1
|
Zips S, Huang B, Hotte S, Hiendlmeier L, Wang C, Rajamani K, Buriez O, Al Boustani G, Chen Y, Wolfrum B, Yamada A. Aerosol Jet-Printed High-Aspect Ratio Micro-Needle Electrode Arrays Applied for Human Cerebral Organoids and 3D Neurospheroid Networks. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37469180 DOI: 10.1021/acsami.3c06210] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The human brain is a complex and poorly accessible organ. Thus, new tools are required for studying the neural function in a controllable environment that preserves multicellular interaction and neuronal wiring. In particular, high-throughput methods that alleviate the need for animal experiments are essential for future studies. Recent developments of induced pluripotent stem cell technologies have enabled in vitro modeling of the human brain by creating three-dimensional brain tissue mimic structures. To leverage these new technologies, a systematic and versatile approach for evaluating neuronal activity at larger tissue depths within the regime of tens to hundreds of micrometers is required. Here, we present an aerosol-jet- and inkjet-printing-based method to fabricate microelectrode arrays, equipped with high-aspect ratio μ-needle electrodes that penetrate 3D neural network assemblies. The arrays have been successfully applied for electrophysiological recordings on interconnected neurospheroids formed on an engineered substrate and on cerebral organoids, both derived from human induced pluripotent stem cells.
Collapse
Affiliation(s)
- Sabine Zips
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstr. 11, 85748 Garching, Germany
| | - Boxin Huang
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Salammbô Hotte
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Lukas Hiendlmeier
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstr. 11, 85748 Garching, Germany
| | - Chen Wang
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstr. 11, 85748 Garching, Germany
| | - Karthyayani Rajamani
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Olivier Buriez
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - George Al Boustani
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstr. 11, 85748 Garching, Germany
| | - Yong Chen
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Bernhard Wolfrum
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstr. 11, 85748 Garching, Germany
| | - Ayako Yamada
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
2
|
Shokoohimehr P, Cepkenovic B, Milos F, Bednár J, Hassani H, Maybeck V, Offenhäusser A. High-Aspect-Ratio Nanoelectrodes Enable Long-Term Recordings of Neuronal Signals with Subthreshold Resolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200053. [PMID: 35527345 DOI: 10.1002/smll.202200053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/24/2022] [Indexed: 06/14/2023]
Abstract
The further development of neurochips requires high-density and high-resolution recordings that also allow neuronal signals to be observed over a long period of time. Expanding fields of network neuroscience and neuromorphic engineering demand the multiparallel and direct estimations of synaptic weights, and the key objective is to construct a device that also records subthreshold events. Recently, 3D nanostructures with a high aspect ratio have become a particularly suitable interface between neurons and electronic devices, since the excellent mechanical coupling to the neuronal cell membrane allows very high signal-to-noise ratio recordings. In the light of an increasing demand for a stable, noninvasive and long-term recording at subthreshold resolution, a combination of vertical nanostraws with nanocavities is presented. These structures provide a spontaneous tight coupling with rat cortical neurons, resulting in high amplitude sensitivity and postsynaptic resolution capability, as directly confirmed by combined patch-clamp and microelectrode array measurements.
Collapse
Affiliation(s)
- Pegah Shokoohimehr
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 1, 52428, Jülich, Germany
- Faculty 1, RWTH Aachen University, Templergraben 55, 52062, Aachen, Germany
| | - Bogdana Cepkenovic
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 1, 52428, Jülich, Germany
- Faculty 1, RWTH Aachen University, Templergraben 55, 52062, Aachen, Germany
| | - Frano Milos
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 1, 52428, Jülich, Germany
- Faculty 1, RWTH Aachen University, Templergraben 55, 52062, Aachen, Germany
| | - Justus Bednár
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 1, 52428, Jülich, Germany
- Faculty 1, RWTH Aachen University, Templergraben 55, 52062, Aachen, Germany
| | - Hossein Hassani
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 1, 52428, Jülich, Germany
- Faculty 1, RWTH Aachen University, Templergraben 55, 52062, Aachen, Germany
| | - Vanessa Maybeck
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 1, 52428, Jülich, Germany
| | - Andreas Offenhäusser
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 1, 52428, Jülich, Germany
| |
Collapse
|
3
|
Gu Y, Wang C, Kim N, Zhang J, Wang TM, Stowe J, Nasiri R, Li J, Zhang D, Yang A, Hsu LHH, Dai X, Mu J, Liu Z, Lin M, Li W, Wang C, Gong H, Chen Y, Lei Y, Hu H, Li Y, Zhang L, Huang Z, Zhang X, Ahadian S, Banik P, Zhang L, Jiang X, Burke PJ, Khademhosseini A, McCulloch AD, Xu S. Three-dimensional transistor arrays for intra- and inter-cellular recording. NATURE NANOTECHNOLOGY 2022; 17:292-300. [PMID: 34949774 PMCID: PMC8994210 DOI: 10.1038/s41565-021-01040-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
Electrical impulse generation and its conduction within cells or cellular networks are the cornerstone of electrophysiology. However, the advancement of the field is limited by sensing accuracy and the scalability of current recording technologies. Here we describe a scalable platform that enables accurate recording of transmembrane potentials in electrogenic cells. The platform employs a three-dimensional high-performance field-effect transistor array for minimally invasive cellular interfacing that produces faithful recordings, as validated by the gold standard patch clamp. Leveraging the high spatial and temporal resolutions of the field-effect transistors, we measured the intracellular signal conduction velocity of a cardiomyocyte to be 0.182 m s-1, which is about five times the intercellular velocity. We also demonstrate intracellular recordings in cardiac muscle tissue constructs and reveal the signal conduction paths. This platform could provide new capabilities in probing the electrical behaviours of single cells and cellular networks, which carries broad implications for understanding cellular physiology, pathology and cell-cell interactions.
Collapse
Affiliation(s)
- Yue Gu
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Chunfeng Wang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Namheon Kim
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Jingxin Zhang
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Tsui Min Wang
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jennifer Stowe
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| | - Rohollah Nasiri
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA
| | - Jinfeng Li
- Department of Physics and Astronomy, University of California Irvine, Irvine, CA, USA
| | - Daibo Zhang
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| | - Albert Yang
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| | - Leo Huan-Hsuan Hsu
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Xiaochuan Dai
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Jing Mu
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Zheyuan Liu
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Muyang Lin
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Weixin Li
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Chonghe Wang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Hua Gong
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Yimu Chen
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Yusheng Lei
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Hongjie Hu
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Yang Li
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Lin Zhang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Zhenlong Huang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA
| | - Pooja Banik
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Liangfang Zhang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Xiaocheng Jiang
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Peter J Burke
- Department of Chemical Engineering and Materials Science, University of California Irvine, Irvine, CA, USA
| | | | - Andrew D McCulloch
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sheng Xu
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA.
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA.
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Radiology, University of California San Diego, La Jolla, CA, USA.
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Reduced Models of Cardiomyocytes Excitability: Comparing Karma and FitzHugh-Nagumo. Bull Math Biol 2021; 83:88. [PMID: 34213628 PMCID: PMC8253715 DOI: 10.1007/s11538-021-00898-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/29/2021] [Indexed: 10/27/2022]
Abstract
Since Noble adapted in 1962 the model of Hodgkin and Huxley to fit Purkinje fibres, the refinement of models for cardiomyocytes has continued. Most of these models are high-dimensional systems of coupled equations so that the possible mathematical analysis is quite limited, even numerically. This has inspired the development of reduced, phenomenological models that preserve qualitatively the main feature of cardiomyocyte's dynamics. In this paper, we present a systematic comparison of the dynamics between two notable low-dimensional models, the FitzHugh-Nagumo model (FitzHugh in Bull Math Biophys 17:257-269, 1955, J Gen Physiol 43:867-896, 1960, Biophys J 1:445-466, 1961) as a prototype of excitable behaviour and a polynomial version of the Karma model (Karma in Phys Rev Lett 71(7):16, 1993, Chaos 4:461, 1994) which is specifically developed to fit cardiomyocyte's behaviour well. We start by introducing the models and considering their pure ODE versions. We analyse the ODEs employing the main ideas and steps used in the setting of geometric singular perturbation theory. Next, we turn to the spatially extended models, where we focus on travelling wave solutions in 1D. Finally, we perform numerical simulations of the 1D PDE Karma model varying model parameters in order to systematically investigate the impact on wave propagation velocity and shape. In summary, our study provides a reference regarding key similarities as well as key differences of the two models.
Collapse
|
5
|
Grob L, Rinklin P, Zips S, Mayer D, Weidlich S, Terkan K, Weiß LJK, Adly N, Offenhäusser A, Wolfrum B. Inkjet-Printed and Electroplated 3D Electrodes for Recording Extracellular Signals in Cell Culture. SENSORS (BASEL, SWITZERLAND) 2021; 21:3981. [PMID: 34207725 PMCID: PMC8229631 DOI: 10.3390/s21123981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
Recent investigations into cardiac or nervous tissues call for systems that are able to electrically record in 3D as opposed to 2D. Typically, challenging microfabrication steps are required to produce 3D microelectrode arrays capable of recording at the desired position within the tissue of interest. As an alternative, additive manufacturing is becoming a versatile platform for rapidly prototyping novel sensors with flexible geometric design. In this work, 3D MEAs for cell-culture applications were fabricated using a piezoelectric inkjet printer. The aspect ratio and height of the printed 3D electrodes were user-defined by adjusting the number of deposited droplets of silver nanoparticle ink along with a continuous printing method and an appropriate drop-to-drop delay. The Ag 3D MEAs were later electroplated with Au and Pt in order to reduce leakage of potentially cytotoxic silver ions into the cellular medium. The functionality of the array was confirmed using impedance spectroscopy, cyclic voltammetry, and recordings of extracellular potentials from cardiomyocyte-like HL-1 cells.
Collapse
Affiliation(s)
- Leroy Grob
- Neuroelectronics, Department of Electrical and Computer Engineering, MSB, MSRM, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany; (L.G.); (P.R.); (S.Z.); (K.T.); (L.J.K.W.); (N.A.)
| | - Philipp Rinklin
- Neuroelectronics, Department of Electrical and Computer Engineering, MSB, MSRM, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany; (L.G.); (P.R.); (S.Z.); (K.T.); (L.J.K.W.); (N.A.)
| | - Sabine Zips
- Neuroelectronics, Department of Electrical and Computer Engineering, MSB, MSRM, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany; (L.G.); (P.R.); (S.Z.); (K.T.); (L.J.K.W.); (N.A.)
| | - Dirk Mayer
- Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (D.M.); (S.W.); (A.O.)
| | - Sabrina Weidlich
- Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (D.M.); (S.W.); (A.O.)
| | - Korkut Terkan
- Neuroelectronics, Department of Electrical and Computer Engineering, MSB, MSRM, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany; (L.G.); (P.R.); (S.Z.); (K.T.); (L.J.K.W.); (N.A.)
| | - Lennart J. K. Weiß
- Neuroelectronics, Department of Electrical and Computer Engineering, MSB, MSRM, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany; (L.G.); (P.R.); (S.Z.); (K.T.); (L.J.K.W.); (N.A.)
| | - Nouran Adly
- Neuroelectronics, Department of Electrical and Computer Engineering, MSB, MSRM, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany; (L.G.); (P.R.); (S.Z.); (K.T.); (L.J.K.W.); (N.A.)
| | - Andreas Offenhäusser
- Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (D.M.); (S.W.); (A.O.)
| | - Bernhard Wolfrum
- Neuroelectronics, Department of Electrical and Computer Engineering, MSB, MSRM, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany; (L.G.); (P.R.); (S.Z.); (K.T.); (L.J.K.W.); (N.A.)
| |
Collapse
|
6
|
Zips S, Grob L, Rinklin P, Terkan K, Adly NY, Weiß LJK, Mayer D, Wolfrum B. Fully Printed μ-Needle Electrode Array from Conductive Polymer Ink for Bioelectronic Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32778-32786. [PMID: 31424902 DOI: 10.1021/acsami.9b11774] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microelectrode arrays (MEAs) are widely used platforms in bioelectronics to study electrogenic cells. In recent years, the processing of conductive polymers for the fabrication of three-dimensional electrode arrays has gained increasing interest for the development of novel sensor designs. Here, additive manufacturing techniques are promising tools for the production of MEAs with three-dimensional electrodes. In this work, a facile additive manufacturing process for the fabrication of MEAs that feature needle-like electrode tips, so-called μ-needles, is presented. To this end, an aerosol-jet compatible PEDOT:PSS and multiwalled carbon nanotube composite ink with a conductivity of 323 ± 75 S m-1 is developed and used in a combined inkjet and aerosol-jet printing process to produce the μ-needle electrode features. The μ-needles are fabricated with a diameter of 10 ± 2 μm and a height of 33 ± 4 μm. They penetrate an inkjet-printed dielectric layer to a height of 12 ± 3 μm. After successful printing, the electrochemical properties of the devices are assessed via cyclic voltammetry and impedance spectroscopy. The μ-needles show a capacitance of 242 ± 70 nF at a scan rate of 5 mV s-1 and an impedance of 128 ± 22 kΩ at 1 kHz frequency. The stability of the μ-needle MEAs in aqueous electrolyte is demonstrated and the devices are used to record extracellular signals from cardiomyocyte-like HL-1 cells. This proof-of-principle experiment shows the μ-needle MEAs' cell-culture compatibility and functional integrity to investigate electrophysiological signals from living cells.
Collapse
Affiliation(s)
- Sabine Zips
- Neuroelectronics - Munich School of Bioengineering, Department of Electrical and Computer Engineering , Technical University of Munich , Boltzmannstrasse 11 , 85748 Garching , Germany
| | - Leroy Grob
- Neuroelectronics - Munich School of Bioengineering, Department of Electrical and Computer Engineering , Technical University of Munich , Boltzmannstrasse 11 , 85748 Garching , Germany
| | - Philipp Rinklin
- Neuroelectronics - Munich School of Bioengineering, Department of Electrical and Computer Engineering , Technical University of Munich , Boltzmannstrasse 11 , 85748 Garching , Germany
| | - Korkut Terkan
- Neuroelectronics - Munich School of Bioengineering, Department of Electrical and Computer Engineering , Technical University of Munich , Boltzmannstrasse 11 , 85748 Garching , Germany
| | - Nouran Yehia Adly
- Neuroelectronics - Munich School of Bioengineering, Department of Electrical and Computer Engineering , Technical University of Munich , Boltzmannstrasse 11 , 85748 Garching , Germany
| | - Lennart Jakob Konstantin Weiß
- Neuroelectronics - Munich School of Bioengineering, Department of Electrical and Computer Engineering , Technical University of Munich , Boltzmannstrasse 11 , 85748 Garching , Germany
| | - Dirk Mayer
- Institute of Complex Systems, Bioelectronics (ICS-8) , Forschungszentrum Jülich , 52425 Jülich , Germany
| | - Bernhard Wolfrum
- Neuroelectronics - Munich School of Bioengineering, Department of Electrical and Computer Engineering , Technical University of Munich , Boltzmannstrasse 11 , 85748 Garching , Germany
- Institute of Complex Systems, Bioelectronics (ICS-8) , Forschungszentrum Jülich , 52425 Jülich , Germany
| |
Collapse
|
7
|
Liang Y, Ernst M, Brings F, Kireev D, Maybeck V, Offenhäusser A, Mayer D. High Performance Flexible Organic Electrochemical Transistors for Monitoring Cardiac Action Potential. Adv Healthc Mater 2018; 7:e1800304. [PMID: 30109770 DOI: 10.1002/adhm.201800304] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/30/2018] [Indexed: 11/08/2022]
Abstract
Flexible and transparent electronic devices possess crucial advantages over conventional silicon based systems for bioelectronic applications since they are able to adapt to nonplanar surfaces, cause less chronic immunoreactivity, and facilitate easy optical inspection. Here, organic electrochemical transistors (OECTs) are embedded in a flexible matrix of polyimide to record cardiac action potentials. The wafer-scale fabricated devices exhibit transconductances (12 mS V-1 ) and drain-source on-to-off current ratios (≈105 ) comparable to state of the art nonflexible and superior to other reported flexible OECTs. The transfer characteristics of the devices are preserved even after experiencing extremely high bending strain and harsh crumpling. A sub-micrometer poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) layer results in a fast transport of ions between the electrolyte and the polymer channel characterized by a cut-off frequency of 1200 Hz. Excellent device performance is proved by mapping the propagation of cardiac action potentials with high signal-to-noise ratio. These results demonstrate that the electrical performance of flexible OECTs can compete with hard-material-based OECTs and thus potentially be used for in vivo applications.
Collapse
Affiliation(s)
- Yuanying Liang
- Institute of Complex SystemsBioelectronics (ICS‐8) Forschungszentrum Jülich 52425 Jülich Germany
| | - Mathis Ernst
- Institute of Complex SystemsBioelectronics (ICS‐8) Forschungszentrum Jülich 52425 Jülich Germany
| | - Fabian Brings
- Institute of Complex SystemsBioelectronics (ICS‐8) Forschungszentrum Jülich 52425 Jülich Germany
| | - Dmitry Kireev
- Institute of Complex SystemsBioelectronics (ICS‐8) Forschungszentrum Jülich 52425 Jülich Germany
| | - Vanessa Maybeck
- Institute of Complex SystemsBioelectronics (ICS‐8) Forschungszentrum Jülich 52425 Jülich Germany
| | - Andreas Offenhäusser
- Institute of Complex SystemsBioelectronics (ICS‐8) Forschungszentrum Jülich 52425 Jülich Germany
| | - Dirk Mayer
- Institute of Complex SystemsBioelectronics (ICS‐8) Forschungszentrum Jülich 52425 Jülich Germany
| |
Collapse
|
8
|
Dang KM, Rinklin P, Afanasenkau D, Westmeyer G, Schürholz T, Wiegand S, Wolfrum B. Chip-Based Heat Stimulation for Modulating Signal Propagation in HL-1 Cell Networks. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ka My Dang
- Neuroelectronics; Munich School of Bioengineering; Department of Electrical and Computer Engineering; Technical University of Munich; Boltzmannstraße 11 85748 Garching Germany
| | - Philipp Rinklin
- Neuroelectronics; Munich School of Bioengineering; Department of Electrical and Computer Engineering; Technical University of Munich; Boltzmannstraße 11 85748 Garching Germany
| | - Dzmitry Afanasenkau
- Institute of Complex Systems (ICS-3 & ICS-8); Forschungszentrum Jülich; 52425 Jülich Germany
| | - Gil Westmeyer
- TUM School of Medicine; Technical University of Munich and Helmholtz Zentrum München; Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH); Ingolstädter Landstraße 1 85764 Neuherberg Germany
| | - Tobias Schürholz
- Department of Anesthesia and Intensive Care; Universitätsmedizin Rostock; Schillingallee 35 18057 Rostock Germany
| | - Simone Wiegand
- Institute of Complex Systems (ICS-3 & ICS-8); Forschungszentrum Jülich; 52425 Jülich Germany
- Department für Chemie; Physikalische Chemie; Universität zu Köln; 50939 Cologne Germany
| | - Bernhard Wolfrum
- Neuroelectronics; Munich School of Bioengineering; Department of Electrical and Computer Engineering; Technical University of Munich; Boltzmannstraße 11 85748 Garching Germany
- Institute of Complex Systems (ICS-3 & ICS-8); Forschungszentrum Jülich; 52425 Jülich Germany
| |
Collapse
|
9
|
Schnitker J, Adly N, Seyock S, Bachmann B, Yakushenko A, Wolfrum B, Offenhäusser A. Rapid Prototyping of Ultralow-Cost, Inkjet-Printed Carbon Microelectrodes for Flexible Bioelectronic Devices. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201700136] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jan Schnitker
- Institute of Bioelectronics (ICS-8) and; Forschungszentrum Jülich; 52425 Jülich Germany
| | - Nouran Adly
- Institute of Bioelectronics (ICS-8) and; Forschungszentrum Jülich; 52425 Jülich Germany
| | - Silke Seyock
- Institute of Bioelectronics (ICS-8) and; Forschungszentrum Jülich; 52425 Jülich Germany
| | - Bernd Bachmann
- Institute of Bioelectronics (ICS-8) and; Forschungszentrum Jülich; 52425 Jülich Germany
- Neuroelectronics; Munich School of Bioengineering; Department of Electrical and Computer Engineering; Technical University of Munich (TUM); Boltzmannstrasse 11 Garching 85748 Germany
| | - Alexey Yakushenko
- Institute of Bioelectronics (ICS-8) and; Forschungszentrum Jülich; 52425 Jülich Germany
| | - Bernhard Wolfrum
- Institute of Bioelectronics (ICS-8) and; Forschungszentrum Jülich; 52425 Jülich Germany
- Neuroelectronics; Munich School of Bioengineering; Department of Electrical and Computer Engineering; Technical University of Munich (TUM); Boltzmannstrasse 11 Garching 85748 Germany
| | - Andreas Offenhäusser
- Institute of Bioelectronics (ICS-8) and; Forschungszentrum Jülich; 52425 Jülich Germany
| |
Collapse
|
10
|
Graphene transistors for interfacing with cells: towards a deeper understanding of liquid gating and sensitivity. Sci Rep 2017; 7:6658. [PMID: 28751775 PMCID: PMC5532278 DOI: 10.1038/s41598-017-06906-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/20/2017] [Indexed: 11/08/2022] Open
Abstract
This work is focused on the fabrication and analysis of graphene-based, solution-gated field effect transistor arrays (GFETs) on a large scale for bioelectronic measurements. The GFETs fabricated on different substrates, with a variety of gate geometries (width/length) of the graphene channel, reveal a linear relation between the transconductance and the width/length ratio. The area normalised electrolyte-gated transconductance is in the range of 1–2 mS·V−1·□ and does not strongly depend on the substrate. Influence of the ionic strength on the transistor performance is also investigated. Double contacts are found to decrease the effective resistance and the transfer length, but do not improve the transconductance. An electrochemical annealing/cleaning effect is investigated and proposed to originate from the out-of-plane gate leakage current. The devices are used as a proof-of-concept for bioelectronic sensors, recording external potentials from both: ex vivo heart tissue and in vitro cardiomyocyte-like HL-1 cells. The recordings show distinguishable action potentials with a signal to noise ratio over 14 from ex vivo tissue and over 6 from the cardiac-like cell line in vitro. Furthermore, in vitro neuronal signals are recorded by the graphene transistors with distinguishable bursting for the first time.
Collapse
|
11
|
Kireev D, Seyock S, Lewen J, Maybeck V, Wolfrum B, Offenhäusser A. Graphene Multielectrode Arrays as a Versatile Tool for Extracellular Measurements. Adv Healthc Mater 2017; 6. [PMID: 28371490 DOI: 10.1002/adhm.201601433] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/05/2017] [Indexed: 11/12/2022]
Abstract
Graphene multielectrode arrays (GMEAs) presented in this work are used for cardio and neuronal extracellular recordings. The advantages of the graphene as a part of the multielectrode arrays are numerous: from a general flexibility and biocompatibility to the unique electronic properties of graphene. The devices used for extensive in vitro studies of a cardiac-like cell line and cortical neuronal networks show excellent ability to extracellularly detect action potentials with signal to noise ratios in the range of 45 ± 22 for HL-1 cells and 48 ± 26 for spontaneous bursting/spiking neuronal activity. Complex neuronal bursting activity patterns as well as a variety of characteristic shapes of HL-1 action potentials are recorded with the GMEAs. This paper illustrates that the potential applications of the GMEAs in biological and medical research are still numerous and diverse.
Collapse
Affiliation(s)
- Dmitry Kireev
- Institute of Bioelectronics (PGI‐8/ICS‐8)Forschungszentrum Jülich 52425 Jülich Germany
| | - Silke Seyock
- Institute of Bioelectronics (PGI‐8/ICS‐8)Forschungszentrum Jülich 52425 Jülich Germany
| | - Johannes Lewen
- Institute of Bioelectronics (PGI‐8/ICS‐8)Forschungszentrum Jülich 52425 Jülich Germany
| | - Vanessa Maybeck
- Institute of Bioelectronics (PGI‐8/ICS‐8)Forschungszentrum Jülich 52425 Jülich Germany
| | - Bernhard Wolfrum
- NeuroelectronicsMunich Schnool of BioengineeringDepartment of Electrical and Computer EngineeringTechnical University of Munich (TUM) & BCCN Munich Boltzmannstr. 11 85748 Garching Germany
| | - Andreas Offenhäusser
- Institute of Bioelectronics (PGI‐8/ICS‐8)Forschungszentrum Jülich 52425 Jülich Germany
| |
Collapse
|
12
|
Weidlich S, Krause KJ, Schnitker J, Wolfrum B, Offenhäusser A. MEAs and 3D nanoelectrodes: electrodeposition as tool for a precisely controlled nanofabrication. NANOTECHNOLOGY 2017; 28:095302. [PMID: 28139471 DOI: 10.1088/1361-6528/aa57b5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Microelectrode arrays (MEAs) are gaining increasing importance for the investigation of signaling processes between electrogenic cells. However, efficient cell-chip coupling for robust and long-term electrophysiological recording and stimulation still remains a challenge. A possible approach for the improvement of the cell-electrode contact is the utilization of three-dimensional structures. In recent years, various 3D electrode geometries have been developed, but we are still lacking a fabrication approach that enables the formation of different 3D structures on a single chip in a controlled manner. This, however, is needed to enable a direct and reliable comparison of the recording capabilities of the different structures. Here, we present a method for a precisely controlled deposition of nanoelectrodes, enabling the fabrication of multiple, well-defined types of structures on our 64 electrode MEAs towards a rapid-prototyping approach to 3D electrodes.
Collapse
Affiliation(s)
- Sabrina Weidlich
- Institute of Bioelectronics (ICS-8/PGI-8), Forschungszentrum Jülich, D-52428 Jülich, Germany
| | | | | | | | | |
Collapse
|
13
|
Versatile Flexible Graphene Multielectrode Arrays. BIOSENSORS-BASEL 2016; 7:bios7010001. [PMID: 28025564 PMCID: PMC5371774 DOI: 10.3390/bios7010001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 11/25/2016] [Accepted: 12/14/2016] [Indexed: 01/13/2023]
Abstract
Graphene is a promising material possessing features relevant to bioelectronics applications. Graphene microelectrodes (GMEAs), which are fabricated in a dense array on a flexible polyimide substrate, were investigated in this work for their performance via electrical impedance spectroscopy. Biocompatibility and suitability of the GMEAs for extracellular recordings were tested by measuring electrical activities from acute heart tissue and cardiac muscle cells. The recordings show encouraging signal-to-noise ratios of 65 ± 15 for heart tissue recordings and 20 ± 10 for HL-1 cells. Considering the low noise and excellent robustness of the devices, the sensor arrays are suitable for diverse and biologically relevant applications.
Collapse
|
14
|
Seyock S, Maybeck V, Offenhäusser A. How to image cell adhesion on soft polymers? Micron 2016; 92:39-42. [PMID: 27866099 DOI: 10.1016/j.micron.2016.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 11/25/2022]
Abstract
Here, we present a method to investigate cell adhesion on soft, non-conducting polymers that are implant candidate materials. Neuronal cells were grown on two elastomers (polydimethylsiloxane (PDMS) and Ecoflex®) and prepared for electron microscopy. The samples were treated with osmium tetroxide (OsO4) and uranylacetate (UrAc). Best results can be achieved when the polymers were coated with a thin iridium layer before the cell culture. This was done to emphasize the usage of soft polymers as supports for implant electrodes. A good contrast and the adhesion of the cells on soft polymers could be visualized.
Collapse
Affiliation(s)
- Silke Seyock
- Institute of Complex Systems (ICS-8/PGI-8), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Vanessa Maybeck
- Institute of Complex Systems (ICS-8/PGI-8), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Andreas Offenhäusser
- Institute of Complex Systems (ICS-8/PGI-8), Forschungszentrum Jülich, 52428 Jülich, Germany.
| |
Collapse
|
15
|
Wolfrum B, Kätelhön E, Yakushenko A, Krause KJ, Adly N, Hüske M, Rinklin P. Nanoscale Electrochemical Sensor Arrays: Redox Cycling Amplification in Dual-Electrode Systems. Acc Chem Res 2016; 49:2031-40. [PMID: 27602780 DOI: 10.1021/acs.accounts.6b00333] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Micro- and nanofabriation technologies have a tremendous potential for the development of powerful sensor array platforms for electrochemical detection. The ability to integrate electrochemical sensor arrays with microfluidic devices nowadays provides possibilities for advanced lab-on-a-chip technology for the detection or quantification of multiple targets in a high-throughput approach. In particular, this is interesting for applications outside of analytical laboratories, such as point-of-care (POC) or on-site water screening where cost, measurement time, and the size of individual sensor devices are important factors to be considered. In addition, electrochemical sensor arrays can monitor biological processes in emerging cell-analysis platforms. Here, recent progress in the design of disease model systems and organ-on-a-chip technologies still needs to be matched by appropriate functionalities for application of external stimuli and read-out of cellular activity in long-term experiments. Preferably, data can be gathered not only at a singular location but at different spatial scales across a whole cell network, calling for new sensor array technologies. In this Account, we describe the evolution of chip-based nanoscale electrochemical sensor arrays, which have been developed and investigated in our group. Focusing on design and fabrication strategies that facilitate applications for the investigation of cellular networks, we emphasize the sensing of redox-active neurotransmitters on a chip. To this end, we address the impact of the device architecture on sensitivity, selectivity as well as on spatial and temporal resolution. Specifically, we highlight recent work on redox-cycling concepts using nanocavity sensor arrays, which provide an efficient amplification strategy for spatiotemporal detection of redox-active molecules. As redox-cycling electrochemistry critically depends on the ability to miniaturize and integrate closely spaced electrode systems, the fabrication of suitable nanoscale devices is of utmost importance for the development of this advanced sensor technology. Here, we address current challenges and limitations, which are associated with different redox cycling sensor array concepts and fabrication approaches. State-of-the-art micro- and nanofabrication technologies based on optical and electron-beam lithography allow precise control of the device layout and have led to a new generation of electrochemical sensor architectures for highly sensitive detection. Yet, these approaches are often expensive and limited to clean-room compatible materials. In consequence, they lack possibilities for upscaling to high-throughput fabrication at moderate costs. In this respect, self-assembly techniques can open new routes for electrochemical sensor design. This is true in particular for nanoporous redox cycling sensor arrays that have been developed in recent years and provide interesting alternatives to clean-room fabricated nanofluidic redox cycling devices. We conclude this Account with a discussion of emerging fabrication technologies based on printed electronics that we believe have the potential of transforming current redox cycling concepts from laboratory tools for fundamental studies and proof-of-principle analytical demonstrations into high-throughput devices for rapid screening applications.
Collapse
Affiliation(s)
- Bernhard Wolfrum
- Institute
of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
- Neuroelectronics,
IMETUM, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstr. 11, 85748 Garching, Germany
| | - Enno Kätelhön
- Institute
of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Alexey Yakushenko
- Institute
of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Kay J. Krause
- Institute
of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Nouran Adly
- Institute
of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Martin Hüske
- Institute
of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Philipp Rinklin
- Neuroelectronics,
IMETUM, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstr. 11, 85748 Garching, Germany
| |
Collapse
|
16
|
Belu A, Schnitker J, Bertazzo S, Neumann E, Mayer D, Offenhäusser A, Santoro F. Ultra-thin resin embedding method for scanning electron microscopy of individual cells on high and low aspect ratio 3D nanostructures. J Microsc 2016; 263:78-86. [PMID: 26820619 DOI: 10.1111/jmi.12378] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 12/09/2015] [Indexed: 01/18/2023]
Abstract
The preparation of biological cells for either scanning or transmission electron microscopy requires a complex process of fixation, dehydration and drying. Critical point drying is commonly used for samples investigated with a scanning electron beam, whereas resin-infiltration is typically used for transmission electron microscopy. Critical point drying may cause cracks at the cellular surface and a sponge-like morphology of nondistinguishable intracellular compartments. Resin-infiltrated biological samples result in a solid block of resin, which can be further processed by mechanical sectioning, however that does not allow a top view examination of small cell-cell and cell-surface contacts. Here, we propose a method for removing resin excess on biological samples before effective polymerization. In this way the cells result to be embedded in an ultra-thin layer of epoxy resin. This novel method highlights in contrast to standard methods the imaging of individual cells not only on nanostructured planar surfaces but also on topologically challenging substrates with high aspect ratio three-dimensional features by scanning electron microscopy.
Collapse
Affiliation(s)
- A Belu
- Institute of Complex Systems and Peter Grünberg Institute (ICS-8/PGI-8) - Bioelectronics, Forschungszentrum Jülich GmbH, Jülich, and JARA-Fundamentals of Future Information Technology, Germany
| | - J Schnitker
- Institute of Complex Systems and Peter Grünberg Institute (ICS-8/PGI-8) - Bioelectronics, Forschungszentrum Jülich GmbH, Jülich, and JARA-Fundamentals of Future Information Technology, Germany
| | - S Bertazzo
- Department of Medical Physics & Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, U.K
| | - E Neumann
- Institute of Complex Systems and Peter Grünberg Institute (ICS-8/PGI-8) - Bioelectronics, Forschungszentrum Jülich GmbH, Jülich, and JARA-Fundamentals of Future Information Technology, Germany
| | - D Mayer
- Institute of Complex Systems and Peter Grünberg Institute (ICS-8/PGI-8) - Bioelectronics, Forschungszentrum Jülich GmbH, Jülich, and JARA-Fundamentals of Future Information Technology, Germany
| | - A Offenhäusser
- Institute of Complex Systems and Peter Grünberg Institute (ICS-8/PGI-8) - Bioelectronics, Forschungszentrum Jülich GmbH, Jülich, and JARA-Fundamentals of Future Information Technology, Germany
| | - F Santoro
- Institute of Complex Systems and Peter Grünberg Institute (ICS-8/PGI-8) - Bioelectronics, Forschungszentrum Jülich GmbH, Jülich, and JARA-Fundamentals of Future Information Technology, Germany
| |
Collapse
|