1
|
Pakeeraiah K, Chinchilli KK, Dandela R, Paidesetty SK. Exploration of triazole derivatives, SAR profiles, and clinical pipeline against Mycobacterium tuberculosis. Bioorg Chem 2025; 155:108114. [PMID: 39756201 DOI: 10.1016/j.bioorg.2024.108114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
Tuberculosis is a highly infectious disease and it is a global threat in particular affecting people from developing countries. It is thought that nearly one-third of the global population lives with this causative bacterium in its dominant form. The spread of HIV and the development of resistance to both multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) aggravates the spread of the disease and needs novel drugs which combat this disease effectively. Triazole-containing anti-tubercular drugs are promising and need further tuning to develop as a potent scaffold for tuberculosis. In this review, we highlight the structural activity relationships of triazole-containing drugs and detailed understanding for the researchers in the field of medicinal chemistry to further explore these triazole-based compounds as well as synthesize new compounds for antitubercular activity against drug-sensitive and resistant strains.
Collapse
Affiliation(s)
- Kakarla Pakeeraiah
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha 751003, India.
| | | | - Rambabu Dandela
- Institute of Chemical Technology-Indian Oil Campus, Bhubaneswar Odisha 751024, India.
| | - Sudhir Kumar Paidesetty
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha 751003, India.
| |
Collapse
|
2
|
Khandelwal R, Vasava M, Abhirami RB, Karsharma M. Recent advances in triazole synthesis via click chemistry and their pharmacological applications: A review. Bioorg Med Chem Lett 2024; 112:129927. [PMID: 39153663 DOI: 10.1016/j.bmcl.2024.129927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Click chemistry is a flexible method featuring only the most feasible and efficient chemical reactions. The synthesis of 1,2,3-triazole from azides and terminal acetylenes using copper(I) as a catalyst is an extremely powerful reaction due to the extreme dependability, good selectivity, and biocompatibility of the starting materials. Triazole molecules are more than simple passive linkers; through hydrogen bonding and dipole interactions, they rapidly bind with biological targets. Its applications in drug development are expanding, ranging from target-oriented in situ chemistry and combinatorial mechanisms for lead generation to bioconjugation methods to study proteins and DNA. The click chemistry has frequently been used to speed up drug discovery and optimization processes in the past few years. The click chemistry reaction based on copper-catalyzed azide-alkyne cycloaddition (CuAAC) is a biochemical process with applications in medicinal chemistry and chemical biology. Thus, click reactions are an essential component of the toolkit for medicinal chemistry and help medicinal chemists overcome the barriers in chemical reactions, increase throughput, and improve the standards of compound libraries. The review highlights the recent advancements in the copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry approach for synthesizing biologically important triazole moieties with a greater emphasis on synthesis methodologies and pharmacological applications. Additionally, the triazole-based FDA-approved drugs are also discussed with their mode of action to highlight the importance of the click chemistry approach in synthesizing the bioactive triazole compounds.
Collapse
Affiliation(s)
- Riya Khandelwal
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat, India
| | - Mahesh Vasava
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat, India.
| | - R B Abhirami
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat, India
| | - Manaswini Karsharma
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat, India
| |
Collapse
|
3
|
Semenov VA, Larina LI. Stereochemical and Computational NMR Survey of 1,2,3-Triazoles: in Search of the Original Tauto-Conformers. J Phys Chem A 2024; 128:3231-3240. [PMID: 38512800 DOI: 10.1021/acs.jpca.3c08217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The conformational analysis of nine functionalized 1,2,3-triazoles was carried out by the correlation of calculated and experimental high-level nuclear magnetic resonance (NMR) chemical shifts. In solution, the studied triazoles are in exchange dynamic equilibrium caused by their prototropic tautomerism of the NH-proton. The experimentally unresolved NMR signals were assigned for most of the compounds. A more thorough survey was conducted for 4-t-butyl-1,2,3-triazole-5-carbaldehyde oxime. The analysis performed within the framework of the DP4+ formalism completely confirmed the hypothesis of the predominance of the 2H-tautomer. Thus, the methodology for estimating stereochemical structures in the absence of some experimental data allowed the most stable conformations for dynamic systems with different tautomeric ratios to be reliably identified.
Collapse
Affiliation(s)
- Valentin A Semenov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky st. 1, Irkutsk 664033, Russia
| | - Lyudmila I Larina
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky st. 1, Irkutsk 664033, Russia
| |
Collapse
|
4
|
Pippione AC, Kovachka S, Vigato C, Bertarini L, Mannella I, Sainas S, Rolando B, Denasio E, Piercy-Mycock H, Romalho L, Salladini E, Adinolfi S, Zonari D, Peraldo-Neia C, Chiorino G, Passoni A, Mirza OA, Frydenvang K, Pors K, Lolli ML, Spyrakis F, Oliaro-Bosso S, Boschi D. Structure-guided optimization of 3-hydroxybenzoisoxazole derivatives as inhibitors of Aldo-keto reductase 1C3 (AKR1C3) to target prostate cancer. Eur J Med Chem 2024; 268:116193. [PMID: 38364714 DOI: 10.1016/j.ejmech.2024.116193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/18/2024]
Abstract
AKR1C3 is an enzyme that is overexpressed in several types of radiotherapy- and chemotherapy-resistant cancers. Despite AKR1C3 is a validated target for drug development, no inhibitor has been approved for clinical use. In this manuscript, we describe our study of a new series of potent AKR1C3-targeting 3-hydroxybenzoisoxazole based inhibitors that display high selectivity over the AKR1C2 isoform and low micromolar activity in inhibiting 22Rv1 prostate cancer cell proliferation. In silico studies suggested proper substituents to increase compound potency and provided with a mechanistic explanation that could clarify their different activity, later confirmed by X-ray crystallography. Both the in-silico studies and the crystallographic data highlight the importance of 90° rotation around the single bond of the biphenyl group, in ensuring that the inhibitor can adopt the optimal binding mode within the active pocket. The p-biphenyls that bear the meta-methoxy, and the ortho- and meta-trifluoromethyl substituents (in compounds 6a, 6e and 6f respectively) proved to be the best contributors to cellular potency as they provided the best IC50 values in series (2.3, 2.0 and 2.4 μM respectively) and showed no toxicity towards human MRC-5 cells. Co-treatment with scalar dilutions of either compound 6 or 6e and the clinically used drug abiraterone led to a significant reduction in cell proliferation, and thus confirmed that treatment with both CYP171A1-and AKR1C3-targeting compounds possess the potential to intervene in key steps in the steroidogenic pathway. Taken together, the novel compounds display desirable biochemical potency and cellular target inhibition as well as good in-vitro ADME properties, which highlight their potential for further preclinical studies.
Collapse
Affiliation(s)
- Agnese Chiara Pippione
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy
| | - Sandra Kovachka
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Chiara Vigato
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy
| | - Laura Bertarini
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy; Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy
| | - Iole Mannella
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy
| | - Stefano Sainas
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy
| | - Barbara Rolando
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy
| | - Enrica Denasio
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, West Yorkshire, BD7 1DP, UK
| | - Helen Piercy-Mycock
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, West Yorkshire, BD7 1DP, UK
| | - Linda Romalho
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100, Copenhagen, Denmark
| | - Edoardo Salladini
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy
| | - Salvatore Adinolfi
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy
| | - Daniele Zonari
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy
| | - Caterina Peraldo-Neia
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900, Biella, Italy
| | - Giovanna Chiorino
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900, Biella, Italy
| | - Alice Passoni
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Osman Asghar Mirza
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100, Copenhagen, Denmark
| | - Karla Frydenvang
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100, Copenhagen, Denmark
| | - Klaus Pors
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, West Yorkshire, BD7 1DP, UK
| | - Marco Lucio Lolli
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy
| | - Francesca Spyrakis
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy
| | - Simonetta Oliaro-Bosso
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy.
| | - Donatella Boschi
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy.
| |
Collapse
|
5
|
Grossert JS, Boschi D, Lolli ML, White RL. Intramolecular interactions and the neutral loss of ammonia from collisionally activated, protonated ω-aminoalkyl-3-hydroxyfurazans. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2024; 30:38-46. [PMID: 37974410 PMCID: PMC10809737 DOI: 10.1177/14690667231214672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Gas phase fragmentation reactions of monoprotonated 4-(3-aminopropyl)- and 4-(4-aminobutyl)-3-hydroxyfurazan were investigated to examine potential interactions between functional groups. The two heterocyclic alkyl amines were ionized by electrospray ionization (ESI, positive mode) and fragmented using tandem mass spectrometry (MS/MS). The fragmentation pathways were characterized using pseudo MS3 experiments, precursor-ion scans, and density functional computations. For both heterocyclic ions, loss of ammonia was the only fragmentation process observed at low collision energies. Computational analysis indicated that the most feasible mechanism was intramolecular nucleophilic displacement of ammonia from the protonated ω-aminoalkyl side chain by N5 of the furazan ring. The alkylated nitrogen in the resulting bicyclic product ion facilitated N-O bond cleavage; subsequent neutral losses of nitric oxide (NO) and carbon monoxide (CO) occurred by homolytic bond cleavages. Next in the multistep sequence, neutral loss of ethylene from a radical cation was observed. A less favorable, competing fragmentation pathway of protonated 4-(3-aminopropyl)-3-hydroxyfurazan was consistent with cleavage of the 3-hydroxyfurazan ring and losses of NO and CO. Overall, the similar fragmentation behavior found for protonated 4-(3-aminopropyl)- and 4-(4-aminobutyl)-3-hydroxyfurazan differed from that previously characterized for furazan analogs with shorter alkyl chains. These observations demonstrate that a small change in the structure of multifunctional, heterocyclic alkyl amines may significantly influence interactions between distinct functional groups and the nature of the fragmentation process.
Collapse
Affiliation(s)
- J. Stuart Grossert
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Donatella Boschi
- Dipartimento di Scienza e Tecnologia del Farmaco (DSTF), Università degli Studi di Torino, Torino, Italy
| | - Marco L. Lolli
- Dipartimento di Scienza e Tecnologia del Farmaco (DSTF), Università degli Studi di Torino, Torino, Italy
| | - Robert L. White
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
6
|
Shen S, Ding B, Jiang X, Yang M, Yang Q, Dong L. Discovery of novel inhibitors targeting nematode chitinase C eCht1: Virtual screening, biological evaluation, and molecular dynamics simulation. Front Chem 2022; 10:1021295. [PMID: 36405330 PMCID: PMC9669442 DOI: 10.3389/fchem.2022.1021295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/18/2022] [Indexed: 04/19/2024] Open
Abstract
Plant-parasitic nematodes are a main limiting factor for worldwide agriculture. To reduce the global burden of nematode infections, chemical nematicides are still the most effective methods to manage nematodes. With the increasing resistance of nematodes, the development of new anti-nematicides drug is urgent. Nematode chitinases are found to play important roles in various physiological functions, such as larva moulting, hatching from eggshell, and host infection. Inhibition of nematode chitinase is considered a promising strategy for the development of eco-friendly nematicides. In this study, to develop novel nematode chitinase CeCht1 inhibitors, virtual screening of the ZINC database was performed using the pesticide-likeness rules, pharmacophore-based and docking-based approach in turn. Compounds HAU-4 and HAU-7 were identified as potent CeCht1 inhibitors with the IC50 values of 4.2 μM and 10.0 μM, respectively. Moreover, molecular dynamics simulations combined with binding free energy and free energy decomposition calculations were conducted to investigate the basis for the potency of the two inhibitors toward CeCht1. This work gives an insight into the future rational development of novel and potent nematode chitinase inhibitors.
Collapse
Affiliation(s)
- Shengqiang Shen
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Baokang Ding
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Xi Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Meiling Yang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lili Dong
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| |
Collapse
|
7
|
Abstract
Lead optimization represents the tedious process of fine-tuning lead compounds from biologically active hits to suitable drug candidates for clinical trials. By chemically modifying a hit structure, an improved compound can be obtained in terms of activity, selectivity, and pharmacokinetic ADME (absorption, distribution, metabolism, and excretion) properties. The carboxylic acid moiety is known to be a crucial functionality in many pharmaceutically active compounds. Despite its common use as a key functionality in drugs, its presence in a lead molecule is often associated with poor pharmacokinetic properties and toxicity. In this literature overview, we discuss how the shortcomings of a carboxylic acid can be circumvented by replacing this functionality with bioisosteres. In this way, the positive aspects of this moiety, such as its activity, for example, by virtue of its capacity to form hydrogen bonds, can be maintained or even improved. To that end, we provide an overview of the most promising carboxylic acid bioisosteres and discuss a selection of synthetic routes towards the main functionalities.
Collapse
|
8
|
Pippione AC, Kilic-Kurt Z, Kovachka S, Sainas S, Rolando B, Denasio E, Pors K, Adinolfi S, Zonari D, Bagnati R, Lolli ML, Spyrakis F, Oliaro-Bosso S, Boschi D. New aldo-keto reductase 1C3 (AKR1C3) inhibitors based on the hydroxytriazole scaffold. Eur J Med Chem 2022; 237:114366. [DOI: 10.1016/j.ejmech.2022.114366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/04/2022]
|
9
|
Amine-catalyzed synthesis of N2-sulfonyl 1,2,3-triazole in water and the tunable N2-H 1,2,3-triazole synthesis in DMSO via metal-free enamine annulation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Pacifico R, Destro D, Gillick-Healy MW, Kelly BG, Adamo MFA. Preparation of Acidic 5-Hydroxy-1,2,3-triazoles via the Cycloaddition of Aryl Azides with β-Ketoesters. J Org Chem 2021; 86:11354-11360. [PMID: 34314172 PMCID: PMC8419836 DOI: 10.1021/acs.joc.1c00778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, a high-yielding cycloaddition reaction of β-ketoesters and azides to provide 1,2,3-triazoles is described. The reactions employing 2-unsubstituted β-ketoesters were found to provide 5-methyl-1,2,3-triazoles, whereas 2-alkyl-substituted β-ketoesters provided 5-hydroxy-1,2,3-triazoles (shown to be relatively acidic) in high yields and as single regioisomers. Several novel compounds were reported and characterized including long-chain 5-hydroxy-1,2,3-triazoles potentially bioisosteric to hydroxamic acids.
Collapse
Affiliation(s)
- Roberta Pacifico
- Centre for Synthesis and Chemical Biology (CSCB), Department of Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Dario Destro
- Centre for Synthesis and Chemical Biology (CSCB), Department of Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Malachi W Gillick-Healy
- Centre for Synthesis and Chemical Biology (CSCB), Department of Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.,KelAda Pharmachem Ltd., A1.01 Science Centre South, Belfield, Dublin 4, Ireland
| | - Brian G Kelly
- KelAda Pharmachem Ltd., A1.01 Science Centre South, Belfield, Dublin 4, Ireland
| | - Mauro F A Adamo
- Centre for Synthesis and Chemical Biology (CSCB), Department of Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| |
Collapse
|
11
|
Horgan C, O' Sullivan TP. Recent Developments in the Practical Application of Novel Carboxylic Acid Bioisosteres. Curr Med Chem 2021; 29:2203-2234. [PMID: 34420501 DOI: 10.2174/0929867328666210820112126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/10/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The carboxylic acid is an important functional group which features in the pharmacophore of some 450 drugs. Unfortunately, some carboxylic acid-containing drugs have been withdrawn from market due to unforeseen toxicity issues. Other issues associated with the carboxylate moiety include reduced metabolic stability or limited passive diffusion across biological membranes. Medicinal chemists often turn to bioisosteres to circumvent such obstacles. OBJECTIVE The aim of this review is to provide a summary of the various applications of novel carboxylic acid bioisosteres which have appeared in the literature since 2013. RESULTS We have summarised the most recent developments in carboxylic acid bioisosterism. In particular, we focus on the changes in bioactivity, selectivity or physiochemical properties brought about by these substitutions, as well as the advantages and disadvantages of each isostere. CONCLUSION The topics discussed herein highlight the continued interest in carboxylate bioisosteres. The development of novel carboxylic acid substitutes which display improved pharmacological profiles is testament to the innovation and creativity required to overcome the challenges faced in modern drug design.
Collapse
Affiliation(s)
- Conor Horgan
- School of Chemistry, University College Cork, Cork. Ireland
| | | |
Collapse
|
12
|
Chen W, Chen Q, Kumar A, Jiang X, Zhang KYJ, Yang Q. Structure-based virtual screening of highly potent inhibitors of the nematode chitinase CeCht1. J Enzyme Inhib Med Chem 2021; 36:1198-1204. [PMID: 34074203 PMCID: PMC8174485 DOI: 10.1080/14756366.2021.1931862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Nematode chitinases play vital roles in various physiological processes, including egg hatching, larva moulting, and reproduction. Small-molecule inhibitors of nematode chitinases have potential applications for controlling nematode pests. On the basis of the crystal structure of CeCht1, a representative chitinase indispensable to the eggshell chitin degradation of the model nematode Caenorhabditis elegans, we have discovered a series of novel inhibitors bearing a (R)-3,4-diphenyl-4,5-dihydropyrrolo[3,4-c]pyrazol-6(2H)-one scaffold by hierarchical virtual screening. The crystal structures of CeCht1 complexed with two of these inhibitors clearly elucidated their interactions with the enzyme active site. Based on the inhibitory mechanism, several analogues with improved inhibitory activities were identified, among which the compound PP28 exhibited the most potent activity with a Ki value of 0.18 μM. This work provides the structural basis for the development of novel nematode chitinase inhibitors.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ashutosh Kumar
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Japan
| | - Xi Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Japan
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,School of Bioengineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
13
|
Sainas S, Giorgis M, Circosta P, Gaidano V, Bonanni D, Pippione AC, Bagnati R, Passoni A, Qiu Y, Cojocaru CF, Canepa B, Bona A, Rolando B, Mishina M, Ramondetti C, Buccinnà B, Piccinini M, Houshmand M, Cignetti A, Giraudo E, Al-Karadaghi S, Boschi D, Saglio G, Lolli ML. Targeting Acute Myelogenous Leukemia Using Potent Human Dihydroorotate Dehydrogenase Inhibitors Based on the 2-Hydroxypyrazolo[1,5- a]pyridine Scaffold: SAR of the Biphenyl Moiety. J Med Chem 2021; 64:5404-5428. [PMID: 33844533 PMCID: PMC8279415 DOI: 10.1021/acs.jmedchem.0c01549] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 02/08/2023]
Abstract
The connection with acute myelogenous leukemia (AML) of dihydroorotate dehydrogenase (hDHODH), a key enzyme in pyrimidine biosynthesis, has attracted significant interest from pharma as a possible AML therapeutic target. We recently discovered compound 1, a potent hDHODH inhibitor (IC50 = 1.2 nM), able to induce myeloid differentiation in AML cell lines (THP1) in the low nM range (EC50 = 32.8 nM) superior to brequinar's phase I/II clinical trial (EC50 = 265 nM). Herein, we investigate the 1 drug-like properties observing good metabolic stability and no toxic profile when administered at doses of 10 and 25 mg/kg every 3 days for 5 weeks (Balb/c mice). Moreover, in order to identify a backup compound, we investigate the SAR of this class of compounds. Inside the series, 17 is characterized by higher potency in inducing myeloid differentiation (EC50 = 17.3 nM), strong proapoptotic properties (EC50 = 20.2 nM), and low cytotoxicity toward non-AML cells (EC30(Jurkat) > 100 μM).
Collapse
Affiliation(s)
- Stefano Sainas
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Marta Giorgis
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Paola Circosta
- Department
of Clinical and Biological Sciences, University
of Turin, Regione Gonzole 10, Orbassano, Turin 10043, Italy
- Molecular
Biotechnology Center, University of Turin, Via Nizza 52, Turin 10126, Italy
| | - Valentina Gaidano
- Department
of Clinical and Biological Sciences, University
of Turin, Regione Gonzole 10, Orbassano, Turin 10043, Italy
- Division
of Hematology, AO SS Antonio e Biagio e
Cesare Arrigo, Via Venezia
16, Alessandria 15121, Italy
| | - Davide Bonanni
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Agnese C. Pippione
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Renzo Bagnati
- Department
of Environmental Health Sciences, Istituto
di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milano 20156, Italy
| | - Alice Passoni
- Department
of Environmental Health Sciences, Istituto
di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milano 20156, Italy
| | - Yaqi Qiu
- Laboratory
of Tumor Microenvironment, Candiolo Cancer
Institute, FPO, IRCCS, Candiolo, Strada Provinciale, 142-KM 3.95, Candiolo, Turin 10060, Italy
- Higher
Education Mega Center, Institutes for Life Sciences, South China University of Technology, Guangzhou 510641, China
| | - Carina Florina Cojocaru
- Laboratory
of Tumor Microenvironment, Candiolo Cancer
Institute, FPO, IRCCS, Candiolo, Strada Provinciale, 142-KM 3.95, Candiolo, Turin 10060, Italy
| | - Barbara Canepa
- Gem
Forlab srl, Via Ribes,
5, Colleretto Giacosa, Turin 10010, Italy
| | - Alessandro Bona
- Gem
Chimica srl, Via Maestri
del Lavoro, 25, Busca, Cuneo 12022, Italy
| | - Barbara Rolando
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Mariia Mishina
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Cristina Ramondetti
- Department
of Oncology, University of Turin, Via Michelangelo 27/B, Turin 10125, Italy
| | - Barbara Buccinnà
- Department
of Oncology, University of Turin, Via Michelangelo 27/B, Turin 10125, Italy
| | - Marco Piccinini
- Department
of Oncology, University of Turin, Via Michelangelo 27/B, Turin 10125, Italy
| | - Mohammad Houshmand
- Department
of Clinical and Biological Sciences, University
of Turin, Regione Gonzole 10, Orbassano, Turin 10043, Italy
- Molecular
Biotechnology Center, University of Turin, Via Nizza 52, Turin 10126, Italy
| | - Alessandro Cignetti
- Division
of Hematology and Cell Therapy, AO Ordine
Mauriziano, Largo Filippo Turati, 62, Turin 10128, Italy
| | - Enrico Giraudo
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
- Laboratory
of Tumor Microenvironment, Candiolo Cancer
Institute, FPO, IRCCS, Candiolo, Strada Provinciale, 142-KM 3.95, Candiolo, Turin 10060, Italy
| | - Salam Al-Karadaghi
- Department
of Biochemistry and Structural Biology, Lund University, Naturvetarvägen 14, Box 124, Lund 221 00, Sweden
| | - Donatella Boschi
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Giuseppe Saglio
- Department
of Clinical and Biological Sciences, University
of Turin, Regione Gonzole 10, Orbassano, Turin 10043, Italy
- Division
of Hematology and Cell Therapy, AO Ordine
Mauriziano, Largo Filippo Turati, 62, Turin 10128, Italy
| | - Marco L. Lolli
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| |
Collapse
|
14
|
Chen Q, Chen W, Kumar A, Jiang X, Janezic M, Zhang KYJ, Yang Q. Crystal Structure and Structure-Based Discovery of Inhibitors of the Nematode Chitinase CeCht1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3519-3526. [PMID: 33691404 DOI: 10.1021/acs.jafc.1c00162] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nematode chitinases play crucial roles in various processes of the nematode lifecycle, including hatching, molting, and reproduction. Small-molecule inhibitors of nematode chitinases have shown promise for controlling nematode pests. However, the lack of structural information makes it a challenge to develop nematicides targeting nematode chitinases. Here, we report the first crystal structure of a representative nematode chitinase, that of CeCht1 from the model nematode Caenorhabditis elegans, to a 1.7 Å resolution. CeCht1 is a highly conserved chitinase among nematodes, and structural comparison with other chitinases revealed that CeCht1 has a classical TIM-barrel fold with some subtle structural differences in the substrate-binding cleft. Benefiting from the obtained crystal structure, we identified a series of novel inhibitors by hierarchical virtual screening. Analysis of the structure-activity relationships of these compounds provided insight into their interactions with the enzyme active site, which may inform future work in improving the potencies of their inhibitory activities. This work gives an insight into the structural features of nematode chitinases and provides a solid basis for the development of inhibitors.
Collapse
Affiliation(s)
- Qi Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ashutosh Kumar
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Xi Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Matej Janezic
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
15
|
Larin EM, Lautens M. Intramolecular Copper(I)‐Catalyzed Interrupted Click–Acylation Domino Reaction. Angew Chem Int Ed Engl 2019; 58:13438-13442. [DOI: 10.1002/anie.201907448] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Egor M. Larin
- Davenport LaboratoriesDepartment of ChemistryUniversity of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Mark Lautens
- Davenport LaboratoriesDepartment of ChemistryUniversity of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
16
|
Dihydroorotate dehydrogenase inhibitors in anti-infective drug research. Eur J Med Chem 2019; 183:111681. [PMID: 31557612 DOI: 10.1016/j.ejmech.2019.111681] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/01/2019] [Accepted: 09/05/2019] [Indexed: 01/08/2023]
Abstract
Pyrimidines are essential for the cell survival and proliferation of living parasitic organisms, such as Helicobacter pylori, Plasmodium falciparum and Schistosoma mansoni, that are able to impact upon human health. Pyrimidine building blocks, in human cells, are synthesised via both de novo biosynthesis and salvage pathways, the latter of which is an effective way of recycling pre-existing nucleotides. As many parasitic organisms lack pyrimidine salvage pathways for pyrimidine nucleotides, blocking de novo biosynthesis is seen as an effective therapeutic means to selectively target the parasite without effecting the human host. Dihydroorotate dehydrogenase (DHODH), which is involved in the de novo biosynthesis of pyrimidines, is a validated target for anti-infective drug research. Recent advances in the DHODH microorganism field are discussed herein, as is the potential for the development of DHODH-targeted therapeutics.
Collapse
|
17
|
Larin EM, Lautens M. Intramolecular Copper(I)‐Catalyzed Interrupted Click–Acylation Domino Reaction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Egor M. Larin
- Davenport LaboratoriesDepartment of ChemistryUniversity of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Mark Lautens
- Davenport LaboratoriesDepartment of ChemistryUniversity of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
18
|
Sainas S, Temperini P, Farnsworth JC, Yi F, Møllerud S, Jensen AA, Nielsen B, Passoni A, Kastrup JS, Hansen KB, Boschi D, Pickering DS, Clausen RP, Lolli ML. Use of the 4-Hydroxytriazole Moiety as a Bioisosteric Tool in the Development of Ionotropic Glutamate Receptor Ligands. J Med Chem 2019; 62:4467-4482. [PMID: 30943028 DOI: 10.1021/acs.jmedchem.8b01986] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report a series of glutamate and aspartate analogues designed using the hydroxy-1,2,3-triazole moiety as a bioisostere for the distal carboxylic acid. Compound 6b showed unprecedented selectivity among ( S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor subtypes, confirmed also by an unusual binding mode observed for the crystal structures in complex with the AMPA receptor GluA2 agonist-binding domain. Here, a methionine (Met729) was highly disordered compared to previous agonist-bound structures. This observation provides a possible explanation for the pharmacological profile. In the structure with 7a, an unusual organization of water molecules around the bioisostere arises compared to previous structures of ligands with other bioisosteres. Aspartate analogue 8 with the hydroxy-1,2,3-triazole moiety directly attached to glycine was unexpectedly able to activate both the glutamate and glycine agonist-binding sites of the N-methyl-d-aspartic acid receptor. These observations demonstrate novel features that arise when employing a hydroxytriazole moiety as a bioisostere for the distal carboxylic acid in glutamate receptor agonists.
Collapse
Affiliation(s)
- Stefano Sainas
- Department of Drug Science and Technology , University of Turin , via P.Giuria 9 , 10125 Turin , Italy
| | - Piero Temperini
- Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| | - Jill C Farnsworth
- Department of Biomedical and Pharmaceutical Sciences, Center for Structural and Functional Neuroscience, and Center for Biomolecular Structure and Dynamics , University of Montana , Missoula , Montana 59812 , United States
| | - Feng Yi
- Department of Biomedical and Pharmaceutical Sciences, Center for Structural and Functional Neuroscience, and Center for Biomolecular Structure and Dynamics , University of Montana , Missoula , Montana 59812 , United States
| | - Stine Møllerud
- Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| | - Anders A Jensen
- Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| | - Birgitte Nielsen
- Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| | - Alice Passoni
- Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS , via La Masa 19 , 20156 Milan , Italy
| | - Jette S Kastrup
- Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| | - Kasper B Hansen
- Department of Biomedical and Pharmaceutical Sciences, Center for Structural and Functional Neuroscience, and Center for Biomolecular Structure and Dynamics , University of Montana , Missoula , Montana 59812 , United States
| | - Donatella Boschi
- Department of Drug Science and Technology , University of Turin , via P.Giuria 9 , 10125 Turin , Italy
| | - Darryl S Pickering
- Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| | - Rasmus P Clausen
- Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| | - Marco L Lolli
- Department of Drug Science and Technology , University of Turin , via P.Giuria 9 , 10125 Turin , Italy
| |
Collapse
|
19
|
Lolli ML, Carnovale IM, Pippione AC, Wahlgren WY, Bonanni D, Marini E, Zonari D, Gallicchio M, Boscaro V, Goyal P, Friemann R, Rolando B, Bagnati R, Adinolfi S, Oliaro-Bosso S, Boschi D. Bioisosteres of Indomethacin as Inhibitors of Aldo-Keto Reductase 1C3. ACS Med Chem Lett 2019; 10:437-443. [PMID: 30996776 DOI: 10.1021/acsmedchemlett.8b00484] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/28/2019] [Indexed: 11/28/2022] Open
Abstract
Aldo-keto reductase 1C3 (AKR1C3) is an attractive target in drug design for its role in resistance to anticancer therapy. Several nonsteroidal anti-inflammatory drugs such as indomethacin are known to inhibit AKR1C3 in a nonselective manner because of COX-off target effects. Here we designed two indomethacin analogues by proposing a bioisosteric connection between the indomethacin carboxylic acid function and either hydroxyfurazan or hydroxy triazole rings. Both compounds were found to target AKR1C3 in a selective manner. In particular, hydroxyfurazan derivative is highly selective for AKR1C3 over the 1C2 isoform (up to 90-times more) and inactive on COX enzymes. High-resolution crystal structure of its complex with AKR1C3 shed light onto the binding mode of the new inhibitors. In cell-based assays (on colorectal and prostate cancer cells), the two indomethacin analogues showed higher potency than indomethacin. Therefore, these two AKR1C3 inhibitors can be used to provide further insight into the role of AKR1C3 in cancer.
Collapse
Affiliation(s)
- Marco L. Lolli
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Irene M. Carnovale
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Agnese C. Pippione
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Weixiao Y. Wahlgren
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-40530 Gothenburg, Sweden
| | - Davide Bonanni
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Elisabetta Marini
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Daniele Zonari
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Margherita Gallicchio
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Valentina Boscaro
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Parveen Goyal
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-40530 Gothenburg, Sweden
| | - Rosmarie Friemann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-40530 Gothenburg, Sweden
| | - Barbara Rolando
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Renzo Bagnati
- Istituto di Ricerche Farmacologiche “Mario Negri” IRCCS, Via La Masa 19, 20156 Milan, Italy
| | - Salvatore Adinolfi
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Simonetta Oliaro-Bosso
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Donatella Boschi
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| |
Collapse
|
20
|
Hydroxyazole scaffold-based Plasmodium falciparum dihydroorotate dehydrogenase inhibitors: Synthesis, biological evaluation and X-ray structural studies. Eur J Med Chem 2019; 163:266-280. [DOI: 10.1016/j.ejmech.2018.11.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/16/2018] [Accepted: 11/18/2018] [Indexed: 11/23/2022]
|
21
|
Sainas S, Pippione AC, Giraudo A, Martina K, Bosca F, Rolando B, Barge A, Ducime A, Federico A, Grossert SJ, White RL, Boschi D, Lolli ML. Regioselective N‐Alkylation of Ethyl 4‐Benzyloxy‐1,2,3‐triazolecarboxylate: A Useful Tool for the Synthesis of Carboxylic Acid Bioisosteres. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Stefano Sainas
- Dipartimento di Scienza e Tecnologia del Farmaco (DSTF)Università degli Studi di Torino via Pietro Giuria 9 Turin 10125 Italy
| | - Agnese C. Pippione
- Dipartimento di Scienza e Tecnologia del Farmaco (DSTF)Università degli Studi di Torino via Pietro Giuria 9 Turin 10125 Italy
| | - Alessandro Giraudo
- Dipartimento di Scienza e Tecnologia del Farmaco (DSTF)Università degli Studi di Torino via Pietro Giuria 9 Turin 10125 Italy
| | - Katia Martina
- Dipartimento di Scienza e Tecnologia del Farmaco (DSTF)Università degli Studi di Torino via Pietro Giuria 9 Turin 10125 Italy
| | - Federica Bosca
- Dipartimento di Scienza e Tecnologia del Farmaco (DSTF)Università degli Studi di Torino via Pietro Giuria 9 Turin 10125 Italy
| | - Barbara Rolando
- Dipartimento di Scienza e Tecnologia del Farmaco (DSTF)Università degli Studi di Torino via Pietro Giuria 9 Turin 10125 Italy
| | - Alessandro Barge
- Dipartimento di Scienza e Tecnologia del Farmaco (DSTF)Università degli Studi di Torino via Pietro Giuria 9 Turin 10125 Italy
| | - Alex Ducime
- Dipartimento di Scienza e Tecnologia del Farmaco (DSTF)Università degli Studi di Torino via Pietro Giuria 9 Turin 10125 Italy
| | - Antonella Federico
- Dipartimento di Scienza e Tecnologia del Farmaco (DSTF)Università degli Studi di Torino via Pietro Giuria 9 Turin 10125 Italy
| | - Stuart J. Grossert
- Department of ChemistryDalhousie University 6274 Coburg Road Halifax Nova Scotia B3H 4R2 Canada
| | - Robert L. White
- Department of ChemistryDalhousie University 6274 Coburg Road Halifax Nova Scotia B3H 4R2 Canada
| | - Donatella Boschi
- Dipartimento di Scienza e Tecnologia del Farmaco (DSTF)Università degli Studi di Torino via Pietro Giuria 9 Turin 10125 Italy
| | - Marco L. Lolli
- Dipartimento di Scienza e Tecnologia del Farmaco (DSTF)Università degli Studi di Torino via Pietro Giuria 9 Turin 10125 Italy
| |
Collapse
|
22
|
Giraudo A, Krall J, Nielsen B, Sørensen TE, Kongstad KT, Rolando B, Boschi D, Frølund B, Lolli ML. 4-Hydroxy-1,2,3-triazole moiety as bioisostere of the carboxylic acid function: a novel scaffold to probe the orthosteric γ-aminobutyric acid receptor binding site. Eur J Med Chem 2018; 158:311-321. [DOI: 10.1016/j.ejmech.2018.08.094] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 01/17/2023]
|
23
|
Sainas S, Pippione AC, Lupino E, Giorgis M, Circosta P, Gaidano V, Goyal P, Bonanni D, Rolando B, Cignetti A, Ducime A, Andersson M, Järvå M, Friemann R, Piccinini M, Ramondetti C, Buccinnà B, Al-Karadaghi S, Boschi D, Saglio G, Lolli ML. Targeting Myeloid Differentiation Using Potent 2-Hydroxypyrazolo[1,5-a]pyridine Scaffold-Based Human Dihydroorotate Dehydrogenase Inhibitors. J Med Chem 2018; 61:6034-6055. [DOI: 10.1021/acs.jmedchem.8b00373] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | | | | | | | - Paola Circosta
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
- Molecular Biotechnology Center, Turin 10126, Italy
| | - Valentina Gaidano
- Department of Clinical and Biological Sciences, University of Turin, Turin 10043, Italy
- Mauriziano Hospital S.C.D.U. Hematology, Turin 10128, Italy
| | - Parveen Goyal
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE 405, Sweden
| | | | | | - Alessandro Cignetti
- Department of Clinical and Biological Sciences, University of Turin, Turin 10043, Italy
- Mauriziano Hospital S.C.D.U. Hematology, Turin 10128, Italy
| | | | - Mikael Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE 405, Sweden
| | - Michael Järvå
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Rosmarie Friemann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE 405, Sweden
| | | | | | | | - Salam Al-Karadaghi
- Department of Biochemistry and Structural Biology, Lund University, Lund 221 00, Sweden
| | | | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin, Turin 10043, Italy
- Mauriziano Hospital S.C.D.U. Hematology, Turin 10128, Italy
| | | |
Collapse
|
24
|
Potent and selective aldo-keto reductase 1C3 (AKR1C3) inhibitors based on the benzoisoxazole moiety: application of a bioisosteric scaffold hopping approach to flufenamic acid. Eur J Med Chem 2018; 150:930-945. [DOI: 10.1016/j.ejmech.2018.03.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 11/19/2022]
|
25
|
Magnetically recoverable copper ferrite catalyzed cascade synthesis of 4-Aryl-1H-1,2,3-triazoles under microwave irradiation. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.03.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Bahadorikhalili S, Ashtari A, Ma’mani L, Ranjbar PR, Mahdavi M. Copper-supported β-cyclodextrin-functionalized magnetic nanoparticles: Efficient multifunctional catalyst for one-pot ‘green’ synthesis of 1,2,3-triazolylquinazolinone derivatives. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4212] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Saeed Bahadorikhalili
- School of Chemistry, College of Science; University of Tehran; PO Box 14155-6455 Tehran Iran
| | - Arsalan Ashtari
- School of Chemistry, College of Science; University of Tehran; PO Box 14155-6455 Tehran Iran
| | - Leila Ma’mani
- Department of Nanotechnology; Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO); Karaj Iran
| | - Parviz Rashidi Ranjbar
- School of Chemistry, College of Science; University of Tehran; PO Box 14155-6455 Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute; Tehran University of Medical Science; Tehran 14176 Iran
| |
Collapse
|
27
|
Targeting Human Onchocerciasis: Recent Advances Beyond Ivermectin. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2018. [DOI: 10.1016/bs.armc.2018.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
Hydroxytriazole derivatives as potent and selective aldo-keto reductase 1C3 (AKR1C3) inhibitors discovered by bioisosteric scaffold hopping approach. Eur J Med Chem 2017; 139:936-946. [DOI: 10.1016/j.ejmech.2017.08.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/04/2017] [Accepted: 08/21/2017] [Indexed: 11/21/2022]
|
29
|
Pippione AC, Federico A, Ducime A, Sainas S, Boschi D, Barge A, Lupino E, Piccinini M, Kubbutat M, Contreras JM, Morice C, Al-Karadaghi S, Lolli ML. 4-Hydroxy- N-[3,5-bis(trifluoromethyl)phenyl]-1,2,5-thiadiazole-3-carboxamide: a novel inhibitor of the canonical NF-κB cascade. MEDCHEMCOMM 2017; 8:1850-1855. [PMID: 30108896 DOI: 10.1039/c7md00278e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/22/2017] [Indexed: 12/21/2022]
Abstract
The NF-κB signaling pathway is a validated oncological target. Here, we applied scaffold hopping to IMD-0354, a presumed IKKβ inhibitor, and identified 4-hydroxy-N-[3,5-bis(trifluoromethyl)phenyl]-1,2,5-thiadiazole-3-carboxamide (4) as a nM-inhibitor of the NF-κB pathway. However, both 4 and IMD-0354, being potent inhibitors of the canonical NF-κB pathway, were found to be inactive in human IKKβ enzyme assays.
Collapse
Affiliation(s)
- Agnese C Pippione
- Department of Science and Drug Technology , University of Torino , via Pietro Giuria 9 , 10125 Torino , Italy
| | - Antonella Federico
- Department of Science and Drug Technology , University of Torino , via Pietro Giuria 9 , 10125 Torino , Italy
| | - Alex Ducime
- Department of Science and Drug Technology , University of Torino , via Pietro Giuria 9 , 10125 Torino , Italy
| | - Stefano Sainas
- Department of Science and Drug Technology , University of Torino , via Pietro Giuria 9 , 10125 Torino , Italy
| | - Donatella Boschi
- Department of Science and Drug Technology , University of Torino , via Pietro Giuria 9 , 10125 Torino , Italy
| | - Alessandro Barge
- Department of Science and Drug Technology , University of Torino , via Pietro Giuria 9 , 10125 Torino , Italy
| | - Elisa Lupino
- Department of Oncology , University of Torino , via Michelangelo 27/B , 10126 Torino , Italy
| | - Marco Piccinini
- Department of Oncology , University of Torino , via Michelangelo 27/B , 10126 Torino , Italy
| | | | - Jean-Marie Contreras
- Prestwick Chemical , 220 Boulevard Gonthier d'Andernach , 67400 Illkirch , France
| | - Christophe Morice
- Prestwick Chemical , 220 Boulevard Gonthier d'Andernach , 67400 Illkirch , France
| | - Salam Al-Karadaghi
- SARomics Biostructures and Department of Biochemistry & Structural Biology , Lund University , Lund , Sweden
| | - Marco L Lolli
- Department of Science and Drug Technology , University of Torino , via Pietro Giuria 9 , 10125 Torino , Italy
| |
Collapse
|
30
|
Pokhodylo NT, Shyyka OY, Matiychuk VS, Obushak MD, Pavlyuk VV. A Novel Base-Solvent Controlled Chemoselective Azide Attack on an Ester Group versus Keto in Alkyl 3-Substituted 3-Oxopropanoates: Mechanistic Insights. ChemistrySelect 2017. [DOI: 10.1002/slct.201700577] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nazariy T. Pokhodylo
- Faculty of Chemistry; Ivan Franko National University of Lviv; Kyryla I Mefodiya, 6 Lviv 79005 Ukraine
| | - Olga Ya. Shyyka
- Faculty of Chemistry; Ivan Franko National University of Lviv; Kyryla I Mefodiya, 6 Lviv 79005 Ukraine
| | - Vasyl S. Matiychuk
- Faculty of Chemistry; Ivan Franko National University of Lviv; Kyryla I Mefodiya, 6 Lviv 79005 Ukraine
| | - Mykola D. Obushak
- Faculty of Chemistry; Ivan Franko National University of Lviv; Kyryla I Mefodiya, 6 Lviv 79005 Ukraine
| | - Volodymyr V. Pavlyuk
- Faculty of Chemistry; Ivan Franko National University of Lviv; Kyryla I Mefodiya, 6 Lviv 79005 Ukraine
| |
Collapse
|
31
|
Bonandi E, Christodoulou MS, Fumagalli G, Perdicchia D, Rastelli G, Passarella D. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discov Today 2017; 22:1572-1581. [PMID: 28676407 DOI: 10.1016/j.drudis.2017.05.014] [Citation(s) in RCA: 434] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/16/2017] [Accepted: 05/25/2017] [Indexed: 10/25/2022]
Abstract
1,2,3-Triazole is a well-known scaffold that has a widespread occurrence in different compounds characterized by several bioactivities, such as antimicrobial, antiviral, and antitumor effects. Moreover, the structural features of 1,2,3-triazole enable it to mimic different functional groups, justifying its wide use as a bioisostere for the synthesis of new active molecules. Here, we provide an overview of the 1,2,3-triazole ring as a bioisostere for the design of drug analogs, highlighting relevant recent examples.
Collapse
Affiliation(s)
- Elisa Bonandi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Michael S Christodoulou
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Gaia Fumagalli
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Dario Perdicchia
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Giulio Rastelli
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Daniele Passarella
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
32
|
Andersen JL, Lindberg S, Langgård M, Maltas PJ, Rønn LCB, Bundgaard C, Strandbygaard D, Thirup S, Watson SP. The identification of novel acid isostere based inhibitors of the VPS10P family sorting receptor Sortilin. Bioorg Med Chem Lett 2017; 27:2629-2633. [DOI: 10.1016/j.bmcl.2017.02.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 11/17/2022]
|
33
|
Sainas S, Pippione AC, Giorgis M, Lupino E, Goyal P, Ramondetti C, Buccinnà B, Piccinini M, Braga RC, Andrade CH, Andersson M, Moritzer AC, Friemann R, Mensa S, Al-Karadaghi S, Boschi D, Lolli ML. Design, synthesis, biological evaluation and X-ray structural studies of potent human dihydroorotate dehydrogenase inhibitors based on hydroxylated azole scaffolds. Eur J Med Chem 2017; 129:287-302. [DOI: 10.1016/j.ejmech.2017.02.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 11/25/2022]
|
34
|
Pulst M, Balko J, Golitsyn Y, Reichert D, Busse K, Kressler J. Proton conductivity and phase transitions in 1,2,3-triazole. Phys Chem Chem Phys 2016; 18:6153-63. [PMID: 26847581 DOI: 10.1039/c5cp07603j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,2,3-Triazole (TR) is a good proton conductor which is tidely related to formation of a hydrogen bond network along the N-HN trajectory and its self-dissociation into diH-1,2,3-triazolium and 1,2,3-triazolate. To gain a deeper understanding, the proton conductivity of TR is measured by impedance spectroscopy (IS) across its melting temperature and an additionally discovered solid-solid phase transition. The orthorhombic high temperature phase and the monoclinic low temperature modification are investigated by polarized optical microscopy, DSC- and WAXS measurements. Furthermore, the diffusion coefficients of TR are determined from IS data and measured by (1)H PFG NMR spectroscopy in the melt which allows for separate evaluation of contributions of proton hopping across the hydrogen bond network and the vehicle mechanism to the proton conductivity where the vehicles are defined as charged species generated by TR self-dissociation. Finally, the degree of dissociation of TR is calculated and the influence of the self-dissociation of TR on the proton conductivity is discussed in the context of the dielectric constant.
Collapse
Affiliation(s)
- Martin Pulst
- Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle, Germany.
| | - Jens Balko
- Department of Physics, Martin Luther University Halle-Wittenberg, D-06099 Halle, Germany
| | - Yury Golitsyn
- Department of Physics, Martin Luther University Halle-Wittenberg, D-06099 Halle, Germany
| | - Detlef Reichert
- Department of Physics, Martin Luther University Halle-Wittenberg, D-06099 Halle, Germany
| | - Karsten Busse
- Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle, Germany.
| | - Jörg Kressler
- Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle, Germany.
| |
Collapse
|
35
|
Grossert JS, Pippione AC, Boschi D, Lolli ML, White RL. Heterocyclic ring cleavage upon collision-induced dissociation of deprotonated 3-hydroxy-1,2,5-oxadiazoles (3-hydroxyfurazans). JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:1433-1437. [PMID: 26634978 DOI: 10.1002/jms.3724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/02/2015] [Accepted: 10/20/2015] [Indexed: 06/05/2023]
Abstract
A series of 4-substituted 3-hydroxyfurazans were subjected to electrospray ionization tandem mass spectrometry. At low collision energy, oxyisocyanate ([O=C=N-O](-), m/z 58) was formed as the predominant product ion from each deprotonated 3-hydroxyfurazan, indicating cleavage of the heterocyclic ring. The facile energetics of this characteristic fragmentation process was confirmed by density functional computations.
Collapse
Affiliation(s)
- J Stuart Grossert
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, PO Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Agnese C Pippione
- Dipartimento di Scienza e Tecnologia del Farmaco (DSTF), Università degli Studi di Torino, via Pietro Giuria 9, 10125, Torino, Italy
| | - Donatella Boschi
- Dipartimento di Scienza e Tecnologia del Farmaco (DSTF), Università degli Studi di Torino, via Pietro Giuria 9, 10125, Torino, Italy
| | - Marco L Lolli
- Dipartimento di Scienza e Tecnologia del Farmaco (DSTF), Università degli Studi di Torino, via Pietro Giuria 9, 10125, Torino, Italy
| | - Robert L White
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, PO Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|