collapse
Affiliation(s)
- Hiroshi Yukawa
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Hidetoshi Kono
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Hitoshi Ishiwata
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Ryuji Igarashi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Yoichi Takakusagi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Shigeki Arai
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Yu Hirano
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Tetsuya Suhara
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Yoshinobu Baba
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
5
|
Ablyasova O, Ugandi M, Boydas EB, da Silva Santos M, Flach M, Zamudio-Bayer V, Roemelt M, Lau JT, Hirsch K. High-Spin Manganese(V) in an Active Center Analogue of the Oxygen-Evolving Complex. J Am Chem Soc 2025; 147:7336-7344. [PMID: 39969233 PMCID: PMC11887058 DOI: 10.1021/jacs.4c14543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/10/2025] [Accepted: 02/07/2025] [Indexed: 02/20/2025]
Abstract
In a comprehensive investigation of the dinuclear [Mn2O3]+ cluster, the smallest dimanganese entity with two μ-oxo bridges and a terminal oxo ligand, and a simplified structural model of the active center in the oxygen-evolving complex, we identify antiferromagnetically coupled high-spin manganese centers in very different oxidation states of +2 and +5, but rule out the presence of a manganese(IV)-oxyl species by experimental X-ray absorption and X-ray magnetic circular dichroism spectroscopy combined with multireference calculations. This first identification of a high-spin manganese(V) center in any polynuclear oxidomanganese complex underscores the need for multireference computational methods to describe high-valent oxidomanganese species.
Collapse
Affiliation(s)
- Olesya
S. Ablyasova
- Abteilung
für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und
Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany
- Physikalisches
Institut, Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Mihkel Ugandi
- Institut
für Chemie, Humboldt-Universität
zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Esma B. Boydas
- Institut
für Chemie, Humboldt-Universität
zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Mayara da Silva Santos
- Abteilung
für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und
Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany
- Physikalisches
Institut, Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Max Flach
- Abteilung
für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und
Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany
- Physikalisches
Institut, Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Vicente Zamudio-Bayer
- Abteilung
für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und
Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Michael Roemelt
- Institut
für Chemie, Humboldt-Universität
zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - J. Tobias Lau
- Abteilung
für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und
Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany
- Physikalisches
Institut, Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Konstantin Hirsch
- Abteilung
für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und
Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| |
Collapse
|
6
|
Mermigki MA, Drosou M, Pantazis DA. On the nature of high-spin forms in the S 2 state of the oxygen-evolving complex. Chem Sci 2025; 16:4023-4047. [PMID: 39898302 PMCID: PMC11784572 DOI: 10.1039/d4sc07818g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/26/2025] [Indexed: 02/04/2025] Open
Abstract
The Mn4CaO x cluster of the oxygen-evolving complex (OEC) in photosystem II, the site of biological water oxidation, adopts different forms as it progresses through the catalytic cycle of S i states (i = 0-4) and within each S i state itself. This has been amply documented by spectroscopy, but the structural basis of spectroscopic polymorphism remains debated. The S2 state is extensively studied by magnetic resonance spectroscopies. In addition to the common type of g ≈ 2 multiline EPR signal attributed to a low-spin (S = 1/2) form of the manganese cluster, other signals at lower fields (g ≥ 4) associated with the S2 state arise from higher-spin forms. Resolving the structural identity of the high-spin species is paramount for a microscopic understanding of the catalytic mechanism. Hypotheses explored by theoretical studies implicate valence isomerism, proton tautomerism, or coordination change with respect to the low-spin form. Here we analyze structure-property correlations for multiple formulations employing a common high-level protocol based on multiscale models that combine a converged quantum mechanics region embedded within a large protein region treated semiempirically with an extended tight-binding method (DFT/xTB), surpassing conventional quantum mechanics/molecular mechanics (QM/MM) approaches. Our results provide a comprehensive comparison of magnetic topologies, spin states and energetics in relation to experimental observations. Crucial predictions are made about 14N hyperfine coupling constants and X-ray absorption Mn K-pre-edge features as criteria for discriminating between different models. This study updates our view on a persistent mystery of biological water oxidation, while providing a refined and transferable computational platform for future theoretical studies of the OEC.
Collapse
Affiliation(s)
- Markella Aliki Mermigki
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Maria Drosou
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
7
|
Leyser da Costa Gouveia T, Maganas D, Neese F. General Spin-Restricted Open-Shell Configuration Interaction Approach: Application to Metal K-Edge X-ray Absorption Spectra of Ferro- and Antiferromagnetically Coupled Dimers. J Phys Chem A 2025; 129:330-345. [PMID: 39680653 PMCID: PMC11726630 DOI: 10.1021/acs.jpca.4c05228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
In this work, we present a generalized implementation of the previously developed restricted open-shell configuration interaction singles (ROCIS) family of methods. The new method allows us to treat high-spin (HS) ferro- as well as antiferromagnetically (AF) coupled systems while retaining the total spin as a good quantum number. To achieve this important and nontrivial goal, we employ the machinery of the iterative configuration expansion (ICE) method, which is able to tackle general configuration interaction (CI) problems on the basis of spin-adapted configuration state functions (CSFs). While ICE is designed to work in restricted orbital spaces, the new general-spin ROCIS (GS-ROCIS) method is designed to be applicable to larger molecules by employing a prototyping strategy. This new method can be applied to closed-shell, high-spin open-shell, as well as antiferromagnetic reference CSFs. In addition, GS-ROCIS can be combined with the pair natural orbital (PNO) machinery in the form of the PNO-GS-ROCIS method. With this extension, one can drastically reduce the required virtual space in the vicinity of the involved core orbitals, leading to computational savings of several orders of magnitude with negligible (<1%) loss in accuracy. To demonstrate the use of the new methodology, the metal K pre-edge X-ray absorption excitation problem of an antiferromagnetically coupled copper model dimer was investigated. By first analyzing a model copper dimer, it is shown that even for the minimum core excitation problem that involves the two antiferromagnetically coupled singly occupied orbitals and one virtual orbital, the resulting GS-ROCIS and broken-symmetry configuration interaction singles (BS-CIS) spectra may differ in terms of the number, energy position, and relative intensity of the computed bands. Furthermore, the methodology was validated to perform equally well in computing the K-edge spectra of antiferromagnetic nickel oxide dimers and mixed-valence cobalt oxide trimers. Collectively, the present development represents an important methodological advance in the application of theoretical X-ray spectroscopy.
Collapse
Affiliation(s)
| | - Dimitrios Maganas
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilheim-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilheim-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
8
|
Isobe H, Suzuki T, Suga M, Shen JR, Yamaguchi K. Conformational Flexibility of D1-Glu189: A Crucial Determinant in Substrate Water Selection, Positioning, and Stabilization within the Oxygen-Evolving Complex of Photosystem II. ACS OMEGA 2024; 9:50041-50048. [PMID: 39713658 PMCID: PMC11656237 DOI: 10.1021/acsomega.4c09981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024]
Abstract
Photosynthetic water oxidation is a vital process responsible for producing dioxygen and supplying the energy necessary to sustain life on Earth. This fundamental reaction is catalyzed by the oxygen-evolving complex (OEC) of photosystem II, which houses the Mn4CaO5 cluster as its catalytic core. In this study, we specifically focus on the D1-Glu189 amino acid residue, which serves as a direct ligand to the Mn4CaO5 cluster. Our primary goal is to explore, using density functional theory (DFT), how the conformational flexibility of the D1-Glu189 side chain influences crucial catalytic processes, particularly the selection, positioning, and stabilization of a substrate water molecule within the OEC. Our investigation is based on a hypothesis put forth by Li et al. (Nature, 2024, 626, 670), which suggests that during the transition from the S2 to S3 state, a specific water molecule temporarily coordinating with the Ca ion, referred to as O6*, may exist as a hydroxide ion (OH-). Our results demonstrate a key mechanism by which the detachment of the D1-Glu189 carboxylate group from its coordination with the Ca ion allows the creation of a specialized microenvironment within the OEC that enables the selective attraction of O6* in its deprotonated form (OH-) and stabilizes it at the catalytic metal (MnD) site. Our findings indicate that D1-Glu189 is not only a structural ligand for the Ca ion but may also play an active and dynamic role in the catalytic process, positioning O6* optimally for its subsequent participation in the oxidation sequence during the water-splitting cycle.
Collapse
Affiliation(s)
- Hiroshi Isobe
- Research
Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Takayoshi Suzuki
- Research
Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Michihiro Suga
- Research
Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Jian-Ren Shen
- Research
Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Kizashi Yamaguchi
- Center
for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
9
|
Yamaguchi K, Miyagawa K, Shoji M, Kawakami T, Isobe H, Yamanaka S, Nakajima T. Theoretical elucidation of the structure, bonding, and reactivity of the CaMn 4O x clusters in the whole Kok cycle for water oxidation embedded in the oxygen evolving center of photosystem II. New molecular and quantum insights into the mechanism of the O-O bond formation. PHOTOSYNTHESIS RESEARCH 2024; 162:291-330. [PMID: 37945776 PMCID: PMC11614991 DOI: 10.1007/s11120-023-01053-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/25/2023] [Indexed: 11/12/2023]
Abstract
This paper reviews our historical developments of broken-symmetry (BS) and beyond BS methods that are applicable for theoretical investigations of metalloenzymes such as OEC in PSII. The BS hybrid DFT (HDFT) calculations starting from high-resolution (HR) XRD structure in the most stable S1 state have been performed to elucidate structure and bonding of whole possible intermediates of the CaMn4Ox cluster (1) in the Si (i = 0 ~ 4) states of the Kok cycle. The large-scale HDFT/MM computations starting from HR XRD have been performed to elucidate biomolecular system structures which are crucial for examination of possible water inlet and proton release pathways for water oxidation in OEC of PSII. DLPNO CCSD(T0) computations have been performed for elucidation of scope and reliability of relative energies among the intermediates by HDFT. These computations combined with EXAFS, XRD, XFEL, and EPR experimental results have elucidated the structure, bonding, and reactivity of the key intermediates, which are indispensable for understanding and explanation of the mechanism of water oxidation in OEC of PSII. Interplay between theory and experiments have elucidated important roles of four degrees of freedom, spin, charge, orbital, and nuclear motion for understanding and explanation of the chemical reactivity of 1 embedded in protein matrix, indicating the participations of the Ca(H2O)n ion and tyrosine(Yz)-O radical as a one-electron acceptor for the O-O bond formation. The Ca-assisted Yz-coupled O-O bond formation mechanisms for water oxidation are consistent with recent XES and very recent time-resolved SFX XFEL and FTIR results.
Collapse
Affiliation(s)
- Kizashi Yamaguchi
- Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka, 560-0043, Japan.
- RIKEN Center for Computational Science, Kobe, Hyogo, 650-0047, Japan.
- SANKEN, Osaka University, Ibaraki, Osaka, 567-0047, Japan.
| | - Koichi Miyagawa
- Center of Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Mitsuo Shoji
- Center of Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Takashi Kawakami
- RIKEN Center for Computational Science, Kobe, Hyogo, 650-0047, Japan
- Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Hiroshi Isobe
- Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Shusuke Yamanaka
- Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Takahito Nakajima
- RIKEN Center for Computational Science, Kobe, Hyogo, 650-0047, Japan
| |
Collapse
|
10
|
Chernev P, Aydin AO, Messinger J. On the simulation and interpretation of substrate-water exchange experiments in photosynthetic water oxidation. PHOTOSYNTHESIS RESEARCH 2024; 162:413-426. [PMID: 38512410 PMCID: PMC11639282 DOI: 10.1007/s11120-024-01084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/01/2024] [Indexed: 03/23/2024]
Abstract
Water oxidation by photosystem II (PSII) sustains most life on Earth, but the molecular mechanism of this unique process remains controversial. The ongoing identification of the binding sites and modes of the two water-derived substrate oxygens ('substrate waters') in the various intermediates (Si states, i = 0, 1, 2, 3, 4) that the water-splitting tetra-manganese calcium penta-oxygen (Mn4CaO5) cluster attains during the reaction cycle provides central information towards resolving the unique chemistry of biological water oxidation. Mass spectrometric measurements of single- and double-labeled dioxygen species after various incubation times of PSII with H218O provide insight into the substrate binding modes and sites via determination of exchange rates. Such experiments have revealed that the two substrate waters exchange with different rates that vary independently with the Si state and are hence referred to as the fast (Wf) and the slow (WS) substrate waters. New insight for the molecular interpretation of these rates arises from our recent finding that in the S2 state, under special experimental conditions, two different rates of WS exchange are observed that appear to correlate with the high spin and low spin conformations of the Mn4CaO5 cluster. Here, we reexamine and unite various proposed methods for extracting and assigning rate constants from this recent data set. The analysis results in a molecular model for substrate-water binding and exchange that reconciles the expected non-exchangeability of the central oxo bridge O5 when located between two Mn(IV) ions with the experimental and theoretical assignment of O5 as WS in all S states. The analysis also excludes other published proposals for explaining the water exchange kinetics.
Collapse
Affiliation(s)
- Petko Chernev
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, 75120, Uppsala, Sweden
| | - A Orkun Aydin
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, 75120, Uppsala, Sweden
| | - Johannes Messinger
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, 75120, Uppsala, Sweden.
| |
Collapse
|
11
|
Chen Y, Su Y, Han J, Chen C, Fan H, Zhang C. Synthetic Mn 3Ce 2O 5-Cluster Mimicking the Oxygen-Evolving Center in Photosynthesis. CHEMSUSCHEM 2024; 17:e202401031. [PMID: 38829180 DOI: 10.1002/cssc.202401031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
The photosynthetic oxygen-evolving center (OEC) is a unique Mn4CaO5-cluster that catalyses water splitting into electrons, protons, and dioxygen. Precisely structural and functional mimicking of the OEC is a long-standing challenge and pressingly needed for understanding the structure-function relationship and catalytic mechanism of O-O bond formation. Herein we report two simple and robust artificial Mn3Ce2O5-complexes that display a remarkable structural similarity to the OEC in regarding of the ten-atom core (five metal ions and five oxygen bridges) and the alkyl carboxylate peripheral ligands. This Mn3Ce2O5-cluster can catalyse the water-splitting reaction on the surface of ITO electrode. These results clearly show that cerium can structurally and functionally replace both calcium and manganese in the cluster. Mass spectroscopic measurements demonstrate that the oxide bridges in the cluster are exchangeable and can be rapidly replaced by the isotopic oxygen of H2 18O in acetonitrile solution, which supports that the oxide bridge(s) may serve as the active site for the formation of O-O bond during the water-splitting reaction. These results would contribute to our understanding of the structure-reactivity relationship of both natural and artificial clusters and shed new light on the development of efficient water-splitting catalysts in artificial photosynthesis.
Collapse
Affiliation(s)
- Yang Chen
- Beijing National Laboratory for Molecular Sciences and Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yao Su
- Beijing National Laboratory for Molecular Sciences and Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juanjuan Han
- Center for Physicochemical Analysis and Measurement, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Changhui Chen
- Beijing National Laboratory for Molecular Sciences and Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongjun Fan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chunxi Zhang
- Beijing National Laboratory for Molecular Sciences and Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
12
|
Malcomson T, Rummel F, Barchenko M, O'Malley P. Hey ho, where'd the proton go? Final deprotonation of O6 within the S 3 state of photosystem II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112946. [PMID: 38843709 DOI: 10.1016/j.jphotobiol.2024.112946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/04/2024] [Accepted: 05/25/2024] [Indexed: 07/16/2024]
Abstract
The deprotonation of O6 within the S3 state marks the final deprotonation event before the formation of oxygen‑oxygen bond interactions and eventual production and release of dioxygen. Gaining a thorough understanding of this event, from the proton acceptors involved, to the exfiltration pathways available, is key in determining the nature of the resulting oxygen species, influencing the mechanism through which the first oxygen‑oxygen bond forms. Computational analysis, using BS-DFT methodologies, showed that proton abstraction by the local Glu189 residue provides consistent evidence against this being a viable mechanistic pathway due to the lack of a stable product structure. In contrast, abstraction via W3 shows an increasingly stable oxo-oxo product state between r[O5O6] = 2.1 Å & 1.9 Å. The resulting oxo-oxo state is stabilised through donation of β electron character from O6 to Mn1 and α electron character from O6 to O5. This donation from the O6 lone pair is shown to be a key factor in stabilising the oxo-oxo state, in addition to showing the initiation of first O5-O6 bond.
Collapse
Affiliation(s)
- Thomas Malcomson
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK.
| | - Felix Rummel
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Maxim Barchenko
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Patrick O'Malley
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
13
|
Guo Y, He L, Ding Y, Kloo L, Pantazis DA, Messinger J, Sun L. Closing Kok's cycle of nature's water oxidation catalysis. Nat Commun 2024; 15:5982. [PMID: 39013902 PMCID: PMC11252165 DOI: 10.1038/s41467-024-50210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
The Mn4CaO5(6) cluster in photosystem II catalyzes water splitting through the Si state cycle (i = 0-4). Molecular O2 is formed and the natural catalyst is reset during the final S3 → (S4) → S0 transition. Only recently experimental breakthroughs have emerged for this transition but without explicit information on the S0-state reconstitution, thus the progression after O2 release remains elusive. In this report, our molecular dynamics simulations combined with density functional calculations suggest a likely missing link for closing the cycle, i.e., restoring the first catalytic state. Specifically, the formation of closed-cubane intermediates with all hexa-coordinate Mn is observed, which would undergo proton release, water dissociation, and ligand transfer to produce the open-cubane structure of the S0 state. Thereby, we theoretically identify the previously unknown structural isomerism in the S0 state that acts as the origin of the proposed structural flexibility prevailing in the cycle, which may be functionally important for nature's water oxidation catalysis.
Collapse
Affiliation(s)
- Yu Guo
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Lanlan He
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Yunxuan Ding
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Lars Kloo
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-10044, Stockholm, Sweden
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Johannes Messinger
- Department of Plant Physiology, Umeå University, Linnaeus väg 6 (KBC huset), SE-90187, Umeå, Sweden
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University, SE-75120, Uppsala, Sweden
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China.
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
14
|
Krysiak S, Burda K. The Effect of Removal of External Proteins PsbO, PsbP and PsbQ on Flash-Induced Molecular Oxygen Evolution and Its Biphasicity in Tobacco PSII. Curr Issues Mol Biol 2024; 46:7187-7218. [PMID: 39057069 PMCID: PMC11276211 DOI: 10.3390/cimb46070428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The oxygen evolution within photosystem II (PSII) is one of the most enigmatic processes occurring in nature. It is suggested that external proteins surrounding the oxygen-evolving complex (OEC) not only stabilize it and provide an appropriate ionic environment but also create water channels, which could be involved in triggering the ingress of water and the removal of O2 and protons outside the system. To investigate the influence of these proteins on the rate of oxygen release and the efficiency of OEC function, we developed a measurement protocol for the direct measurement of the kinetics of oxygen release from PSII using a Joliot-type electrode. PSII-enriched tobacco thylakoids were used in the experiments. The results revealed the existence of slow and fast modes of oxygen evolution. This observation is model-independent and requires no specific assumptions about the initial distribution of the OEC states. The gradual removal of exogenous proteins resulted in a slowdown of the rapid phase (~ms) of O2 release and its gradual disappearance while the slow phase (~tens of ms) accelerated. The role of external proteins in regulating the biphasicity and efficiency of oxygen release is discussed based on observed phenomena and current knowledge.
Collapse
Affiliation(s)
| | - Kvetoslava Burda
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland;
| |
Collapse
|
15
|
Debus RJ, Oyala PH. Independent Mutation of Two Bridging Carboxylate Ligands Stabilizes Alternate Conformers of the Photosynthetic O 2-Evolving Mn 4CaO 5 Cluster in Photosystem II. J Phys Chem B 2024; 128:3870-3884. [PMID: 38602496 DOI: 10.1021/acs.jpcb.4c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The O2-evolving Mn4CaO5 cluster in photosystem II is ligated by six carboxylate residues. One of these is D170 of the D1 subunit. This carboxylate bridges between one Mn ion (Mn4) and the Ca ion. A second carboxylate ligand is D342 of the D1 subunit. This carboxylate bridges between two Mn ions (Mn1 and Mn2). D170 and D342 are located on opposite sides of the Mn4CaO5 cluster. Recently, it was shown that the D170E mutation perturbs both the intricate networks of H-bonds that surround the Mn4CaO5 cluster and the equilibrium between different conformers of the cluster in two of its lower oxidation states, S1 and S2, while still supporting O2 evolution at approximately 50% the rate of the wild type. In this study, we show that the D342E mutation produces much the same alterations to the cluster's FTIR and EPR spectra as D170E, while still supporting O2 evolution at approximately 20% the rate of the wild type. Furthermore, the double mutation, D170E + D342E, behaves similarly to the two single mutations. We conclude that D342E alters the equilibrium between different conformers of the cluster in its S1 and S2 states in the same manner as D170E and perturbs the H-bond networks in a similar fashion. This is the second identification of a Mn4CaO5 metal ligand whose mutation influences the equilibrium between the different conformers of the S1 and S2 states without eliminating O2 evolution. This finding has implications for our understanding of the mechanism of O2 formation in terms of catalytically active/inactive conformations of the Mn4CaO5 cluster in its lower oxidation states.
Collapse
Affiliation(s)
- Richard J Debus
- Department of Biochemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Paul H Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91106, United States
| |
Collapse
|
16
|
de Lichtenberg C, Rapatskiy L, Reus M, Heyno E, Schnegg A, Nowaczyk MM, Lubitz W, Messinger J, Cox N. Assignment of the slowly exchanging substrate water of nature's water-splitting cofactor. Proc Natl Acad Sci U S A 2024; 121:e2319374121. [PMID: 38437550 PMCID: PMC10945779 DOI: 10.1073/pnas.2319374121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
Identifying the two substrate water sites of nature's water-splitting cofactor (Mn4CaO5 cluster) provides important information toward resolving the mechanism of O-O bond formation in Photosystem II (PSII). To this end, we have performed parallel substrate water exchange experiments in the S1 state of native Ca-PSII and biosynthetically substituted Sr-PSII employing Time-Resolved Membrane Inlet Mass Spectrometry (TR-MIMS) and a Time-Resolved 17O-Electron-electron Double resonance detected NMR (TR-17O-EDNMR) approach. TR-MIMS resolves the kinetics for incorporation of the oxygen-isotope label into the substrate sites after addition of H218O to the medium, while the magnetic resonance technique allows, in principle, the characterization of all exchangeable oxygen ligands of the Mn4CaO5 cofactor after mixing with H217O. This unique combination shows i) that the central oxygen bridge (O5) of Ca-PSII core complexes isolated from Thermosynechococcus vestitus has, within experimental conditions, the same rate of exchange as the slowly exchanging substrate water (WS) in the TR-MIMS experiments and ii) that the exchange rates of O5 and WS are both enhanced by Ca2+→Sr2+ substitution in a similar manner. In the context of previous TR-MIMS results, this shows that only O5 fulfills all criteria for being WS. This strongly restricts options for the mechanism of water oxidation.
Collapse
Affiliation(s)
- Casper de Lichtenberg
- Department of Chemistry- Ångström Laboratorium, Uppsala University, UppsalaS-75120, Sweden
- Department of Chemistry, Chemical Biological Centre, Umeå University, UmeåS-90187, Sweden
| | - Leonid Rapatskiy
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Michael Reus
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Eiri Heyno
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Alexander Schnegg
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Marc M. Nowaczyk
- Department of Plant Biochemistry, Ruhr-Universität Bochum, BochumD-44780, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Johannes Messinger
- Department of Chemistry- Ångström Laboratorium, Uppsala University, UppsalaS-75120, Sweden
- Department of Chemistry, Chemical Biological Centre, Umeå University, UmeåS-90187, Sweden
| | - Nicholas Cox
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
- Research School of Chemistry, Australian National University, Acton ACT2601, Australia
| |
Collapse
|
17
|
Liu K, Du L, Wang T. Coordination Synergy between Iridium Photosensitizers and Metal Nanoclusters Leading to Enhanced CO 2 Cycloaddition under Mild Conditions. Inorg Chem 2024; 63:4614-4627. [PMID: 38422546 DOI: 10.1021/acs.inorgchem.3c04181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The achievement of photocatalytic CO2 and epoxide cycloaddition under mild conditions such as room temperature and atmospheric pressure is important for green chemistry, which can be achieved by developing coordination synergies between catalysts and photosensitizers. In this context, we exploit the use of coordinate bonds to connect pyridine-appended iridium photosensitizers and catalysts for CO2 cycloaddition, which is systematically demonstrated by 1H nuclear magnetic resonance titration and X-ray photoelectron spectroscopic measurements. It is shown that the hybrid Ir(Cltpy)2/Mn2Cd4 photocatalytic system with coordination synergy exhibits excellent catalytic performance (yield ≈ 98.2%), which is 3.75 times higher than that of the comparative Ir(Cltpy-Ph)2/Mn2Cd4 system without coordination synergy (yield ≈ 26.2%), under mild conditions. The coordination between the Mn2Cd4 catalyst and the Ir(Cltpy)2 photosensitizer enhances the light absorption and photoresponse properties of the Mn2Cd4 catalyst. This has been confirmed through transient photocurrent, electrochemical impedance, and electron paramagnetic tests. Consequently, the efficiency of cycloaddition was enhanced by utilizing mild conditions.
Collapse
Affiliation(s)
- Kelong Liu
- School of Chemistry and Chemical Engineering & the Key Laboratory of Environment-Friendly Polymer Materials of Anhui Province, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| | - Longchao Du
- School of Chemistry and Chemical Engineering & the Key Laboratory of Environment-Friendly Polymer Materials of Anhui Province, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| | - Tingting Wang
- School of Chemistry and Chemical Engineering & the Key Laboratory of Environment-Friendly Polymer Materials of Anhui Province, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| |
Collapse
|
18
|
Singh A, Roy L. Evolution in the Design of Water Oxidation Catalysts with Transition-Metals: A Perspective on Biological, Molecular, Supramolecular, and Hybrid Approaches. ACS OMEGA 2024; 9:9886-9920. [PMID: 38463281 PMCID: PMC10918817 DOI: 10.1021/acsomega.3c07847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
Increased demand for a carbon-neutral sustainable energy scheme augmented by climatic threats motivates the design and exploration of novel approaches that reserve intermittent solar energy in the form of chemical bonds in molecules and materials. In this context, inspired by biological processes, artificial photosynthesis has garnered significant attention as a promising solution to convert solar power into chemical fuels from abundantly found H2O. Among the two redox half-reactions in artificial photosynthesis, the four-electron oxidation of water according to 2H2O → O2 + 4H+ + 4e- comprises the major bottleneck and is a severe impediment toward sustainable energy production. As such, devising new catalytic platforms, with traditional concepts of molecular, materials and biological catalysis and capable of integrating the functional architectures of the natural oxygen-evolving complex in photosystem II would certainly be a value-addition toward this objective. In this review, we discuss the progress in construction of ideal water oxidation catalysts (WOCs), starting with the ingenuity of the biological design with earth-abundant transition metal ions, which then diverges into molecular, supramolecular and hybrid approaches, blurring any existing chemical or conceptual boundaries. We focus on the geometric, electronic, and mechanistic understanding of state-of-the-art homogeneous transition-metal containing molecular WOCs and summarize the limiting factors such as choice of ligands and predominance of environmentally unrewarding and expensive noble-metals, necessity of high-valency on metal, thermodynamic instability of intermediates, and reversibility of reactions that create challenges in construction of robust and efficient water oxidation catalyst. We highlight how judicious heterogenization of atom-efficient molecular WOCs in supramolecular and hybrid approaches put forth promising avenues to alleviate the existing problems in molecular catalysis, albeit retaining their fascinating intrinsic reactivities. Taken together, our overview is expected to provide guiding principles on opportunities, challenges, and crucial factors for designing novel water oxidation catalysts based on a synergy between conventional and contemporary methodologies that will incite the expansion of the domain of artificial photosynthesis.
Collapse
Affiliation(s)
- Ajeet
Kumar Singh
- Institute of Chemical Technology
Mumbai−IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension
Centre, Bhubaneswar − 751013 India
| | - Lisa Roy
- Institute of Chemical Technology
Mumbai−IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension
Centre, Bhubaneswar − 751013 India
| |
Collapse
|
19
|
Edholm F, Nandy A, Reinhardt CR, Kastner DW, Kulik HJ. Protein3D: Enabling analysis and extraction of metal-containing sites from the Protein Data Bank with molSimplify. J Comput Chem 2024; 45:352-361. [PMID: 37873926 DOI: 10.1002/jcc.27242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/25/2023]
Abstract
Metalloenzymes catalyze a wide range of chemical transformations, with the active site residues playing a key role in modulating chemical reactivity and selectivity. Unlike smaller synthetic catalysts, a metalloenzyme active site is embedded in a larger protein, which makes interrogation of electronic properties and geometric features with quantum mechanical calculations challenging. Here we implement the ability to fetch crystallographic structures from the Protein Data Bank and analyze the metal binding sites in the program molSimplify. We show the usefulness of the newly created protein3D class to extract the local environment around non-heme iron enzymes containing a two histidine motif and prepare 372 structures for quantum mechanical calculations. Our implementation of protein3D serves to expand the range of systems molSimplify can be used to analyze and will enable high-throughput study of metal-containing active sites in proteins.
Collapse
Affiliation(s)
- Freya Edholm
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Clorice R Reinhardt
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - David W Kastner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
20
|
Tippner S, Lechner P, González L, Mai S. Interplay between protonation and Jahn-Teller effects in a manganese vanadium cubane water oxidation catalyst. J Chem Phys 2024; 160:084306. [PMID: 38411230 DOI: 10.1063/5.0189673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
Understanding the protonation behavior of metal-oxo water oxidation catalysts is essential to improve catalyst efficiency and long-term performance, as well as to tune their properties for specific applications. In this work, we explore the basicity and protonation effects of the highly active water oxidation catalyst [(Mn4O4) (V4O13) (OAc)3]3- using density functional theory. We computed the relative free energies of protonation in a systematic fashion for all symmetry-inequivalent O atoms, where the presence of multiple oxidation states from Mn4IV to Mn4III and a rich Jahn-Teller isomerism adds a significant amount of complexity. For high oxidation states, the compound behaves like some other polyoxometalates, showing protonation preferably at the terminal and μ2-bridging O atoms of the vanadate cap. However, upon reduction, eventually, the protonation preference switches to the cubane O atoms, mostly driven by a strong increase in basicity for O atoms located along the Jahn-Teller axes. Our work further evidences that protonation can potentially lead to several chemical transformations, like disproportionation and charge transfer to vanadium, dissociation of ligands, or the opening of the cubane structure. Our simulated UV/Vis absorption spectra additionally provide valuable insights about how the protonation of the catalyst could be tracked experimentally. Overall, our analysis highlights the complexity involved in the protonation of heterometallic polyoxometalate clusters.
Collapse
Affiliation(s)
- Simon Tippner
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, 1090 Vienna, Austria
| | - Patrick Lechner
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
- Vienna Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Sebastian Mai
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| |
Collapse
|
21
|
Drosou M, Pantazis DA. Comprehensive Evaluation of Models for Ammonia Binding to the Oxygen Evolving Complex of Photosystem II. J Phys Chem B 2024; 128:1333-1349. [PMID: 38299511 PMCID: PMC10875651 DOI: 10.1021/acs.jpcb.3c06304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
The identity and insertion pathway of the substrate oxygen atoms that are coupled to dioxygen by the oxygen-evolving complex (OEC) remains a central question toward understanding Nature's water oxidation mechanism. In several studies, ammonia has been used as a small "water analogue" to elucidate the pathway of substrate access to the OEC and to aid in determining which of the oxygen ligands of the tetramanganese cluster are substrates for O-O bond formation. On the basis of structural and spectroscopic investigations, five first-sphere binding modes of ammonia have been suggested, involving either substitution of an existing H2O/OH-/O2- group or addition as an extra ligand to a metal ion of the Mn4CaO5 cluster. Some of these modes, specifically the ones involving substitution, have already been subject to spectroscopy-oriented quantum chemical investigations, whereas more recent suggestions that postulate the addition of ammonia have not been examined so far with quantum chemistry for their agreement with spectroscopic data. Herein, we use a common structural framework and theoretical methodology to evaluate structural models of the OEC that represent all proposed modes of first-sphere ammonia interaction with the OEC in its S2 state. Criteria include energetic, magnetic, kinetic, and spectroscopic properties compared against available experimental EPR, ENDOR, ESEEM, and EDNMR data. Our results show that models featuring ammonia replacing one of the two terminal water ligands on Mn4 align best with experimental data, while they definitively exclude substitution of a bridging μ-oxo ligand as well as incorporation of ammonia as a sixth ligand on Mn1 or Mn4.
Collapse
Affiliation(s)
- Maria Drosou
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
- Inorganic
Chemistry Laboratory, National and Kapodistrian
University of Athens, Panepistimiopolis, Zografou 15771, Greece
| | - Dimitrios A. Pantazis
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
22
|
Amin M, Kaur D, Brudvig GW, Brooks BR. Mapping the Oxygens in the Oxygen-Evolving Complex of Photosystem II by Their Nucleophilicity Using Quantum Descriptors. J Chem Theory Comput 2024. [PMID: 38306696 DOI: 10.1021/acs.jctc.3c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
The oxygen-evolving complex (OEC) of Photosystem II catalyzes the water-splitting reaction using solar energy. Thus, understanding the reaction mechanism will inspire the design of biomimetic artificial catalysts that convert solar energy to chemical energy. Conceptual Density Functional Theory (CDFT) focuses on understanding the reactivity of molecules and the atomic contribution to the overall nucleophilicity and electrophilicity of the molecule using quantum descriptors. However, this method has not been applied to the OEC before. Here, we use Fukui functions and the dual descriptor to provide quantitative measures of the nucleophilicity and electrophilicity of oxygens in the OEC for different models in different S states. Our results show that the μ-oxo bridges connected to terminal Mn4 are nucleophilic, and those in the cube formed by Mn1, Mn2, and Mn3 are mostly electrophilic. The dual descriptors of the bridging oxygens in the OEC showed a similar reactivity to that of bridging oxygens in Mn model compounds. However, the terminal water W1, which is bound to Mn4, showed very strong reactivity in some of the S3 models. Thus, our calculations support the model that proposes the formation of the O2 molecule through nucleophilic attack by a terminal water.
Collapse
Affiliation(s)
- Muhamed Amin
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Department of Sciences, University College Groningen, University of Groningen, 9718 BG Groningen, The Netherlands
| | - Divya Kaur
- Department of Chemistry, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada L2S 3A1
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
23
|
Rummel F, Malcomson T, Barchenko M, O’Malley PJ. Insights into PSII's S 3Y Z• State: An Electronic and Magnetic Analysis. J Phys Chem Lett 2024; 15:499-506. [PMID: 38190694 PMCID: PMC10801681 DOI: 10.1021/acs.jpclett.3c03026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Using BS-DFT (broken-symmetry density functional theory), the electronic and magnetic properties of the S3YZ• state of photosystem II were investigated and compared to those of the S3 state. While the O5 oxo-O6 hydroxo species presents little difference between the two states, a previously identified [O5O6]3- exhibits reduced stabilization of the O5-O6 shared spin. This species is shown to have some coupling with the YZ• center through Mn1 and O6. Similarly, a peroxo species is found to exhibit significant exchange couplings between the YZ• center and the Mn cluster through Mn1. Mechanistic changes in O-O bond formation in S3YZ• are highlighted by analysis of IBOs (intrinsic bonding orbitals) showing deviation for Mn1 and O6 centered IBOs. This change in coupling interactions throughout the complex as a result of S3YZ• formation presents implications for the determination of the mechanism spanning the end of the S3 and the start of the S4 states, affecting both electron movement and oxygen bond formation.
Collapse
Affiliation(s)
- Felix Rummel
- Department
of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Thomas Malcomson
- School
of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, United Kingdom
| | - Maxim Barchenko
- Department
of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Patrick J. O’Malley
- Department
of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
24
|
Chrysina M, Drosou M, Castillo RG, Reus M, Neese F, Krewald V, Pantazis DA, DeBeer S. Nature of S-States in the Oxygen-Evolving Complex Resolved by High-Energy Resolution Fluorescence Detected X-ray Absorption Spectroscopy. J Am Chem Soc 2023; 145:25579-25594. [PMID: 37970825 PMCID: PMC10690802 DOI: 10.1021/jacs.3c06046] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 11/19/2023]
Abstract
Photosystem II, the water splitting enzyme of photosynthesis, utilizes the energy of sunlight to drive the four-electron oxidation of water to dioxygen at the oxygen-evolving complex (OEC). The OEC harbors a Mn4CaO5 cluster that cycles through five oxidation states Si (i = 0-4). The S3 state is the last metastable state before the O2 evolution. Its electronic structure and nature of the S2 → S3 transition are key topics of persisting controversy. Most spectroscopic studies suggest that the S3 state consists of four Mn(IV) ions, compared to the Mn(III)Mn(IV)3 of the S2 state. However, recent crystallographic data have received conflicting interpretations, suggesting either metal- or ligand-based oxidation, the latter leading to an oxyl radical or a peroxo moiety in the S3 state. Herein, we utilize high-energy resolution fluorescence detected (HERFD) X-ray absorption spectroscopy to obtain a highly resolved description of the Mn K pre-edge region for all S-states, paying special attention to use chemically unperturbed S3 state samples. In combination with quantum chemical calculations, we achieve assignment of specific spectroscopic features to geometric and electronic structures for all S-states. These data are used to confidently discriminate between the various suggestions concerning the electronic structure and the nature of oxidation events in all observable catalytic intermediates of the OEC. Our results do not support the presence of either peroxo or oxyl in the active configuration of the S3 state. This establishes Mn-centered storage of oxidative equivalents in all observable catalytic transitions and constrains the onset of the O-O bond formation until after the final light-driven oxidation event.
Collapse
Affiliation(s)
- Maria Chrysina
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstr. 34-36, Mülheim
an der Ruhr 45470, Germany
- Institute
of Nanoscience & Nanotechnology, NCSR “Demokritos”, Athens 15310, Greece
| | - Maria Drosou
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Rebeca G. Castillo
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstr. 34-36, Mülheim
an der Ruhr 45470, Germany
- Laboratory
of Ultrafast Spectroscopy (LSU) and Lausanne Centre for Ultrafast
Science, École Polytechnique Fédérale
de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Michael Reus
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstr. 34-36, Mülheim
an der Ruhr 45470, Germany
| | - Frank Neese
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Vera Krewald
- Department
of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 4, Darmstadt 64287, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Serena DeBeer
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstr. 34-36, Mülheim
an der Ruhr 45470, Germany
| |
Collapse
|
25
|
Bhowmick A, Simon PS, Bogacz I, Hussein R, Zhang M, Makita H, Ibrahim M, Chatterjee R, Doyle MD, Cheah MH, Chernev P, Fuller FD, Fransson T, Alonso-Mori R, Brewster AS, Sauter NK, Bergmann U, Dobbek H, Zouni A, Messinger J, Kern J, Yachandra VK, Yano J. Going around the Kok cycle of the water oxidation reaction with femtosecond X-ray crystallography. IUCRJ 2023; 10:642-655. [PMID: 37870936 PMCID: PMC10619448 DOI: 10.1107/s2052252523008928] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
The water oxidation reaction in photosystem II (PS II) produces most of the molecular oxygen in the atmosphere, which sustains life on Earth, and in this process releases four electrons and four protons that drive the downstream process of CO2 fixation in the photosynthetic apparatus. The catalytic center of PS II is an oxygen-bridged Mn4Ca complex (Mn4CaO5) which is progressively oxidized upon the absorption of light by the chlorophyll of the PS II reaction center, and the accumulation of four oxidative equivalents in the catalytic center results in the oxidation of two waters to dioxygen in the last step. The recent emergence of X-ray free-electron lasers (XFELs) with intense femtosecond X-ray pulses has opened up opportunities to visualize this reaction in PS II as it proceeds through the catalytic cycle. In this review, we summarize our recent studies of the catalytic reaction in PS II by following the structural changes along the reaction pathway via room-temperature X-ray crystallography using XFELs. The evolution of the electron density changes at the Mn complex reveals notable structural changes, including the insertion of OX from a new water molecule, which disappears on completion of the reaction, implicating it in the O-O bond formation reaction. We were also able to follow the structural dynamics of the protein coordinating with the catalytic complex and of channels within the protein that are important for substrate and product transport, revealing well orchestrated conformational changes in response to the electronic changes at the Mn4Ca cluster.
Collapse
Affiliation(s)
- Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Philipp S. Simon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Isabel Bogacz
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rana Hussein
- Department of Biology, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Miao Zhang
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Hiroki Makita
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mohamed Ibrahim
- Department of Biology, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Margaret D. Doyle
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mun Hon Cheah
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala SE 75120, Sweden
| | - Petko Chernev
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala SE 75120, Sweden
| | - Franklin D. Fuller
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Thomas Fransson
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm SE-10691, Sweden
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Aaron S. Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nicholas K. Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Uwe Bergmann
- Department of Physics, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Holger Dobbek
- Department of Biology, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Athina Zouni
- Department of Biology, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Johannes Messinger
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala SE 75120, Sweden
- Department of Chemistry, Umeå University, Umeå SE 90187, Sweden
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
26
|
Erbe A, Tesch MF, Rüdiger O, Kaiser B, DeBeer S, Rabe M. Operando studies of Mn oxide based electrocatalysts for the oxygen evolution reaction. Phys Chem Chem Phys 2023; 25:26958-26971. [PMID: 37585177 DOI: 10.1039/d3cp02384b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Inspired by photosystem II (PS II), Mn oxide based electrocatalysts have been repeatedly investigated as catalysts for the electrochemical oxygen evolution reaction (OER), the anodic reaction in water electrolysis. However, a comparison of the conditions in biological OER catalysed by the water splitting complex CaMn4Ox with the requirements for an electrocatalyst for industrially relevant applications reveals fundamental differences. Thus, a systematic development of artificial Mn-based OER catalysts requires both a fundamental understanding of the catalytic mechanisms as well as an evaluation of the practicality of the system for industrial scale applications. Experimentally, both aspects can be approached using in situ and operando methods including spectroscopy. This paper highlights some of the major challenges common to different operando investigation methods and recent insights gained with them. To this end, vibrational spectroscopy, especially Raman spectroscopy, absorption techniques in the bandgap region and operando X-ray spectroelectrochemistry (SEC), both in the hard and soft X-ray regime are particularly focused on here. Technical challenges specific to each method are discussed first, followed by challenges that are specific to Mn oxide based systems. Finally, recent in situ and operando studies are reviewed. This analysis shows that despite the technical and Mn specific challenges, three specific key features are common to most of the studied systems with significant OER activity: structural disorder, Mn oxidation states between III and IV, and the appearance of layered birnessite phases in the active regime.
Collapse
Affiliation(s)
- Andreas Erbe
- Department of Materials Science and Engineering, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Marc Frederic Tesch
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany.
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany.
| | - Bernhard Kaiser
- Surface Science Laboratory, Department of Materials- and Earth Sciences, Technical University Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany.
| | - Martin Rabe
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, Germany.
| |
Collapse
|
27
|
Kosaki S, Mino H. Molecular Structure Related to an S = 5/2 High-Spin S 2 State Manganese Cluster of Photosystem II Investigated by Q-Band Pulse EPR Spectroscopy. J Phys Chem B 2023. [PMID: 37463845 DOI: 10.1021/acs.jpcb.3c01656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The high-spin S2 state of the photosynthetic oxygen-evolving cluster Mn4CaO5, corresponding to the g = 4.1 signal for X-band electron paramagnetic resonance (EPR), was investigated using Q-band pulsed EPR, which detected a main peak at g = 3.10 and satellite peaks at 5.25, 4.55, and 2.80. We evaluated the spin state as the zero-field splitting of D = 0.465 cm-1 and E/D = 0.245 with S = 5/2. The temperature dependence of the T1 relaxation time revealed that the excited-state energy was 28.7 cm-1 higher than that of the S = 5/2 ground state. By comparing present quantum mechanical (QM) calculation models, a closed-cubane structure with the protonation state of two oxygens, W1 (= OH-) and W2 (= H2O), was the most probable structure for the S = 5/2 state. The three-pulse electron spin-echo envelope modulation (ESEEM) detected the nuclear signal, which was assigned to nitrogen as His332 ligated to the Mn1 ion. The obtained hyperfine constant for the nitrogen signal was significantly reduced from that in the S = 1/2 low-spin state. These results indicate that the S = 5/2 spin state arises from the closed-cubane structure.
Collapse
Affiliation(s)
- Shinya Kosaki
- Division of Materials Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, 464-8602 Nagoya, Aichi, Japan
| | - Hiroyuki Mino
- Division of Materials Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, 464-8602 Nagoya, Aichi, Japan
| |
Collapse
|
28
|
Shevela D, Kern JF, Govindjee G, Messinger J. Solar energy conversion by photosystem II: principles and structures. PHOTOSYNTHESIS RESEARCH 2023; 156:279-307. [PMID: 36826741 PMCID: PMC10203033 DOI: 10.1007/s11120-022-00991-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/01/2022] [Indexed: 05/23/2023]
Abstract
Photosynthetic water oxidation by Photosystem II (PSII) is a fascinating process because it sustains life on Earth and serves as a blue print for scalable synthetic catalysts required for renewable energy applications. The biophysical, computational, and structural description of this process, which started more than 50 years ago, has made tremendous progress over the past two decades, with its high-resolution crystal structures being available not only of the dark-stable state of PSII, but of all the semi-stable reaction intermediates and even some transient states. Here, we summarize the current knowledge on PSII with emphasis on the basic principles that govern the conversion of light energy to chemical energy in PSII, as well as on the illustration of the molecular structures that enable these reactions. The important remaining questions regarding the mechanism of biological water oxidation are highlighted, and one possible pathway for this fundamental reaction is described at a molecular level.
Collapse
Affiliation(s)
- Dmitry Shevela
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden.
| | - Jan F Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Johannes Messinger
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden.
- Molecular Biomimetics, Department of Chemistry - Ångström, Uppsala University, 75120, Uppsala, Sweden.
| |
Collapse
|
29
|
Chakarawet K, Debus RJ, Britt RD. Mutation of a metal ligand stabilizes the high-spin form of the S 2 state in the O 2-producing Mn 4CaO 5 cluster of photosystem II. PHOTOSYNTHESIS RESEARCH 2023; 156:309-314. [PMID: 36653579 DOI: 10.1007/s11120-023-00998-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/09/2023] [Indexed: 05/23/2023]
Abstract
The residue D1-D170 bridges Mn4 with the Ca ion in the O2-evolving Mn4CaO5 cluster of Photosystem II. Recently, the D1-D170E mutation was shown to substantially alter the Sn+1-minus-Sn FTIR difference spectra [Debus RJ (2021) Biochemistry 60:3841-3855]. The mutation was proposed to alter the equilibrium between different Jahn-Teller conformers of the S1 state such that (i) a different S1 state conformer is stabilized in D1-D170E than in wild-type and (ii) the S1 to S2 transition in D1-D170E produces a high-spin form of the S2 state rather than the low-spin form that is produced in wild-type. In this study, we employed EPR spectroscopy to test if a high-spin form of the S2 state is formed preferentially in D1-D170E PSII. Our data show that illumination of dark-adapted D1-D170E PSII core complexes does indeed produce a high-spin form of the S2 state rather than the low-spin multiline form that is produced in wild-type. This observation provides further experimental support for a change in the equilibrium between S state conformers in both the S1 and S2 states in a site-directed mutant that retains substantial O2 evolving activity.
Collapse
Affiliation(s)
- Khetpakorn Chakarawet
- Department of Chemistry, University of California, Davis, CA, 95616, USA
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Richard J Debus
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA.
| | - R David Britt
- Department of Chemistry, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
30
|
Drosou M, Comas-Vilà G, Neese F, Salvador P, Pantazis DA. Does Serial Femtosecond Crystallography Depict State-Specific Catalytic Intermediates of the Oxygen-Evolving Complex? J Am Chem Soc 2023; 145:10604-10621. [PMID: 37137865 DOI: 10.1021/jacs.3c00489] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Recent advances in serial femtosecond crystallography (SFX) of photosystem II (PSII), enabled by X-ray free electron lasers (XFEL), provided the first geometric models of distinct intermediates in the catalytic S-state cycle of the oxygen-evolving complex (OEC). These models are obtained by flash-advancing the OEC from the dark-stable state (S1) to more oxidized intermediates (S2 and S3), eventually cycling back to the most reduced S0. However, the interpretation of these models is controversial because geometric parameters within the Mn4CaO5 cluster of the OEC do not exactly match those expected from coordination chemistry for the spectroscopically verified manganese oxidation states of the distinct S-state intermediates. Here we focus on the first catalytic transition, S1 → S2, which represents a one-electron oxidation of the OEC. Combining geometric and electronic structure criteria, including a novel effective oxidation state approach, we analyze existing 1-flash (1F) SFX-XFEL crystallographic models that should depict the S2 state of the OEC. We show that the 1F/S2 equivalence is not obvious, because the Mn oxidation states and total unpaired electron counts encoded in these models are not fully consistent with those of a pure S2 state and with the nature of the S1 → S2 transition. Furthermore, the oxidation state definition in two-flashed (2F) structural models is practically impossible to elucidate. Our results advise caution in the extraction of electronic structure information solely from the literal interpretation of crystallographic models and call for re-evaluation of structural and mechanistic interpretations that presume exact correspondence of such models to specific catalytic intermediates of the OEC.
Collapse
Affiliation(s)
- Maria Drosou
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Gerard Comas-Vilà
- Institute of Computational Chemistry and Catalysis, Chemistry Department, University of Girona, Montilivi Campus, Girona, Catalonia 17003, Spain
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Pedro Salvador
- Institute of Computational Chemistry and Catalysis, Chemistry Department, University of Girona, Montilivi Campus, Girona, Catalonia 17003, Spain
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
31
|
Greife P, Schönborn M, Capone M, Assunção R, Narzi D, Guidoni L, Dau H. The electron-proton bottleneck of photosynthetic oxygen evolution. Nature 2023; 617:623-628. [PMID: 37138082 PMCID: PMC10191853 DOI: 10.1038/s41586-023-06008-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/23/2023] [Indexed: 05/05/2023]
Abstract
Photosynthesis fuels life on Earth by storing solar energy in chemical form. Today's oxygen-rich atmosphere has resulted from the splitting of water at the protein-bound manganese cluster of photosystem II during photosynthesis. Formation of molecular oxygen starts from a state with four accumulated electron holes, the S4 state-which was postulated half a century ago1 and remains largely uncharacterized. Here we resolve this key stage of photosynthetic O2 formation and its crucial mechanistic role. We tracked 230,000 excitation cycles of dark-adapted photosystems with microsecond infrared spectroscopy. Combining these results with computational chemistry reveals that a crucial proton vacancy is initally created through gated sidechain deprotonation. Subsequently, a reactive oxygen radical is formed in a single-electron, multi-proton transfer event. This is the slowest step in photosynthetic O2 formation, with a moderate energetic barrier and marked entropic slowdown. We identify the S4 state as the oxygen-radical state; its formation is followed by fast O-O bonding and O2 release. In conjunction with previous breakthroughs in experimental and computational investigations, a compelling atomistic picture of photosynthetic O2 formation emerges. Our results provide insights into a biological process that is likely to have occurred unchanged for the past three billion years, which we expect to support the knowledge-based design of artificial water-splitting systems.
Collapse
Affiliation(s)
- Paul Greife
- Department of Physics, Freie Universität, Berlin, Germany
| | | | - Matteo Capone
- Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila, L'Aquila, Italy
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Daniele Narzi
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Leonardo Guidoni
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Holger Dau
- Department of Physics, Freie Universität, Berlin, Germany.
| |
Collapse
|
32
|
Boussac A, Sellés J, Sugiura M. Energetics and proton release in photosystem II from Thermosynechococcus elongatus with a D1 protein encoded by either the psbA 2 or psbA 3 gene. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148979. [PMID: 37080330 DOI: 10.1016/j.bbabio.2023.148979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
In the cyanobacterium Thermosynechococcus elongatus, there are three psbA genes coding for the Photosystem II (PSII) D1 subunit that interacts with most of the main cofactors involved in the electron transfers. Recently, the 3D crystal structures of both PsbA2-PSII and PsbA3-PSII have been solved [Nakajima et al., J. Biol. Chem. 298 (2022) 102668.]. It was proposed that the loss of one hydrogen bond of PheD1 due to the D1-Y147F exchange in PsbA2-PSII resulted in a more negative Em of PheD1 in PsbA2-PSII when compared to PsbA3-PSII. In addition, the loss of two water molecules in the Cl-1 channel was attributed to the D1-P173M substitution in PsbA2-PSII. This exchange, by narrowing the Cl-1 proton channel, could be at the origin of a slowing down of the proton release. Here, we have continued the characterization of PsbA2-PSII by measuring the thermoluminescence from the S2QA-/DCMU charge recombination and by measuring proton release kinetics using time-resolved absorption changes of the dye bromocresol purple. It was found that i) the Em of PheD1-•/PheD1 was decreased by ~30 mV in PsbA2-PSII when compared to PsbA3-PSII and ii) the kinetics of the proton release into the bulk was significantly slowed down in PsbA2-PSII in the S2TyrZ• to S3TyrZ and S3TyrZ• → (S3TyrZ•)' transitions. This slowing down was partially reversed by the PsbA2/M173P mutation and induced by the PsbA3/P173M mutation thus confirming a role of the D1-173 residue in the egress of protons trough the Cl-1 channel.
Collapse
Affiliation(s)
- Alain Boussac
- I2BC, UMR CNRS 9198, CEA Saclay, 91191 Gif-sur-Yvette, France.
| | - Julien Sellés
- Institut de Biologie Physico-Chimique, UMR CNRS 7141 and Sorbonne Université, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Miwa Sugiura
- Proteo-Science Research Center, and Department of Chemistry, Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
33
|
Saito K, Nakao S, Ishikita H. Identification of the protonation and oxidation states of the oxygen-evolving complex in the low-dose X-ray crystal structure of photosystem II. FRONTIERS IN PLANT SCIENCE 2023; 14:1029674. [PMID: 37008466 PMCID: PMC10061019 DOI: 10.3389/fpls.2023.1029674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 02/10/2023] [Indexed: 06/19/2023]
Abstract
In photosystem II (PSII), the O3 and O4 sites of the Mn4CaO5 cluster form hydrogen bonds with D1-His337 and a water molecule (W539), respectively. The low-dose X-ray structure shows that these hydrogen bond distances differ between the two homogeneous monomer units (A and B) [Tanaka et al., J. Am Chem. Soc. 2017, 139, 1718]. We investigated the origin of the differences using a quantum mechanical/molecular mechanical (QM/MM) approach. QM/MM calculations show that the short O4-OW539 hydrogen bond (~2.5 Å) of the B monomer is reproduced when O4 is protonated in the S1 state. The short O3-NεHis337 hydrogen bond of the A monomer is due to the formation of a low-barrier hydrogen bond between O3 and doubly-protonated D1-His337 in the overreduced states (S-1 or S-2). It seems plausible that the oxidation state differs between the two monomer units in the crystal.
Collapse
Affiliation(s)
- Keisuke Saito
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
- Department of Applied Chemistry, The University of Tokyo, Tokyo, Japan
| | - Shu Nakao
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
- Department of Applied Chemistry, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
34
|
Schwiedrzik L, Rajkovic T, González L. Regeneration and Degradation in a Biomimetic Polyoxometalate Water Oxidation Catalyst. ACS Catal 2023; 13:3007-3019. [PMID: 36910868 PMCID: PMC9990072 DOI: 10.1021/acscatal.2c06301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/30/2023] [Indexed: 02/16/2023]
Abstract
Complete understanding of catalytic cycles is required to advance the design of water oxidation catalysts, but it is difficult to attain, due to the complex factors governing their reactivity and stability. In this study, we investigate the regeneration and degradation pathways of the highly active biomimetic water oxidation catalyst [Mn3+ 2Mn4+ 2V4O17(OAc)3]3-, thereby completing its catalytic cycle. Beginning with the deactivated species [Mn3+ 4V4O17(OAc)2]4- left over after O2 evolution, we scrutinize a network of reaction intermediates belonging to two alternative water oxidation cycles. We find that catalyst regeneration to the activated species [Mn4+ 4V4O17(OAc)2(OH)(H2O)]- proceeds via oxidation of each Mn center, with one water ligand being bound during the first oxidation step and a second water ligand being bound and deprotonated during the final oxidation step. ΔΔG values for this last oxidation are consistent with previous experimental results, while regeneration within an alternative catalytic cycle was found to be thermodynamically unfavorable. Extensive in silico sampling of catalyst structures also revealed two degradation processes: cubane opening and ligand dissociation, both of which have low barriers at highly reduced states of the catalyst due to the presence of Jahn-Teller effects. These mechanistic insights are expected to spur the development of more efficient and stable Mn cubane water oxidation catalysts.
Collapse
Affiliation(s)
- Ludwig Schwiedrzik
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Tina Rajkovic
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Leticia González
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| |
Collapse
|
35
|
Guo Y, Messinger J, Kloo L, Sun L. Alternative Mechanism for O 2 Formation in Natural Photosynthesis via Nucleophilic Oxo-Oxo Coupling. J Am Chem Soc 2023; 145:4129-4141. [PMID: 36763485 DOI: 10.1021/jacs.2c12174] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
O2 formation in photosystem II (PSII) is a vital event on Earth, but the exact mechanism remains unclear. The presently prevailing theoretical model is "radical coupling" (RC) involving a Mn(IV)-oxyl unit in an "open-cubane" Mn4CaO6 cluster, which is supported experimentally by the S3 state of cyanobacterial PSII featuring an additional Mn-bound oxygenic ligand. However, it was recently proposed that the major structural form of the S3 state of higher plants lacks this extra ligand, and that the resulting S4 state would feature instead a penta-coordinate dangler Mn(V)=oxo, covalently linked to a "closed-cubane" Mn3CaO4 cluster. For this proposal, we explore here a large number of possible pathways of O-O bond formation and demonstrate that the "nucleophilic oxo-oxo coupling" (NOOC) between Mn(V)=oxo and μ3-oxo is the only eligible mechanism in such a system. The reaction is facilitated by a specific conformation of the cluster and concomitant water binding, which is delayed compared to the RC mechanism. An energetically feasible process is described starting from the valid S4 state through the sequential formation of peroxide and superoxide, followed by O2 release and a second water insertion. The newly found mechanism is consistent with available experimental thermodynamic and kinetic data and thus a viable alternative pathway for O2 formation in natural photosynthesis, in particular for higher plants.
Collapse
Affiliation(s)
- Yu Guo
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Johannes Messinger
- Department of Chemistry, Umeå University, Linnaeus väg 6 (KBC huset), Umeå SE-90187, Sweden
- Molecular Biomimetics, Department of Chemistry─Ångström Laboratory, Uppsala University, Uppsala SE-75120, Sweden
| | - Lars Kloo
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm SE-10044, Sweden
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
36
|
Yang S, Li X, Li Y, Wang Y, Jin X, Qin L, Zhang W, Cao R. Effect of Proton Transfer on Electrocatalytic Water Oxidation by Manganese Phosphates. Angew Chem Int Ed Engl 2023; 62:e202215594. [PMID: 36342503 DOI: 10.1002/anie.202215594] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Indexed: 11/09/2022]
Abstract
The effect of proton transfer on water oxidation has hardly been measurably established in heterogeneous electrocatalysts. Herein, two isomorphous manganese phosphates (NH4 MnPO4 ⋅ H2 O and KMnPO4 ⋅ H2 O) were designed to form an ideal platform to study the effect of proton transfer on water oxidation. The hydrogen-bonding network in NH4 MnPO4 ⋅ H2 O has been proven to be solely responsible for its better activity. The differences of the proton transfer kinetics in the two materials indicate a fast proton hopping transfer process with a low activation energy in NH4 MnPO4 ⋅ H2 O. In addition, the hydrogen-bonding network can effectively promote the proton transfer between adjacent Mn sites and further stabilize the MnIII -OH intermediates. The faster proton transfer results in a higher proportion of zeroth-order in [H+ ] for OER. Thus, proton transfer-affected electrocatalytic water oxidation has been measurably observed to bring detailed insights into the mechanism of water oxidation.
Collapse
Affiliation(s)
- Shujiao Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Yifan Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Yabo Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Xiaotong Jin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Lingshuang Qin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| |
Collapse
|
37
|
Lubitz W, Pantazis DA, Cox N. Water oxidation in oxygenic photosynthesis studied by magnetic resonance techniques. FEBS Lett 2023; 597:6-29. [PMID: 36409002 DOI: 10.1002/1873-3468.14543] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
The understanding of light-induced biological water oxidation in oxygenic photosynthesis is of great importance both for biology and (bio)technological applications. The chemically difficult multistep reaction takes place at a unique protein-bound tetra-manganese/calcium cluster in photosystem II whose structure has been elucidated by X-ray crystallography (Umena et al. Nature 2011, 473, 55). The cluster moves through several intermediate states in the catalytic cycle. A detailed understanding of these intermediates requires information about the spatial and electronic structure of the Mn4 Ca complex; the latter is only available from spectroscopic techniques. Here, the important role of Electron Paramagnetic Resonance (EPR) and related double resonance techniques (ENDOR, EDNMR), complemented by quantum chemical calculations, is described. This has led to the elucidation of the cluster's redox and protonation states, the valence and spin states of the manganese ions and the interactions between them, and contributed substantially to the understanding of the role of the protein surrounding, as well as the binding and processing of the substrate water molecules, the O-O bond formation and dioxygen release. Based on these data, models for the water oxidation cycle are developed.
Collapse
Affiliation(s)
- Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim/Ruhr, Germany
| | | | - Nicholas Cox
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
38
|
Sirohiwal A, Pantazis DA. Functional Water Networks in Fully Hydrated Photosystem II. J Am Chem Soc 2022; 144:22035-22050. [PMID: 36413491 PMCID: PMC9732884 DOI: 10.1021/jacs.2c09121] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Water channels and networks within photosystem II (PSII) of oxygenic photosynthesis are critical for enzyme structure and function. They control substrate delivery to the oxygen-evolving center and mediate proton transfer at both the oxidative and reductive endpoints. Current views on PSII hydration are derived from protein crystallography, but structural information may be compromised by sample dehydration and technical limitations. Here, we simulate the physiological hydration structure of a cyanobacterial PSII model following a thorough hydration procedure and large-scale unconstrained all-atom molecular dynamics enabled by massively parallel simulations. We show that crystallographic models of PSII are moderately to severely dehydrated and that this problem is particularly acute for models derived from X-ray free electron laser (XFEL) serial femtosecond crystallography. We present a fully hydrated representation of cyanobacterial PSII and map all water channels, both static and dynamic, associated with the electron donor and acceptor sides. Among them, we describe a series of transient channels and the attendant conformational gating role of protein components. On the acceptor side, we characterize a channel system that is absent from existing crystallographic models but is likely functionally important for the reduction of the terminal electron acceptor plastoquinone QB. The results of the present work build a foundation for properly (re)evaluating crystallographic models and for eliciting new insights into PSII structure and function.
Collapse
|
39
|
Rogers C, Hardwick O, Corry TA, Rummel F, Collison D, Bowen AM, O’Malley PJ. Magnetic and Electronic Structural Properties of the S 3 State of Nature's Water Oxidizing Complex: A Combined Study in ELDOR-Detected Nuclear Magnetic Resonance Spectral Simulation and Broken-Symmetry Density Functional Theory. ACS OMEGA 2022; 7:41783-41788. [PMID: 36406523 PMCID: PMC9670293 DOI: 10.1021/acsomega.2c06151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
ELDOR-detected nuclear magnetic resonance (EDNMR) spectral simulations combined with broken-symmetry density functional theory (BS-DFT) calculations are used to obtain and to assign the 55Mn hyperfine coupling constants (hfcs) for modified forms of the water oxidizing complex in the penultimate S3 state of the water oxidation cycle. The study shows that an open cubane form of the core Mn4CaO6 cluster explains the magnetic properties of the dominant S = 3 species in all cases studied experimentally with no need to invoke a closed cubane intermediate possessing a distorted pentacoordinate Mn4 ion as recently suggested. EDNMR simulations found that both the experimental bandwidth and multinuclear transitions may alter relative EDNMR peak intensities, potentially leading to incorrect assignment of hfcs. The implications of these findings for the water oxidation mechanism are discussed.
Collapse
|
40
|
An overview of solid-state electron paramagnetic resonance spectroscopy for artificial fuel reactions. iScience 2022; 25:105360. [DOI: 10.1016/j.isci.2022.105360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
41
|
Rummel F, O’Malley PJ. How Nature Makes O 2: an Electronic Level Mechanism for Water Oxidation in Photosynthesis. J Phys Chem B 2022; 126:8214-8221. [PMID: 36206029 PMCID: PMC9589598 DOI: 10.1021/acs.jpcb.2c06374] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this paper, we combine broken symmetry density functional calculations and electron paramagnetic resonance analysis to obtain the electronic structure of the penultimate S3 state of nature's water-oxidizing complex and determine the electronic pathway of O-O bond formation. Analysis of the electronic structure changes along the reaction path shows that two spin crossovers, facilitated by the geometry and magnetism of the water-oxidizing complex, are used to provide a unique low-energy pathway. The pathway is facilitated via the formation and stabilization of the [O2]3- ion. This ion is formed between ligated deprotonated substrate waters, O5 and O6, and is stabilized by antiferromagnetic interaction with the Mn ions of the complex. Combining the computational, crystallographic, and spectroscopic data, we show that an equilibrium exists between the O5 oxo and O6 hydroxo forms with an S = 3 spin state and a deprotonated O6 form containing a two-center one-electron bond in [O5O6]3- which we identify as the form detected using crystallography. This form corresponds to an S = 6 spin state which we demonstrate gives rise to a low-intensity EPR spectrum compared with the accompanying S = 3 state, making its detection via EPR difficult and overshadowed by the S = 3 form. Simulations using 70% of the S = 6 component give rise to a superior fit to the experimental W-band EPR spectral envelope compared with an S = 3 only form. Analyses of the most recent X-ray emission spectroscopy first moment changes for solution and time-resolved crystal data are also shown to support the model. The computational, crystallographic, and spectroscopic data are shown to coalesce to the same picture of a predominant S = 6 species containing the first one-electron oxidation product of two water molecules, that is, [O5O6]3-. Progression of this form to the two-electron-oxidized peroxo and three-electron-oxidized superoxo forms, leading eventually to the evolution of triplet O2, is proposed to be the pathway nature adopts to oxidize water. The study reveals the key electronic, magnetic, and structural design features of nature's catalyst which facilitates water oxidation to O2 under ambient conditions.
Collapse
|
42
|
Khan MA, Sen UR, Khan S, Sengupta S, Shruti S, Naskar S. Manganese based Molecular Water Oxidation Catalyst: From Natural to Artificial Photosynthesis. COMMENT INORG CHEM 2022. [DOI: 10.1080/02603594.2022.2130273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | | | - Sahanwaj Khan
- Department of Chemistry, Birla Institute of Technology-Mesra, Ranchi, India
| | - Swaraj Sengupta
- Department of Chemical Engineering, Birla Institute of Technology-Mesra, Ranchi, India
| | - Sonal Shruti
- Department of Chemistry, Birla Institute of Technology-Mesra, Ranchi, India
| | - Subhendu Naskar
- Department of Chemistry, Birla Institute of Technology-Mesra, Ranchi, India
| |
Collapse
|
43
|
Xu B, Chen Y, Yao R, Chen C, Zhang C. Redox‐Induced Structural Change in Artificial Heterometallic‐Oxide Cluster Mimicking the Photosynthetic Oxygen‐Evolving Center. Chemistry 2022; 28:e202201456. [DOI: 10.1002/chem.202201456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Boran Xu
- Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China
- University of Chinese Academy of Sciences 100049 Beijing P. R. China
| | - Yang Chen
- Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China
- University of Chinese Academy of Sciences 100049 Beijing P. R. China
| | - Ruoqing Yao
- Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China
- University of Chinese Academy of Sciences 100049 Beijing P. R. China
| | - Changhui Chen
- Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China
- University of Chinese Academy of Sciences 100049 Beijing P. R. China
| | - Chunxi Zhang
- Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China
- University of Chinese Academy of Sciences 100049 Beijing P. R. China
| |
Collapse
|
44
|
Isobe H, Shoji M, Suzuki T, Shen JR, Yamaguchi K. Roles of the Flexible Primary Coordination Sphere of the Mn 4CaO x Cluster: What Are the Immediate Decay Products of the S3 State? J Phys Chem B 2022; 126:7212-7228. [DOI: 10.1021/acs.jpcb.2c02596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroshi Isobe
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Mitsuo Shoji
- Center for Computational Science, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Takayoshi Suzuki
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Kizashi Yamaguchi
- Institute for NanoScience Design, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
45
|
Li M, Liao RZ. Water Oxidation Catalyzed by a Bioinspired Tetranuclear Manganese Complex: Mechanistic Study and Prediction. CHEMSUSCHEM 2022; 15:e202200187. [PMID: 35610183 DOI: 10.1002/cssc.202200187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Density functional theory calculations were utilized to elucidate the water oxidation mechanism catalyzed by polyanionic tetramanganese complex a [MnIII 3 MnIV O3 (CH3 COO)3 (A-α-SiW9 O34 )]6- . Theoretical results indicated that catalytic active species 1 (Mn4 III,III,IV,IV ) was formed after O2 formation in the first turnover. From 1, three sequential proton-coupled electron transfer (PCET) oxidations led to the MnIV -oxyl radical 4 (Mn4 IV,IV,IV,IV -O⋅). Importantly, 4 had an unusual butterfly-shaped Mn2 O2 core for the two substrate-coordinated Mn sites, which facilitated O-O bond formation via direct coupling of the oxyl radical and the adjacent MnIV -coordinated hydroxide to produce the hydroperoxide intermediate Int1 (Mn4 III,IV,IV,IV -OOH). This step had an overall energy barrier of 24.9 kcal mol-1 . Subsequent PCET oxidation of Int1 to Int2 (Mn4 III,IV,IV,IV -O2 ⋅) enabled the O2 release in a facile process. Furthermore, apart from the Si-centered complex, computational study suggested that tetramanganese polyoxometalates with Ge, P, and S could also catalyze the water oxidation process, where those bearing P and S likely present higher activities.
Collapse
Affiliation(s)
- Man Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
46
|
Chen Y, Xu B, Yao R, Chen C, Zhang C. Mimicking the Oxygen-Evolving Center in Photosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:929532. [PMID: 35874004 PMCID: PMC9302449 DOI: 10.3389/fpls.2022.929532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The oxygen-evolving center (OEC) in photosystem II (PSII) of oxygenic photosynthetic organisms is a unique heterometallic-oxide Mn4CaO5-cluster that catalyzes water splitting into electrons, protons, and molecular oxygen through a five-state cycle (Sn, n = 0 ~ 4). It serves as the blueprint for the developing of the man-made water-splitting catalysts to generate solar fuel in artificial photosynthesis. Understanding the structure-function relationship of this natural catalyst is a great challenge and a long-standing issue, which is severely restricted by the lack of a precise chemical model for this heterometallic-oxide cluster. However, it is a great challenge for chemists to precisely mimic the OEC in a laboratory. Recently, significant advances have been achieved and a series of artificial Mn4XO4-clusters (X = Ca/Y/Gd) have been reported, which closely mimic both the geometric structure and the electronic structure, as well as the redox property of the OEC. These new advances provide a structurally well-defined molecular platform to study the structure-function relationship of the OEC and shed new light on the design of efficient catalysts for the water-splitting reaction in artificial photosynthesis.
Collapse
Affiliation(s)
- Yang Chen
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Boran Xu
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruoqing Yao
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changhui Chen
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Chunxi Zhang
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
47
|
Guo Y, Messinger J, Kloo L, Sun L. Reversible Structural Isomerization of Nature's Water Oxidation Catalyst Prior to O-O Bond Formation. J Am Chem Soc 2022; 144:11736-11747. [PMID: 35748306 PMCID: PMC9264352 DOI: 10.1021/jacs.2c03528] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Photosynthetic water
oxidation is catalyzed by a manganese–calcium
oxide cluster, which experiences five “S-states” during
a light-driven reaction cycle. The unique “distorted chair”-like
geometry of the Mn4CaO5(6) cluster shows structural
flexibility that has been frequently proposed to involve “open”
and “closed”-cubane forms from the S1 to
S3 states. The isomers are interconvertible in the S1 and S2 states, while in the S3 state,
the open-cubane structure is observed to dominate inThermosynechococcus elongatus (cyanobacteria) samples.
In this work, using density functional theory calculations, we go
beyond the S3+Yz state to the S3nYz• → S4+Yz step, and report for the first time
that the reversible isomerism, which is suppressed in the S3+Yz state, is fully recovered
in the ensuing S3nYz• state due to the proton release
from a manganese-bound water ligand. The altered coordination strength
of the manganese–ligand facilitates formation of the closed-cubane
form, in a dynamic equilibrium with the open-cubane form. This tautomerism
immediately preceding dioxygen formation may constitute the rate limiting
step for O2 formation, and exert a significant influence
on the water oxidation mechanism in photosystem II.
Collapse
Affiliation(s)
- Yu Guo
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Johannes Messinger
- Department of Chemistry, Umeå University, Linnaeus väg 6 (KBC huset), SE-90187 Umeå, Sweden.,Molecular Biomimetics, Department of Chemistry─Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| | - Lars Kloo
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
48
|
Sarngadharan P, Maity S, Kleinekathöfer U. Spectral densities and absorption spectra of the core antenna complex CP43 from photosystem II. J Chem Phys 2022; 156:215101. [DOI: 10.1063/5.0091005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Besides absorbing light, the core antenna complex CP43 of photosystem II is of great importance in transferring excitation energy from the antenna complexes to the reaction center. Excitation energies, spectral densities, and linear absorption spectra of the complex have been evaluated by a multiscale approach. In this scheme, quantum mechanics/molecular mechanics molecular dynamics simulations are performed employing the parameterized density functional tight binding (DFTB) while the time-dependent long-range-corrected DFTB scheme is applied for the excited state calculations. The obtained average spectral density of the CP43 complex shows a very good agreement with experimental results. Moreover, the excitonic Hamiltonian of the system along with the computed site-dependent spectral densities was used to determine the linear absorption. While a Redfield-like approximation has severe shortcomings in dealing with the CP43 complex due to quasi-degenerate states, the non-Markovian full second-order cumulant expansion formalism is able to overcome the drawbacks. Linear absorption spectra were obtained, which show a good agreement with the experimental counterparts at different temperatures. This study once more emphasizes that by combining diverse techniques from the areas of molecular dynamics simulations, quantum chemistry, and open quantum systems, it is possible to obtain first-principle results for photosynthetic complexes, which are in accord with experimental findings.
Collapse
Affiliation(s)
- Pooja Sarngadharan
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Sayan Maity
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
49
|
Allgöwer F, Gamiz-Hernandez AP, Rutherford AW, Kaila VRI. Molecular Principles of Redox-Coupled Protonation Dynamics in Photosystem II. J Am Chem Soc 2022; 144:7171-7180. [PMID: 35421304 PMCID: PMC9052759 DOI: 10.1021/jacs.1c13041] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Photosystem II (PSII) catalyzes light-driven water oxidization, releasing O2 into the atmosphere and transferring the electrons for the synthesis of biomass. However, despite decades of structural and functional studies, the water oxidation mechanism of PSII has remained puzzling and a major challenge for modern chemical research. Here, we show that PSII catalyzes redox-triggered proton transfer between its oxygen-evolving Mn4O5Ca cluster and a nearby cluster of conserved buried ion-pairs, which are connected to the bulk solvent via a proton pathway. By using multi-scale quantum and classical simulations, we find that oxidation of a redox-active Tyrz (Tyr161) lowers the reaction barrier for the water-mediated proton transfer from a Ca2+-bound water molecule (W3) to Asp61 via conformational changes in a nearby ion-pair (Asp61/Lys317). Deprotonation of this W3 substrate water triggers its migration toward Mn1 to a position identified in recent X-ray free-electron laser (XFEL) experiments [Ibrahim et al. Proc. Natl. Acad. Sci. USA 2020, 117, 12,624-12,635]. Further oxidation of the Mn4O5Ca cluster lowers the proton transfer barrier through the water ligand sphere of the Mn4O5Ca cluster to Asp61 via a similar ion-pair dissociation process, while the resulting Mn-bound oxo/oxyl species leads to O2 formation by a radical coupling mechanism. The proposed redox-coupled protonation mechanism shows a striking resemblance to functional motifs in other enzymes involved in biological energy conversion, with an interplay between hydration changes, ion-pair dynamics, and electric fields that modulate the catalytic barriers.
Collapse
Affiliation(s)
- Friederike Allgöwer
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Ana P Gamiz-Hernandez
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - A William Rutherford
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
50
|
Relative energies among S3 intermediates in the photosystem II revealed by DLPNO coupled cluster and hybrid DFT calculations. Possible pathways of water insertion in the S2 to S3 transition. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|