1
|
Stathoulopoulos A, König CS, Ramachandran S, Balabani S. Statin-treated RBC dynamics in a microfluidic porous-like network. Microvasc Res 2025; 158:104765. [PMID: 39571747 DOI: 10.1016/j.mvr.2024.104765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
The impact of therapeutic interventions on red blood cell (RBC) deformability and microscale transport is investigated, using statins as an exemplar. Human RBCs were treated in vitro with two commonly prescribed statins, atorvastatin and rosuvastatin, at clinically relevant concentrations. Changes in RBC deformability were quantified using a microfluidic-based ektacytometer and expressed in terms of the elongation index. Dilute suspensions of the statin-treated RBCs were then perfused through a microfluidic pillar array, at a constant flow rate and negligible inertia, and imaged. Particle Tracking Velocimetry (PTV) was applied to track RBCs, identify preferential paths and estimate their velocities, whereas image processing was used to estimate cell dynamics, perfusion metrics and distributions. The findings were compared against those of healthy, untreated cells. Statins enhanced RBC deformability in agreement with literature. The extent of enhancement was found to be statin-dependent. The softer statin-treated cells were found to flow in straight, less tortuous paths, spend more time inside the pillar array and exhibit lower velocities compared to healthy RBCs, attributed to their enhanced deformation and longer shape recovery time upon impact with the array posts. The in vitro microfluidic approach demonstrated here may serve as a monitoring tool to personalise and maximise the outcome of a therapeutic treatment.
Collapse
Affiliation(s)
| | - Carola S König
- Department of Mechanical and Aerospace Engineering, Brunel University of London, Uxbridge, UK
| | - Sudarshan Ramachandran
- Department of Mechanical and Aerospace Engineering, Brunel University of London, Uxbridge, UK; Department of Clinical Biochemistry, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Department of Clinical Biochemistry, University Hospitals of North Midlands, Staffordshire, UK; Institute for Science and Technology in Medicine, Keele University/Faculty of Health Sciences, Staffordshire University, Staffordshire, UK
| | - Stavroula Balabani
- FluME, Department of Mechanical Engineering, University College London, London, UK; UCL Hawkes Institute, University College London, London, UK.
| |
Collapse
|
2
|
Kriebel J, Gonçalves IM, Baptista V, Veiga MI, Minas G, Lima R, Catarino SO. Extensional flow for assessing the effect of nanocarriers on the mechanical deformability of red blood cells. EXPERIMENTAL THERMAL AND FLUID SCIENCE 2023; 146:110931. [DOI: 10.1016/j.expthermflusci.2023.110931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Grigorev GV, Lebedev AV, Wang X, Qian X, Maksimov GV, Lin L. Advances in Microfluidics for Single Red Blood Cell Analysis. BIOSENSORS 2023; 13:117. [PMID: 36671952 PMCID: PMC9856164 DOI: 10.3390/bios13010117] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/04/2022] [Accepted: 12/23/2022] [Indexed: 05/24/2023]
Abstract
The utilizations of microfluidic chips for single RBC (red blood cell) studies have attracted great interests in recent years to filter, trap, analyze, and release single erythrocytes for various applications. Researchers in this field have highlighted the vast potential in developing micro devices for industrial and academia usages, including lab-on-a-chip and organ-on-a-chip systems. This article critically reviews the current state-of-the-art and recent advances of microfluidics for single RBC analyses, including integrated sensors and microfluidic platforms for microscopic/tomographic/spectroscopic single RBC analyses, trapping arrays (including bifurcating channels), dielectrophoretic and agglutination/aggregation studies, as well as clinical implications covering cancer, sepsis, prenatal, and Sickle Cell diseases. Microfluidics based RBC microarrays, sorting/counting and trapping techniques (including acoustic, dielectrophoretic, hydrodynamic, magnetic, and optical techniques) are also reviewed. Lastly, organs on chips, multi-organ chips, and drug discovery involving single RBC are described. The limitations and drawbacks of each technology are addressed and future prospects are discussed.
Collapse
Affiliation(s)
- Georgii V. Grigorev
- Data Science and Information Technology Research Center, Tsinghua Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
- Mechanical Engineering Department, University of California in Berkeley, Berkeley, CA 94720, USA
- School of Information Technology, Cherepovets State University, 162600 Cherepovets, Russia
| | - Alexander V. Lebedev
- Machine Building Department, Bauman Moscow State University, 105005 Moscow, Russia
| | - Xiaohao Wang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiang Qian
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - George V. Maksimov
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Physical metallurgy Department, Federal State Autonomous Educational Institution of Higher Education National Research Technological University “MISiS”, 119049 Moscow, Russia
| | - Liwei Lin
- Mechanical Engineering Department, University of California in Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Kang YJ. Biosensing of Haemorheological Properties Using Microblood Flow Manipulation and Quantification. SENSORS (BASEL, SWITZERLAND) 2022; 23:408. [PMID: 36617006 PMCID: PMC9823650 DOI: 10.3390/s23010408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The biomechanical properties of blood have been used to detect haematological diseases and disorders. The simultaneous measurement of multiple haemorheological properties has been considered an important aspect for separating the individual contributions of red blood cells (RBCs) and plasma. In this study, three haemorheological properties (viscosity, time constant, and RBC aggregation) were obtained by analysing blood flow, which was set to a square-wave profile (steady and transient flow). Based on a simplified differential equation derived using a discrete circuit model, the time constant for viscoelasticity was obtained by solving the governing equation rather than using the curve-fitting technique. The time constant (λ) varies linearly with respect to the interface in the coflowing channel (β). Two parameters (i.e., average value: <λ>, linear slope: dλdβ) were newly suggested to effectively represent linearly varying time constant. <λ> exhibited more consistent results than dλdβ. To detect variations in the haematocrit in blood, we observed that the blood viscosity (i.e., steady flow) is better than the time constant (i.e., transient flow). The blood viscosity and time constant exhibited significant differences for the hardened RBCs. The present method was then successfully employed to detect continuously varying haematocrit resulting from RBC sedimentation in a driving syringe. The present method can consistently detect variations in blood in terms of the three haemorheological properties.
Collapse
Affiliation(s)
- Yang Jun Kang
- Department of Mechanical Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| |
Collapse
|
5
|
Kang YJ, Serhrouchni S, Makhro A, Bogdanova A, Lee SS. Simple Assessment of Red Blood Cell Deformability Using Blood Pressure in Capillary Channels for Effective Detection of Subpopulations in Red Blood Cells. ACS OMEGA 2022; 7:38576-38588. [PMID: 36340168 PMCID: PMC9631408 DOI: 10.1021/acsomega.2c04027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Assessment of red blood cell (RBC) deformability as a biomarker requires expensive equipment to induce and monitor deformation. In this study, we present a simple method for quantifying RBC deformability. We designed a microfluidic channel consisting of a micropillar channel and a coflowing channel connected in series. When blood (loading volume = 100 μL) was injected continuously into the device under constant pressure (1 bar), we monitored the boundary position of the blood and the reference flow in the coflowing channel. A decrease in the deformability of RBCs results in a growing pressure drop in the micropillar channel, which is mirrored by a decrease in blood pressure in the coflowing channel. Analysis of this temporal variation in blood pressure allowed us to define the clogging index (CI) as a new marker of RBC deformability. As a result of the analytical study and numerical simulation, we have demonstrated that the coflowing channel may serve as a pressure sensor that allows the measurement of blood pressure with accuracy. We have shown experimentally that a higher hematocrit level (i.e., more than 40%) does not have a substantial influence on CI. The CI tended to increase to a higher degree in glutaraldehyde-treated hardened RBCs. Furthermore, we were able to resolve the difference in deformability of RBCs between two different RBC density subfractions in human blood. In summary, our approach using CI provides reliable information on the deformability of RBCs, which is comparable to the readouts obtained by ektacytometry. We believe that our microfluidic device would be a useful tool for evaluating the deformability of RBCs, which does not require expensive instruments (e.g., high-speed camera) or time-consuming micro-PIV analysis.
Collapse
Affiliation(s)
- Yang Jun Kang
- Department
of Mechanical Engineering, Chosun University, Gwangju501-759, Republic of Korea
| | - Sami Serhrouchni
- Institute
of Veterinary Physiology, University of
Zürich, Zürich8057, Switzerland
| | - Asya Makhro
- Institute
of Veterinary Physiology, University of
Zürich, Zürich8057, Switzerland
| | - Anna Bogdanova
- Institute
of Veterinary Physiology, University of
Zürich, Zürich8057, Switzerland
- Center
for Clinical Studies (ZKS), Vetsuisse Faculty, University of Zürich, Zürich8006, Switzerland
| | - Sung Sik Lee
- Scientific
Center for Optical and Electron Microscopy, ETH Zürich, Zürich8093, Switzerland
- Department
of Biology, Institute of Biochemistry, ETH
Zürich, Zürich8093, Switzerland
| |
Collapse
|
6
|
Stathoulopoulos A, Passos A, Balabani S. Flows of healthy and hardened RBC suspensions through a micropillar array. Med Eng Phys 2022; 107:103874. [DOI: 10.1016/j.medengphy.2022.103874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022]
|
7
|
Chen Y, Guo K, Jiang L, Zhu S, Ni Z, Xiang N. Microfluidic deformability cytometry: A review. Talanta 2022; 251:123815. [DOI: 10.1016/j.talanta.2022.123815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 10/15/2022]
|
8
|
Chugh V, Vijaya Krishna K, Pandit A. Cell Membrane-Coated Mimics: A Methodological Approach for Fabrication, Characterization for Therapeutic Applications, and Challenges for Clinical Translation. ACS NANO 2021; 15:17080-17123. [PMID: 34699181 PMCID: PMC8613911 DOI: 10.1021/acsnano.1c03800] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/13/2021] [Indexed: 05/04/2023]
Abstract
Cell membrane-coated (CMC) mimics are micro/nanosystems that combine an isolated cell membrane and a template of choice to mimic the functions of a cell. The design exploits its physicochemical and biological properties for therapeutic applications. The mimics demonstrate excellent biological compatibility, enhanced biointerfacing capabilities, physical, chemical, and biological tunability, ability to retain cellular properties, immune escape, prolonged circulation time, and protect the encapsulated drug from degradation and active targeting. These properties and the ease of adapting them for personalized clinical medicine have generated a significant research interest over the past decade. This review presents a detailed overview of the recent advances in the development of cell membrane-coated (CMC) mimics. The primary focus is to collate and discuss components, fabrication methodologies, and the significance of physiochemical and biological characterization techniques for validating a CMC mimic. We present a critical analysis of the two main components of CMC mimics: the template and the cell membrane and mapped their use in therapeutic scenarios. In addition, we have emphasized on the challenges associated with CMC mimics in their clinical translation. Overall, this review is an up to date toolbox that researchers can benefit from while designing and characterizing CMC mimics.
Collapse
Affiliation(s)
| | | | - Abhay Pandit
- CÚRAM, SFI Research
Centre for Medical Devices, National University
of Ireland Galway, Galway H91 W2TY, Ireland
| |
Collapse
|
9
|
González I, Andrés RR, Pinto A, Carreras P. Influence of Hydrodynamics and Hematocrit on Ultrasound-Induced Blood Plasmapheresis. MICROMACHINES 2020; 11:E751. [PMID: 32751982 PMCID: PMC7463700 DOI: 10.3390/mi11080751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022]
Abstract
Acoustophoretic blood plasma separation is based on cell enrichment processes driven by acoustic radiation forces. The combined influence of hematocrit and hydrodynamics has not yet been quantified in the literature for these processes acoustically induced on blood. In this paper, we present an experimental study of blood samples exposed to ultrasonic standing waves at different hematocrit percentages and hydrodynamic conditions, in order to enlighten their individual influence on the acoustic response of the samples. The experiments were performed in a glass capillary (700 µm-square cross section) actuated by a piezoelectric ceramic at a frequency of 1.153 MHz, hosting 2D orthogonal half-wavelength resonances transverse to the channel length, with a single-pressure-node along its central axis. Different hematocrit percentages Hct = 2.25%, 4.50%, 9.00%, and 22.50%, were tested at eight flow rate conditions of Q = 0:80 µL/min. Cells were collected along the central axis driven by the acoustic radiation force, releasing plasma progressively free of cells. The study shows an optimal performance in a flow rate interval between 20 and 80 µL/min for low hematocrit percentages Hct ≤ 9.0%, which required very short times close to 10 s to achieve cell-free plasma in percentages over 90%. This study opens new lines for low-cost personalized blood diagnosis.
Collapse
Affiliation(s)
- Itziar González
- Group of Ultrasonic Resonators RESULT, ITEFI, National Research Council of Spain CSIC 1, 28006 Madrid, Spain; (R.R.A.); (A.P.); (P.C.)
| | | | | | | |
Collapse
|
10
|
Mena SE, de Beer MP, McCormick J, Habibi N, Lahann J, Burns MA. Variable-height channels for microparticle characterization and display. LAB ON A CHIP 2020; 20:2510-2519. [PMID: 32530023 DOI: 10.1039/d0lc00320d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Characterizing and isolating microparticles of different sizes is often desirable and essential for biological analysis. In this work, we present a new and straightforward technique to fabricate variable-height glass microchannels for size-based passive trapping of microparticles. The fabrication technique uses controlled non-uniform exposure to an etchant solution to create channels of arbitrary height that vary in a predetermined way from the inlet to the outlet. Channels that vary from 1 μm to over 20 μm in height along a length of approximately 6 cm are shown to effectively and reproducibly separate particles by size including particles whose diameters differ by less than 100 nm when the standard deviation in size is less than 0.66 μm. Additionally, healthy red blood cells and red blood cells chemically modified with glutaraldehyde to reduce their deformability were introduced into different channels. The healthy cells can flow into shallower heights, while the less deformable ones are trapped at deeper heights. The macroscopic visualization of microparticle separation in these devices in addition to their ease of use, simple fabrication, low cost, and small size suggest their viability in the final detection step of many bead-based assay protocols.
Collapse
Affiliation(s)
- Sarah E Mena
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Robidoux J, Laforce-Lavoie A, Charette SJ, Shevkoplyas SS, Yoshida T, Lewin A, Brouard D. Development of a flow standard to enable highly reproducible measurements of deformability of stored red blood cells in a microfluidic device. Transfusion 2020; 60:1032-1041. [PMID: 32237236 PMCID: PMC9701565 DOI: 10.1111/trf.15770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Great deformability allows red blood cells (RBCs) to flow through narrow capillaries in tissues. A number of microfluidic devices with capillary-like microchannels have been developed to monitor storage-related impairment of RBC deformability during blood banking operations. This proof-of-concept study describes a new method to standardize and improve reproducibility of the RBC deformability measurements using one of these devices. STUDY DESIGN AND METHODS The rate of RBC flow through the microfluidic capillary network of the microvascular analyzer (MVA) device made of polydimethylsiloxane was measured to assess RBC deformability. A suspension of microbeads in a solution of glycerol in phosphate-buffered saline was developed to be used as an internal flow rate reference alongside RBC samples in the same device. RBC deformability and other in vitro quality markers were assessed weekly in six leukoreduced RBC concentrates (RCCs) dispersed in saline-adenine-glucose-mannitol additive solution and stored over 42 days at 4°C. RESULTS The use of flow reference reduced device-to-device measurement variability from 10% to 2%. Repeated-measure analysis using the generalized estimating equation (GEE) method showed a significant monotonic decrease in relative RBC flow rate with storage from Week 0. By the end of storage, relative RBC flow rate decreased by 22 ± 6% on average. CONCLUSIONS The suspension of microbeads was successfully used as a flow reference to increase reproducibility of RBC deformability measurements using the MVA. Deformability results suggest an early and late aging phase for stored RCCs, with significant decreases between successive weeks suggesting a highly sensitive measurement method.
Collapse
Affiliation(s)
| | | | - Steve J. Charette
- Biochemistry, Microbiology and Bioinformatics Department, Université Laval, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
12
|
Kang YJ. Simultaneous measurement method of erythrocyte sedimentation rate and erythrocyte deformability in resource-limited settings. Physiol Meas 2020; 41:025009. [PMID: 32000147 DOI: 10.1088/1361-6579/ab71f3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The individual effects of plasma and red blood cells (RBCs) on the biophysical properties of blood can be monitored by measuring the erythrocyte sedimentation rate (ESR) and RBC deformability simultaneously. However, the previous methods require bulky and expensive facilities (i.e. microscope, high-speed camera, and syringe pump) to deliver blood or capture blood flows. APPROACH To resolve these issues, a simple method for sequential measurement of the ESR and RBC deformability is demonstrated by quantifying the cell-free volume (V CF ), cell-rich volume (V CR ), and blood volume (V B ) inside an air-compressed syringe (ACS). A microfluidic device consists of multiple micropillar channels, an inlet, and outlet. After the ACS is filled with air (V air = 0.4 ml) and a blood sample (V B = 0.6 ml, hematocrit = 30%) sequentially, the ACS is fitted into the inlet. The cavity inside the ACS is compressed to V comp = 0.4 ml after closing the outlet with a stopper. A smartphone camera is employed to capture variations in the V CF , V CR , and V B inside the ACS. The ESR index suggested in this study (ESR PM ) is obtained by dividing the V CF (t = t 1) with an elapse of t 1. By removing the stopper, ΔV B (ΔV B = V B [t = t 1] - V B ) is obtained and fitted as a two-term exponential model ([Formula: see text]. As a performance demonstration, the proposed method is employed to detect an ESR-enhanced blood sample, homogeneous hardened blood sample, and heterogeneous blood sample. MAIN RESULTS From the experimental results, it is found that the proposed method has the ability to detect various bloods by quantifying the ESR PM and two coefficients (a, b) simultaneously. SIGNIFICANCE In conclusion, the present method can be effectively used to measure the ESR and RBC deformability in resource-limited settings.
Collapse
Affiliation(s)
- Yang Jun Kang
- Department of Mechanical Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| |
Collapse
|
13
|
Kim BJ, Lee YS, Zhbanov A, Yang S. A physiometer for simultaneous measurement of whole blood viscosity and its determinants: hematocrit and red blood cell deformability. Analyst 2019; 144:3144-3157. [PMID: 30942211 DOI: 10.1039/c8an02135j] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a microfluidic-based physiometer capable of measuring whole blood viscosity, hematocrit, and red blood cell (RBC) deformability on a chip is introduced. The physiometer consists of two major parts: a hydrodynamic component for whole blood viscosity measurement and an electronic component for hematocrit and RBC deformability measurement. In the hydrodynamic component, the whole blood is infused with phosphate buffered saline as a reference fluid for estimation of the whole blood viscosity. At a given flow rate, ten sets of whole blood viscosity readings are successfully obtained over a wide range of shear rates; this is achieved via a series of geometrically optimized microchannel arrays. In the electronic component, analysis of the whole blood impedance spectrum under flowing conditions reveals the electrical characteristics of the blood: the cytoplasm resistance (Rcytoplsm), plasma resistance (Rplasma), and RBC membrane capacitance (constant phase element). The hematocrit is estimated from Rcytoplsm and Rplasma, while the RBC deformation index is determined from the membrane capacitance change of the RBC. Each unique function is experimentally demonstrated and compared to the corresponding gold standard method. The whole blood viscosity measured using the physiometer is 0.8 ± 1.4% in normalized difference compared to that using a rotational cone-and-plate viscometer. For the hematocrit measurement, the coefficient of variation for the physiometer ranges from 0.3 to 1.2% which is lower than the one obtained from centrifugation. In the deformability measurement, there is a strong linear correlation (R2 = 0.97) between the deformation index acquired by image processing and the change in the membrane capacitance acquired by using the physiometer. The effects of the hematocrit and RBC deformability on the whole blood viscosity are also demonstrated. For simultaneous and reliable measurement on a chip, a physiometer equipped with a temperature-control system is prepared. Lab-made software enables the measurement of the three target indices and the temperature control in an automated manner. By using this system, the temperature is controlled to 36.9 ± 0.2 °C which greatly matches with the target temperature (37.0 °C) and it is varied from 25 °C to 43 °C. The developed physiometer is potentially applicable for a comprehensive analysis of biophysical indices in whole blood.
Collapse
Affiliation(s)
- Byung Jun Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
| | | | | | | |
Collapse
|
14
|
Xing F, Xun S, Zhu Y, Hu F, Drevenšek-Olenik I, Zhang X, Pan L, Xu J. Microfluidic assemblies designed for assessment of drug effects on deformability of human erythrocytes. Biochem Biophys Res Commun 2019; 512:303-309. [PMID: 30890334 DOI: 10.1016/j.bbrc.2019.03.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
Extreme deformability of human erythrocytes is a prerequisite for their ability to squeeze through narrow capillaries of the blood microcirculation system. Various drugs can modify this deformability and consequently provoke circulation problems. We demonstrate that microfluidic assemblies are very convenient platforms for in vitro study of the associated processes. Two types of microfluidic channels were designed to quantitatively investigate modifications of erythrocyte deformability induced by hydrogen peroxide, ethanol and pentoxifylline based on transit velocity measurements. With a high sensitivity our microfluidic assemblies show that hydrogen peroxide decreases erythrocyte deformability in a dose-dependent manner. Then, results on ethanol resolve a biphasic nature of this reactant on the deformability of single erythrocyte cells. Results on pentoxifylline provide evidence that, similar to ethanol, also this medical drug has a double-sided effect on the erythrocyte deformability, i.e. increasing the deformability at low concentrations, while decreasing it at higher ones. Taken together, our microfluidic designs propose a potent measurement method for the erythrocyte deformability, as well as providing a perspective to evaluate effects of drugs on it.
Collapse
Affiliation(s)
- Fulin Xing
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, 300071, China
| | - Shuang Xun
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, 300071, China
| | - Yanhan Zhu
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, 300071, China
| | - Fen Hu
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, 300071, China
| | - Irena Drevenšek-Olenik
- Faculty of Mathematics and Physics, University of Ljubljana and J. Stefan Institute, Ljubljana, SI1000, Slovenia
| | - Xinzheng Zhang
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, 300071, China
| | - Leiting Pan
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, 300071, China.
| | - Jingjun Xu
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, 300071, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
| |
Collapse
|
15
|
Kang YJ, Lee SJ. In vitro and ex vivo measurement of the biophysical properties of blood using microfluidic platforms and animal models. Analyst 2019; 143:2723-2749. [PMID: 29740642 DOI: 10.1039/c8an00231b] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Haemorheologically impaired microcirculation, such as blood clotting or abnormal blood flow, causes interrupted blood flows in vascular networks. The biophysical properties of blood, including blood viscosity, blood viscoelasticity, haematocrit, red blood bell (RBC) aggregation, erythrocyte sedimentation rate and RBC deformability, have been used to monitor haematological diseases. In this review, we summarise several techniques for measuring haemorheological properties, such as blood viscosity, RBC deformability and RBC aggregation, using in vitro microfluidic platforms. Several methodologies for the measurement of haemorheological properties with the assistance of an extracorporeal rat bypass loop are also presented. We briefly discuss several emerging technologies for continuous, long-term, multiple measurements of haemorheological properties under in vitro or ex vivo conditions.
Collapse
Affiliation(s)
- Yang Jun Kang
- Department of Mechanical Engineering, Chosun University, Gwangju, Republic of Korea
| | | |
Collapse
|
16
|
Kang YJ. A Disposable Blood-on-a-Chip for Simultaneous Measurement of Multiple Biophysical Properties. MICROMACHINES 2018; 9:E475. [PMID: 30424408 PMCID: PMC6215101 DOI: 10.3390/mi9100475] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022]
Abstract
Biophysical properties are widely used to detect pathophysiological processes of vascular diseases or clinical states. For early detection of cardiovascular diseases, it is necessary to simultaneously measure multiple biophysical properties in a microfluidic environment. However, a microfluidic-based technique for measuring multiple biophysical properties has not been demonstrated. In this study, a simple measurement method was suggested to quantify three biophysical properties of blood, including red blood cell (RBC) deformability, RBC aggregation, and hematocrit. To demonstrate the suggested method, a microfluidic device was constructed, being composed of a big-sized channel (BC), a parallel micropillar (MP), a main channel, a branch channel, inlet, and outlets. By operating a single syringe pump, blood was supplied into the inlet of the microfluidic device, at a periodic on-off profile (i.e., period = 240 s). The RBC deformability index (DI) was obtained by analyzing the averaged blood velocity in the branch channel. Additionally, the RBC aggregation index (AIN) and the hematocrit index (HiBC) were measured by analyzing the image intensity of blood flows in the MP and the BC, respectively. The corresponding contributions of three influencing factors, including the turn-on time (Ton), the amplitude of blood flow rate (Q₀), and the hematocrit (Hct) on the biophysical indices (DI, AIN, and HiBC) were evaluated quantitatively. As the three biophysical indices varied significantly with respect to the three factors, the following conditions (i.e., Ton = 210 s, Q₀ = 1 mL/h, and Hct = 50%) were maintained for consistent measurement of biophysical properties. The proposed method was employed to detect variations of biophysical properties depending on the concentrations of autologous plasma, homogeneous hardened RBCs, and heterogeneous hardened RBCs. Based on the observations, the proposed method exhibited significant differences in biophysical properties depending on base solutions, homogeneous hardened RBCs (i.e., all RBCs fixed with the same concentration of glutaraldehyde solution), and heterogeneous hardened RBCs (i.e., partially mixed with normal RBCs and homogeneous hardened RBCs). Additionally, the suggested indices (i.e., DI, AIN, and HiBC) were effectively employed to quantify three biophysical properties, including RBC deformability, RBC aggregation, and hematocrit.
Collapse
Affiliation(s)
- Yang Jun Kang
- Department of Mechanical Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea.
| |
Collapse
|
17
|
Yang X, Chen Z, Miao J, Cui L, Guan W. High-throughput and label-free parasitemia quantification and stage differentiation for malaria-infected red blood cells. Biosens Bioelectron 2017; 98:408-414. [PMID: 28711027 PMCID: PMC5558593 DOI: 10.1016/j.bios.2017.07.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/04/2017] [Accepted: 07/08/2017] [Indexed: 12/16/2022]
Abstract
This work reports a high throughput and label-free microfluidic cell deformability sensor for quantitative parasitemia measurement and stage determination for Plasmodium falciparum-infected red blood cells (Pf-iRBCs). The sensor relies on differentiating the RBC deformability (a mechanical biomarker) that is highly correlated with the infection status. The cell deformability is measured by evaluating the transit time when each individual RBC squeezes through a microscale constriction (cross-section ~5µm×5µm). More than 30,000 RBCs can be analyzed for parasitemia quantification in under 1min with a throughput ~500 cells/s. Moreover, the device can also differentiate various malaria stages (ring, trophozoite, and schizont stage) due to their varied deformability. Using Pf-iRBCs at 0.1% parasitemia as a testing sample, the microfluidic deformability sensor achieved an excellent sensitivity (94.29%), specificity (86.67%) and accuracy (92.00%) in a blind test, comparable to the gold standard of the blood smear microscopy. As a supplement technology to the microscopy and flow cytometry, the microfluidic deformability sensor would possibly allow for label-free, rapid and cost-effective parasitemia quantification and stage determination for malaria in remote regions.
Collapse
Affiliation(s)
- Xiaonan Yang
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA; School of Information Engineering, Zhengzhou University, Zhengzhou 450000, China
| | - Zhuofa Chen
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
| | - Jun Miao
- Department of Entomology, Pennsylvania State University, University Park 16802, USA
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, University Park 16802, USA
| | - Weihua Guan
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park 16802, USA.
| |
Collapse
|
18
|
Stauber H, Waisman D, Korin N, Sznitman J. Red blood cell (RBC) suspensions in confined microflows: Pressure-flow relationship. Med Eng Phys 2017; 48:49-54. [PMID: 28838798 DOI: 10.1016/j.medengphy.2017.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 07/12/2017] [Accepted: 08/09/2017] [Indexed: 11/28/2022]
Abstract
Microfluidic-based assays have become increasingly popular to explore microcirculation in vitro. In these experiments, blood is resuspended to a desired haematocrit level in a buffer solution, where frequent choices for preparing RBC suspensions comprise notably Dextran and physiological buffer. Yet, the rational for selecting one buffer versus another is often ill-defined and lacks detailed quantification, including ensuing changes in RBC flow characteristics. Here, we revisit RBC suspensions in microflows and attempt to quantify systematically some of the differences emanating between buffers. We measure bulk flow rate (Q) of RBC suspensions, using PBS- and Dextran-40, as a function of the applied pressure drop (ΔP) for two hematocrits (∼0% and 23%). Two distinct microfluidic designs of varying dimensions are employed: a straight channel larger than and a network array similar to the size of individual RBCs. Using the resulting pressure-flow curves, we extract the equivalent hydrodynamic resistances and estimate the relative viscosities. These efforts are a first step in rigorously quantifying the influence of the 'background' buffer on RBC flows within microfluidic devices and thereby underline the importance of purposefully selecting buffer suspensions for microfluidic in vitro assays.
Collapse
Affiliation(s)
- Hagit Stauber
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, 3200003 Haifa, Israel
| | - Dan Waisman
- Department of Neonatology, Carmel Medical Center, 3436212 Haifa, Israel; Faculty of Medicine, Technion - Israel Institute of Technology, 3200003 Haifa, Israel
| | - Netanel Korin
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, 3200003 Haifa, Israel
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, 3200003 Haifa, Israel.
| |
Collapse
|
19
|
Kang YJ. Simultaneous measurement of erythrocyte deformability and blood viscoelasticity using micropillars and co-flowing streams under pulsatile blood flows. BIOMICROFLUIDICS 2017; 11:014102. [PMID: 28798838 PMCID: PMC5533506 DOI: 10.1063/1.4973863] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/28/2016] [Indexed: 05/08/2023]
Abstract
The biophysical properties of blood provide useful information on the variation in hematological disorders or diseases. In this study, a simultaneous measurement method of RBC (Red Blood Cell) deformability and blood viscoelasticity is proposed by evaluating hemodynamic variations through micropillars and co-flowing streams under sinusoidal blood flow. A disposable microfluidic device is composed of two inlets and two outlets, two upper side channels, and two lower side channels connected to one bridge channel. First, to measure the RBC deformability, the left-lower side channel has a deformability assessment chamber (DAC) with narrow-sized micropillars. Second, to evaluate the blood viscoelasticity in co-flowing streams, a phosphate buffered saline solution is supplied at a constant flow rate. By closing or opening a pinch valve connected to the outlet of DAC, blood flows in forward or back-and-forth mode. A time-resolved micro-particle image velocimetry technique and a digital image processing technique are used to quantify the blood velocity and image intensity. Then, RBC deformability is evaluated by quantifying the blood volume passing through the DAC under forward flow, and quantifying the variations of blood velocity and image intensity in the DAC under back-and-forth flow. Using a discrete circuit model, blood viscoelasticity is obtained by evaluating variations of blood velocity and co-flowing streams. The effect of several factors (period, hematocrit, and base solution) on the performance is quantitatively evaluated. Based on the experimental results, the period of sinusoidal flow and hematocrit are fixed at 30 s and 50%, respectively. As a performance demonstration, the proposed method is employed to detect the homogeneous and heterogeneous blood composed of normal RBCs and hardened RBCs. These experimental results show that the RBC deformability is more effective to detect minor subpopulations of heterogeneous bloods, compared with blood viscoelasticity. Therefore, it leads to the conclusion that the proposed method has the ability to evaluate RBC deformability and blood viscoelasticity under sinusoidal blood flow, with sufficient accuracy and high-throughput.
Collapse
Affiliation(s)
- Yang Jun Kang
- Department of Mechanical Engineering, Chosun University, Gwangju, South Korea
| |
Collapse
|
20
|
Banoth E, Kasula VK, Gorthi SS. Portable optofluidic absorption flow analyzer for quantitative malaria diagnosis from whole blood. APPLIED OPTICS 2016; 55:8637-8643. [PMID: 27828146 DOI: 10.1364/ao.55.008637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fast and automated diagnostic devices are bound to play a significant role in the on-going efforts toward malaria eradication. In this article, we present the realization of a portable device for quantitative malaria diagnostic testing at the point-of-care. The device measures optical absorbance (at λ=405 nm) of single cells flowing through a custom-designed microfluidic channel. The device incorporates the required functionality to align the microfluidic channel with the optical interrogation region. Variation in optical absorbance is used to differentiate red blood cells (both healthy and infected) from other cellular components of whole blood. Using the instrument, we have measured single-cell optical absorbance levels of different types of cells present in blood. High-throughput single-cell-level measurements facilitated by the device enable detection of malaria, even from a few microliters of blood. Further, we demonstrate the detection of malaria from a suspension containing all cellular components of whole blood, which validates its usability in real-world diagnostic scenarios.
Collapse
|
21
|
Kang YJ. Continuous and simultaneous measurement of the biophysical properties of blood in a microfluidic environment. Analyst 2016; 141:6583-6597. [DOI: 10.1039/c6an01593j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new measurement method is proposed to quantify blood viscosity, blood viscoelasticity, and RBC aggregation, in a continuous and simultaneous fashion.
Collapse
Affiliation(s)
- Yang Jun Kang
- Department of Mechanical Engineering
- Chosun University
- Gwangju
- Republic of Korea
| |
Collapse
|