1
|
Guriec N, Le Foll C, Delarue J. Long-chain n-3 PUFA given before and throughout gestation and lactation in rats prevent high-fat diet-induced insulin resistance in male offspring in a tissue-specific manner. Br J Nutr 2023; 130:1121-1136. [PMID: 36688295 DOI: 10.1017/s000711452300017x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This study investigated whether long-chain n-3 PUFA (LC n-3 PUFA) given to pregnant rats fed a high-fat (HF) diet may prevent fetal programming in male offspring at adulthood. Six weeks before mating, and throughout gestation and lactation, female nulliparous Sprague-Dawley rats were given a chow (C) diet, HF (60·6 % fat from maize, rapeseed oils and lard) or HF in which one-third of fat was replaced by fish oil (HF n-3). At weaning, the three offspring groups were randomly separated in two groups fed C diet, or HF without LC n-3 PUFA, for 7 weeks until adulthood. Glucose tolerance and insulin sensitivity were assessed by an oral glucose tolerance test both at weaning and at adulthood. Insulin signalling was determined in liver, muscle and adipose tissue by quantification of the phosphorylation of Akt on Ser 473 at adulthood. At weaning, as at adulthood, offspring from HF-fed dams were obese and displayed glucose intolerance (GI) and insulin resistance (IR), but not those from HFn-3 fed dams. Following the post-weaning C diet, phosphorylation of Akt was strongly reduced in all tissues of offspring from HF dams, but to a lesser extent in liver and muscle of offspring from HFn-3 dams. However, it was abolished in all tissues of all offspring groups fed the HF post-weaning diet. Thus, LC n-3 PUFA introduced in a HF in dams partially prevented the transmission of GI and IR in adult offspring even though they were fed without LC n-3 PUFA from weaning.
Collapse
Affiliation(s)
- Nathalie Guriec
- Department of Nutritional Sciences, University Hospital/Faculty of Medicine/University of Brest, Brest, France
| | - Christelle Le Foll
- Department of Nutritional Sciences, University Hospital/Faculty of Medicine/University of Brest, Brest, France
| | - Jacques Delarue
- Department of Nutritional Sciences, University Hospital/Faculty of Medicine/University of Brest, Brest, France
- ER 7479 SPURBO, University Hospital/Faculty of Medicine/University of Brest, Brest, France
| |
Collapse
|
2
|
White MR, Yates DT. Dousing the flame: reviewing the mechanisms of inflammatory programming during stress-induced intrauterine growth restriction and the potential for ω-3 polyunsaturated fatty acid intervention. Front Physiol 2023; 14:1250134. [PMID: 37727657 PMCID: PMC10505810 DOI: 10.3389/fphys.2023.1250134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
Intrauterine growth restriction (IUGR) arises when maternal stressors coincide with peak placental development, leading to placental insufficiency. When the expanding nutrient demands of the growing fetus subsequently exceed the capacity of the stunted placenta, fetal hypoxemia and hypoglycemia result. Poor fetal nutrient status stimulates greater release of inflammatory cytokines and catecholamines, which in turn lead to thrifty growth and metabolic programming that benefits fetal survival but is maladaptive after birth. Specifically, some IUGR fetal tissues develop enriched expression of inflammatory cytokine receptors and other signaling cascade components, which increases inflammatory sensitivity even when circulating inflammatory cytokines are no longer elevated after birth. Recent evidence indicates that greater inflammatory tone contributes to deficits in skeletal muscle growth and metabolism that are characteristic of IUGR offspring. These deficits underlie the metabolic dysfunction that markedly increases risk for metabolic diseases in IUGR-born individuals. The same programming mechanisms yield reduced metabolic efficiency, poor body composition, and inferior carcass quality in IUGR-born livestock. The ω-3 polyunsaturated fatty acids (PUFA) are diet-derived nutraceuticals with anti-inflammatory effects that have been used to improve conditions of chronic systemic inflammation, including intrauterine stress. In this review, we highlight the role of sustained systemic inflammation in the development of IUGR pathologies. We then discuss the potential for ω-3 PUFA supplementation to improve inflammation-mediated growth and metabolic deficits in IUGR offspring, along with potential barriers that must be considered when developing a supplementation strategy.
Collapse
Affiliation(s)
| | - Dustin T. Yates
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
3
|
Li W, Zhang K, Zhao Q. Fructooligosaccharide enhanced absorption and anti-dyslipidemia capacity of tea flavonoids in high sucrose-fed mice. Int J Food Sci Nutr 2019; 70:311-322. [DOI: 10.1080/09637486.2018.1511688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wenfeng Li
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, China
| | - Kun Zhang
- School of Clinical Medicine, Jining Medical University, Jining, China
| | - Qiang Zhao
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, China
| |
Collapse
|
4
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is currently the most common cause of chronic liver disease worldwide and is present in a third of the general population and the majority of individuals with obesity and type 2 diabetes. Importantly, NAFLD can progress to severe nonalcoholic steatohepatitis (NASH), associated with liver failure and hepatocellular carcinoma. Recent research efforts have extensively focused on identifying factors contributing to the additional "hit" required to promote NALFD disease progression. The maternal diet, and in particular a high-fat diet (HFD), may be one such hit "priming" the development of severe fatty liver disease, a notion supported by the increasing incidence of NAFLD among children and adolescents in Westernized countries. In recent years, a plethora of key studies have used murine models of maternal obesity to identify fundamental mechanisms such as lipogenesis, mitochondrial function, inflammation, and fibrosis that may underlie the developmental priming of NAFLD. In this chapter, we will address key considerations for constructing experimental models and both conventional and advanced methods of quantifying NAFLD disease status.
Collapse
Affiliation(s)
- Kimberley D Bruce
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Karen R Jonscher
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
5
|
Toop CR, Muhlhausler BS, O'Dea K, Gentili S. Impact of perinatal exposure to sucrose or high fructose corn syrup (HFCS-55) on adiposity and hepatic lipid composition in rat offspring. J Physiol 2017; 595:4379-4398. [PMID: 28447343 DOI: 10.1113/jp274066] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/30/2017] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Fructose-containing sugars, including sucrose and high fructose corn syrup (HFCS), have been implicated in the epidemics of obesity and type 2 diabetes. Few studies have evaluated the impact of perinatal exposure to these sugars on metabolic and physiological outcomes in the offspring. Using a rat model, offspring exposed to a maternal sucrose or HFCS diet during the prenatal and/or suckling periods were found to have altered adiposity and liver fat content and composition at weaning. Plasma levels of free fatty acids remained elevated in young adulthood, but consumption of a control diet following weaning appeared to ameliorate most other effects of perinatal exposure to a maternal high-sugar diet. Guidelines for maternal nutrition should advise limiting consumption of fructose-containing sugars, and it is particularly important that these recommendations include maternal nutrition during lactation. ABSTRACT Perinatal exposure to excess maternal intake of added sugars, including fructose and sucrose, is associated with an increased risk of obesity and type 2 diabetes in adult life. However, it is unknown to what extent the type of sugar and the timing of exposure affect these outcomes. The aim of this study was to determine the impact of exposure to maternal consumption of a 10% (w/v) beverage containing sucrose or high fructose corn syrup-55 (HFCS-55) during the prenatal and/or suckling periods on offspring at 3 and 12 weeks, utilising a cross-fostering approach in a rodent model. Perinatal sucrose exposure decreased plasma glucose concentrations in offspring at 3 weeks, but did not alter glucose tolerance. Increased adiposity was observed in 3-week-old offspring exposed to sucrose or HFCS-55 during suckling, with increased hepatic fat content in HFCS-55-exposed offspring. In terms of specific fatty acids, hepatic monounsaturated (omega-7 and -9) fatty acid content was elevated at weaning, and was most pronounced in sucrose offspring exposed during both the prenatal and suckling periods, and HFCS-55 offspring exposed during suckling only. By 12 weeks, the effects on adiposity and hepatic lipid composition were largely normalised. However, exposure to either sucrose or HFCS-55 during the prenatal period only was associated with elevated plasma free fatty acids at weaning, and this effect persisted until 12 weeks. This study suggests that the type of sugar and the timing of exposure (prenatal or suckling periods) are both important for determining the impact on metabolic health outcomes in the offspring.
Collapse
Affiliation(s)
- Carla R Toop
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Beverly S Muhlhausler
- FOODplus Research Centre, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
| | - Kerin O'Dea
- School of Population Health, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Sheridan Gentili
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| |
Collapse
|
6
|
The impact of maternal obesity on inflammatory processes and consequences for later offspring health outcomes. J Dev Orig Health Dis 2017; 8:529-540. [PMID: 28343461 DOI: 10.1017/s2040174417000204] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Obesity is a global epidemic, affecting both developed and developing countries. The related metabolic consequences that arise from being overweight or obese are a paramount global health concern, and represent a significant burden on healthcare systems. Furthermore, being overweight or obese during pregnancy increases the risk of offspring developing obesity and other related metabolic complications in later life, which can therefore perpetuate a transgenerational cycle of obesity. Obesity is associated with a chronic state of low-grade metabolic inflammation. However, the role of maternal obesity-mediated alterations in inflammatory processes as a mechanism underpinning developmental programming in offspring is less understood. Further, the use of anti-inflammatory agents as an intervention strategy to ameliorate or reverse the impact of adverse developmental programming in the setting of maternal obesity has not been well studied. This review will discuss the impact of maternal obesity on key inflammatory pathways, impact on pregnancy and offspring outcomes, potential mechanisms and avenues for intervention.
Collapse
|
7
|
Fortino MA, Oliva ME, Rodriguez S, Lombardo YB, Chicco A. Could post-weaning dietary chia seed mitigate the development of dyslipidemia, liver steatosis and altered glucose homeostasis in offspring exposed to a sucrose-rich diet from utero to adulthood? Prostaglandins Leukot Essent Fatty Acids 2017; 116:19-26. [PMID: 28088290 DOI: 10.1016/j.plefa.2016.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 12/20/2022]
Abstract
The present work analyzes the effects of dietary chia seeds during postnatal life in offspring exposed to a sucrose-rich diet (SRD) from utero to adulthood. At weaning, chia seed (rich in α-linolenic acid) replaced corn oil (rich in linoleic acid) in the SRD. At 150 days of offspring life, anthropometrical parameters, blood pressure, plasma metabolites, hepatic lipid metabolism and glucose homeostasis were analyzed. Results showed that chia was able to prevent the development of hypertension, liver steatosis, hypertriglyceridemia and hypercholesterolemia. Normal triacylglycerol secretion and triacylglycerol clearance were accompanied by an improvement of de novo hepatic lipogenic and carnitine-palmitoyl transferase-1 enzymatic activities, associated with an accretion of n-3 polyunsaturated fatty acids in the total composition of liver homogenate. Glucose homeostasis and plasma free fatty acid levels were improved while visceral adiposity was slightly decreased. These results confirm that the incorporation of chia seed in the diet in postnatal life may provide a viable therapeutic option for preventing/mitigating adverse outcomes induced by an SRD from utero to adulthood.
Collapse
Affiliation(s)
- M A Fortino
- Departamento de Ciencias Biológicas, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, El Pozo, CC 242, 3000 Santa Fe, Argentina
| | - M E Oliva
- Departamento de Ciencias Biológicas, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, El Pozo, CC 242, 3000 Santa Fe, Argentina
| | - S Rodriguez
- Departamento de Ciencias Biológicas, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, El Pozo, CC 242, 3000 Santa Fe, Argentina
| | - Y B Lombardo
- Departamento de Ciencias Biológicas, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, El Pozo, CC 242, 3000 Santa Fe, Argentina
| | - A Chicco
- Departamento de Ciencias Biológicas, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, El Pozo, CC 242, 3000 Santa Fe, Argentina.
| |
Collapse
|
8
|
A post-weaning fish oil dietary intervention reverses adverse metabolic outcomes and 11β-hydroxysteroid dehydrogenase type 1 expression in postnatal overfed rats. Br J Nutr 2016; 116:1519-1529. [PMID: 27819216 DOI: 10.1017/s0007114516003718] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Early life is considered a critical period for determining long-term metabolic health. Postnatal over-nutrition may alter glucocorticoid (GC) metabolism and increase the risk of developing obesity and metabolic disorders in adulthood. Our aim was to assess the effects of the dose and timing of a fish oil diet on obesity and the expression of GC-activated enzyme 11β-hydroxysteroid dehydrogenase type 1 (HSD1) in postnatal overfed rats. Litter sizes were adjusted to three (small litter (SL)) or ten (normal litter) rats on postnatal day 3 to induce overfeeding or normal feeding. The SL rats were divided into three groups after weaning: high-dose fish oil (HFO), low-dose fish oil (LFO) and standard-diet groups. After 10 weeks, the HFO diet reduced body weight gain (16 %, P0·05). In conclusion, the post-weaning HFO diet could reverse adverse outcomes and decrease tissue GC activity in postnatal overfed rats.
Collapse
|