1
|
Wu B, Yang H, Li L, Tang X, Wu Y, Huang B, Lützenkirchen-Hecht D, Qiu M, Yuan K, Chen Y. Integrating PtCo Intermetallic with Highly Graphitized Carbon Toward Durable Oxygen Electroreduction in Proton Exchange Membrane Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500096. [PMID: 39935128 DOI: 10.1002/adma.202500096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/02/2025] [Indexed: 02/13/2025]
Abstract
Exploiting robust and high-efficiency electrocatalysts for sluggish oxygen reduction reaction (ORR) is essential for proton exchange membrane fuel cells (PEMFCs) toward long-term operation for practical applications, yet remains challenging. Herein, the ordered PtCo intermetallic is reported with a Pt-rich shell loaded on a highly graphitized carbon carrier (O-PtCo@GCoNC) prepared by an impregnation annealing strategy. Systematic X-ray spectroscopic, operando electrochemical techniques and theoretical calculations reveal that thanks to the synergistic interaction of the core-shell PtCo intermetallic structure with a tailor-made Pt electronic configuration and highly graphitized carbon, O-PtCo@GCoNC exhibits significantly enhanced activity and stability toward ORR. Crucially, O-PtCo@GCoNC delivers a much-enhanced mass activity of 0.83 A mgPt -1 at 0.9 V versus reversible hydrogen electrode (RHE) in 0.1 m HClO4, which only drops by 26.5% after 70 000 cycles (0.6-1.0 V vs RHE), and 10.8% after 10 000 cycles (1.0-1.5 V vs RHE), apparently overmatching Pt/C (0.19 A mgPt -1, 73.7%, and 63.1%). Moreover, O-PtCo@GCoNC employed as the cathode catalyst in H2/air PEMFC achieves a superb peak power density (1.04 W cm-2 at 2.06 A cm-2), outperforming that of Pt/C (0.86 W cm-2 at 1.79 A cm-2). The cell voltage loss at 0.8 A cm-2 is 28 mV after 30 000 cycles, outstripping the United States Department of Energy 2025 target.
Collapse
Affiliation(s)
- Bing Wu
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, China
| | - Haolan Yang
- College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, China
| | - Longbin Li
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Xiannong Tang
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, China
| | - Yonggan Wu
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, China
| | - Bingyu Huang
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, China
| | - Dirk Lützenkirchen-Hecht
- Faculty of Mathematics and Natural Sciences-Physics Department, Bergische Universität Wuppertal, Gauss-Str. 20, D-42119, Wuppertal, Germany
| | - Ming Qiu
- College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, China
| | - Kai Yuan
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, China
| | - Yiwang Chen
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, China
| |
Collapse
|
2
|
Chen T, Xu Z. Design and engineering of microenvironments of supported catalysts toward more efficient chemical synthesis. Adv Colloid Interface Sci 2025; 337:103387. [PMID: 39729822 DOI: 10.1016/j.cis.2024.103387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/01/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
Catalytic species such as molecular catalysts and metal catalysts are commonly attached to varieties of supports to simplify their separation and recovery and accommodate various reaction conditions. The physicochemical microenvironments surrounding catalytic species play an important role in catalytic performance, and the rational design and engineering of microenvironments can achieve more efficient chemical synthesis, leading to greener and more sustainable catalysis. In this review, we highlight recent works addressing the topic of the design and engineering of microenvironments of supported catalysts, including supported molecular catalysts and supported metal catalysts. Six types of materials, including oxide nano/microparticle, mesoporous silica nanoparticle (MSN), polymer nanomaterial, reticular material, zeolite, and carbon-based nanomaterial, are widely used as supports for the immobilization of catalytic species. We summarize and discuss the synthesis and modification of supports and the positive effects of microenvironments on catalytic properties such as metal-support interaction, molecular recognition, pseudo-solvent effect, regulating mass transfer, steric effect, etc. These design principles and engineering strategies allow access to a better understanding of structure-property relationships and advance the development of more efficient catalytic processes.
Collapse
Affiliation(s)
- Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
3
|
Bai Y, Yuan W, Pan G, Wu X, Zhang Z, Zhang X, Wang C, Jiang S, Zhang G, Zeng Y, Wu T. Novel design of hollow carbon nanocage modified with nanotubes as a bifunctional electrocatalyst for high performance Zn-air batteries. J Colloid Interface Sci 2025; 679:102-113. [PMID: 39442202 DOI: 10.1016/j.jcis.2024.10.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Microcavities play a crucial role as microreactors in the transport of molecular/ionic guests and the exposure of active sites, thus significantly influencing the electrocatalytic performance. This study prepares Co/N-codoped hollow carbon (HT-CoN/C) with surface-distributed carbon nanotubes by pyrolysis of PDA-coated Zn/Co bimetallic ZIF (BM-ZIF@PDA). Benefiting from the hierarchical porous structure, high specific surface area (307.17 m2 g-1) and abundant Co clusters, the HT-CoN/C exhibits remarkable bifunctional oxygen electrocatalytic activity with an overpotential of the ORR/OER processes (ΔE = 0.703 V). The density functional theory (DFT) calculations also verify that the configuration of C-coated N-coordinated Co clusters (Co4-Nx) affect the electrocatalytic activity of ORR and OER, illustrating the source of the excellent oxygen electrocatalytic activity of HT-CoN/C. The aqueous rechargeable zinc-air battery (RZAB) using HT-CoN/C as the air electrode is characterized by a superior peak power density (175 mW cm-2), a prolonged cycle life (1230 cycles/410 h at 5.0 mA cm-2) and a high open-circuit voltage (1.47 V). Meanwhile, the flexible solid-state RZAB assembled by the HT-CoN/C also exhibits a higher peak power density (117 mW cm-2) and an excellent bending performance. This work is extremely valuable for the design and synthesis of Co/N co-doped carbon electrocatalysts.
Collapse
Affiliation(s)
- Yafeng Bai
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wei Yuan
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Gechuanqi Pan
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Xuyang Wu
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Zihao Zhang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaoqing Zhang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chun Wang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Simin Jiang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guanhua Zhang
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Yubin Zeng
- Hubei Key Laboratory of Accoutrement Technique in Fluid Machinery and Power Engineering, Wuhan University, Wuhan 430072, China
| | - Tingting Wu
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Xu Z, Xiao T, Li Y, Pan Y, Li C, Liu P, Xu Q, Tian F, Wu L, Xu F, Mai Y. Assessing the Effect of a Schwarz P Surface on the Oxygen Electroreduction Performance of Porous Single-Atom Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416204. [PMID: 39570097 DOI: 10.1002/adma.202416204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Indexed: 11/22/2024]
Abstract
The surface curvature of catalysts has a decisive impact on their catalytic performance. However, the influence of a negative-Gaussian-curvature surface on the catalytic performance of porous catalysts has remained unexplored due to the lack of suitable samples. Bicontinuous-structured porous structures can serve as ideal models, but they are known as "Plumber's nightmare" due to their highly difficult preparation. Here, using metal-organic frameworks as the precursor and polymer cubosomes as the template, a bicontinuous mesoporous Fe single-atom catalyst (named bmFeSAC) with a Schwarz P surface is synthesized. The bmFeSAC catalyst has a large specific surface area of 916 m2 g-1 and uniformly distributed Fe-N4 active sites with a 1.80 wt.% Fe content. The continuous channels enabled high utilization efficiency of the Fe-N4 catalytic sites, while the negative-Gaussian-curvature surface enabled low reaction energy barrier. As an electrocatalyst of the oxygen reduction reaction, bmFeSAC delivered a high half-wave potential of 0.931 V versus. RHE in alkaline electrolyte, reaching the leading level among those of the reported state-of-the-art electrocatalysts. Furthermore, the bmFeSAC-based Zn-air batteries exhibited excellent performance, demonstrating the potential application of bmFeSAC. This study revealed that a bicontinuous-structured porous structure can improve catalytic activity by increasing the utilization ratio of catalytic sites and, more importantly, by regulating the electronic structure of catalyst surfaces through the negative-Gaussian-curvature.
Collapse
Affiliation(s)
- Zhi Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianyu Xiao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yinghua Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Pan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pan Liu
- School of Materials Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Feng Tian
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
5
|
Chen X, Guo J, Qian D, Wu J, Liao W, Waterhouse GIN, Liu J. Insightful Understanding of Synergistic Oxygen Reduction on PtCo 3(111) Toward Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403894. [PMID: 38864207 DOI: 10.1002/smll.202403894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/04/2024] [Indexed: 06/13/2024]
Abstract
Theory-guided materials design is an effective strategy for designing catalysts with high intrinsic activity whilst minimizing the usage of expensive metals like platinum. As proof-of-concept, herein it demonstrates that using density functional theory (DFT) calculations and experimental validation that intermetallic PtCo3 alloy nanoparticles offer enhanced electrocatatalytic performance for the oxygen reduction reaction (ORR) compared to Pt nanoparticles. DFT calculations established that PtCo3(111) surfaces possess better intrinsic ORR activity compared to Pt(111) surfaces, owing to the synergistic action of adjacent Pt and Co active sites which optimizes the binding strength of ORR intermediates to boost overall ORR kinetics. With this understanding, a PtCo3/NC catalyst, comprising PtCo3 nanoparticles exposing predominantly (111) facets dispersed on an N-doped carbon support, is successfully fabricated. PtCo3/NC demonstrates a high specific activity (3.4 mA cm-2 mgPt -1), mass activity (0.67 A mgPt -1), and cycling stability for the ORR in 0.1 M KOH, significantly outperforming a commercial 20 wt.% Pt/C catalyst. Moreover, a zinc-air battery (ZAB) assembled with PtCo3/NC as the air-electrode catalyst delivered an open-circuit voltage of 1.47 V, a specific capacity of 775.1 mAh gZn -1 and excellent operation durability after 200 discharge/charge cycles, vastly superior performance to a ZAB built using commercial Pt/C+IrO2 as the air-electrode catalyst.
Collapse
Affiliation(s)
- Xiangxiong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Hunan Jomo Technology Co Ltd, Changsha, 410083, China
| | - Jiangnan Guo
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Dong Qian
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jiayun Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Weixiong Liao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Geoffrey I N Waterhouse
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
| | - Jinlong Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
6
|
Fu K, Yuan D, Yu T, Lei C, Kou Z, Huang B, Lyu S, Zhang F, Wan T. Recent Advances on Two-Dimensional Nanomaterials Supported Single-Atom for Hydrogen Evolution Electrocatalysts. Molecules 2024; 29:4304. [PMID: 39339299 PMCID: PMC11434429 DOI: 10.3390/molecules29184304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Water electrolysis has been recognized as a promising technology that can convert renewable energy into hydrogen for storage and utilization. The superior activity and low cost of catalysis are key factors in promoting the industrialization of water electrolysis. Single-atom catalysts (SACs) have attracted attention due to their ultra-high atomic utilization, clear structure, and highest hydrogen evolution reaction (HER) performance. In addition, the performance and stability of single-atom (SA) substrates are crucial, and various two-dimensional (2D) nanomaterial supports have become promising foundations for SA due to their unique exposed surfaces, diverse elemental compositions, and flexible electronic structures, to drive single atoms to reach performance limits. The SA supported by 2D nanomaterials exhibits various electronic interactions and synergistic effects, all of which need to be comprehensively summarized. This article aims to organize and discuss the progress of 2D nanomaterial single-atom supports in enhancing HER, including common and widely used synthesis methods, advanced characterization techniques, different types of 2D supports, and the correlation between structural hydrogen evolution performance. Finally, the latest understanding of 2D nanomaterial supports was proposed.
Collapse
Affiliation(s)
- Kangkai Fu
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Douke Yuan
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Ting Yu
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Chaojun Lei
- Key Laboratory of Organosilicon Chemistry and Material Technology, College of Material, Chemistry and Chemical Engineering, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhenhui Kou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bingfeng Huang
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Siliu Lyu
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Feng Zhang
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Tongtao Wan
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| |
Collapse
|
7
|
Ling W, Liu J, Yang B. Modelling the activity trend of the hydrogen oxidation reaction under constant potential conditions. Chem Commun (Camb) 2024; 60:9829-9832. [PMID: 39171409 DOI: 10.1039/d4cc01825g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
A microkinetic model is constructed for the electrocatalytic alkaline hydrogen oxidation reaction based on grand canonical density functional theory calculations and linear relationships with the adsorption energies of hydrogen and hydroxide as descriptors. Using this model, the activity trend suitable for efficient catalyst screening has been identified.
Collapse
Affiliation(s)
- Wenhui Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China.
| | - Jian Liu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China.
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China.
| |
Collapse
|
8
|
Zhang W, van Dijk B, Wu L, Maheu C, Tudor V, Hofmann JP, Jiang L, Hetterscheid D, Schneider GF. Role of Vacancy Defects and Nitrogen Dopants for the Reduction of Oxygen on Graphene. ACS Catal 2024; 14:11065-11075. [PMID: 39050903 PMCID: PMC11264207 DOI: 10.1021/acscatal.4c01713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024]
Abstract
Disentangling the roles of nitrogen dopants and vacancy defects (VG) in metal-free carbon catalysts for the oxygen reduction reaction (ORR) ideally requires studying both the dopants and defects separately. Here, we systematically introduced nitrogen dopants and VGs via plasma treatment into the basal plane of monolayer graphene as a model carbon catalyst to investigate their specific roles in ORR catalysis. An increased defect density including dopants is positively associated with boosted ORR activity. Nitrogen dopants are responsible for an improved current via a 2e- pathway generating hydroperoxide, while VGs result in enhanced kinetics and water production. We therefore infer that VGs in graphene are responsible for the improved ORR kinetics, while nitrogen dopants majorly influence the selectivity of ORR reaction products. The nitrogen dopants without VGs lead to a higher overpotential compared with the pristine graphene. Instead of the attribution of the ORR active site to only nitrogen species in carbon materials, the improved ORR activity in nitrogen-doped carbon materials should be attributed to the active sites constituted of VGs, oxygen dopants, and nitrogen dopants. Through this work, we provide important insights into the intertwined roles of nitrogen and VGs as well as oxygen dopants in nitrogen-doped metal-free catalysts for a more efficient ORR.
Collapse
Affiliation(s)
- Weizhe Zhang
- Faculty
of Science, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Bas van Dijk
- Faculty
of Science, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Longfei Wu
- Department
of Chemical Engineering and Chemistry, Inorganic Materials & Catalysis, Eindhoven University of Technology, Groene Loper 5, 5612AE Eindhoven, The Netherlands
| | - Clément Maheu
- Surface
Science Laboratory, Department of Materials- and Geosciences, Technical University of Darmstadt, Peter-Grünberg-Straße
4, 64287 Darmstadt, Germany
| | - Viorica Tudor
- Faculty
of Science, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Jan Philipp Hofmann
- Department
of Chemical Engineering and Chemistry, Inorganic Materials & Catalysis, Eindhoven University of Technology, Groene Loper 5, 5612AE Eindhoven, The Netherlands
- Surface
Science Laboratory, Department of Materials- and Geosciences, Technical University of Darmstadt, Peter-Grünberg-Straße
4, 64287 Darmstadt, Germany
| | - Lin Jiang
- Faculty
of Science, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- School
of Microelectronics, Shanghai University, Chengzhong Road 20, 201800 Shanghai, China
| | - Dennis Hetterscheid
- Faculty
of Science, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Grégory F. Schneider
- Faculty
of Science, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| |
Collapse
|
9
|
Zhang C, Hu K, Liu X, Qu Y, Luo L, Sun X, Zhuang Z, Li H. Unraveling the Influence of Nafion Content on the Performance of Proton-Exchange Membrane Fuel Cells from the Perspective of Triple-Phase Boundary. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39014533 DOI: 10.1021/acs.langmuir.4c01097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
By combining molecular simulations and experimental measurements, the effect of the Nafion content on the performance of proton-exchange membrane fuel cells (PEMFCs) is explained from the perspective of the triple-phase boundary (TPB). The evaporation process of Nafion solvent is simulated on a triple-phase model to mimic the formation of the TPB, and the influence of the Nafion content on the TPB structure is investigated. When the Nafion content is 1.415 mg/m2, the coverages of Nafion on both Pt particles and the carbon carrier are saturated at 42.1% and 32.7%, respectively. With the increase of Nafion content, the amount of water molecules around Pt particles is increased, and the surrounding O2 content is decreased. The experimental PEMFC performance has confirmed such simulation results, which demonstrates a trend of enhancing first and then weakening with the increase of Nafion content and reaches a maximum with the Nafion content of 2.96 mg/m2. Therefore, the correlation between the structure of the TPB and the cell's efficiency has been established at a molecular level, enabling enhancements in the design of the TPB morphology and an increase in PEMFC efficiency.
Collapse
Affiliation(s)
- Chanyu Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Kadi Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xuerui Liu
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yixin Qu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Liang Luo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
10
|
Nazir G, Rehman A, Lee JH, Kim CH, Gautam J, Heo K, Hussain S, Ikram M, AlObaid AA, Lee SY, Park SJ. A Review of Rechargeable Zinc-Air Batteries: Recent Progress and Future Perspectives. NANO-MICRO LETTERS 2024; 16:138. [PMID: 38421464 PMCID: PMC10904712 DOI: 10.1007/s40820-024-01328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/14/2023] [Indexed: 03/02/2024]
Abstract
Zinc-air batteries (ZABs) are gaining attention as an ideal option for various applications requiring high-capacity batteries, such as portable electronics, electric vehicles, and renewable energy storage. ZABs offer advantages such as low environmental impact, enhanced safety compared to Li-ion batteries, and cost-effectiveness due to the abundance of zinc. However, early research faced challenges due to parasitic reactions at the zinc anode and slow oxygen redox kinetics. Recent advancements in restructuring the anode, utilizing alternative electrolytes, and developing bifunctional oxygen catalysts have significantly improved ZABs. Scientists have achieved battery reversibility over thousands of cycles, introduced new electrolytes, and achieved energy efficiency records surpassing 70%. Despite these achievements, there are challenges related to lower power density, shorter lifespan, and air electrode corrosion leading to performance degradation. This review paper discusses different battery configurations, and reaction mechanisms for electrically and mechanically rechargeable ZABs, and proposes remedies to enhance overall battery performance. The paper also explores recent advancements, applications, and the future prospects of electrically/mechanically rechargeable ZABs.
Collapse
Affiliation(s)
- Ghazanfar Nazir
- Department of Nanotechnology and Advanced Materials Engineering, Hybrid Materials Research Center (HMC), Sejong University, Seoul, 05006, Republic of Korea
| | - Adeela Rehman
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Jong-Hoon Lee
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea
| | - Choong-Hee Kim
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea
| | - Jagadis Gautam
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea
| | - Kwang Heo
- Department of Nanotechnology and Advanced Materials Engineering, Hybrid Materials Research Center (HMC), Sejong University, Seoul, 05006, Republic of Korea.
| | - Sajjad Hussain
- Department of Nanotechnology and Advanced Materials Engineering, Hybrid Materials Research Center (HMC), Sejong University, Seoul, 05006, Republic of Korea
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, 54000, Punjab, Pakistan
| | - Abeer A AlObaid
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Seul-Yi Lee
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea.
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
11
|
Yang C, Gao Y, Ma T, Bai M, He C, Ren X, Luo X, Wu C, Li S, Cheng C. Metal Alloys-Structured Electrocatalysts: Metal-Metal Interactions, Coordination Microenvironments, and Structural Property-Reactivity Relationships. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301836. [PMID: 37089082 DOI: 10.1002/adma.202301836] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Metal alloys-structured electrocatalysts (MAECs) have made essential contributions to accelerating the practical applications of electrocatalytic devices in renewable energy systems. However, due to the complex atomic structures, varied electronic states, and abundant supports, precisely decoding the metal-metal interactions and structure-activity relationships of MAECs still confronts great challenges, which is critical to direct the future engineering and optimization of MAECs. Here, this timely review comprehensively summarizes the latest advances in creating the MAECs, including the metal-metal interactions, coordination microenvironments, and structure-activity relationships. First, the fundamental classification, design, characterization, and structural reconstruction of MAECs are outlined. Then, the electrocatalytic merits and modulation strategies of recent breakthroughs for noble and non-noble metal-structured MAECs are thoroughly discussed, such as solid solution alloys, intermetallic alloys, and single-atom alloys. Particularly, unique insights into the bond interactions, theoretical understanding, and operando techniques for mechanism disclosure are given. Thereafter, the current states of diverse MAECs with a unique focus on structural property-reactivity relationships, reaction pathways, and performance comparisons are discussed. Finally, the future challenges and perspectives for MAECs are systematically discussed. It is believed that this comprehensive review can offer a substantial impact on stimulating the widespread utilization of metal alloys-structured materials in electrocatalysis.
Collapse
Affiliation(s)
- Chengdong Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yun Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingru Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Xiancheng Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Changzhu Wu
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemistry, Technical University of Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
12
|
Xu X, Lu Y, Shi J, Hao X, Ma Z, Yang K, Zhang T, Li C, Zhang D, Huang X, He Y. Corrosion-resistant cobalt phosphide electrocatalysts for salinity tolerance hydrogen evolution. Nat Commun 2023; 14:7708. [PMID: 38001072 PMCID: PMC10673868 DOI: 10.1038/s41467-023-43459-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Seawater electrolysis is a viable method for producing hydrogen on a large scale and low-cost. However, the catalyst activity during the seawater splitting process will dramatically degrade as salt concentrations increasing. Herein, CoP is discovered that could reject chloride ions far from catalyst in electrolyte based on molecular dynamic simulation. Thus, a binder-free electrode is designed and constructed by in-situ growth of homogeneous CoP on rGO nanosheets wrapped around the surface of Ti fiber felt for seawater splitting. As expected, the as-obtained CoP/rGO@Ti electrode exhibits good catalytic activity and stability in alkaline electrolyte. Especially, benefitting from the highly effective repulsive Cl- intrinsic characteristic of CoP, the catalyst maintains good catalytic performance with saturated salt concentration, and the overpotential increasing is less than 28 mV at 10 mA cm-2 from 0 M to saturated NaCl in electrolyte. Furthermore, the catalyst for seawater splitting performs superior corrosion-resistance with a low solubility of 0.04%. This work sheds fresh light into the development of efficient HER catalysts for salinity tolerance hydrogen evolution.
Collapse
Affiliation(s)
- Xinwu Xu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Yang Lu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Junqin Shi
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China.
| | - Xiaoyu Hao
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Zelin Ma
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Ke Yang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Tianyi Zhang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Chan Li
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Dina Zhang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Xiaolei Huang
- Institute of Material and Chemistry, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, China.
| | - Yibo He
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China.
| |
Collapse
|
13
|
Gui R, Cheng H, Wang M, Tai X, Zhang H, Liu C, Cao X, Chen C, Ge M, Wang H, Zheng X, Chu W, Lin Y, Xie Y, Wu C. Symmetry-Induced Regulation of Pt Strain Derived from Pt 3 Ga Intermetallic for Boosting Oxygen Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2307661. [PMID: 37994613 DOI: 10.1002/adma.202307661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/19/2023] [Indexed: 11/24/2023]
Abstract
Pt-based fuel cell catalysts with excellent activity and stability for proton-exchange membrane fuel cells (PEMFCs) have been developed through strain regulation in recent years. Herein, this work demonstrates that symmetry-induced strain regulation of Pt surface of PtGa intermetallic compounds can greatly enhance the catalytic performance of the oxygen reduction reaction (ORR). With the strain environment varies derived from the lattice mismatch of analogous PtGa core but different symmetry, the Pt surface of the PtGa alloy and the Pt3 Ga (Pm3 ¯ $\bar{3}$ m) precisely realize 0.58% and 2.7% compressive strain compared to the Pt3 Ga (P4/mmm). Experimental and theoretical results reveal that when the compressive stress of the Pt lattice increases, the desorption process of O* intermediates becomes accelerated, which is conducive to oxygen reduction. The Pt3 Ga (Pm3 ¯ $\bar{3}$ m) with high symmetry and compressive Pt surface exhibit the highest mass and specific activities of 2.18 A mgPt -1 and 5.36 mA cm-2 , respectively, which are more than one order of magnitude higher than those of commercial Pt/C catalysts. This work demonstrates that material symmetry can be used to precisely modulate Pt surface stress to enhance the ORR, as well as provide a distinct platform to investigate the relationship between Pt compressibility and catalytic activity.
Collapse
Affiliation(s)
- Renjie Gui
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Han Cheng
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Minghao Wang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaolin Tai
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Huijuan Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Congyan Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xuemin Cao
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chen Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Min Ge
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Huijuan Wang
- Experimental Center of Engineering and Material Science, University of Science and Technology of China, Hefei, 230026, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Wangsheng Chu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Yue Lin
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yi Xie
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031, China
| | - Changzheng Wu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031, China
| |
Collapse
|
14
|
Wei DY, Xing GN, Chen HQ, Xie XQ, Huang HM, Dong JC, Tian JH, Zhang H, Li JF. Palladium atomic layers coated on ultrafine gold nanowires boost oxygen reduction reaction. J Colloid Interface Sci 2023; 650:1518-1524. [PMID: 37487282 DOI: 10.1016/j.jcis.2023.07.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
Palladium-based nanocatalysts play an important role in catalyzing the cathode oxygen reduction reaction (ORR) for fuel cells working under alkaline conditions, but the performance still needs to be improved to meet the requirements for large-scale applications. Herein, Au@Pd core-shell nanowires have been developed by coating Pd atomic layers on ultrafine gold nanowires and display outstanding electrocatalytic performance towards alkaline ORR. It is found that Pd overlayers with atomic thickness can be coated on 3 nm Au nanowires under CO atmosphere and completely cover the surfaces. The obtained ultrafine Au@Pd nanowires exhibit an electrochemical active area (ECSA) of 68.5 m2/g and a mass activity of 0.91 A/mg (at 0.9 V vs. RHE), which is around 3.1 and 15.2 times higher than that of commercial Pd/C. The activity loss of the ultrafine Au@Pd nanowire after 10,000 cycles of accelerated degradation tests is only ∼20 %, demonstrating its much better stability compared to commercial Pd/C. Further characterizations combined with density functional theory (DFT) calculations demonstrate that the electronic interactions between Pd atomic layers and underlying Au can increase the electronic density of Pd and promote the efficient activation of oxygen, thus leading to the improved ORR performance.
Collapse
Affiliation(s)
- Di-Ye Wei
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, iChEM, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China
| | - Guan-Nan Xing
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, iChEM, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China
| | - Heng-Quan Chen
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, iChEM, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China
| | - Xiao-Qun Xie
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, iChEM, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China
| | - Hui-Mei Huang
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, iChEM, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China
| | - Jin-Chao Dong
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, iChEM, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China
| | - Jing-Hua Tian
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China.
| | - Hua Zhang
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, iChEM, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China.
| | - Jian-Feng Li
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, iChEM, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China; College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
15
|
Che Z, Yuan Y, Qin J, Li P, Chen Y, Wu Y, Ding M, Zhang F, Cui M, Guo Y, Wang S. Progress of Nonmetallic Electrocatalysts for Oxygen Reduction Reactions. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1945. [PMID: 37446461 DOI: 10.3390/nano13131945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/14/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023]
Abstract
As a key role in hindering the large-scale application of fuel cells, oxygen reduction reaction has always been a hot issue and nodus. Aiming to explore state-of-art electrocatalysts, this paper reviews the latest development of nonmetallic catalysts in oxygen reduction reactions, including single atoms doped with carbon materials such as N, B, P or S and multi-doped carbon materials. Afterward, the remaining challenges and research directions of carbon-based nonmetallic catalysts are prospected.
Collapse
Affiliation(s)
- Zhongmei Che
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, 3501, Daxue Road, Changqing District, Jinan 250353, China
| | - Yanan Yuan
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, 3501, Daxue Road, Changqing District, Jinan 250353, China
| | - Jianxin Qin
- Qingdao Haiwang Paper Co., Ltd., 1218, Haiwang Road, Huangdao District, Qingdao 266431, China
| | - Peixuan Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, 3501, Daxue Road, Changqing District, Jinan 250353, China
| | - Yulei Chen
- Qingdao Haiwang Paper Co., Ltd., 1218, Haiwang Road, Huangdao District, Qingdao 266431, China
| | - Yue Wu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, 3501, Daxue Road, Changqing District, Jinan 250353, China
| | - Meng Ding
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, 3501, Daxue Road, Changqing District, Jinan 250353, China
| | - Fei Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, 3501, Daxue Road, Changqing District, Jinan 250353, China
| | - Min Cui
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, 3501, Daxue Road, Changqing District, Jinan 250353, China
| | - Yingshu Guo
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, 3501, Daxue Road, Changqing District, Jinan 250353, China
| | - Shuai Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, 3501, Daxue Road, Changqing District, Jinan 250353, China
| |
Collapse
|
16
|
Li N, Tang R, Su Y, Lu C, Chen Z, Sun J, Lv Y, Han S, Yang C, Zhuang X. Isometric Covalent Triazine Framework-Derived Porous Carbons as Metal-Free Electrocatalysts for the Oxygen Reduction Reaction. CHEMSUSCHEM 2023; 16:e202201937. [PMID: 36522285 DOI: 10.1002/cssc.202201937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Covalent triazine frameworks (CTFs) and their derivative N-doped carbons have attracted much attention for application in energy conversion and storage. However, previous studies have mainly focused on developing new building blocks and optimizing synthetic conditions. The use of isometric building blocks to control the porous structure and to fundamentally understand structure-property relationships have rarely been reported. In this work, two isometric building blocks are used to produce isometric CTFs with controllable pore geometries. The as-prepared CTF with nonplanar hexagonal rings demonstrates higher surface area, larger pore volume, and richer N content than the planar CTF. After pyrolysis, nonplanar porous CTF-derived N-doped carbons exhibit admirable catalytic activity for oxygen reduction in alkaline media (half-wave potential: 0.86 V; Tafel slope: 65 mV dec-1 ), owing to their larger pore volume and the abundance of pyridinic and graphitic N species. When assembled into a zinc-air battery, the as-made electrocatalysts show high capacities of up to 651 mAh g-1 and excellent durability.
Collapse
Affiliation(s)
- Nana Li
- The Soft 2D Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang, 832003, P. R. China
| | - Ruizhi Tang
- The Soft 2D Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuezeng Su
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chenbao Lu
- The Soft 2D Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ziman Chen
- National Energy R&D Center for Biorefinery Beijing Key Laboratory of Bioprocess College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10009, P. R. China
| | - Jie Sun
- Carbon Trade Research Center, School of Finance, Shanghai Lixin University of Accounting and Finance, No. 995 Shangchuan Road, Shanghai, P. R. China
| | - Yongqin Lv
- National Energy R&D Center for Biorefinery Beijing Key Laboratory of Bioprocess College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10009, P. R. China
| | - Sheng Han
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang, 832003, P. R. China
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Chongqing Yang
- The Soft 2D Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiaodong Zhuang
- The Soft 2D Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
17
|
Li C, Di H, Yang T, Huang T, Deng W, Du F, Luo H. Fe/N/S Co-doped Porous Carbon from the Co-processing Residue of Coal and Heavy Oil for an Efficient Oxygen Reduction Reaction. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Chuan Li
- State Key Laboratory of Heavy Oil, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China
| | - Haoping Di
- State Key Laboratory of Heavy Oil, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China
| | - Tengfei Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| | - Tianxiang Huang
- State Key Laboratory of Heavy Oil, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China
- Shaanxi Coal Chemical Industry Technology Research Institute Co. Ltd, Xi’an, Shaanxi 610100, P. R. China
| | - Wenan Deng
- State Key Laboratory of Heavy Oil, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China
| | - Feng Du
- State Key Laboratory of Heavy Oil, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China
| | - Hui Luo
- State Key Laboratory of Heavy Oil, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China
| |
Collapse
|
18
|
Exploring the underlying oxygen reduction reaction electrocatalytic activities of pyridinic-N and pyrrolic-N doped graphene quantum dots. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Xu F, Zou Q, Xiong G, Zhang H, Wang F, Wang Y. Activated Single‐Phase Ti
4
O
7
Nanosheets with Efficient Use of Precious Metal for Inspired Oxygen Reduction Reaction. Chemistry 2022; 28:e202202580. [DOI: 10.1002/chem.202202580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Fan Xu
- The School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment &System Security and New Technology Chongqing University 174 Shazheng Street, Shapingba District Chongqing City 400044 P. R. China
| | - Qing Zou
- The School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment &System Security and New Technology Chongqing University 174 Shazheng Street, Shapingba District Chongqing City 400044 P. R. China
| | - Gangquan Xiong
- The School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment &System Security and New Technology Chongqing University 174 Shazheng Street, Shapingba District Chongqing City 400044 P. R. China
| | - Huijuan Zhang
- The School of Chemistry and Chemical Engineering Chongqing University 174 Shazheng Street, Shapingba District Chongqing City 400044 P. R. China
| | - Feipeng Wang
- The School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment &System Security and New Technology Chongqing University 174 Shazheng Street, Shapingba District Chongqing City 400044 P. R. China
| | - Yu Wang
- The School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment &System Security and New Technology Chongqing University 174 Shazheng Street, Shapingba District Chongqing City 400044 P. R. China
- The School of Chemistry and Chemical Engineering Chongqing University 174 Shazheng Street, Shapingba District Chongqing City 400044 P. R. China
| |
Collapse
|
20
|
Jiao P, Ye D, Zhu C, Wu S, Qin C, An C, Hu N, Deng Q. Non-precious transition metal single-atom catalysts for the oxygen reduction reaction: progress and prospects. NANOSCALE 2022; 14:14322-14340. [PMID: 36106572 DOI: 10.1039/d2nr03687h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The massive exploitation and use of fossil resources have created many negative issues, such as energy shortage and environmental pollution. It prompts us to turn our attention to the development of new energy technologies. This review summarizes the recent research progress of non-precious transition metal single-atom catalysts (NPT-SACs) for the oxygen reduction reaction (ORR) in Zn-air batteries and fuel cells. Some commonly used preparation methods and their advantages/disadvantages have been summarized. The factors affecting the ORR performances of NPT-SACs have been focused upon, such as the substrate type, coordination environment and nanocluster effects. The loading mass of a metal atom has a direct effect on the ORR performances. Some general strategies for stabilizing metal atoms are included. This review points out some existing challenges of NPT-SACs, and also provides ideas for designing and synthesizing NPT-SACs with excellent ORR performances. The large-scale preparation and commercialization of NPT-SACs with excellent ORR properties are prospected.
Collapse
Affiliation(s)
- Penggang Jiao
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology, and School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Donghao Ye
- Wuhan Marine Electric Propulsion Research Institute, Wuhan 430064, China
| | - Chunyou Zhu
- Hunan Aerospace Kaitian Water Services Co., Ltd., Changsha 410100, China
| | - Shuai Wu
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology, and School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Chunling Qin
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology, and School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Cuihua An
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology, and School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Ning Hu
- State Key Laboratory of Reliability and Intelligence Electrical Equipment, Hebei University of Technology, Tianjin, 300130, China
| | - Qibo Deng
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology, and School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
21
|
Liu T, Du XJ, Li S, Wu QL, Guo Q, Liu ZZ, Zhao JP, Liu FC. Carbothermal redox reaction in constructing defective carbon as superior oxygen reduction catalysts. NANOSCALE 2022; 14:14248-14254. [PMID: 36129320 DOI: 10.1039/d2nr03617g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Defects can greatly promote the catalytic activity of a carbon-based electrocatalyst due to charge redistribution of its electroneutral π-conjugated structure. However, it is still a huge challenge to introduce enough defects into carbon-based materials to improve their catalytic activity. Herein, we report a new method for defect generation by the pyrolysis of the sulfur-nitrogen-containing coordination polymer [Zn(ptt)2]n (ptt = 1-phenyl-1H-tetrazole-5-thiol). A series of controlled experiments clearly demonstrates that the carbothermal reduction reaction of zinc sulfide with carbon at a high temperature plays an important role in creating defects and enhancing the catalytic activity for the oxygen reduction reaction (ORR) of the carbon-based materials. The ZnS/C-1100 with a high content of defects and a small number of ZnS nanoparticles exhibits excellent ORR electrocatalytic performances in alkaline media, in which the half-wave potential (0.894 V vs. RHE), stability, and methanol tolerance are all superior to that of a 20 wt% Pt/C catalyst. Moreover, the ZnS/C-1100 driven ZAB (zinc air battery) exhibits a stable discharge at 10 mA, a peak power density of 134 mW cm-2 and a cathode current density of 265 mA cm-2, which are significantly better than that catalyzed by 20 wt% Pt/C under the same conditions. This research not only develops a new highly active catalyst, but also provides a new method for the preparation of defect-rich carbon materials.
Collapse
Affiliation(s)
- Tao Liu
- School of Chemistry and Chemical Engineering, TKL of Organic Solar Cells and Photochemical Conversion, TKL of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Xin-Jie Du
- School of Chemistry and Chemical Engineering, TKL of Organic Solar Cells and Photochemical Conversion, TKL of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Shuai Li
- School of Chemistry and Chemical Engineering, TKL of Organic Solar Cells and Photochemical Conversion, TKL of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Qi-Long Wu
- School of Environment and Science, Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, Brisbane, QLD 4111, Australia
| | - Qi Guo
- School of Chemistry and Chemical Engineering, TKL of Organic Solar Cells and Photochemical Conversion, TKL of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Zhi-Zhuang Liu
- School of Chemistry and Chemical Engineering, TKL of Organic Solar Cells and Photochemical Conversion, TKL of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Jiong-Peng Zhao
- School of Chemistry and Chemical Engineering, TKL of Organic Solar Cells and Photochemical Conversion, TKL of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Fu-Chen Liu
- School of Chemistry and Chemical Engineering, TKL of Organic Solar Cells and Photochemical Conversion, TKL of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin 300384, P. R. China.
| |
Collapse
|
22
|
Ding Y, Qiao ZA. Carbon Surface Chemistry: New Insight into the Old Story. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206025. [PMID: 36127265 DOI: 10.1002/adma.202206025] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The enormous complexity of the carbon material family has provoked a phenomenological approach to develop its potential in different applications. Although the electronic, chemical, mechanical, and magnetic properties of carbon materials have been widely discussed based on defect control engineering, there is still a lack of fundamental understanding of the carbon surface chemistry, which leads to many controversial conclusions. Here, by analyzing various defects on carbon surface, some commonly neglected aspects and misunderstandings in this field are pointed out, clarifying how surface chemistry affects the chemical behaviors of carbon in some specific chemical reactions. With this full-scale consideration of the carbon surface chemistry, the behaviors of carbon materials with various functions can be well defined, which is indispensable for their scalable applications. Perspectives on future developments of carbon surface chemistry are also provided to enable practically accessible design of advanced carbon in those applications.
Collapse
Affiliation(s)
- Yuxiao Ding
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhen-An Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
23
|
Fan T, Chen H, Ji Y. Graphdiyne supported single-atom cobalt catalyst for oxygen reduction reaction: The role of the co-adsorbates. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Kang SG, Kim KY, Cho Y, Jeong DY, Lee JH, Nishimura T, Lee SS, Kwak SK, You Y, Jung JH. Circularly Polarized Luminescence Active Supramolecular Nanotubes Based on Pt
II
Complexes That Undergo Dynamic Morphological Transformation and Helicity Inversion. Angew Chem Int Ed Engl 2022; 61:e202207310. [DOI: 10.1002/anie.202207310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Seok Gyu Kang
- Department of Chemistry and Research Institution of Natural Sciences Gyeongsang National University (GNU) Jinju 52828 Republic of Korea
| | - Ka Young Kim
- Department of Chemistry and Research Institution of Natural Sciences Gyeongsang National University (GNU) Jinju 52828 Republic of Korea
| | - Yumi Cho
- Department of Energy Enginerring School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Dong Yeun Jeong
- Division of Chemical Engineering and Materials Science Graduate Program in System Health Science and Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - Ji Ha Lee
- Chemical Engineering Program Graduate School of Advanced Science and Engineering Hiroshima University Hiroshima 739-8527 Japan
| | - Tomoki Nishimura
- Department of Chemistry and Materials Faculty of Textile Science and Technology Shinshu University Nagano 386-8567 Japan
| | - Shim Sung Lee
- Department of Chemistry and Research Institution of Natural Sciences Gyeongsang National University (GNU) Jinju 52828 Republic of Korea
| | - Sang Kyu Kwak
- Department of Energy Enginerring School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Youngmin You
- Division of Chemical Engineering and Materials Science Graduate Program in System Health Science and Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institution of Natural Sciences Gyeongsang National University (GNU) Jinju 52828 Republic of Korea
| |
Collapse
|
25
|
Bu R, Lu Y, Zhang B. Covalent Organic Frameworks Based Single-site Electrocatalysts for Oxygen Reduction Reaction. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Liu X, Verma G, Chen Z, Hu B, Huang Q, Yang H, Ma S, Wang X. Metal-organic framework nanocrystal-derived hollow porous materials: Synthetic strategies and emerging applications. Innovation (N Y) 2022; 3:100281. [PMID: 35880235 PMCID: PMC9307687 DOI: 10.1016/j.xinn.2022.100281] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/29/2022] [Indexed: 11/05/2022] Open
Abstract
Metal-organic frameworks (MOFs) have garnered multidisciplinary attention due to their structural tailorability, controlled pore size, and physicochemical functions, and their inherent properties can be exploited by applying them as precursors and/or templates for fabricating derived hollow porous nanomaterials. The fascinating, functional properties and applications of MOF-derived hollow porous materials primarily lie in their chemical composition, hollow character, and unique porous structure. Herein, a comprehensive overview of the synthetic strategies and emerging applications of hollow porous materials derived from MOF-based templates and/or precursors is given. Based on the role of MOFs in the preparation of hollow porous materials, the synthetic strategies are described in detail, including (1) MOFs as removable templates, (2) MOF nanocrystals as both self-sacrificing templates and precursors, (3) MOF@secondary-component core-shell composites as precursors, and (4) hollow MOF nanocrystals and their composites as precursors. Subsequently, the applications of these hollow porous materials for chemical catalysis, electrocatalysis, energy storage and conversion, and environmental management are presented. Finally, a perspective on the research challenges and future opportunities and prospects for MOF-derived hollow materials is provided. MOFs have garnered multi-disciplinary attention due to their unique inherent properties Various synthetic strategies of MOFs-derived hollow porous materials are summarized Emerging applications of MOFs-derived hollow porous materials are reviewed
Collapse
Affiliation(s)
- Xiaolu Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.,School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Gaurav Verma
- Department of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, TX 76201, USA
| | - Zhongshan Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Qifei Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hui Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, TX 76201, USA
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.,School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| |
Collapse
|
27
|
Yu A, Long W, Zhu L, Zhao Y, Peng P, Li FF. Transformation of postsynthesized F-MOF to Fe/N/F-tridoped carbon nanotubes as oxygen reduction catalysts for high power density Zn-air batteries. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Liu X, Verma G, Chen Z, Hu B, Huang Q, Yang H, Ma S, Wang X. Metal-organic framework nanocrystal-derived hollow porous materials: Synthetic strategies and emerging applications. Innovation (N Y) 2022; 3:100281. [DOI: doi.org/10.1016/j.xinn.2022.100281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023] Open
|
29
|
Zhao R, Xia J, Adamaquaye P, Zhao G. Electric Field Polarized Fe−N Functionalized Graphene Oxide Nanosheet Catalyst for Efficient Oxygen Reduction Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202200616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Rong Zhao
- Department of Physics and Nano Materials Laboratory Southern University and A&M College, Baton Rouge Louisiana 70813 USA
| | - Jiaxin Xia
- Department of Physics and Nano Materials Laboratory Southern University and A&M College, Baton Rouge Louisiana 70813 USA
| | - Peter Adamaquaye
- Department of Physics and Nano Materials Laboratory Southern University and A&M College, Baton Rouge Louisiana 70813 USA
| | - Guang‐lin Zhao
- Department of Physics and Nano Materials Laboratory Southern University and A&M College, Baton Rouge Louisiana 70813 USA
| |
Collapse
|
30
|
Si W, Xie Q, Zhang R, Wang Z, Shen Y, Uyama H. Exploring the structural dependence of metal-free carbon electrocatalysts on zinc-based metal-organic framework types. Dalton Trans 2022; 51:11363-11371. [PMID: 35816017 DOI: 10.1039/d2dt01718k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic frameworks (MOFs) have been widely used as precursors to derive carbon-based electrocatalysts for the oxygen reduction reaction (ORR) due to their high porosity and tunable chemical composition/structure. However, the influence of MOF type on the structure and further ORR activity of derived metal-free carbon catalysts is still elusive. In the present work, a series of different Zn-based MOFs were employed as precursors to explore this issue. Meanwhile, prepare N-doped metal-free carbon catalysts were prepared for the ORR under the activation of sacrificial urea (which is effective to enhance the ORR activity of carbon-based catalysts). By analyzing the intermediates during pyrolysis, it is found that the decisive role of MOF types on the doped N and the morphology of derived carbon catalysts was played by the Zn coordination environment of MOFs and its reactivity with the decomposition intermediate of urea. Although the structure and porosity of derived carbon catalysts from different MOFs are very different, they all showed superior ORR activity and Zn-air battery performance up to 20 wt% Pt/C benchmark catalysts. From the above analyses, the combination of urea and compounded Zn is also a promising activation method for the preparation of highly-efficient metal-free carbon electrocatalysts.
Collapse
Affiliation(s)
- Wenfang Si
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, No. 1, Xuefu Road, 710127 Xi'an, Shaanxi, China.
| | - Qianjie Xie
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, No. 1, Xuefu Road, 710127 Xi'an, Shaanxi, China.
| | - Ruiyi Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, No. 1, Xuefu Road, 710127 Xi'an, Shaanxi, China.
| | - Zheng Wang
- College of Food Science and Engineering, Northwest University, No. 229 Taibai North Road, 710069 Xi'an, Shaanxi, China.
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, No. 1, Xuefu Road, 710127 Xi'an, Shaanxi, China.
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
31
|
Kang SG, Kim KY, Cho Y, Jeong DY, Lee JH, Nishimura T, Lee SS, Kwak SK, You Y, Jung JH. Circularly Polarized Luminescence Active Supramolecular Nanotubes Based on Pt(II) Complexes that Undergo Dynamic Morphological Transformation and Helicity Inversion. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Seok Gyu Kang
- Gyeongsang National University Department of Chemistry KOREA, REPUBLIC OF
| | - Ka Young Kim
- Gyeongsang National University Department of Chemistry KOREA, REPUBLIC OF
| | - Yumi Cho
- Ulsan National Institute of Science and Technology Department of Energy Enginerring KOREA, REPUBLIC OF
| | - Dong Yeun Jeong
- Ewha Womans University Division of Chemical Engineering and Materials Science KOREA, REPUBLIC OF
| | - Ji Ha Lee
- Hiroshima University: Hiroshima Daigaku Chemical Engineering Program KOREA, REPUBLIC OF
| | - Tomoki Nishimura
- Shinshu Daigaku Department of Chemistry and Materials KOREA, REPUBLIC OF
| | - Shim Sung Lee
- Gyeongsang National University Department of Chemistry KOREA, REPUBLIC OF
| | - Sang Kyu Kwak
- Ulsan National Institute of Science and Technology Department of Energy Enginerring KOREA, REPUBLIC OF
| | - Youngmin You
- Ewha Womans University Division of Chemical Engineering and Materials Science KOREA, REPUBLIC OF
| | - Jong Hwa Jung
- Gyeongsang National University Department of Chemistry Gyeongsang National University 501 jinjudaero 52828 Jinju KOREA, REPUBLIC OF
| |
Collapse
|
32
|
Guo F, Liu Z, Zhang Y, Xiao J, Zeng X, Zhang C, Dong P, Liu T, Zhang Y, Li M. Tiny Ni Nanoparticles Embedded in Boron- and Nitrogen-Codoped Porous Carbon Nanowires for High-Efficiency Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24447-24461. [PMID: 35604016 DOI: 10.1021/acsami.2c04956] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The integration of nickel (Ni) nanoparticle (NP)-embedded carbon layers (Ni@C) into the three-dimensional (3D) hierarchically porous carbon architectures, where ultrahigh boron (B) and nitrogen (N) doping is a potential methodology for boosting Ni catalysts' water splitting performances, was achieved. In this study, the novel 3D ultrafine Ni NP-embedded and B- and N-codoped hierarchically porous carbon nanowires (denoted as Ni@BNPCFs) were successfully synthesized via pyrolysis of the corresponding 3D nickel acetate [Ni(AC)2·4H2O]-hydroxybenzeneboronic acid-polyvinylpyrrolidone precursor networks woven by electrospinning. After optimizing the pyrolysis temperatures, various structural and morphological characterization analyses indicate that the optimal Ni@BNPCFs-900 networks own a large surface area, abundant micro/mesopores, and vast carbon edges/defects, which boost doping a large amount of B (5.81 atom %) and N (5.84 atom %) dopants into carbon frameworks with 6.36 atom % of BC3, pyridinic-N (pyridinic-N-Ni), and graphitic-N active sites. Electrochemical measurements demonstrate that Ni@BNPCFs-900 reveals the best hydrogen evolution reaction (HER) and oxygen reduction reaction catalytic activities in an alkaline solution. The HER potential at 10 mA cm-2 [E10 = -164.2 mV vs reversible hydrogen electrode (RHE)] of the optimal Ni@BNPCFs-900 is just 96.2 mV more negative than that of the state-of-the-art 20 wt % Pt/C (E10 = -68 mV vs RHE). In particular, the OER E10 and Tafel slope of the optimal Ni@BNPCFs-900 (1.517 V vs RHE and 19.31 mV dec-1) are much smaller than those of RuO2 (1.557 V vs RHE and 64.03 mV dec-1). For full water splitting, the catalytic current density achieves 10 mA cm-2 at a low cell voltage of 1.584 V for the (-) Ni@BNPCFs-900||Ni@BNPCFs-900 (+) electrolysis cell, which is 10 mV smaller than that of the (-) 20 wt % Pt/C||RuO2 (+) benchmark (1.594 V) under the same conditions. The synergistic effects of 3D hierarchically porous structures, advanced charge transport ability, and abundant active centers [such as Ni@BNC, BC3, pyridinic-N (pyridinic-N-Ni), and graphitic-N] are responsible for the excellent water-splitting catalytic activity of the Ni@BNPCFs-900 networks. Especially, because of the remarkable structural and chemical stabilities of 3D hierarchically porous Ni@BNPCFs-900 networks, the (-) Ni@BNPCFs-900||Ni@BNPCFs-900 (+) water electrolysis cell displays an excellent stability.
Collapse
Affiliation(s)
- Fei Guo
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Zhuo Liu
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Yiyong Zhang
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Jie Xiao
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Xiaoyuan Zeng
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Chengxu Zhang
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Peng Dong
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Tingting Liu
- School of Materials and Energy, Yunnan Key Laboratory for Micro/Nano Materials and Technology, Yunnan University, No. 2, Green Lake North Road, Kunming 650091, PR China
| | - Yingjie Zhang
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Mian Li
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| |
Collapse
|
33
|
Mechanism of oxygen reduction reaction on Ni/CNTs and Ni/X-CNTs (X=B, N, O) catalysts: a theoretical study. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02888-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Yuan R, Zhao L, Wei Y, Chen Y, Tang M, Xue Z, Wang A, Zhang J. Substituent effects of symmetric cobalt porphyrins using graphene oxide as substrate on catalytic oxygen reduction reactions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Chang B, Zhang L, Wu S, Sun Z, Cheng Z. Engineering single-atom catalysts toward biomedical applications. Chem Soc Rev 2022; 51:3688-3734. [PMID: 35420077 DOI: 10.1039/d1cs00421b] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Due to inherent structural defects, common nanocatalysts always display limited catalytic activity and selectivity, making it practically difficult for them to replace natural enzymes in a broad scope of biologically important applications. By decreasing the size of the nanocatalysts, their catalytic activity and selectivity will be substantially improved. Guided by this concept, the advances of nanocatalysts now enter an era of atomic-level precise control. Single-atom catalysts (denoted as SACs), characterized by atomically dispersed active sites, strikingly show utmost atomic utilization, precisely located metal centers, unique metal-support interactions and identical coordination environments. Such advantages of SACs drastically boost the specific activity per metal atom, and thus provide great potential for achieving superior catalytic activity and selectivity to functionally mimic or even outperform natural enzymes of interest. Although the size of the catalysts does matter, it is not clear whether the guideline of "the smaller, the better" is still correct for developing catalysts at the single-atom scale. Thus, it is clearly a new, urgent issue to address before further extending SACs into biomedical applications, representing an important branch of nanomedicine. This review begins by providing an overview of recent advances of synthesis strategies of SACs, which serve as a basis for the discussion of emerging achievements in improving the enzyme-like catalytic properties at an atomic level. Then, we carefully compare the structures and functions of catalysts at various scales from nanoparticles, nanoclusters, and few-atom clusters to single atoms. Contrary to conventional wisdom, SACs are not the most catalytically active catalysts in specific reactions, especially those requiring multi-site auxiliary activities. After that, we highlight the unique roles of SACs toward biomedical applications. To appreciate these advances, the challenges and prospects in rapidly growing studies of SACs-related catalytic nanomedicine are also discussed in this review.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Liqin Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Shaolong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Ziyan Sun
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China. .,Bohai rim Advanced Research Institute for Drug Discovery, Yantai, 264000, China.,Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, California 94305, USA
| |
Collapse
|
36
|
Liu Z, Guo F, Han L, Xiao J, Zeng X, Zhang C, Dong P, Li M, Zhang Y. Manganese Oxide/Iron Carbide Encapsulated in Nitrogen and Boron Codoped Carbon Nanowire Networks as Accelerated Alkaline Hydrogen Evolution and Oxygen Reduction Bifunctional Electrocatalysts. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13280-13294. [PMID: 35263074 DOI: 10.1021/acsami.1c23731] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Along with the widespread applications of various energy storage and conversion devices, the prices of precious metal platinum (Pt) and transition-metal cobalt/nickel keep continuously growing. In the future, designing high-efficiency nonprecious-metal catalysts based on low-cost iron (Fe) and manganese (Mn) metals for hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) is fairly critical for commercial applications of hydrogen fuel cells. In this study, for the first time, we design novel three-dimensional (3D) hybrid networks consisting of manganese oxide (MnO)-modified, iron carbide (Fe3C)-embedded, and boron (B)/nitrogen (N) codoped hierarchically porous carbon nanofibers (denoted FeMn@BNPCFs). After optimizing the pyrolysis temperatures, the optimal FeMn@BNPCFs-900 catalyst displays the best HER and ORR catalytic activities in an alkaline solution. As expected, the HER onset potential (Eonset) and the potential at a current density of -10 mA cm-2 for FeMn@BNPCFs-900 in 1.0 M KOH are just 36 and 194 mV more negative than the state-of-the-art 20 wt % Pt/C catalyst with more superior stability. In particular, the FeMn@BNPCFs-900 catalyst shows excellent ORR catalytic activity with a more positive Eonset (0.946 V vs RHE), a more positive half-wave potential (E1/2 = 0.868 V vs RHE), better long-term stability, and higher methanol tolerance surpassing the commercial 20 wt % Pt/C (Eonset = 0.943 V vs RHE, E1/2 = 0.854 V vs RHE) and most previously reported precious-metal-free catalysts in 0.1 M KOH. The synergistic effects of 3D hierarchically macro-/mesoporous architectures, advanced charge transport capacity, abundant carbon defects/edges, abundant B (2.3 atom %) and N (4.9 atom %) dopants, uniformly dispersed Fe3C@BNC NPs, and MnO nanocrystallines are responsible for the excellent HER/ORR catalytic activities of the FeMn@BNPCFs-900 catalyst.
Collapse
Affiliation(s)
- Zhuo Liu
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Fei Guo
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Lina Han
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Jie Xiao
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Xiaoyuan Zeng
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Chengxu Zhang
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Peng Dong
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Mian Li
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Yingjie Zhang
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| |
Collapse
|
37
|
Li J, Yue MF, Wei YM, Li JF. Synthetic strategies of single-atoms catalysts and applications in electrocatalysis. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Zhong H, Wang M, Chen G, Dong R, Feng X. Two-Dimensional Conjugated Metal-Organic Frameworks for Electrocatalysis: Opportunities and Challenges. ACS NANO 2022; 16:1759-1780. [PMID: 35049290 DOI: 10.1021/acsnano.1c10544] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A highly effective electrocatalyst is the central component of advanced electrochemical energy conversion. Recently, two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have emerged as a class of promising electrocatalysts because of their advantages including 2D layered structure with high in-plane conjugation, intrinsic electrical conductivity, permanent pores, large surface area, chemical stability, and structural diversity. In this Review, we summarize the recent advances of 2D c-MOF electrocatalysts for electrochemical energy conversion. First, we introduce the chemical design principles and synthetic strategies of the reported 2D c-MOFs, as well as the functional design for the electrocatalysis. Subsequently, we present the representative 2D c-MOF electrocatalysts in various electrochemical reactions, such as hydrogen/oxygen evolution, and reduction reactions of oxygen, carbon dioxide, and nitrogen. We highlight the strategies for the structural design and property tuning of 2D c-MOF electrocatalysts to boost the catalytic performance, and we offer our perspectives in regard to the challenges to be overcome.
Collapse
Affiliation(s)
- Haixia Zhong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
| | - Mingchao Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
| | - Guangbo Chen
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
- Max Planck Institute of Microstructure Physics, Halle (Saale) 06120, Germany
| |
Collapse
|
39
|
Xia HQ, Gu T, Fan R, Zeng J. Comparative investigation of bioflavonoid electrocatalysis in 1D, 2D, and 3D carbon nanomaterials for simultaneous detection of naringin and hesperidin in fruits. RSC Adv 2022; 12:6409-6415. [PMID: 35424592 PMCID: PMC8982062 DOI: 10.1039/d1ra07217j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/13/2022] [Indexed: 12/16/2022] Open
Abstract
Electrocatalysis of bioflavonoids in carbon nanomaterials plays an important role in electrochemical sensors for the detection of their content in fruits. In this study, three types of carbon nanomaterials with 1D, 2D, and 3D structures, namely carbon nanotubes (CNTs), graphene oxide (GO), and Ketjen black (KB), were modified onto glassy carbon electrodes for the electrocatalysis of hesperidin and naringin, which are two important bioflavonoids in fruits. As a result, the CNT-modified electrodes showed the highest electrocatalytic activity for both hesperidin and naringin compared to GO and KB. The morphology and surface chemistry of the carbon nanomaterials were characterized. The structural defects and carbon status of carbon nanomaterials are proposed to be the most important factors affecting the electrocatalysis of hesperidin and naringin. Finally, a CNT-based electrochemical sensor was fabricated to simultaneously detect hesperidin and naringin. Real sample tests on the fruit extract of Citrus grandis "Tomentosa" show that the proposed electrochemical sensors with high recovery thus could be employed in practical applications.
Collapse
Affiliation(s)
- Hong-Qi Xia
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MARA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences Guangzhou 510640 China
| | - Tingting Gu
- School of Chemical Engineering, University of Science and Technology Liaoning Anshan 114051 China
| | - Ruiyi Fan
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MARA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences Guangzhou 510640 China
| | - Jiwu Zeng
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MARA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences Guangzhou 510640 China
| |
Collapse
|
40
|
Yang M, Lian Z, Si C, Jan F, Li B. Revealing the intrinsic relation between heteroatom dopants and graphene quantum dots as a bi-functional ORR/OER catalyst. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
41
|
Wang Y, Han C, Xie P, Li H, Yao P, Cao J, Ruan M, Song P, Gong X, Lu M, Xu W. Highly dispersed PtNi nanoparticles modified carbon black as high-performanced electrocatalyst for oxygen reduction in acidic medium. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Wang P, Wang B. Designing Self-Supported Electrocatalysts for Electrochemical Water Splitting: Surface/Interface Engineering toward Enhanced Electrocatalytic Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59593-59617. [PMID: 34878246 DOI: 10.1021/acsami.1c17448] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrochemical water splitting is regarded as the most attractive technique to store renewable electricity in the form of hydrogen fuel. However, the corresponding anodic oxygen evolution reaction (OER) and cathodic hydrogen evolution reaction (HER) remain challenging, which exhibit complex reactions and sluggish kinetic behaviors at the triple-phase interface. Material surface and interface engineering provide a feasible approach to improve catalytic activity. Besides, self-supported electrocatalysts have been proven to be highly efficient toward water splitting, because of the regulated catalyst/substrate interface. In this Review, the state-of-the-art achievements in self-supported electrocatalyst for HER/OER have demonstrated the feasibility of surface and interface engineering strategies to boost performance. The six key effective surface/interface engineering approaches for rational catalysts design are systematically reviewed, including defect engineering, morphology engineering, crystallographic tailoring, heterostructure design, catalyst/substrate interface engineering, and catalyst/electrolyte interface regulation. Finally, the challenges and opportunities on the valuable directions are proposed to inspire future investigation of highly active and durable HER/OER electrocatalysts.
Collapse
Affiliation(s)
- Peican Wang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, No. 30 Shuang-Qing Road, Hai-Dian District, Beijing 100084, People's Republic of China
| | - Baoguo Wang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, No. 30 Shuang-Qing Road, Hai-Dian District, Beijing 100084, People's Republic of China
| |
Collapse
|
43
|
Qiao Z, Wang C, Zeng Y, Spendelow JS, Wu G. Advanced Nanocarbons for Enhanced Performance and Durability of Platinum Catalysts in Proton Exchange Membrane Fuel Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006805. [PMID: 34061449 DOI: 10.1002/smll.202006805] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Insufficient stability of current carbon supported Pt and Pt alloy catalysts is a significant barrier for proton-exchange membrane fuel cells (PEMFCs). As a primary degradation cause to trigger Pt nanoparticle migration, dissolution, and aggregation, carbon corrosion remains a significant challenge. Compared with enhancing Pt and PtM alloy particle stability, improving support stability is rather challenging due to carbon's thermodynamic instability under fuel cell operation. In recent years, significant efforts have been made to develop highly durable carbon-based supports concerning innovative nanostructure design and synthesis along with mechanistic understanding. This review critically discusses recent progress in developing carbon-based materials for Pt catalysts and provides synthesis-structure-performance correlations to elucidate underlying stability enhancement mechanisms. The mechanisms and impacts of carbon support degradation on Pt catalyst performance are first discussed. The general strategies are summarized to tailor the carbon structures and strengthen the metal-support interactions, followed by discussions on how these designs lead to enhanced support stability. Based on current experimental and theoretical studies, the critical features of carbon supports are analyzed concerning their impacts on the performance and durability of Pt catalysts in fuel cells. Finally, the perspectives are shared on future directions to develop advanced carbon materials with favorable morphologies and nanostructures to increase Pt utilization, strengthen metal-support interactions, facilitate mass/charge transfer, and enhance corrosion resistance.
Collapse
Affiliation(s)
- Zhi Qiao
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Chenyu Wang
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Yachao Zeng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Jacob S Spendelow
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| |
Collapse
|
44
|
Xie Q, Si W, Shen Y, Wang Z, Uyama H. N- and O-doped hollow carbons constructed by self- and extrinsic activation for the oxygen reduction reaction and flexible zinc-air Batteries. NANOSCALE 2021; 13:16296-16306. [PMID: 34558569 DOI: 10.1039/d1nr04821j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Zinc-air batteries (ZAB), especially those assembled on flexible substrates, have attracted great research attention in electronics and wearable electronics. However, the air-cathode reaction-oxygen reduction reaction (ORR) has limited the development of ZAB technology. In this study, a hollow carbon catalyst, NOC-1000-1, was prepared by pyrolysis of a mixture of a N-enriched Zn/bispyrozolate-based metal-organic framework and urea to replace the labile Pt-based catalysts for ORR. The employment of sacrifical urea eliminated the requirement for complicated post-treatment compared to the template method. Combined with self-activation (Zn evaporation), the obtained carbon showed a micro- and mesopore-dominant hierarchical structure coexisting with some macropores. Moreover, the doped N and O species were also tailored in a preferable configuration for ORR by simply screening the pyrolysis conditions. Under the synergistic effect of the preferable N and O configurations and pore structure, the derived carbon catalyst displayed superior ORR activity of 0.977 V onset potential and 0.867 V half-wave potential; these values are slightly better than those of the 20% Pt/C benchmark catalyst (0.985 and 0.861 V, respectively). Flexible solid-state ZABs were further assembled by employing the derived carbon catalyst as an air-cathode, and they exhibited a higher peak power density of 100.92 mW cm-2 than a 20% Pt/C-RuO2 battery as well as previously reported similar batteries and very high stability for up to 30 h. The flexible solid-state ZABs could drive a red light-emitting diode and run a 130-type motor for hours, which indicates their promising applications in real-world technologies.
Collapse
Affiliation(s)
- Qianjie Xie
- College of Food Science and Engineering, Northwest University, No. 229 Taibai North Road, 710069 Xi'an, Shaanxi, China.
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, No. 1, Xuefu Road, 710127 Xi'an, Shaanxi, China.
| | - Wenfang Si
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, No. 1, Xuefu Road, 710127 Xi'an, Shaanxi, China.
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, No. 1, Xuefu Road, 710127 Xi'an, Shaanxi, China.
| | - Zheng Wang
- College of Food Science and Engineering, Northwest University, No. 229 Taibai North Road, 710069 Xi'an, Shaanxi, China.
| | - Hiroshi Uyama
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, No. 1, Xuefu Road, 710127 Xi'an, Shaanxi, China.
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
45
|
Ying J. Atomic-Scale Design of High-Performance Pt-Based Electrocatalysts for Oxygen Reduction Reaction. Front Chem 2021; 9:753604. [PMID: 34604177 PMCID: PMC8481695 DOI: 10.3389/fchem.2021.753604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Fuel cells are regarded as one of the most promising energy conversion devices because of their high energy density and zero emission. Development of high-performance Pt-based electrocatalysts for the oxygen reduction reaction (ORR) is vital to the commercial application of these fuel cell devices. Herein, we review the most significant breakthroughs in the development of high-performance Pt-based ORR electrocatalysts in the past decade. Novel and preferred nanostructures, including biaxially strained core-shell nanoplates, ultrafine jagged nanowires, nanocages with subnanometer-thick walls and nanoframes with three-dimensional surfaces, for excellent performance in ORR are emphasized. Important effects of strain, particle proximity, and surface morphology are fully discussed. The remaining changes and prospective research directions are also proposed.
Collapse
Affiliation(s)
- Jie Ying
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
46
|
You‐Lin L, Jinjiang L, Meimei W, Yuesong S, Shipin Y, Dongyan L. Mesoporous Fe‐N
x
‐C Sub‐Microspheres for Highly Efficient Electrocatalytic Oxygen Reduction Reaction. ChemCatChem 2021. [DOI: 10.1002/cctc.202100842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Liu You‐Lin
- College of Materials Science and Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Liu Jinjiang
- College of Materials Science and Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Wang Meimei
- School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Shen Yuesong
- College of Materials Science and Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Yang Shipin
- College of Electrical Engineering and Control Science Nanjing Tech University Nanjing 211816 P. R. China
| | - Li Dongyan
- School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 211816 P. R. China
| |
Collapse
|
47
|
Mukherjee B. First principles investigation on cobalt–tetracyanoquinodimethane monolayer for efficient Bi-functional single atom electrocatalyst. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
In-situ construction of C-S-Zn structures on Enteromorpha-based porous carbon for efficient oxygen reduction reaction. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Insights into oxygen reduction reaction on pristine carbon nanoparticles synthesized by the plasma-in-liquid process. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Zhao S, Chen F, Zhang Q, Meng L. High-performance electrocatalyst based on polyazine derived mesoporous nitrogen-doped carbon for oxygen reduction reaction. RSC Adv 2021; 11:29555-29563. [PMID: 35479528 PMCID: PMC9040643 DOI: 10.1039/d1ra03255k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/13/2021] [Indexed: 02/05/2023] Open
Abstract
Nitrogen-doped porous carbon materials have high potential in metal-free electrocatalysts, which is essential for several renewable energy conversion systems. Herein, we report a convenient and environment-friendly method to fabricate a nitrogen doped mesoporous carbon (NMC) using a nonionic surfactant of Pluronic F127 micelles as the template and a Schiff-base polymer (polyazine) as the precursor. The synthesized NMCs were of spheric morphology and mesoporous structures with surface area up to 1174 m2 g−1 and high level of nitrogen (2.9–19 at%) and oxygen (4.9–7.4 at%) simultaneously doped. The electrochemical data of NMCs were analyzed in the context of the BET and XPS information. A correlation between ORR activity and the pyridinic-N was found. The NMC-700 demonstrate the highest electrocatalytic activity for ORR among the studied materials, which can be ascribed to the reasonable surface area and mesoporous structure, as well as the most abundant touchable pyridinic-N, thus providing more effective active sites for the oxygen reduction. In comparsion to the control sample, the NMC-700 provides the ORR electrocatalytic activity approximate to that of commercial Pt/C catalyst with a highly long-term stability. Nitrogen-doped porous carbon materials have high potential in metal-free electrocatalysts, which is essential for several renewable energy conversion systems.![]()
Collapse
Affiliation(s)
- Songlin Zhao
- College of Chemical Engineering, Zhejiang University of Technology Hangzhou Zhejiang 310014 China .,School of Pharmaceutical and Materials Engineering, Taizhou University Taizhou 318000 China
| | - Fushan Chen
- Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University Jiujiang 332005 China
| | - Qunfeng Zhang
- College of Chemical Engineering, Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Lingtao Meng
- School of Pharmaceutical and Materials Engineering, Taizhou University Taizhou 318000 China
| |
Collapse
|