1
|
Moeun BN, Lemaire F, Smink AM, Ebrahimi Orimi H, Leask RL, de Vos P, Hoesli CA. Oxygenation and function of endocrine bioartificial pancreatic tissue constructs under flow for preclinical optimization. J Tissue Eng 2025; 16:20417314241284826. [PMID: 39866963 PMCID: PMC11758540 DOI: 10.1177/20417314241284826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/02/2024] [Indexed: 01/28/2025] Open
Abstract
Islet transplantation and more recently stem cell-derived islets were shown to successfully re-establish glycemic control in people with type 1 diabetes under immunosuppression. These results were achieved through intraportal infusion which leads to early graft losses and limits the capacity to contain and retrieve implanted cells in case of adverse events. Extra-hepatic sites and encapsulation devices have been developed to address these challenges and potentially create an immunoprotective or immune-privileged environment. Many strategies have achieved reversal of hyperglycemia in diabetic rodents. So far, the results have been less promising when transitioning to humans and larger animal models due to challenges in oxygenation and insulin delivery. We propose a versatile in vitro perfusion system to culture and experimentally study the function of centimeter-scale tissues and devices for insulin-secreting cell delivery. The system accommodates various tissue geometries, experimental readouts, and oxygenation tensions reflective of potential transplantation sites. We highlight the system's applications by using case studies to explore three prominent bioartificial endocrine pancreas (BAP) configurations: (I) with internal flow, (II) with internal flow and microvascularized, and (III) without internal flow. Oxygen concentration profiles modeled computationally were analogous to viability gradients observed experimentally through live/dead endpoint measurements and in case I, time-lapse fluorescence imaging was used to monitor the viability of GFP-expressing cells in real time. Intervascular BAPs were cultured under flow for up to 3 days and BAPs without internal flow for up to 7 days, showing glucose-responsive insulin secretion quantified through at-line non-disruptive sampling. This system can complement other preclinical platforms to de-risk and optimize BAPs and other artificial tissue designs prior to clinical studies.
Collapse
Affiliation(s)
- Brenden N Moeun
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Florent Lemaire
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Alexandra M Smink
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Richard L Leask
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Corinne A Hoesli
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Adeoye DI, Wang Y, Davis JJ, Roper MG. Automated cellular stimulation with integrated pneumatic valves and fluidic capacitors. Analyst 2023; 148:1227-1234. [PMID: 36786685 PMCID: PMC10023383 DOI: 10.1039/d2an01985j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Microfluidic technologies have proven to be a reliable tool in profiling dynamic insulin secretion from islets of Langerhans. Most of these systems rely on external pressure sources to induce flow, leading to difficulties moving to more elaborate systems. To reduce complexity, a microfluidic system was developed that used a single vacuum source at the outlet to drive fluidic transport of immunoassay reagents and stimulation solutions throughout the device. A downside to this approach is the lack of flow control over the reagents delivered to the islet chamber. To address this challenge, 4-layer pneumatic valves were integrated into the perfusion lines to automate and control the delivery of stimulants; however, it was found that as the valves closed, spikes in the flow would lead to abnormal insulin secretion profiles. Fluidic capacitors were then incorporated after the valves and found to remove the spikes. The combination of the valves and capacitors resulted in automated collection of insulin secretion profiles from single murine islets that were similar to those previously reported in the literature. In the future, these integrated fluidic components may enable more complex channel designs to be used with a relatively simple flow control solution.
Collapse
Affiliation(s)
- Damilola I Adeoye
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA.
| | - Yao Wang
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA.
| | - Joshua J Davis
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA.
| | - Michael G Roper
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA. .,Program in Molecular Biophysics, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA
| |
Collapse
|
3
|
Shinde A, Illath K, Kasiviswanathan U, Nagabooshanam S, Gupta P, Dey K, Chakrabarty P, Nagai M, Rao S, Kar S, Santra TS. Recent Advances of Biosensor-Integrated Organ-on-a-Chip Technologies for Diagnostics and Therapeutics. Anal Chem 2023; 95:3121-3146. [PMID: 36716428 DOI: 10.1021/acs.analchem.2c05036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Ashwini Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Uvanesh Kasiviswanathan
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Shalini Nagabooshanam
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Koyel Dey
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pulasta Chakrabarty
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan
| | - Suresh Rao
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Srabani Kar
- Department of Physics, Indian Institute of Science Education and Research (IISER), Tirupati, Andhra Pradesh 517507, India
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
4
|
Li W, Peng YF. Advances in microfluidic chips based on islet hormone-sensing techniques. World J Diabetes 2023; 14:17-25. [PMID: 36684385 PMCID: PMC9850799 DOI: 10.4239/wjd.v14.i1.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/11/2022] [Accepted: 12/07/2022] [Indexed: 01/10/2023] Open
Abstract
Diabetes mellitus is a global health problem resulting from islet dysfunction or insulin resistance. The mechanisms of islet dysfunction are still under investigation. Islet hormone secretion is the main function of islets, and serves an important role in the homeostasis of blood glucose. Elucidating the detailed mechanism of islet hormone secretome distortion can provide clues for the treatment of diabetes. Therefore, it is crucial to develop accurate, real-time, labor-saving, high-throughput, automated, and cost-effective techniques for the sensing of islet secretome. Microfluidic chips, an elegant platform that combines biology, engineering, computer science, and biomaterials, have attracted tremendous interest from scientists in the field of diabetes worldwide. These tiny devices are miniatures of traditional experimental systems with more advantages of time-saving, reagent-minimization, automation, high-throughput, and online detection. These features of microfluidic chips meet the demands of islet secretome analysis and a variety of chips have been designed in the past 20 years. In this review, we present a brief introduction of microfluidic chips, and three microfluidic chips-based islet hormone sensing techniques. We focus mainly on the theory of these techniques, and provide detailed examples based on these theories with the hope of providing some insights into the design of future chips or whole detection systems.
Collapse
Affiliation(s)
- Wei Li
- Department of Endocrinology, Suzhou Hospital of Anhui Medical University, Suzhou 234000, Anhui Province, China
| | - You-Fan Peng
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
5
|
Rodrigues Oliveira SM, Rebocho A, Ahmadpour E, Nissapatorn V, de Lourdes Pereira M. Type 1 Diabetes Mellitus: A Review on Advances and Challenges in Creating Insulin Producing Devices. MICROMACHINES 2023; 14:151. [PMID: 36677212 PMCID: PMC9867263 DOI: 10.3390/mi14010151] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/25/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is the most common autoimmune chronic disease in young patients. It is caused by the destruction of pancreatic endocrine β-cells that produce insulin in specific areas of the pancreas, known as islets of Langerhans. As a result, the body becomes insulin deficient and hyperglycemic. Complications associated with diabetes are life-threatening and the current standard of care for T1DM consists still of insulin injections. Lifesaving, exogenous insulin replacement is a chronic and costly burden of care for diabetic patients. Alternative therapeutic options have been the focus in these fields. Advances in molecular biology technologies and in microfabrication have enabled promising new therapeutic options. For example, islet transplantation has emerged as an effective treatment to restore the normal regulation of blood glucose in patients with T1DM. However, this technique has been hampered by obstacles, such as limited islet availability, extensive islet apoptosis, and poor islet vascular engraftment. Many of these unsolved issues need to be addressed before a potential cure for T1DM can be a possibility. New technologies like organ-on-a-chip platforms (OoC), multiplexed assessment tools and emergent stem cell approaches promise to enhance therapeutic outcomes. This review will introduce the disorder of type 1 diabetes mellitus, an overview of advances and challenges in the areas of microfluidic devices, monitoring tools, and prominent use of stem cells, and how they can be linked together to create a viable model for the T1DM treatment. Microfluidic devices like OoC platforms can establish a crucial platform for pathophysiological and pharmacological studies as they recreate the pancreatic environment. Stem cell use opens the possibility to hypothetically generate a limitless number of functional pancreatic cells. Additionally, the integration of stem cells into OoC models may allow personalized or patient-specific therapies.
Collapse
Affiliation(s)
- Sonia M. Rodrigues Oliveira
- HMRI-Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - António Rebocho
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ehsan Ahmadpour
- Drug Applied Research Center, Department of Parasitology and Mycology, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Veeranoot Nissapatorn
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- School of Allied Health Sciences, Southeast Asia Water Team (SEAWater Team), World Union for Herbal Drug Discovery (WUHeDD), Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
6
|
Microfluidic Technology for Evaluating and Preserving Islet Function for Islet Transplant in Type 1 Diabetes. CURRENT TRANSPLANTATION REPORTS 2022. [DOI: 10.1007/s40472-022-00377-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Patel SN, Mathews CE, Chandler R, Stabler CL. The Foundation for Engineering a Pancreatic Islet Niche. Front Endocrinol (Lausanne) 2022; 13:881525. [PMID: 35600597 PMCID: PMC9114707 DOI: 10.3389/fendo.2022.881525] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022] Open
Abstract
Progress in diabetes research is hindered, in part, by deficiencies in current experimental systems to accurately model human pathophysiology and/or predict clinical outcomes. Engineering human-centric platforms that more closely mimic in vivo physiology, however, requires thoughtful and informed design. Summarizing our contemporary understanding of the unique and critical features of the pancreatic islet can inform engineering design criteria. Furthermore, a broad understanding of conventional experimental practices and their current advantages and limitations ensures that new models address key gaps. Improving beyond traditional cell culture, emerging platforms are combining diabetes-relevant cells within three-dimensional niches containing dynamic matrices and controlled fluidic flow. While highly promising, islet-on-a-chip prototypes must evolve their utility, adaptability, and adoptability to ensure broad and reproducible use. Here we propose a roadmap for engineers to craft biorelevant and accessible diabetes models. Concurrently, we seek to inspire biologists to leverage such tools to ask complex and nuanced questions. The progenies of such diabetes models should ultimately enable investigators to translate ambitious research expeditions from benchtop to the clinic.
Collapse
Affiliation(s)
- Smit N. Patel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
- Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Rachel Chandler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Cherie L. Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- Diabetes Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Quintard C, Tubbs E, Achard JL, Navarro F, Gidrol X, Fouillet Y. Microfluidic device integrating a network of hyper-elastic valves for automated glucose stimulation and insulin secretion collection from a single pancreatic islet. Biosens Bioelectron 2022; 202:113967. [DOI: 10.1016/j.bios.2022.113967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 01/15/2023]
|
9
|
Essaouiba A, Jellali R, Poulain S, Tokito F, Gilard F, Gakière B, Kim SH, Legallais C, Sakai Y, Leclerc E. Analysis of the transcriptome and metabolome of pancreatic spheroids derived from human induced pluripotent stem cells and matured in an organ-on-a-chip. Mol Omics 2022; 18:791-804. [DOI: 10.1039/d2mo00132b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The differentiation of pancreatic cells from hiPSC is one of the emerging strategies to achieve an in vitro pancreas model. Here, hiPSC-derived β-like-cells spheroids were cultured in microfluidic environment and characterized using omics analysis.
Collapse
Affiliation(s)
- Amal Essaouiba
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiegne, France
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba; Meguro-ku, Tokyo, 153-8505, Japan
- Department of Chemical System Engineering, Graduate School of Engineering, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Rachid Jellali
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiegne, France
| | - Stéphane Poulain
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba; Meguro-ku, Tokyo, 153-8505, Japan
| | - Fumiya Tokito
- Department of Chemical System Engineering, Graduate School of Engineering, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Françoise Gilard
- Plateforme Métabolisme-Métabolome, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université d’Evry, Université de Paris, 91190 Gif-sur-Yvette, France
| | - Bertrand Gakière
- Plateforme Métabolisme-Métabolome, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université d’Evry, Université de Paris, 91190 Gif-sur-Yvette, France
| | - Soo Hyeon Kim
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba; Meguro-ku, Tokyo, 153-8505, Japan
| | - Cécile Legallais
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiegne, France
| | - Yasuyuki Sakai
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba; Meguro-ku, Tokyo, 153-8505, Japan
- Department of Chemical System Engineering, Graduate School of Engineering, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Eric Leclerc
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiegne, France
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba; Meguro-ku, Tokyo, 153-8505, Japan
| |
Collapse
|
10
|
Huang W, Wu T, Xie C, Rayner CK, Priest C, Ebendorff‐Heidepriem H, Zhao J(T. Sensing Intra‐ and Extra‐Cellular Ca 2+ in the Islet of Langerhans. ADVANCED FUNCTIONAL MATERIALS 2022; 32. [DOI: 10.1002/adfm.202106020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 12/19/2024]
Abstract
AbstractCalcium ions (Ca2+) take part in intra‐ and inter‐cellular signaling to mediate cellular functions. Sensing this ubiquitous messenger is instrumental in disentangling the specific functions of cellular sub‐compartments and/or intercellular communications. In this review, the authors first describe intra‐ and inter‐cellular Ca2+ signaling in relation to insulin secretion from the pancreatic islets, and then outline the development of diverse sensors, for example, chemically synthesized indicators, genetically encoded proteins, and ion‐selective microelectrodes, for intra‐ and extra‐cellular sensing of Ca2+. Particular emphasis is placed on emerging approaches in this field, such as low‐affinity Ca2+ indicators and unique Ca2+‐responsive composite materials. The authors conclude by remarking on the challenges and opportunities for further developments in this field, which may facilitate a more comprehensive understanding of Ca2+ signaling within and outside the islets, and its relevance in health and disease.
Collapse
Affiliation(s)
- Weikun Huang
- Adelaide Medical School Centre of Research Excellence in Translating Nutritional Science to Good Health The University of Adelaide Adelaide South Australia 5005 Australia
- Institute for Photonics and Advanced Sensing School of Physical Sciences ARC Centre of Excellence for Nanoscale BioPhotonics University of Adelaide Adelaide South Australia 5005 Australia
| | - Tongzhi Wu
- Adelaide Medical School Centre of Research Excellence in Translating Nutritional Science to Good Health The University of Adelaide Adelaide South Australia 5005 Australia
| | - Cong Xie
- Adelaide Medical School Centre of Research Excellence in Translating Nutritional Science to Good Health The University of Adelaide Adelaide South Australia 5005 Australia
| | - Christopher K. Rayner
- Adelaide Medical School Centre of Research Excellence in Translating Nutritional Science to Good Health The University of Adelaide Adelaide South Australia 5005 Australia
| | - Craig Priest
- Australian National Fabrication Facility and Future Industries Institute UniSA STEM University of South Australia Mawson Lakes South Australia 5095 Australia
| | - Heike Ebendorff‐Heidepriem
- Institute for Photonics and Advanced Sensing School of Physical Sciences ARC Centre of Excellence for Nanoscale BioPhotonics University of Adelaide Adelaide South Australia 5005 Australia
| | - Jiangbo (Tim) Zhao
- Institute for Photonics and Advanced Sensing School of Physical Sciences ARC Centre of Excellence for Nanoscale BioPhotonics University of Adelaide Adelaide South Australia 5005 Australia
- Department of Engineering Faculty of Science and Engineering University of Hull Hull HU6 7RX UK
| |
Collapse
|
11
|
In Vitro Disease Models of the Endocrine Pancreas. Biomedicines 2021; 9:biomedicines9101415. [PMID: 34680532 PMCID: PMC8533367 DOI: 10.3390/biomedicines9101415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
The ethical constraints and shortcomings of animal models, combined with the demand to study disease pathogenesis under controlled conditions, are giving rise to a new field at the interface of tissue engineering and pathophysiology, which focuses on the development of in vitro models of disease. In vitro models are defined as synthetic experimental systems that contain living human cells and mimic tissue- and organ-level physiology in vitro by taking advantage of recent advances in tissue engineering and microfabrication. This review provides an overview of in vitro models and focuses specifically on in vitro disease models of the endocrine pancreas and diabetes. First, we briefly review the anatomy, physiology, and pathophysiology of the human pancreas, with an emphasis on islets of Langerhans and beta cell dysfunction. We then discuss different types of in vitro models and fundamental elements that should be considered when developing an in vitro disease model. Finally, we review the current state and breakthroughs in the field of pancreatic in vitro models and conclude with some challenges that need to be addressed in the future development of in vitro models.
Collapse
|
12
|
Eaton WJ, Roper MG. A microfluidic system for monitoring glucagon secretion from human pancreatic islets of Langerhans. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3614-3619. [PMID: 34308945 PMCID: PMC8375491 DOI: 10.1039/d1ay00703c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Glucagon is a 29-amino acid peptide released from α-cells within pancreatic islets of Langerhans to help raise blood glucose levels. While a plethora of methodologies have been developed for quantitative measurement of insulin released from islets, such methods are not well developed for glucagon despite its importance in blood sugar regulation. In this work, a simple yet robust microfluidic device was developed for holding human pancreatic islets and perfuse them with glucose. The perfusate was collected into 2 min fractions and glucagon quantified using a homogeneous time-resolved Förster resonance energy transfer (TR-FRET) sandwich immunoassay. Simulation of fluid flow within the microfluidic device indicated the device produced low amounts of shear stress on islets, and characterization of the flow with standard glucagon solutions revealed response times within 2 fractions (<4 min). Results with human islets from multiple donors demonstrated either a "burst" of glucagon or a "sustained" glucagon release across the entire period of stimulation. The simplicity, yet robustness, of the device and method is expected to appeal to a number of researchers examining pancreatic islet physiology.
Collapse
Affiliation(s)
- Wesley J. Eaton
- Department of Chemistry and Biochemistry, Florida State University95 Chieftain WayTallahasseeFL 32306USA+1-850-644-1846
| | - Michael G. Roper
- Department of Chemistry and Biochemistry, Florida State University95 Chieftain WayTallahasseeFL 32306USA+1-850-644-1846
| |
Collapse
|
13
|
Joseph X, Akhil V, Arathi A, Mohanan PV. Comprehensive Development in Organ-On-A-Chip Technology. J Pharm Sci 2021; 111:18-31. [PMID: 34324944 DOI: 10.1016/j.xphs.2021.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022]
Abstract
The expeditious advancement in the organ on chip technology provided a phase change to the conventional in vitro tests used to evaluate absorption, distribution, metabolism, excretion (ADME) studies and toxicity assessments. The demand for an accurate predictive model for assessing toxicity and reducing the potential risk factors became the prime area of any drug delivery process. Researchers around the globe are welcoming the incorporation of organ-on-a-chips for ADME and toxicity evaluation. Organ-on-a-chip (OOC) is an interdisciplinary technology that evolved as a contemporary in vitro model for the pharmacokinetics and pharmacodynamics (PK-PD) studies of a proposed drug candidate in the pre-clinical phases of drug development. The OOC provides a platform that mimics the physiological functions occurring in the human body. The precise flow control systems and the rapid sample processing makes OOC more advanced than the conventional two-dimensional (2D) culture systems. The integration of various organs as in the multi organs-on-a-chip provides more significant ideas about the time and dose dependant effects occurring in the body when a new drug molecule is administered as part of the pre-clinical times. This review outlines the comprehensive development in the organ-on-a-chip technology, various OOC models and its drug development applications, toxicity evaluation and efficacy studies.
Collapse
Affiliation(s)
- X Joseph
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India
| | - V Akhil
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India
| | - A Arathi
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India.
| |
Collapse
|
14
|
Erickson P, Houwayek T, Burr A, Teryek M, Parekkadan B. A continuous flow cell culture system for precision cell stimulation and time-resolved profiling of cell secretion. Anal Biochem 2021; 625:114213. [PMID: 33887234 PMCID: PMC8154734 DOI: 10.1016/j.ab.2021.114213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/04/2021] [Accepted: 04/14/2021] [Indexed: 11/28/2022]
Abstract
Cells exchange substances with their surroundings during metabolism, signaling, and other functions. These fluxes are dynamic, changing in response to external cues and internal programs. Static cultures are inadequate for measuring these dynamics because the environments of the cells change as substances accumulate or deplete from medium, unintentionally affecting cell behavior. Static cultures offer limited time resolution due to the impracticality of frequent or prolonged manual sampling, and cannot expose cells to smooth, transient changes in stimulus concentrations. In contrast, perfusion cultures constantly maintain cellular environments and continuously sample the effluent stream. Existing perfusion culture systems are either microfluidic, which are difficult to make and use, or macrofluidic devices built from custom parts that neglect solute dispersion. In this study, a multiplexed macrofluidic perfusion culture platform was developed to measure secretion and absorption rates of substances by cells in a temporally controlled environment. The modular platform handles up to 31 streams with automated fraction collection. This paper presents the assembly of this dynamic bioreactor from commercially available parts, and a method for quantitatively handling the effects of dispersion using residence time distributions. The system is then applied to monitor the secretion of a circadian clock gene-driven reporter from engineered cells.
Collapse
Affiliation(s)
- Patrick Erickson
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Tony Houwayek
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Alexandra Burr
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Matthew Teryek
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA; Department of Medicine, Rutgers Biomedical Health Sciences, New Brunswick, NJ, 08852, USA.
| |
Collapse
|
15
|
Wu Jin P, Rousset N, Hierlemann A, Misun PM. A Microfluidic Hanging-Drop-Based Islet Perifusion System for Studying Glucose-Stimulated Insulin Secretion From Multiple Individual Pancreatic Islets. Front Bioeng Biotechnol 2021; 9:674431. [PMID: 34055765 PMCID: PMC8149801 DOI: 10.3389/fbioe.2021.674431] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/12/2021] [Indexed: 01/09/2023] Open
Abstract
Islet perifusion systems can be used to monitor the highly dynamic insulin release of pancreatic islets in glucose-stimulated insulin secretion (GSIS) assays. Here, we present a new generation of the microfluidic hanging-drop-based islet perifusion platform that was developed to study the alterations in insulin secretion dynamics from single pancreatic islet microtissues at high temporal resolution. The platform was completely redesigned to increase experimental throughput and to reduce operational complexity. The experimental throughput was increased fourfold by implementing a network of interconnected hanging drops, which allows for performing GSIS assays with four individual islet microtissues in parallel with a sampling interval of 30 s. We introduced a self-regulating drop-height mechanism that enables continuous flow and maintains a constant liquid volume in the chip, which enables simple and robust operation. Upon glucose stimulation, reproducible biphasic insulin release was simultaneously observed from all islets in the system. The measured insulin concentrations showed low sample-to-sample variation as a consequence of precise liquid handling with stable drop volumes, equal flow rates in the channels, and accurately controlled sampling volumes in all four drops. The presented device will be a valuable tool in islet and diabetes research for studying dynamic insulin secretion from individual pancreatic islets.
Collapse
Affiliation(s)
| | | | - Andreas Hierlemann
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Patrick M. Misun
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
16
|
Ortega MA, Rodríguez-Comas J, Yavas O, Velasco-Mallorquí F, Balaguer-Trias J, Parra V, Novials A, Servitja JM, Quidant R, Ramón-Azcón J. In Situ LSPR Sensing of Secreted Insulin in Organ-on-Chip. BIOSENSORS-BASEL 2021; 11:bios11050138. [PMID: 33924867 PMCID: PMC8144989 DOI: 10.3390/bios11050138] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/17/2021] [Accepted: 04/25/2021] [Indexed: 01/10/2023]
Abstract
Organ-on-a-chip (OOC) devices offer new approaches for metabolic disease modeling and drug discovery by providing biologically relevant models of tissues and organs in vitro with a high degree of control over experimental variables for high-content screening applications. Yet, to fully exploit the potential of these platforms, there is a need to interface them with integrated non-labeled sensing modules, capable of monitoring, in situ, their biochemical response to external stimuli, such as stress or drugs. In order to meet this need, we aim here to develop an integrated technology based on coupling a localized surface plasmon resonance (LSPR) sensing module to an OOC device to monitor the insulin in situ secretion in pancreatic islets, a key physiological event that is usually perturbed in metabolic diseases such as type 2 diabetes (T2D). As a proof of concept, we developed a biomimetic islet-on-a-chip (IOC) device composed of mouse pancreatic islets hosted in a cellulose-based scaffold as a novel approach. The IOC was interfaced with a state-of-the-art on-chip LSPR sensing platform to monitor the in situ insulin secretion. The developed platform offers a powerful tool to enable the in situ response study of microtissues to external stimuli for applications such as a drug-screening platform for human models, bypassing animal testing.
Collapse
Affiliation(s)
- María A. Ortega
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
| | - Júlia Rodríguez-Comas
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
| | - Ozlem Yavas
- Plasmon Nano-Optics Group, ICFO-Institute for Photonics Sciences, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain; (O.Y.); (R.Q.)
| | - Ferran Velasco-Mallorquí
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
| | - Jordina Balaguer-Trias
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
| | - Victor Parra
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
| | - Anna Novials
- Diabetes and Obesity Research Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.N.); (J.M.S.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), 28029 Madrid, Spain
| | - Joan M. Servitja
- Diabetes and Obesity Research Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.N.); (J.M.S.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), 28029 Madrid, Spain
| | - Romain Quidant
- Plasmon Nano-Optics Group, ICFO-Institute for Photonics Sciences, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain; (O.Y.); (R.Q.)
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Javier Ramón-Azcón
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
- Correspondence:
| |
Collapse
|
17
|
Sokolowska P, Zukowski K, Janikiewicz J, Jastrzebska E, Dobrzyn A, Brzozka Z. Islet-on-a-chip: Biomimetic micropillar-based microfluidic system for three-dimensional pancreatic islet cell culture. Biosens Bioelectron 2021; 183:113215. [PMID: 33845292 DOI: 10.1016/j.bios.2021.113215] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/15/2021] [Accepted: 03/28/2021] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes is currently one of the most common metabolic diseases, affecting all ages worldwide. As the incidence of type 2 diabetes increases, a growing number of studies focus on islets of Langerhans. A three-dimensional research model that maps islet morphology and maintains hormonal balance in vivo is still needed. In this work, we present an Islet-on-a-chip system, specifically a micropillar-based microfluidic platform for three-dimensional pancreatic islet cell culture and analysis. The microfluidic system consisted of two culture chambers that were equipped with 15 circular microtraps each, which were built with seven round micropillars each. Micropillars in the structure of microtraps supported cell aggregation by limiting the growth surface and minimizing wall shear stress, thereby ensuring proper medium diffusion and optimal culture conditions for cell aggregates. Our system is compatible with microwell plate readers and confocal laser scanning microscopes. Because of optimization of the immunostaining method, the appropriate cell distribution and high viability and proliferation up to 72 h of culture were confirmed. Enzyme-linked immunosorbent assays were performed to measure insulin and glucagon secretion after stimulation with different glucose concentrations. To our knowledge, this is the first Lab-on-a-chip system which enables the formation and three-dimensional culture of cell aggregates composed of commercially available α and β pancreatic islet cells. The specific composition and arrangement of cells in the obtained model corresponds to the arrangement of the cells in rodent pancreatic islets in vivo. This Islet-on-a-chip system may be utilized to test pathogenic effectors and future therapeutic agents.
Collapse
Affiliation(s)
- Patrycja Sokolowska
- Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Poland; Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Kamil Zukowski
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poland
| | - Justyna Janikiewicz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Elzbieta Jastrzebska
- Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Poland
| | - Agnieszka Dobrzyn
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Zbigniew Brzozka
- Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Poland.
| |
Collapse
|
18
|
Schulze T, Mattern K, Erfle P, Brüning D, Scherneck S, Dietzel A, Rustenbeck I. A Parallel Perifusion Slide From Glass for the Functional and Morphological Analysis of Pancreatic Islets. Front Bioeng Biotechnol 2021; 9:615639. [PMID: 33763408 PMCID: PMC7982818 DOI: 10.3389/fbioe.2021.615639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/12/2021] [Indexed: 12/15/2022] Open
Abstract
An islet-on-chip system in the form of a completely transparent microscope slide optically accessible from both sides was developed. It is made from laser-structured borosilicate glass and enables the parallel perifusion of five microchannels, each containing one islet precisely immobilized in a pyramidal well. The islets can be in inserted via separate loading windows above each pyramidal well. This design enables a gentle, fast and targeted insertion of the islets and a reliable retention in the well while at the same time permitting a sufficiently fast exchange of the media. In addition to the measurement of the hormone content in the fractionated efflux, parallel live cell imaging of the islet is possible. By programmable movement of the microscopic stage imaging of five wells can be performed. The current chip design ensures sufficient time resolution to characterize typical parameters of stimulus-secretion coupling. This was demonstrated by measuring the reaction of the islets to stimulation by glucose and potassium depolarization. After the perifusion experiment islets can be removed for further analysis. The live-dead assay of the removed islets confirmed that the process of insertion and removal was not detrimental to islet structure and viability. In conclusion, the present islet-on-chip design permits the practical implementation of parallel perifusion experiments on a single and easy to load glass slide. For each immobilized islet the correlation between secretion, signal transduction and morphology is possible. The slide concept allows the scale-up to even higher degrees of parallelization.
Collapse
Affiliation(s)
- Torben Schulze
- Institute of Pharmacology and Toxicology, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Kai Mattern
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany.,Institute of Microtechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Per Erfle
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany.,Institute of Microtechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dennis Brüning
- Institute of Pharmacology and Toxicology, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Scherneck
- Institute of Pharmacology and Toxicology, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Andreas Dietzel
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany.,Institute of Microtechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ingo Rustenbeck
- Institute of Pharmacology and Toxicology, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
19
|
Lewis PL, Wells JM. Engineering-inspired approaches to study β-cell function and diabetes. Stem Cells 2021; 39:522-535. [PMID: 33497522 DOI: 10.1002/stem.3340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/13/2021] [Indexed: 12/21/2022]
Abstract
Strategies to mitigate the pathologies from diabetes range from simply administering insulin to prescribing complex drug/biologic regimens combined with lifestyle changes. There is a substantial effort to better understand β-cell physiology during diabetes pathogenesis as a means to develop improved therapies. The convergence of multiple fields ranging from developmental biology to microfluidic engineering has led to the development of new experimental systems to better study complex aspects of diabetes and β-cell biology. Here we discuss the available insulin-secreting cell types used in research, ranging from primary human β-cells, to cell lines, to pluripotent stem cell-derived β-like cells. Each of these sources possess inherent strengths and weaknesses pertinent to specific applications, especially in the context of engineered platforms. We then outline how insulin-expressing cells have been used in engineered platforms and how recent advances allow for better mimicry of in vivo conditions. Chief among these conditions are β-cell interactions with other endocrine organs. This facet is beginning to be thoroughly addressed by the organ-on-a-chip community, but holds enormous potential in the development of novel diabetes therapeutics. Furthermore, high throughput strategies focused on studying β-cell biology, improving β-cell differentiation, or proliferation have led to enormous contributions in the field and will no doubt be instrumental in bringing new diabetes therapeutics to the clinic.
Collapse
Affiliation(s)
- Phillip L Lewis
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
20
|
Jiang K, Jokhun DS, Lim CT. Microfluidic detection of human diseases: From liquid biopsy to COVID-19 diagnosis. J Biomech 2021; 117:110235. [PMID: 33486262 PMCID: PMC7832952 DOI: 10.1016/j.jbiomech.2021.110235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Microfluidic devices can be thought of as comprising interconnected miniaturized compartments performing multiple experimental tasks individually or in parallel in an integrated fashion. Due to its small size, portability, and low cost, attempts have been made to incorporate detection assays into microfluidic platforms for diseases such as cancer and infection. Some of these technologies have served as point-of-care and sample-to-answer devices. The methods for detecting biomarkers in different diseases usually share similar principles and can conveniently be adapted to cope with arising health challenges. The COVID-19 pandemic is one such challenge that is testing the performance of both our conventional and newly-developed disease diagnostic technologies. In this mini-review, we will first look at the progress made in the past few years in applying microfluidics for liquid biopsy and infectious disease detection. Following that, we will use the current pandemic as an example to discuss how such technological advancements can help in the current health challenge and better prepare us for future ones.
Collapse
Affiliation(s)
- Kuan Jiang
- Mechanobiology Institute, National University of Singapore, Singapore
| | | | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore; Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore.
| |
Collapse
|
21
|
Abadpour S, Aizenshtadt A, Olsen PA, Shoji K, Wilson SR, Krauss S, Scholz H. Pancreas-on-a-Chip Technology for Transplantation Applications. Curr Diab Rep 2020; 20:72. [PMID: 33206261 PMCID: PMC7674381 DOI: 10.1007/s11892-020-01357-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Human pancreas-on-a-chip (PoC) technology is quickly advancing as a platform for complex in vitro modeling of islet physiology. This review summarizes the current progress and evaluates the possibility of using this technology for clinical islet transplantation. RECENT FINDINGS PoC microfluidic platforms have mainly shown proof of principle for long-term culturing of islets to study islet function in a standardized format. Advancement in microfluidic design by using imaging-compatible biomaterials and biosensor technology might provide a novel future tool for predicting islet transplantation outcome. Progress in combining islets with other tissue types gives a possibility to study diabetic interventions in a minimal equivalent in vitro environment. Although the field of PoC is still in its infancy, considerable progress in the development of functional systems has brought the technology on the verge of a general applicable tool that may be used to study islet quality and to replace animal testing in the development of diabetes interventions.
Collapse
Affiliation(s)
- Shadab Abadpour
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Post Box 4950, Nydalen, N-0424 Oslo, Norway
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Aleksandra Aizenshtadt
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Petter Angell Olsen
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Kayoko Shoji
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Steven Ray Wilson
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Stefan Krauss
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Institute of Immunology, Oslo University Hospital, Oslo, Norway
| | - Hanne Scholz
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Post Box 4950, Nydalen, N-0424 Oslo, Norway
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
22
|
Guenat OT, Geiser T, Berthiaume F. Clinically Relevant Tissue Scale Responses as New Readouts from Organs-on-a-Chip for Precision Medicine. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:111-133. [PMID: 31961712 DOI: 10.1146/annurev-anchem-061318-114919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Organs-on-chips (OOC) are widely seen as being the next generation in vitro models able to accurately recreate the biochemical-physical cues of the cellular microenvironment found in vivo. In addition, they make it possible to examine tissue-scale functional properties of multicellular systems dynamically and in a highly controlled manner. Here we summarize some of the most remarkable examples of OOC technology's ability to extract clinically relevant tissue-level information. The review is organized around the types of OOC outputs that can be measured from the cultured tissues and transferred to clinically meaningful information. First, the creation of functional tissues-on-chip is discussed, followed by the presentation of tissue-level readouts specific to OOC, such as morphological changes, vessel formation and function, tissue properties, and metabolic functions. In each case, the clinical relevance of the extracted information is highlighted.
Collapse
Affiliation(s)
- Olivier T Guenat
- ARTORG Center for Biomedical Engineering Research, Medical Faculty, University of Bern, CH-3008 Bern, Switzerland;
- Department of Pulmonary Medicine, University Hospital and University of Bern, CH-3008 Bern, Switzerland
- Thoracic Surgery Department, University Hospital of Bern, Switzerland
| | - Thomas Geiser
- Department of Pulmonary Medicine, University Hospital and University of Bern, CH-3008 Bern, Switzerland
| | - François Berthiaume
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
23
|
Alassaf A, Ishahak M, Bowles A, Agarwal A. Microelectrode Array based Functional Testing of Pancreatic Islet Cells. MICROMACHINES 2020; 11:mi11050507. [PMID: 32429597 PMCID: PMC7281363 DOI: 10.3390/mi11050507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/25/2022]
Abstract
Electrophysiological techniques to characterize the functionality of islets of Langerhans have been limited to short-term, one-time recordings such as a patch clamp recording. We describe the use of microelectrode arrays (MEAs) to better understand the electrophysiology of dissociated islet cells in response to glucose in a real-time, non-invasive method over prolonged culture periods. Human islets were dissociated into singular cells and seeded onto MEA, which were cultured for up to 7 days. Immunofluorescent imaging revealed that several cellular subtypes of islets; β, δ, and γ cells were present after dissociation. At days 1, 3, 5, and 7 of culture, MEA recordings captured higher electrical activities of islet cells under 16.7 mM glucose (high glucose) than 1.1 mM glucose (low glucose) conditions. The fraction of the plateau phase (FOPP), which is the fraction of time with spiking activity recorded using the MEA, consistently showed distinguishably greater percentages of spiking activity with high glucose compared to the low glucose for all culture days. In parallel, glucose stimulated insulin secretion was measured revealing a diminished insulin response after day 3 of culture. Additionally, MEA spiking profiles were similar to the time course of insulin response when glucose concentration is switched from 1.1 to 16.7 mM. Our analyses suggest that extracellular recordings of dissociated islet cells using MEA is an effective approach to rapidly assess islet functionality, and could supplement standard assays such as glucose stimulate insulin response.
Collapse
Affiliation(s)
- Ahmad Alassaf
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA; (A.A.); (M.I.); (A.B.)
- DJTMF Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33136, USA
- Department of Medical Equipment Technology, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Matthew Ishahak
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA; (A.A.); (M.I.); (A.B.)
- DJTMF Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33136, USA
| | - Annie Bowles
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA; (A.A.); (M.I.); (A.B.)
- DJTMF Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33136, USA
| | - Ashutosh Agarwal
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA; (A.A.); (M.I.); (A.B.)
- DJTMF Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33136, USA
- Correspondence: ; Tel.: +305-243-8925
| |
Collapse
|
24
|
A Versatile Model of Microfluidic Perifusion System for the Evaluation of C-Peptide Secretion Profiles: Comparison Between Human Pancreatic Islets and HLSC-Derived Islet-Like Structures. Biomedicines 2020; 8:biomedicines8020026. [PMID: 32046184 PMCID: PMC7168272 DOI: 10.3390/biomedicines8020026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
A robust and easy-to-use tool for the ex vivo dynamic evaluation of pancreatic islet (PI) function is essential for further development of novel cell-based therapeutic approaches to treating diabetes. Here, we developed four different glucose perifusion protocols (GPPs) in a microfluidic perifusion system (MPS), based entirely on commercially available components. After validation, the GPPs were used to evaluate C-peptide secretion profiles of PIs derived from different donors (healthy, obese, and type 2 diabetic) and from human liver stem-cell-derived islet-like structures (HLSC-ILS). Using this device, we demonstrated that PIs derived from healthy donors displayed a physiological C-peptide secretion profile as characterized by the response to (a) different glucose concentrations, (b) consecutive pulses of high-glucose concentrations, (c) a glucose threshold ranging from 5–8 mM, and (d) a constant high-glucose perifusion in a biphasic manner. Moreover, we were able to detect a dysregulated secretion profile in PIs derived from both obese and type 2 diabetes mellitus (T2DM) donors. Finally, we also evaluated the kinetic secretion profiles of HLSC-ILS, demonstrating that, nonetheless, with a lower amplitude of secretion compared to PI derived from healthy donors, they were already glucose-responsive on day seven post-differentiation. In conclusion, we have provided evidence that our MPS is a versatile device and may represent a valuable tool to study insulin-producing cells in vitro.
Collapse
|
25
|
Jun Y, Lee J, Choi S, Yang JH, Sander M, Chung S, Lee SH. In vivo-mimicking microfluidic perfusion culture of pancreatic islet spheroids. SCIENCE ADVANCES 2019; 5:eaax4520. [PMID: 31807701 PMCID: PMC6881167 DOI: 10.1126/sciadv.aax4520] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/25/2019] [Indexed: 05/18/2023]
Abstract
Native pancreatic islets interact with neighboring cells by establishing three-dimensional (3D) structures, and are surrounded by perfusion at an interstitial flow level. However, flow effects are generally ignored in islet culture models, although cell perfusion is known to improve the cell microenvironment and to mimic in vivo physiology better than static culture systems. Here, we have developed functional islet spheroids using a microfluidic chip that mimics interstitial flow conditions with reduced shear cell damage. Dynamic culture, compared to static culture, enhanced islet health and maintenance of islet endothelial cells, reconstituting the main component of islet extracellular matrix within spheroids. Optimized flow condition allowed localization of secreted soluble factors near spheroids, facilitating diffusion-mediated paracrine interactions within islets, and enabled long-term maintenance of islet morphology and function for a month. The proposed model can aid islet preconditioning before transplantation and has potential applications as an in vitro model for diabetic drug testing.
Collapse
Affiliation(s)
- Yesl Jun
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
- School of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - JaeSeo Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Seongkyun Choi
- School of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ji Hun Yang
- School of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
- Next & Bio Inc., Seoul National University, Seoul 08826, Republic of Korea
| | - Maike Sander
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Seok Chung
- School of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
26
|
Glieberman AL, Pope BD, Zimmerman JF, Liu Q, Ferrier JP, Kenty JHR, Schrell AM, Mukhitov N, Shores KL, Tepole AB, Melton DA, Roper MG, Parker KK. Synchronized stimulation and continuous insulin sensing in a microfluidic human Islet on a Chip designed for scalable manufacturing. LAB ON A CHIP 2019; 19:2993-3010. [PMID: 31464325 PMCID: PMC6814249 DOI: 10.1039/c9lc00253g] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Pancreatic β cell function is compromised in diabetes and is typically assessed by measuring insulin secretion during glucose stimulation. Traditionally, measurement of glucose-stimulated insulin secretion involves manual liquid handling, heterogeneous stimulus delivery, and enzyme-linked immunosorbent assays that require large numbers of islets and processing time. Though microfluidic devices have been developed to address some of these limitations, traditional methods for islet testing remain the most common due to the learning curve for adopting microfluidic devices and the incompatibility of most device materials with large-scale manufacturing. We designed and built a thermoplastic, microfluidic-based Islet on a Chip compatible with commercial fabrication methods, that automates islet loading, stimulation, and insulin sensing. Inspired by the perfusion of native islets by designated arterioles and capillaries, the chip delivers synchronized glucose pulses to islets positioned in parallel channels. By flowing suspensions of human cadaveric islets onto the chip, we confirmed automatic capture of islets. Fluorescent glucose tracking demonstrated that stimulus delivery was synchronized within a two-minute window independent of the presence or size of captured islets. Insulin secretion was continuously sensed by an automated, on-chip immunoassay and quantified by fluorescence anisotropy. By integrating scalable manufacturing materials, on-line, continuous insulin measurement, and precise spatiotemporal stimulation into an easy-to-use design, the Islet on a Chip should accelerate efforts to study and develop effective treatments for diabetes.
Collapse
Affiliation(s)
- Aaron L Glieberman
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, 29 Oxford Street, Cambridge, MA 02138, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Castiello FR, Tabrizian M. Gold nanoparticle amplification strategies for multiplex SPRi-based immunosensing of human pancreatic islet hormones. Analyst 2019; 144:2541-2549. [PMID: 30864587 DOI: 10.1039/c9an00140a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this work, we demonstrate the potential use of SPRi for secretion-monitoring of pancreatic islets, small micro-organs that regulate glucose homeostasis in the body. In the islets, somatostatin works as a paracrine inhibitor of insulin and glucagon secretion. However, this inhibitory effect is lost in diabetic individuals and little is known about its contribution to the pathology of diabetes. Thus, the simultaneous detection of insulin, glucagon and somatostatin could help understand such communications. Previously, the authors introduced an SPRi biosensor to simultaneously monitor insulin, glucagon and somatostatin using an indirect competitive immunoassay. However, our sensor achieved a relatively high LOD for somatostatin detection (246 nM), the smallest of the three hormones. For this reason, the present work aimed to improve the performance of our SPRi biosensor using gold nanoparticles (GNPs) as a means of ensuring somatostatin detection from a small group of islets. Although GNP amplification is frequently reported in the literature for individual detection of analytes using SPR, studies regarding the optimal strategy in a multiplexed SPR setup are missing. Therefore, with the aim of finding the optimal GNP amplification strategies for multiplex sensing we compared three architectures: (1) GNPs immobilized on the sensor surface, (2) GNPs conjugated with primary antibodies (GNP-Ab1) and (3) GNPs conjugated with a secondary antibody (GNP-Ab2). Among these strategies an immunoassay using GNP-Ab2 conjugates was able to achieve multiplex detection of the three hormones without cross-reactivity and with 9-fold LOD improvement for insulin, 10-fold for glucagon and 200-fold for somatostatin when compared to the SPRi biosensor without GNPs. The present work denotes the first report of the simultaneous detection of such hormones with a sensitivity level comparable to ELISA assays, particularly for somatostatin.
Collapse
Affiliation(s)
- F Rafael Castiello
- Biomedical and Biological Engineering Department, McGill University, Montreal, QC, Canada.
| | | |
Collapse
|
28
|
Huang Y, Yin S, Chong WH, Wong TN, Ooi KT. Precise morphology control and fast merging of a complex multi-emulsion system: the effects of AC electric fields. SOFT MATTER 2019; 15:5614-5625. [PMID: 31166359 DOI: 10.1039/c9sm00430k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We showed that an AC electric field can be effectively used to control the full morphology of a multi-emulsion system (oil/water/oil, O/W/O and water/oil/water, W/O/W); specifically, the size of outer droplets and the number of inner droplets (from 5 to 0) could be controlled. In our system, such control was achieved by adopting non-contact type of electrodes together with double-flow-focusing geometry to apply an AC electric field during the formation of complex droplets. As such, the AC electric field could be used without contamination. In addition to morphology control, we also achieved both one-step and two-step merging of the core droplets in the W/O/W droplet system within 100 milliseconds, which is by far the fastest merging in double emulsion droplets ever reported. To the best of our knowledge, this paper is the first article to report the control of core droplets in an O/W/O system by matching the frequency of the AC electric field with that of the core production rate. In this article, we adopted the electric capillary number CaE to analyze the effectiveness of the AC electric field applied at a high frequency, which offers a guideline for practical applications. Furthermore, the merging phenomena among various droplet systems discovered could add extra dimensions for the manipulation of double emulsions. Our findings reveal new physical insights that bring about a better understanding of the interfacial phenomena and electrohydrodynamics of droplets, which is of great importance for practical applications involving the complex interactions of multiple droplets.
Collapse
Affiliation(s)
- Yi Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang, Avenue, 639798, Singapore.
| | - Shuai Yin
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang, Avenue, 639798, Singapore.
| | - Wen Han Chong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang, Avenue, 639798, Singapore.
| | - Teck Neng Wong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang, Avenue, 639798, Singapore.
| | - Kim Tiow Ooi
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang, Avenue, 639798, Singapore.
| |
Collapse
|
29
|
Messerli MA, Sarkar A. Advances in Electrochemistry for Monitoring Cellular Chemical Flux. Curr Med Chem 2019; 26:4984-5002. [PMID: 31057100 DOI: 10.2174/0929867326666190506111629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 11/22/2022]
Abstract
The transport of organic and inorganic molecules, along with inorganic ions across the plasma membrane results in chemical fluxes that reflect the cellular function in healthy and diseased states. Measurement of these chemical fluxes enables the characterization of protein function and transporter stoichiometry, characterization of a single cell and embryo viability prior to implantation, and screening of pharmaceutical agents. Electrochemical sensors emerge as sensitive and non-invasive tools for measuring chemical fluxes immediately outside the cells in the boundary layer, that are capable of monitoring a diverse range of transported analytes including inorganic ions, gases, neurotransmitters, hormones, and pharmaceutical agents. Used on their own or in combination with other methods, these sensors continue to expand our understanding of the function of rare cells and small tissues. Advances in sensor construction and detection strategies continue to improve sensitivity under physiological conditions, diversify analyte detection, and increase throughput. These advances will be discussed in the context of addressing technical challenges to measuring chemical flux in the boundary layer of cells and measuring the resultant changes to the chemical concentration in the bulk media.
Collapse
Affiliation(s)
- Mark A Messerli
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD. United States
| | - Anyesha Sarkar
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD. United States
| |
Collapse
|
30
|
Lee SH, Jun BH. Advances in dynamic microphysiological organ-on-a-chip: Design principle and its biomedical application. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.11.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Li X, Hu J, Easley CJ. Automated microfluidic droplet sampling with integrated, mix-and-read immunoassays to resolve endocrine tissue secretion dynamics. LAB ON A CHIP 2018; 18:2926-2935. [PMID: 30112543 PMCID: PMC6234046 DOI: 10.1039/c8lc00616d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A fully automated droplet generation and analysis device based on pressure driven push-up valves for precise pumping of fluid and volumetric metering has been developed for high resolution hormone secretion sampling and measurement. The device consists of a 3D-printer templated reservoir for single cells or single tissue culturing, a Y-shaped channel for reagents and sample mixing, a T-junction channel for droplet formation, a reference channel to overcome drifts in fluorescence signal, and a long droplet storage channel allowing incubation for homogeneous immunoassays. The droplets were made by alternating peristaltic pumping of aqueous and oil phases. Device operation was automated, giving precise control over several droplet parameters such as size, oil spacing, and ratio of sample and reference droplets. By integrating an antibody-oligonucleotide based homogeneous immunoassay on-chip, high resolution temporal sampling into droplets was combined with separation-free quantification of insulin secretion from single islets of Langerhans using direct optical readout from the droplets. Quantitative assays of glucose-stimulated insulin secretion were demonstrated at 15 second temporal resolution while detecting as low as 10 amol per droplet, revealing fast insulin oscillations that mirror well-known intracellular calcium signals. This droplet sampling and direct optical analysis approach effectively digitizes the secretory time record from cells into droplets, and the system should be generalizable to a variety of cells and tissue types.
Collapse
Affiliation(s)
- Xiangpeng Li
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | | | | |
Collapse
|
32
|
Xu S, Zhang Y, Xu L, Bai Y, Liu H. Online coupling techniques in ambient mass spectrometry. Analyst 2018; 141:5913-5921. [PMID: 27704091 DOI: 10.1039/c6an01705c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since ambient mass spectrometry (AMS) has been proven to have low matrix effects and high salt tolerance, great efforts have been made for online coupling of several analytical techniques with AMS. These analytical techniques include gas chromatography (GC), liquid chromatography (LC), capillary electrophoresis (CE), surface plasmon resonance (SPR), and electrochemistry flow cells. Various ambient ionization sources, represented by desorption electrospray ionization (DESI) and direct analysis in real time (DART), have been utilized as interfaces for the online coupling techniques. Herein, we summarized the advances in these online coupling methods. Close attention has been paid to different interface setups for coupling, as well as limits of detection, tolerance to different matrices, and applications of these new coupling techniques.
Collapse
Affiliation(s)
- Shuting Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. Chain.
| | - Yiding Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. Chain.
| | - Linnan Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. Chain.
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. Chain.
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. Chain.
| |
Collapse
|
33
|
A novel electrochemical immunosensor based on Au nanoparticles and horseradish peroxidase signal amplification for ultrasensitive detection of α-fetoprotein. Biomed Microdevices 2018; 20:46. [PMID: 29869001 DOI: 10.1007/s10544-018-0291-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An electrochemical double-layer Au nanoparticle membrane immunosensor was developed using an electrochemical biosensing signal amplification system with Au nanoparticles, thionine, chitosan, and horseradish peroxidase, which was fabricated using double self-adsorption of Au nanoparticle sol followed by anti-α-fetoprotein Balb/c mouse monoclonal antibody adsorption. The AuNPs sol was characterized by spectrum scanning and transmission electron microscopy. The immunosensor was characterized by atomic force microscopy, cyclic voltammetry, and alternating-current impedance during each stage of adsorption and assembly. The amperometric I-t curve method was used to measure α-fetoprotein (AFP) diluted in phosphate buffered saline. The result indicated a wide linear range, and the change rate of steady-current before and after immune response had linear correlation within the range 0.1-104 pg/mL AFP. The current change rate equation was △I = 5.82334 lgC + 37.01195 (R2 = 0.9922). The lowest limit of detection was 0.03 pg/mL (S/N = 3), and the reproducibility of the sensor was good. Additionally, the sensor could be stably stored above phosphate buffered saline at 4 °C for more than 24 days. More importantly, the sensor is label-free, reagentless and low fouling, making it capable of assaying AFP in real serum samples without suffering from significant interference or biofouling.
Collapse
|
34
|
Castiello FR, Tabrizian M. Multiplex Surface Plasmon Resonance Imaging-Based Biosensor for Human Pancreatic Islets Hormones Quantification. Anal Chem 2018; 90:3132-3139. [DOI: 10.1021/acs.analchem.7b04288] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Schulze T, Mattern K, Früh E, Hecht L, Rustenbeck I, Dietzel A. A 3D microfluidic perfusion system made from glass for multiparametric analysis of stimulus-secretioncoupling in pancreatic islets. Biomed Microdevices 2018; 19:47. [PMID: 28540469 DOI: 10.1007/s10544-017-0186-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microfluidic perfusion systems (MPS) are well suited to perform multiparametric measurements with small amounts of tissue to function as an Organ on Chip device (OOC). Such microphysiolgical characterization is particularly valuable in research on the stimulus-secretion-coupling of pancreatic islets. Pancreatic islets are fully functional competent mini-organs, which serve as fuel sensors and transduce metabolic activity into rates of hormone secretion. To enable the simultaneous measurement of fluorescence and oxygen consumption we designed a microfluidic perfusion system from borosilicate glass by 3D femtosecond laser ablation. Retention of islets was accomplished by a plain well design. The characteristics of flow and shear force in the microchannels and wells were simulated and compared with the measured exchange of the perfusion media. Distribution of latex beads, MIN6 cell pseudo islets and isolated mouse islets in the MPS was characterized in dependence of flow rate and well depth. Overall, the observations suggested that a sufficient retention of the islets at low shear stress, together with sufficient exchange of test medium, was achieved at a well depth of 300 μm and perfusion rates between 40 and 240 μl/min. This enabled multiparametric measurement of oxygen consumption, NAD(P)H autofluorescence, cytosolic Ca2+ concentration, and insulin secretion by isolated mouse islets. After appropriate correction for different lag times, kinetics of these processes could be compared. Such measurements permit a more precise insight into metabolic changes underlying the regulation of insulin secretion. Thus, rapid prototyping using laser ablation enables flexible adaption of borosilicate MPS designs to different demands of biomedical research.
Collapse
Affiliation(s)
- Torben Schulze
- Institute of Pharmacology and Toxicology, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Kai Mattern
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106, Braunschweig, Germany.,Institute of Microtechnology, Technische Universität Braunschweig, Alte Salzdahlumer Str. 203, 38124, Braunschweig, Germany
| | - Eike Früh
- Institute of Pharmacology and Toxicology, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106, Braunschweig, Germany
| | - Lars Hecht
- Institute of Microtechnology, Technische Universität Braunschweig, Alte Salzdahlumer Str. 203, 38124, Braunschweig, Germany
| | - Ingo Rustenbeck
- Institute of Pharmacology and Toxicology, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106, Braunschweig, Germany. .,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106, Braunschweig, Germany.
| | - Andreas Dietzel
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106, Braunschweig, Germany. .,Institute of Microtechnology, Technische Universität Braunschweig, Alte Salzdahlumer Str. 203, 38124, Braunschweig, Germany.
| |
Collapse
|
36
|
Lee SH, Hong S, Song J, Cho B, Han EJ, Kondapavulur S, Kim D, Lee LP. Microphysiological Analysis Platform of Pancreatic Islet β-Cell Spheroids. Adv Healthc Mater 2018; 7. [PMID: 29283208 DOI: 10.1002/adhm.201701111] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/27/2017] [Indexed: 02/06/2023]
Abstract
The hallmarks of diabetics are insufficient secretion of insulin and dysregulation of glucagon. It is critical to understand release mechanisms of insulin, glucagon, and other hormones from the islets of Langerhans. In spite of remarkable advancements in diabetes research and practice, robust and reproducible models that can measure pancreatic β-cell function are lacking. Here, a microphysiological analysis platform (MAP) that allows the uniform 3D spheroid formation of pancreatic β-cell islets, large-scale morphological phenotyping, and gene expression mapping of chronic glycemia and lipidemia development is reported. The MAP enables the scaffold-free formation of densely packed β-cell spheroids (i.e., multiple array of 110 bioreactors) surrounded with a perfusion flow network inspired by physiologically relevant microenvironment. The MAP permits dynamic perturbations on the β-cell spheroids and the precise controls of glycemia and lipidemia, which allow us to confirm that cellular apoptosis in the β-cell spheroid under hyperglycemia and hyperlipidemia is mostly dependent to a reactive oxygen species-induced caspase-mediated pathway. The β-cells' MAP might provide a potential new map in the pathophysiological mechanisms of β cells.
Collapse
Affiliation(s)
- Sang Hun Lee
- Department of Bioengineering; University of California, Berkeley; Berkeley CA 94720 USA
- Berkeley Sensor and Actuator Center; University of California, Berkeley; Berkeley CA 94720 USA
| | - SoonGweon Hong
- Department of Bioengineering; University of California, Berkeley; Berkeley CA 94720 USA
- Berkeley Sensor and Actuator Center; University of California, Berkeley; Berkeley CA 94720 USA
| | - Jihwan Song
- Department of Mechanical Engineering; Hanbat National University; Daejeon 34158 South Korea
- Berkeley Sensor and Actuator Center; University of California, Berkeley; Berkeley CA 94720 USA
| | - Byungrae Cho
- Berkeley Sensor and Actuator Center; University of California, Berkeley; Berkeley CA 94720 USA
- UC Berkeley and UCSF Joint Graduate Program in Bioengineering; Berkeley/San Francisco CA 94720 USA
| | - Esther J. Han
- Department of Chemistry; University of California, Berkeley; Berkeley CA 94720 USA
| | - Sravani Kondapavulur
- Department of Bioengineering; University of California, Berkeley; Berkeley CA 94720 USA
| | - Dongchoul Kim
- Department of Mechanical Engineering; Sogang University; Seoul 04107 South Korea
| | - Luke P. Lee
- Department of Bioengineering; University of California, Berkeley; Berkeley CA 94720 USA
- Berkeley Sensor and Actuator Center; University of California, Berkeley; Berkeley CA 94720 USA
- Department of Electrical Engineering and Computer Science; University of California, Berkeley; Berkeley CA 94720 USA
- Biophysics Graduate Program; University of California, Berkeley; Berkeley CA 94720 USA
| |
Collapse
|
37
|
Microfluidic systems for studying dynamic function of adipocytes and adipose tissue. Anal Bioanal Chem 2017; 410:791-800. [PMID: 29214530 DOI: 10.1007/s00216-017-0741-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/12/2017] [Accepted: 11/02/2017] [Indexed: 01/03/2023]
Abstract
Recent breakthroughs in organ-on-a-chip and related technologies have highlighted the extraordinary potential for microfluidics to not only make lasting impacts in the understanding of biological systems but also to create new and important in vitro culture platforms. Adipose tissue (fat), in particular, is one that should be amenable to microfluidic mimics of its microenvironment. While the tissue was traditionally considered important only for energy storage, it is now understood to be an integral part of the endocrine system that secretes hormones and responds to various stimuli. As such, adipocyte function is central to the understanding of pathological conditions such as obesity, diabetes, and metabolic syndrome. Despite the importance of the tissue, only recently have significant strides been made in studying dynamic function of adipocytes or adipose tissues on microfluidic devices. In this critical review, we highlight new developments in the special class of microfluidic systems aimed at culture and interrogation of adipose tissue, a sub-field of microfluidics that we contend is only in its infancy. We close by reflecting on these studies as we forecast a promising future, where microfluidic technologies should be capable of mimicking the adipose tissue microenvironment and provide novel insights into its physiological roles in the normal and diseased states. Graphical abstract This critical review focuses on recent developments and challenges in applying microfluidic systems to the culture and analysis of adipocytes and adipose tissue.
Collapse
|
38
|
Lenguito G, Chaimov D, Weitz JR, Rodriguez-Diaz R, Rawal SAK, Tamayo-Garcia A, Caicedo A, Stabler CL, Buchwald P, Agarwal A. Resealable, optically accessible, PDMS-free fluidic platform for ex vivo interrogation of pancreatic islets. LAB ON A CHIP 2017; 17:772-781. [PMID: 28157238 PMCID: PMC5330806 DOI: 10.1039/c6lc01504b] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We report the design and fabrication of a robust fluidic platform built out of inert plastic materials and micromachined features that promote optimized convective fluid transport. The platform is tested for perfusion interrogation of rodent and human pancreatic islets, dynamic secretion of hormones, concomitant live-cell imaging, and optogenetic stimulation of genetically engineered islets. A coupled quantitative fluid dynamics computational model of glucose stimulated insulin secretion and fluid dynamics was first utilized to design device geometries that are optimal for complete perfusion of three-dimensional islets, effective collection of secreted insulin, and minimization of system volumes and associated delays. Fluidic devices were then fabricated through rapid prototyping techniques, such as micromilling and laser engraving, as two interlocking parts from materials that are non-absorbent and inert. Finally, the assembly was tested for performance using both rodent and human islets with multiple assays conducted in parallel, such as dynamic perfusion, staining and optogenetics on standard microscopes, as well as for integration with commercial perfusion machines. The optimized design of convective fluid flows, use of bio-inert and non-absorbent materials, reversible assembly, manual access for loading and unloading of islets, and straightforward integration with commercial imaging and fluid handling systems proved to be critical for perfusion assay, and particularly suited for time-resolved optogenetics studies.
Collapse
Affiliation(s)
- Giovanni Lenguito
- Department of Biomedical Engineering, Department of Pathology & Laboratory Medicine, University of Miami, Miami, FL 33136, USA.
| | - Deborah Chaimov
- Department of Biomedical Engineering, University of Florida, USA
| | | | | | - Siddarth A K Rawal
- Department of Biomedical Engineering, Department of Pathology & Laboratory Medicine, University of Miami, Miami, FL 33136, USA.
| | | | | | - Cherie L Stabler
- Department of Biomedical Engineering, University of Florida, USA
| | - Peter Buchwald
- Diabetes Research Institute, University of Miami, USA and Department of Molecular and Cellular Pharmacology, University of Miami, USA
| | - Ashutosh Agarwal
- Department of Biomedical Engineering, Department of Pathology & Laboratory Medicine, University of Miami, Miami, FL 33136, USA. and Diabetes Research Institute, University of Miami, USA
| |
Collapse
|
39
|
Nguyen DTT, van Noort D, Jeong IK, Park S. Endocrine system on chip for a diabetes treatment model. Biofabrication 2017; 9:015021. [PMID: 28222044 DOI: 10.1088/1758-5090/aa5cc9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The endocrine system is a collection of glands producing hormones which, among others, regulates metabolism, growth and development. One important group of endocrine diseases is diabetes, which is caused by a deficiency or diminished effectiveness of endogenous insulin. By using a microfluidic perfused 3D cell-culture chip, we developed an 'endocrine system on chip' to potentially be able to screen drugs for the treatment of diabetes by measuring insulin release over time. Insulin-secreting β-cells are located in the pancreas, while L-cells, located in the small intestines, stimulate insulin secretion. Thus, we constructed a co-culture of intestinal-pancreatic cells to measure the effect of glucose on the production of glucagon-like peptide-1 (GLP-1) from the L-cell line (GLUTag) and insulin from the pancreatic β-cell line (INS-1). After three days of culture, both cell lines formed aggregates, exhibited 3D cell morphology, and showed good viability (>95%). We separately measured the dynamic profile of GLP-1 and insulin release at glucose concentrations of 0.5 and 20 mM, as well as the combined effect of GLP-1 on insulin production at these glucose concentrations. In response to glucose stimuli, GLUTag and INS-1 cells produced higher amounts of GLP-1 and insulin, respectively, compared to a static 2D cell culture. INS-1 combined with GLUTag cells exhibited an even higher insulin production in response to glucose stimulation. At higher glucose concentrations, the diabetes model on chip showed faster saturation of the insulin level. Our results suggest that the endocrine system developed in this study is a useful tool for observing dynamical changes in endocrine hormones (GLP-1 and insulin) in a glucose-dependent environment. Moreover, it can potentially be used to screen GLP-1 analogues and natural insulin and GLP-1 stimulants for diabetes treatment.
Collapse
Affiliation(s)
- Dao Thi Thuy Nguyen
- Department of Chemistry and Nano Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | | | | | | |
Collapse
|