1
|
Shu T, Tan C, Hu G, Luo S, Wang Z. Bi 2Se 3-PtSe 2 heterostructure ultrabroadband UV-to-THz negative photoconductive photodetectors with wide-temperature-range operation. NANOSCALE 2025. [PMID: 40332198 DOI: 10.1039/d5nr00822k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Ultra-broadband photodetectors have important applications in biomedical imaging, environmental monitoring, optical communication, space exploration, and other fields. Therefore, the need for their wide-temperature-range adaptation in extreme environments (e.g., infrared guidance and space exploration) is particularly urgent. However, existing technologies face a number of bottlenecks. First, traditional semiconductor detectors are limited to a single spectral response, meaning ultra-wideband detection requires multi-device integration, while in the terahertz band, there is a physical limitation of the mismatch between the photon energy and the material bandgap. Second, carrier scattering at high temperatures leads to a sudden drop in mobility and degradation of the optical response. Finally, the development of devices based on the negative photoconductivity effect is still in the exploratory stage, which limits their engineering applications. In this study, we innovatively integrated the photothermoelectric effect (PTE), Joule thermal effect (JHE) and photoinduced bolometric effect (PBE) multi-physics mechanisms by constructing a Bi2Se3-PtSe2 heterojunction, which realizes broad-spectrum UV-terahertz (405 nm-0.1 THz) detection and stable operation in a wide temperature range of 183-501 K. Under zero bias, the device exhibits a self-powered positive optical response in the 405-1550 nm band based on the photothermoelectric effect. When bias voltage is applied, a negative photoconductive response is triggered by a synergistic Joule heating and optical radiothermal effect, with a peak responsivity (R) of 44.45-83.6 A W-1, specific detection rate (D*) of up to 4.63 × 107 Jones, and noise-equivalent power (NEP) as low as 1.37 × 10-13 W Hz-1/2. Temperature characterization tests show that the R/D*/NEP was optimized to 78.19 A W-1/5.75 × 107 Jones/1.09 × 10-13 W Hz-1/2 under 1550 nm illumination and at 183 K. Even at 501 K, the device maintains 11.24 A W-1 responsivity and 7.9 × 106 Jones detection sensitivity. The present work breaks through the limitations of the traditional negative photoconductivity effect in terms of the detection bandwidth and temperature stability through a multi-mechanism synergistic strategy, providing a theoretical basis and technical path for the design of a new generation of broad-spectrum photodetectors.
Collapse
Affiliation(s)
- Tianyu Shu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Chao Tan
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Guohua Hu
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
| | - Siyuan Luo
- Microsystem and Terahertz Research Center, China Academy of Engineering Physics, Chengdu 610200, China
| | - Zegao Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Zhang T, Wei S, Zhang S, Li M, Wang J, Liu J, Wang J, Hu E, Li J. Al Doping Effect on Enhancement of Nonlinear Optical Absorption in Amorphous Bi 2Te 3 Thin Films. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1372. [PMID: 40141655 PMCID: PMC11943939 DOI: 10.3390/ma18061372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025]
Abstract
Bismuth telluride (Bi2Te3) has attracted significant attention due to its broadband ultrafast optical response and strong nonlinearity at high laser fluence in the field of optoelectronic materials. The objective of this work is to study the effect of Al doping on the structure, linear optical properties, and nonlinear optical absorption behavior of Bi2Te3 thin films. The amorphous Al-doped Bi2Te3 thin films with varying Al doping concentrations were prepared using magnetron co-sputtering. The structure and linear optical properties were characterized using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, spectroscopic ellipsometry, and UV/Vis/NIR spectrophotometry. The third-order nonlinear optical absorption properties of Al: Bi2Te3 thin films were investigated using the open-aperture Z-scan system with a 100 fs laser pulse width at a wavelength of 800 nm and a repetition rate of 1 kHz. The results indicate that Al dopant reduces both the refractive index and extinction coefficient and induces a redshift in the optical bandgap. The optical properties of the films can be effectively modulated by varying the Al doping concentration. Compared with undoped Bi2Te3 thin films, Al-doped Bi2Te3 thin films exhibit larger nonlinear optical absorption coefficients and higher damage thresholds and maintaining high transmittance. These findings provide experimental evidence and a reliable approach for the further optimization and design of ultrafast nonlinear optical devices.
Collapse
Affiliation(s)
- Tengfei Zhang
- Department of Optical Science and Engineering, Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Fudan University, Shanghai 200433, China; (T.Z.); (S.W.); (S.Z.); (M.L.); (J.W.); (J.L.)
| | - Shenjin Wei
- Department of Optical Science and Engineering, Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Fudan University, Shanghai 200433, China; (T.Z.); (S.W.); (S.Z.); (M.L.); (J.W.); (J.L.)
| | - Shubo Zhang
- Department of Optical Science and Engineering, Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Fudan University, Shanghai 200433, China; (T.Z.); (S.W.); (S.Z.); (M.L.); (J.W.); (J.L.)
| | - Menghan Li
- Department of Optical Science and Engineering, Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Fudan University, Shanghai 200433, China; (T.Z.); (S.W.); (S.Z.); (M.L.); (J.W.); (J.L.)
| | - Jiawei Wang
- Department of Optical Science and Engineering, Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Fudan University, Shanghai 200433, China; (T.Z.); (S.W.); (S.Z.); (M.L.); (J.W.); (J.L.)
| | - Jingze Liu
- Department of Optical Science and Engineering, Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Fudan University, Shanghai 200433, China; (T.Z.); (S.W.); (S.Z.); (M.L.); (J.W.); (J.L.)
| | - Junhua Wang
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai 200438, China;
| | - Ertao Hu
- College of Electronic and Optical Engineering and Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
| | - Jing Li
- Department of Optical Science and Engineering, Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Fudan University, Shanghai 200433, China; (T.Z.); (S.W.); (S.Z.); (M.L.); (J.W.); (J.L.)
| |
Collapse
|
3
|
Manikandan VS, George K, Thirumurugan A, Govindaraj T, Harish S, Archana J, Navaneethan M. A Bi 2Te 3 topological insulator/carbon nanotubes hybrid composites as a new counter electrode material for DSSC and NIR photodetector application. J Colloid Interface Sci 2025; 678:549-559. [PMID: 39214007 DOI: 10.1016/j.jcis.2024.08.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Two-dimensional layered bismuth telluride (Bi2Te3), a prominent topological insulator, has garnered global scientific attention for its unique properties and potential applications in optoelectronics and electrochemical devices. Notably, there is a growing emphasis on improving photon-to-electron conversion efficiency in dye-sensitized solar cells (DSSCs), prompting the exploration of alternatives to noble metal catalysts like platinum (Pt). This study presents the synthesis of Bi2Te3 and its hybrid nanostructure with single-wall carbon nanotubes (SWCNT) via a straightforward hydrothermal process. The research unveils a novel application for the Bi2Te3-SWCNT hybrid structure, serving as a counter electrode in platinum-free DSSCs, facilitating the conversion of triiodide (I3-) to iodide (I-) and functioning as an active electrode material in a photodetector (n-Bi2Te3-SWCNT/p-Si). The resulting DSSC employing the Bi2Te3-SWCNT hybrid counter electrode achieves a power conversion efficiency (PCE) of 4.2 %, a photocurrent density of 10.5 mA/cm2, a fill factor (FF) of 62 %, and superior charge transfer kinetics compared to pristine Bi2Te3 based counter electrode (PCE 2.1 %, FF 34 %). Additionally, a spin coating technique enhances the performance of the n-Bi2Te3-SWCNT/p-Si photodetector, yielding a responsivity of 2.2 AW-1, detectivity of 1.2 × 10-3 and enhanced external quantum efficiency. These findings demonstrate that the newly developed Bi2Te3-SWCNT heterostructure enhances interfacial charge transport, electrocatalytic performance in DSSCs, and overall photodetector performance.
Collapse
Affiliation(s)
- V S Manikandan
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, India; Center of Excellence in Materials and Advanced Technologies (CeMAT), Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India
| | - Kesiya George
- School for Advanced Research in Petrochemicals, Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Petrochemicals Engineering and Technology (CIPET), Bhubaneswar 751024, India
| | - Arun Thirumurugan
- Sede Vallenar, Universidad de Atacama, Costanera 105, Vallenar 1612178, Chile
| | - T Govindaraj
- Nanotechnology Research Centre (NRC), SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, India
| | - S Harish
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, India; Center of Excellence in Materials and Advanced Technologies (CeMAT), Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India
| | - J Archana
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, India; Center of Excellence in Materials and Advanced Technologies (CeMAT), Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India
| | - M Navaneethan
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, India; Nanotechnology Research Centre (NRC), SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, India; Center of Excellence in Materials and Advanced Technologies (CeMAT), Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India.
| |
Collapse
|
4
|
Rogalski A, Hu W, Wang F, Martyniuk P. Performance of Low-Dimensional Solid Room-Temperature Photodetectors-Critical View. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4522. [PMID: 39336263 PMCID: PMC11433362 DOI: 10.3390/ma17184522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024]
Abstract
In the last twenty years, nanofabrication progress has allowed for the emergence of a new photodetector family, generally called low-dimensional solids (LDSs), among which the most important are two-dimensional (2D) materials, perovskites, and nanowires/quantum dots. They operate in a wide wavelength range from ultraviolet to far-infrared. Current research indicates remarkable advances in increasing the performance of this new generation of photodetectors. The published performance at room temperature is even better than reported for typical photodetectors. Several articles demonstrate detectivity outperforming physical boundaries driven by background radiation and signal fluctuations. This study attempts to explain these peculiarities. In order to achieve this goal, we first clarify the fundamental differences in the photoelectric effects of the new generation of photodetectors compared to the standard designs dominating the commercial market. Photodetectors made of 2D transition metal dichalcogenides (TMDs), quantum dots, topological insulators, and perovskites are mainly considered. Their performance is compared with the fundamental limits estimated by the signal fluctuation limit (in the ultraviolet region) and the background radiation limit (in the infrared region). In the latter case, Law 19 dedicated to HgCdTe photodiodes is used as a standard reference benchmark. The causes for the performance overestimate of the different types of LDS detectors are also explained. Finally, an attempt is made to determine their place in the global market in the long term.
Collapse
Affiliation(s)
- Antoni Rogalski
- Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland;
| | - Weida Hu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China; (W.H.); (F.W.)
| | - Fang Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China; (W.H.); (F.W.)
| | - Piotr Martyniuk
- Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland;
| |
Collapse
|
5
|
Xiao K, Zhang S, Zhang K, Zhang L, Wen Y, Tian S, Xiao Y, Shi C, Hou S, Liu C, Han L, He J, Tang W, Li G, Wang L, Chen X. Room-Temperature Band-Aligned Infrared Heterostructures for Integrable Sensing and Communication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401716. [PMID: 38840455 PMCID: PMC11423140 DOI: 10.1002/advs.202401716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/07/2024] [Indexed: 06/07/2024]
Abstract
The demand for miniaturized and integrated multifunctional devices drives the progression of high-performance infrared photodetectors for diverse applications, including remote sensing, air defense, and communications, among others. Nonetheless, infrared photodetectors that rely solely on single low-dimensional materials often face challenges due to the limited absorption cross-section and suboptimal carrier mobility, which can impair sensitivity and prolong response times. Here, through experimental validation is demonstrated, precise control over energy band alignment in a type-II van der Waals heterojunction, comprising vertically stacked 2D Ta2NiSe5 and the topological insulator Bi2Se3, where the configuration enables polarization-sensitive, wide-spectral-range photodetection. Experimental evaluations at room temperature reveal that the device exhibits a self-powered responsivity of 0.48 A·W-1, a specific directivity of 3.8 × 1011 cm·Hz1/2·W-1, a response time of 151 µs, and a polarization ratio of 2.83. The stable and rapid photoresponse of the device underpins the utility in infrared-coded communication and dual-channel imaging, showing the substantial potential of the detector. These findings articulate a systematic approach to developing miniaturized, multifunctional room-temperature infrared detectors with superior performance metrics and enhanced capabilities for multi-information acquisition.
Collapse
Affiliation(s)
- Kening Xiao
- College of Physics and Optoelectronic EngineeringHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesNo. 1, Sub‐Lane Xiangshan, Xihu DistrictHangzhou310024China
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of Sciences500 Yu‐Tian RoadShanghai200083China
| | - Shi Zhang
- College of Physics and Optoelectronic EngineeringHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesNo. 1, Sub‐Lane Xiangshan, Xihu DistrictHangzhou310024China
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of Sciences500 Yu‐Tian RoadShanghai200083China
| | - Kaixuan Zhang
- College of Physics and Optoelectronic EngineeringHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesNo. 1, Sub‐Lane Xiangshan, Xihu DistrictHangzhou310024China
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of Sciences500 Yu‐Tian RoadShanghai200083China
| | - Libo Zhang
- College of Physics and Optoelectronic EngineeringHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesNo. 1, Sub‐Lane Xiangshan, Xihu DistrictHangzhou310024China
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of Sciences500 Yu‐Tian RoadShanghai200083China
| | - Yuanfeng Wen
- College of Physics and Optoelectronic EngineeringHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesNo. 1, Sub‐Lane Xiangshan, Xihu DistrictHangzhou310024China
| | - Shijian Tian
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of Sciences500 Yu‐Tian RoadShanghai200083China
| | - Yunlong Xiao
- College of Physics and Optoelectronic EngineeringHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesNo. 1, Sub‐Lane Xiangshan, Xihu DistrictHangzhou310024China
| | - Chaofan Shi
- College of Physics and Optoelectronic EngineeringHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesNo. 1, Sub‐Lane Xiangshan, Xihu DistrictHangzhou310024China
| | - Shicong Hou
- College of Physics and Optoelectronic EngineeringHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesNo. 1, Sub‐Lane Xiangshan, Xihu DistrictHangzhou310024China
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Changlong Liu
- College of Physics and Optoelectronic EngineeringHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesNo. 1, Sub‐Lane Xiangshan, Xihu DistrictHangzhou310024China
| | - Li Han
- College of Physics and Optoelectronic EngineeringHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesNo. 1, Sub‐Lane Xiangshan, Xihu DistrictHangzhou310024China
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of Sciences500 Yu‐Tian RoadShanghai200083China
| | - Jiale He
- College of Physics and Optoelectronic EngineeringHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesNo. 1, Sub‐Lane Xiangshan, Xihu DistrictHangzhou310024China
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of Sciences500 Yu‐Tian RoadShanghai200083China
| | - Weiwei Tang
- College of Physics and Optoelectronic EngineeringHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesNo. 1, Sub‐Lane Xiangshan, Xihu DistrictHangzhou310024China
| | - Guanhai Li
- College of Physics and Optoelectronic EngineeringHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesNo. 1, Sub‐Lane Xiangshan, Xihu DistrictHangzhou310024China
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of Sciences500 Yu‐Tian RoadShanghai200083China
| | - Lin Wang
- College of Physics and Optoelectronic EngineeringHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesNo. 1, Sub‐Lane Xiangshan, Xihu DistrictHangzhou310024China
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of Sciences500 Yu‐Tian RoadShanghai200083China
- University of Chinese Academy of SciencesNo. 19A Yuquan RoadBeijing100049China
| | - Xiaoshuang Chen
- College of Physics and Optoelectronic EngineeringHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesNo. 1, Sub‐Lane Xiangshan, Xihu DistrictHangzhou310024China
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of Sciences500 Yu‐Tian RoadShanghai200083China
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
- University of Chinese Academy of SciencesNo. 19A Yuquan RoadBeijing100049China
| |
Collapse
|
6
|
Ma Y, Liang H, Guan X, Xu S, Tao M, Liu X, Zheng Z, Yao J, Yang G. Two-dimensional layered material photodetectors: what could be the upcoming downstream applications beyond prototype devices? NANOSCALE HORIZONS 2024. [PMID: 39046195 DOI: 10.1039/d4nh00170b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
With distinctive advantages spanning excellent flexibility, rich physical properties, strong electrostatic tunability, dangling-bond-free surface, and ease of integration, 2D layered materials (2DLMs) have demonstrated tremendous potential for photodetection. However, to date, most of the research enthusiasm has been merely focused on developing novel prototype devices. In the past few years, researchers have also been devoted to developing various downstream applications based on 2DLM photodetectors to contribute to promoting them from fundamental research to practical commercialization, and extensive accomplishments have been realized. In spite of the remarkable advancements, these fascinating research findings are relatively scattered. To date, there is still a lack of a systematic and profound summarization regarding this fast-evolving domain. This is not beneficial to researchers, especially researchers just entering this research field, who want to have a quick, timely, and comprehensive inspection of this fascinating domain. To address this issue, in this review, the emerging downstream applications of 2DLM photodetectors in extensive fields, including imaging, health monitoring, target tracking, optoelectronic logic operation, ultraviolet monitoring, optical communications, automatic driving, and acoustic signal detection, have been systematically summarized, with the focus on the underlying working mechanisms. At the end, the ongoing challenges of this rapidly progressing domain are identified, and the potential schemes to address them are envisioned, which aim at navigating the future exploration as well as fully exerting the pivotal roles of 2DLMs towards the practical optoelectronic industry.
Collapse
Affiliation(s)
- Yuhang Ma
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| | - Huanrong Liang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| | - Xinyi Guan
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Shuhua Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Meiling Tao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Xinyue Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China.
| | - Zhaoqiang Zheng
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China.
| | - Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| |
Collapse
|
7
|
Li Y, Yu W, Zhang K, Cui N, Yun T, Xia X, Jiang Y, Zhang G, Mu H, Lin S. Two-dimensional topological semimetals: an emerging candidate for terahertz detectors and on-chip integration. MATERIALS HORIZONS 2024; 11:2572-2602. [PMID: 38482962 DOI: 10.1039/d3mh02250a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The importance of terahertz (THz) detection lies in its ability to provide detailed information in a non-destructive manner, making it a valuable tool across various domains including spectroscopy, communication, and security. The ongoing development of THz detectors aims to enhance their sensitivity, resolution and integration into compact and portable devices such as handheld scanners or integrated communication chips. Generally, two-dimensional (2D) materials are considered potential candidates for device miniaturization but detecting THz radiation using 2D semiconductors is generally difficult due to the ultra-small photon energy. However, this challenge is being addressed by the advent of topological semimetals (TSM) with zero-bandgap characteristics. These semimetals offer low-energy excitations in proximity to the Dirac point, which is particularly important for applications requiring a broad detection range. Their distinctive band structures with linear energy-momentum dispersion near the Fermi level also lead to high electron mobility and low effective mass. The presence of topologically protected dissipationless conducting channels and self-powered response provides a basis for low-energy integration. In order to establish paradigms for semimetal-based THz detectors, this review initially offers an analytical summary of THz detection principles. Then, the review demonstrates the distinct design of devices, the excellent performance derived from the topological surface state and unique band structures in TSM. Finally, we outline the prospective avenues for on-chip integration of TSM-based THz detectors. We believe this review can promote further research on the new generation of THz detectors and facilitate advancements in THz imaging, spectroscopy, and communication systems.
Collapse
Affiliation(s)
- Yun Li
- Songshan Lake Materials Laboratory, Dongguan 523808, P. R. China.
- Institute of Physics, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Wenzhi Yu
- Songshan Lake Materials Laboratory, Dongguan 523808, P. R. China.
- Institute of Physics, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Kai Zhang
- Songshan Lake Materials Laboratory, Dongguan 523808, P. R. China.
- MOE Key Laboratory of Laser Life Science &Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Nan Cui
- Songshan Lake Materials Laboratory, Dongguan 523808, P. R. China.
| | - Tinghe Yun
- Songshan Lake Materials Laboratory, Dongguan 523808, P. R. China.
| | - Xue Xia
- Songshan Lake Materials Laboratory, Dongguan 523808, P. R. China.
- Institute of Physics, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Yan Jiang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Guangyu Zhang
- Songshan Lake Materials Laboratory, Dongguan 523808, P. R. China.
- Institute of Physics, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Haoran Mu
- Songshan Lake Materials Laboratory, Dongguan 523808, P. R. China.
| | - Shenghuang Lin
- Songshan Lake Materials Laboratory, Dongguan 523808, P. R. China.
| |
Collapse
|
8
|
Si W, Zhou W, Liu X, Wang K, Liao Y, Yan F, Ji X. Recent Advances in Broadband Photodetectors from Infrared to Terahertz. MICROMACHINES 2024; 15:427. [PMID: 38675239 PMCID: PMC11051910 DOI: 10.3390/mi15040427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024]
Abstract
The growing need for the multiband photodetection of a single scene has promoted the development of both multispectral coupling and broadband detection technologies. Photodetectors operating across the infrared (IR) to terahertz (THz) regions have many applications such as in optical communications, sensing imaging, material identification, and biomedical detection. In this review, we present a comprehensive overview of the latest advances in broadband photodetectors operating in the infrared to terahertz range, highlighting their classification, operating principles, and performance characteristics. We discuss the challenges faced in achieving broadband detection and summarize various strategies employed to extend the spectral response of photodetectors. Lastly, we conclude by outlining future research directions in the field of broadband photodetection, including the utilization of novel materials, artificial microstructure, and integration schemes to overcome current limitations. These innovative methodologies have the potential to achieve high-performance, ultra-broadband photodetectors.
Collapse
Affiliation(s)
- Wei Si
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Wenbin Zhou
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Xiangze Liu
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Ke Wang
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Yiming Liao
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Feng Yan
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaoli Ji
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Jin G, Kim SH, Han HJ. Synthesis and Future Electronic Applications of Topological Nanomaterials. Int J Mol Sci 2023; 25:400. [PMID: 38203574 PMCID: PMC10779379 DOI: 10.3390/ijms25010400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Over the last ten years, the discovery of topological materials has opened up new areas in condensed matter physics. These materials are noted for their distinctive electronic properties, unlike conventional insulators and metals. This discovery has not only spurred new research areas but also offered innovative approaches to electronic device design. A key aspect of these materials is now that transforming them into nanostructures enhances the presence of surface or edge states, which are the key components for their unique electronic properties. In this review, we focus on recent synthesis methods, including vapor-liquid-solid (VLS) growth, chemical vapor deposition (CVD), and chemical conversion techniques. Moreover, the scaling down of topological nanomaterials has revealed new electronic and magnetic properties due to quantum confinement. This review covers their synthesis methods and the outcomes of topological nanomaterials and applications, including quantum computing, spintronics, and interconnects. Finally, we address the materials and synthesis challenges that need to be resolved prior to the practical application of topological nanomaterials in advanced electronic devices.
Collapse
Affiliation(s)
- Gangtae Jin
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA;
| | - Seo-Hyun Kim
- Department of Environment and Energy Engineering, Sungshin Women’s University, Seoul 01133, Republic of Korea;
| | - Hyeuk-Jin Han
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA;
- Department of Environment and Energy Engineering, Sungshin Women’s University, Seoul 01133, Republic of Korea;
| |
Collapse
|
10
|
Liang H, Ma Y, Yi H, Yao J. Emerging Schemes for Advancing 2D Material Photoconductive-Type Photodetectors. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7372. [PMID: 38068116 PMCID: PMC10707280 DOI: 10.3390/ma16237372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 10/16/2024]
Abstract
By virtue of the widely tunable band structure, dangling-bond-free surface, gate electrostatic controllability, excellent flexibility, and high light transmittance, 2D layered materials have shown indisputable application prospects in the field of optoelectronic sensing. However, 2D materials commonly suffer from weak light absorption, limited carrier lifetime, and pronounced interfacial effects, which have led to the necessity for further improvement in the performance of 2D material photodetectors to make them fully competent for the numerous requirements of practical applications. In recent years, researchers have explored multifarious improvement methods for 2D material photodetectors from a variety of perspectives. To promote the further development and innovation of 2D material photodetectors, this review epitomizes the latest research progress in improving the performance of 2D material photodetectors, including improvement in crystalline quality, band engineering, interface passivation, light harvesting enhancement, channel depletion, channel shrinkage, and selective carrier trapping, with the focus on their underlying working mechanisms. In the end, the ongoing challenges in this burgeoning field are underscored, and potential strategies addressing them have been proposed. On the whole, this review sheds light on improving the performance of 2D material photodetectors in the upcoming future.
Collapse
Affiliation(s)
| | | | | | - Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, China; (H.L.); (Y.M.); (H.Y.)
| |
Collapse
|
11
|
Martyniuk P, Wang P, Rogalski A, Gu Y, Jiang R, Wang F, Hu W. Infrared avalanche photodiodes from bulk to 2D materials. LIGHT, SCIENCE & APPLICATIONS 2023; 12:212. [PMID: 37652900 PMCID: PMC10471776 DOI: 10.1038/s41377-023-01259-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
Avalanche photodiodes (APDs) have drawn huge interest in recent years and have been extensively used in a range of fields including the most important one-optical communication systems due to their time responses and high sensitivities. This article shows the evolution and the recent development of AIIIBV, AIIBVI, and potential alternatives to formerly mentioned-"third wave" superlattices (SL) and two-dimensional (2D) materials infrared (IR) APDs. In the beginning, the APDs fundamental operating principle is demonstrated together with progress in architecture. It is shown that the APDs evolution has moved the device's performance towards higher bandwidths, lower noise, and higher gain-bandwidth products. The material properties to reach both high gain and low excess noise for devices operating in different wavelength ranges were also considered showing the future progress and the research direction. More attention was paid to advances in AIIIBV APDs, such as AlInAsSb, which may be used in future optical communications, type-II superlattice (T2SLs, "Ga-based" and "Ga-free"), and 2D materials-based IR APDs. The latter-atomically thin 2D materials exhibit huge potential in APDs and could be considered as an alternative material to the well-known, sophisticated, and developed AIIIBV APD technologies to include single-photon detection mode. That is related to the fact that conventional bulk materials APDs' performance is restricted by reasonably high dark currents. One approach to resolve that problem seems to be implementing low-dimensional materials and structures as the APDs' active regions. The Schottky barrier and atomic level thicknesses lead to the 2D APD dark current significant suppression. What is more, APDs can operate within visible (VIS), near-infrared (NIR)/mid-wavelength infrared range (MWIR), with a responsivity ~80 A/W, external quantum efficiency ~24.8%, gain ~105 for MWIR [wavelength, λ = 4 μm, temperature, T = 10-180 K, Black Phosphorous (BP)/InSe APD]. It is believed that the 2D APD could prove themselves to be an alternative providing a viable method for device fabrication with simultaneous high-performance-sensitivity and low excess noise.
Collapse
Affiliation(s)
- Piotr Martyniuk
- Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Street, 00-908, Warsaw, Poland.
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai, China.
| | - Peng Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai, China
| | - Antoni Rogalski
- Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Street, 00-908, Warsaw, Poland
| | - Yue Gu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai, China
| | - Ruiqi Jiang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai, China
| | - Fang Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai, China
| | - Weida Hu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai, China
| |
Collapse
|
12
|
Xi Y, Zhou Y, Cao X, Wang J, Lei Z, Lu C, Wu D, Shi M, Huang Y, Xu X. Broadband All-Optical THz Modulator Based on Bi 2Te 3/Si Heterostructure Driven by UV-Visible Light. MICROMACHINES 2023; 14:1237. [PMID: 37374822 DOI: 10.3390/mi14061237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
All-optical terahertz (THz) modulators have received tremendous attention due to their significant role in developing future sixth-generation technology and all-optical networks. Herein, the THz modulation performance of the Bi2Te3/Si heterostructure is investigated via THz time-domain spectroscopy under the control of continuous wave lasers at 532 nm and 405 nm. Broadband-sensitive modulation is observed at 532 nm and 405 nm within the experimental frequency range from 0.8 to 2.4 THz. The modulation depth reaches 80% under the 532 nm laser illumination with a maximum power of 250 mW and 96% under 405 nm illumination with a high power of 550 mW. The mechanism of the largely enhanced modulation depth is attributed to the construction of a type-II Bi2Te3/Si heterostructure, which could promote photogenerated electron and hole separation and increase carrier density dramatically. This work proves that a high photon energy laser can also achieve high-efficiency modulation based on the Bi2Te3/Si heterostructure, and the UV-Visible control laser may be more suitable for designing advanced all-optical THz modulators with micro-level sizes.
Collapse
Affiliation(s)
- Yayan Xi
- Shaanxi Joint Laboratory of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an 710069, China
| | - Yixuan Zhou
- Shaanxi Joint Laboratory of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an 710069, China
| | - Xueqin Cao
- Shaanxi Joint Laboratory of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an 710069, China
| | - Jing Wang
- Shaanxi Joint Laboratory of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an 710069, China
| | - Zhen Lei
- Shaanxi Joint Laboratory of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an 710069, China
| | - Chunhui Lu
- Shaanxi Joint Laboratory of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an 710069, China
| | - Dan Wu
- Shaanxi Joint Laboratory of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an 710069, China
| | - Mingjian Shi
- Shaanxi Joint Laboratory of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an 710069, China
| | - Yuanyuan Huang
- Shaanxi Joint Laboratory of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an 710069, China
| | - Xinlong Xu
- Shaanxi Joint Laboratory of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an 710069, China
| |
Collapse
|
13
|
Yu L, Tian P, Tang L, Zuo W, Zhong H, Hao Q, Teng KS, Zhao G, Su R, Gong X, Yuan J. Room Temperature Broadband Bi 2Te 3/PbS Colloidal Quantum Dots Infrared Photodetectors. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094328. [PMID: 37177533 PMCID: PMC10181788 DOI: 10.3390/s23094328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/07/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Lead sulfide colloidal quantum dots (PbS CQDs) are promising optoelectronic materials due to their unique properties, such as tunable band gap and strong absorption, which are of immense interest for application in photodetectors and solar cells. However, the tunable band gap of PbS CQDs would only cover visible short-wave infrared; the ability to detect longer wavelengths, such as mid- and long-wave infrared, is limited because they are restricted by the band gap of the bulk material. In this paper, a novel photodetector based on the synergistic effect of PbS CQDs and bismuth telluride (Bi2Te3) was developed for the detection of a mid-wave infrared band at room temperature. The device demonstrated good performance in the visible-near infrared band (i.e., between 660 and 850 nm) with detectivity of 1.6 × 1010 Jones at room temperature. It also exhibited photoelectric response in the mid-wave infrared band (i.e., between 4.6 and 5.1 μm). The facile fabrication process and excellent performance (with a response of up to 5.1 μm) of the hybrid Bi2Te3/PbS CQDS photodetector are highly attractive for many important applications that require high sensitivity and broadband light detection.
Collapse
Affiliation(s)
- Lijing Yu
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Kunming Institute of Physics, Kunming 650223, China
- Yunnan Key Laboratory of Advanced Photoelectronic Materials & Devices, Kunming 650223, China
| | - Pin Tian
- Kunming Institute of Physics, Kunming 650223, China
- Yunnan Key Laboratory of Advanced Photoelectronic Materials & Devices, Kunming 650223, China
| | - Libin Tang
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Kunming Institute of Physics, Kunming 650223, China
- Yunnan Key Laboratory of Advanced Photoelectronic Materials & Devices, Kunming 650223, China
| | - Wenbin Zuo
- Kunming Institute of Physics, Kunming 650223, China
| | - Hefu Zhong
- School of Materials and Energy, Yunnan University, Kunming 650500, China
| | - Qun Hao
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Kar Seng Teng
- Department of Electronic and Electrical Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, UK
| | - Guiqin Zhao
- Kunming Institute of Physics, Kunming 650223, China
| | - Runhong Su
- Kunming Institute of Physics, Kunming 650223, China
| | - Xiaoxia Gong
- Kunming Institute of Physics, Kunming 650223, China
| | - Jun Yuan
- Kunming Institute of Physics, Kunming 650223, China
| |
Collapse
|
14
|
Chen L, Zhu B, Chen J, Xing S, Tao L. 2D Bi 2Te 3/Si heterostructure with high thermoelectric power factor enabled by interface regulated carrier injection. NANOTECHNOLOGY 2023; 34:255201. [PMID: 36944227 DOI: 10.1088/1361-6528/acc5f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
It has been highly demanded to optimize the charge carrier concentration in 2D Bi2Te3to achieve enhanced thermoelectric performance. This work reveals that, constructing 2D Bi2Te3/Si heterostructure with tuned interfacial electronic band structure can meet the above needs. When the work function in Si substrate is decreased from 4.6 to 4.06 eV, the charge carrier concentration and electron effective mass are increased simultaneously. Consequently, the electrical conductivity of 2D Bi2Te3on n++-Si has reaches up to 1250 S·cm-1, which is 90% higher than the counterpart on SiO2/Si substrate, although the Seebeck coefficient in these two samples is around -103μV·K-1. The resultant power factor of 2D Bi2Te3/n++-Si heterostructure is 13.4μW·cm-1·K-2, which is one of the best values among similar studies ever reported. This work demonstrates a facile way to improve thermoelectric properties via interfacial engineering in a heterostructure.
Collapse
Affiliation(s)
- Lili Chen
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, People's Republic of China
| | - Beibei Zhu
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, People's Republic of China
| | - Jiayi Chen
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, People's Republic of China
| | - Shanshan Xing
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, People's Republic of China
| | - Li Tao
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
15
|
Zhong A, Zhou Y, Jin H, Yu H, Wang Y, Luo J, Huang L, Sun Z, Zhang D, Fan P. Superior Performances of Self-Driven Near-Infrared Photodetectors Based on the SnTe:Si/Si Heterostructure Boosted by Bulk Photovoltaic Effect. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206262. [PMID: 36642832 DOI: 10.1002/smll.202206262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The upsurge of new materials that can be used for near-infrared (NIR) photodetectors operated without cooling is crucial. As a novel material with a small bandgap of ≈0.28 eV, the topological crystalline insulator SnTe has attracted considerable attention. Herein, this work demonstrates self-driven NIR photodetectors based on SnTe/Si and SnTe:Si/Si heterostructures. The SnTe/Si heterostructure has a high detectivity D* of 3.3 × 1012 Jones. By Si doping, the SnTe:Si/Si heterostructure reduces the dark current density and increases the photocurrent by ≈1 order of magnitude simultaneously, which improves the detectivity D* by ≈2 orders of magnitude up to 1.59 × 1014 Jones. Further theoretical analysis indicates that the improved device performance may be ascribed to the bulk photovoltaic effect (BPVE), in which doped Si atoms break the inversion symmetry and thus enable the generation of additional photocurrents beyond the heterostructure. In addition, the external quantum efficiency (EQE) measured at room temperature at 850 nm increases by a factor of 7.5 times, from 38.5% to 289%. A high responsivity of 1979 mA W-1 without bias and fast rising time of 8 µs are also observed. The significantly improved photodetection achieved by the Si doping is of great interest and may provide a novel strategy for superior photodetectors.
Collapse
Affiliation(s)
- Aihua Zhong
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Yue Zhou
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Hao Jin
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Huimin Yu
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Yunkai Wang
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Jingting Luo
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Longbiao Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Zhenhua Sun
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Dongping Zhang
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Ping Fan
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| |
Collapse
|
16
|
Zhang G, Wu H, Zhang L, Yang L, Xie Y, Guo F, Li H, Tao B, Wang G, Zhang W, Chang H. Two-Dimensional Van Der Waals Topological Materials: Preparation, Properties, and Device Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204380. [PMID: 36135779 DOI: 10.1002/smll.202204380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Over the past decade, 2D van der Waals (vdW) topological materials (TMs), including topological insulators and topological semimetals, which combine atomically flat 2D layers and topologically nontrivial band structures, have attracted increasing attention in condensed-matter physics and materials science. These easily cleavable and integrated TMs provide the ideal platform for exploring topological physics in the 2D limit, where new physical phenomena may emerge, and represent a potential to control and investigate exotic properties and device applications in nanoscale topological phases. However, multifaced efforts are still necessary, which is the prerequisite for the practical application of 2D vdW TMs. Herein, this review focuses on the preparation, properties, and device applications of 2D vdW TMs. First, three common preparation strategies for 2D vdW TMs are summarized, including single crystal exfoliation, chemical vapor deposition, and molecular beam epitaxy. Second, the origin and regulation of various properties of 2D vdW TMs are introduced, involving electronic properties, transport properties, optoelectronic properties, thermoelectricity, ferroelectricity, and magnetism. Third, some device applications of 2D vdW TMs are presented, including field-effect transistors, memories, spintronic devices, and photodetectors. Finally, some significant challenges and opportunities for the practical application of 2D vdW TMs in 2D topological electronics are briefly addressed.
Collapse
Affiliation(s)
- Gaojie Zhang
- Quantum-Nano Matter and Device Lab, Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hao Wu
- Quantum-Nano Matter and Device Lab, Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liang Zhang
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Microelectronics and Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Li Yang
- Quantum-Nano Matter and Device Lab, Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuanmiao Xie
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Microelectronics and Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Fei Guo
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Microelectronics and Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Hongda Li
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Microelectronics and Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Boran Tao
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Microelectronics and Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Guofu Wang
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Microelectronics and Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Wenfeng Zhang
- Quantum-Nano Matter and Device Lab, Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen R&D Center of Huazhong University of Science and Technology (HUST), Shenzhen, 518000, China
| | - Haixin Chang
- Quantum-Nano Matter and Device Lab, Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen R&D Center of Huazhong University of Science and Technology (HUST), Shenzhen, 518000, China
| |
Collapse
|
17
|
Liu Y, Hu Q, Cao Y, Wang P, Wei J, Wu W, Wang J, Huang F, Sun JL. High-Performance Ultrabroadband Photodetector Based on Photothermoelectric Effect. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29077-29086. [PMID: 35696679 DOI: 10.1021/acsami.2c03925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ultrabroadband photodetectors (PDs) working in the frequency range from the UV to THz regions of the spectrum play a crucial role in integrated multifunction photoelectric detection. Even so, a shortage of high-performance PDs has seriously restricted the overall development of this field. The present work demonstrates a high-performance, ultrabroadband PD with a composite nanostructure comprising a suspended carbon nanotube (CNT) film on which titanium and palladium are deposited. The application of titanium and palladium to the CNT film in this device provides n-doping and p-doping, respectively, and the deposited metal nanoparticles also ensure enhanced thermal localization. This device exhibits short response time, high responsivity, large linear dynamic range, and small noise equivalent power over the ultrabroadband spectrum based on a strong photothermoelectric effect. Numerical simulation results also confirm the effective doping and enhanced thermal localization in this PD resulting from the deposited metals. A theoretical analysis shows that the thermal conductivity of the composite film is no longer independent of the temperature over a wide temperature range. This work provides a simple but novel strategy for the design of high-performance ultrabroadband PDs.
Collapse
Affiliation(s)
- Yu Liu
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
| | - Qianqian Hu
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Yang Cao
- School of Instrumentation Science and Optoelectronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Pengfei Wang
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
| | - Jinquan Wei
- Key Lab for Advanced Materials Processing Technology of Education Ministry, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Weidong Wu
- Key Laboratory of Particle and Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - Jian Wang
- Institute of Optical Information, Key Lab of Education Ministry on Luminescence and Optical Information Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Feng Huang
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
| | - Jia-Lin Sun
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Shi Z, Zhang H, Khan K, Cao R, Zhang Y, Ma C, Tareen AK, Jiang Y, Jin M, Zhang H. Two-dimensional materials toward Terahertz optoelectronic device applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2021.100473] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
19
|
Zhang X, Liu X, Zhang C, Peng S, Zhou H, He L, Gou J, Wang X, Wang J. Epitaxial Topological Insulator Bi 2Te 3 for Fast Visible to Mid-Infrared Heterojunction Photodetector by Graphene As Charge Collection Medium. ACS NANO 2022; 16:4851-4860. [PMID: 35274530 DOI: 10.1021/acsnano.2c00435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Three dimensional topological insulators have a thriving application prospect in broadband photodetectors due to the possessed topological quantum states. Herein, a large area and uniform topological insulator bismuth telluride (Bi2Te3) layer with high crystalline quality is directly epitaxial grown on GaAs(111)B wafer using a molecular beam epitaxy process, ensuring efficient out-of-plane carriers transportation due to reduced interface defects influence. By tiling monolayer graphene (Gr) on the as-prepared Bi2Te3 layer, a Gr/Bi2Te3/GaAs heterojunction array prototype was further fabricated, and our photodetector array exhibited the capability of sensing ultrabroad photodetection wavebands from visible (405 nm) to mid-infrared (4.5 μm) with a high specific detectivity (D*) up to 1012 Jones and a fast response speed at about microseconds at room temperature. The enhanced device performance can be attributed to enhanced light-matter interaction at the high-quality heterointerface of Bi2Te3/GaAs and improved carrier collection efficiency through graphene as a charge collection medium, indicating an application prospect of topological insulator Bi2Te3 for fast-speed broadband photodetection up to a mid-infrared waveband. This work demonstrated the potential of integrated topological quantum materials with a conventional functional substrate to fabricate the next generation of broadband photodetection devices for uncooled focal plane array or infrared communication systems in future.
Collapse
Affiliation(s)
- Xingchao Zhang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xianchao Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chaoyi Zhang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Silu Peng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hongxi Zhou
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Liang He
- National Laboratory of Solid-state Microstructures, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jun Gou
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xinran Wang
- National Laboratory of Solid-state Microstructures, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jun Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
20
|
Ma W, Gao Y, Shang L, Zhou W, Yao N, Jiang L, Qiu Q, Li J, Shi Y, Hu Z, Huang Z. Ultrabroadband Tellurium Photoelectric Detector from Visible to Millimeter Wave. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103873. [PMID: 34923772 PMCID: PMC8844568 DOI: 10.1002/advs.202103873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/18/2021] [Indexed: 05/19/2023]
Abstract
Ultrabroadband photodetection is of great significance in numerous cutting-edge technologies including imaging, communications, and medicine. However, since photon detectors are selective in wavelength and thermal detectors are slow in response, developing high performance and ultrabroadband photodetectors is extremely difficult. Herein, one demonstrates an ultrabroadband photoelectric detector covering visible, infrared, terahertz, and millimeter wave simultaneously based on single metal-Te-metal structure. Through the two kinds of photoelectric effect synergy of photoexcited electron-hole pairs and electromagnetic induced well effect, the detector achieves the responsivities of 0.793 A W-1 at 635 nm, 9.38 A W-1 at 1550 nm, 9.83 A W-1 at 0.305 THz, 24.8 A W-1 at 0.250 THz, 87.8 A W-1 at 0.172 THz, and 986 A W-1 at 0.022 THz, respectively. It also exhibits excellent polarization detection with a dichroic ratio of 468. The excellent performance of the detector is further verified by high-resolution imaging experiments. Finally, the high stability of the detector is tested by long-term deposition in air and high-temperature aging. The strategy provides a recipe to achieve ultrabroadband photodetection with high sensitivity and fast response utilizing full photoelectric effect.
Collapse
Affiliation(s)
- Wanli Ma
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of Sciences500 Yu Tian RoadShanghai200083P. R. China
- University of Chinese Academy of Sciences19 Yu Quan RoadBeijing100049P. R. China
| | - Yanqing Gao
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of Sciences500 Yu Tian RoadShanghai200083P. R. China
| | - Liyan Shang
- Technical Center for Multifunctional Magneto‐Optical Spectroscopy (Shanghai)Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education)Department of MaterialsSchool of Physics and Electronic ScienceEast China Normal University500 Dongchuan RoadShanghai200241P. R. China
| | - Wei Zhou
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of Sciences500 Yu Tian RoadShanghai200083P. R. China
| | - Niangjuan Yao
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of Sciences500 Yu Tian RoadShanghai200083P. R. China
| | - Lin Jiang
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of Sciences500 Yu Tian RoadShanghai200083P. R. China
| | - Qinxi Qiu
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of Sciences500 Yu Tian RoadShanghai200083P. R. China
- University of Chinese Academy of Sciences19 Yu Quan RoadBeijing100049P. R. China
| | - Jingbo Li
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of Sciences500 Yu Tian RoadShanghai200083P. R. China
- University of Chinese Academy of Sciences19 Yu Quan RoadBeijing100049P. R. China
| | - Yi Shi
- Donghua University2999 North Renmin RoadShanghai201620P. R. China
| | - Zhigao Hu
- Technical Center for Multifunctional Magneto‐Optical Spectroscopy (Shanghai)Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education)Department of MaterialsSchool of Physics and Electronic ScienceEast China Normal University500 Dongchuan RoadShanghai200241P. R. China
| | - Zhiming Huang
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of Sciences500 Yu Tian RoadShanghai200083P. R. China
- Key Laboratory of Space Active Opto‐Electronics TechnologyShanghai Institute of Technical PhysicsChinese Academy of Sciences500 Yu Tian RoadShanghai200083P. R. China
- Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub‐Lane XiangshanHangzhou310024P. R. China
- Institute of OptoelectronicsFudan University2005 Songhu RoadShanghai200438P. R. China
| |
Collapse
|
21
|
Liang SY, Liu YF, Wang SY, Xia H, Sun HB. High-resolution in situ patterning of perovskite quantum dots via femtosecond laser direct writing. NANOSCALE 2022; 14:1174-1178. [PMID: 35006222 DOI: 10.1039/d1nr07516k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Colloidal quantum dots (QDs) have exhibited great potential for optoelectronic applications, including displays, lasers, anti-counterfeiting and information storage. However, the high-resolution patterning technique of QDs is still a challenge, while precise patterned QDs are of great value for practical applications. Here, a femtosecond laser direct writing strategy was demonstrated for the in situ fabrication of high-resolution-patterned perovskite quantum dots (PQDs) by the laser-induced Marangoni flow to aggregate and deposit the PQDs based on the opto-thermoelectric mechanism. By regulating the laser power and the exposure time, the minimum line width could reach 1.58 μm. Importantly, through the patterning of red, green and blue PQDs, the strategy exhibited the applicability in full-color PQD materials. Moreover, the deposited PQDs can preserve the original photophysical properties including photoluminescence spectra and excited state lifetime. The approach provides a strategy to fabricate high-resolution patterned PQDs in situ, which is a promising alternative in photonic applications including high-resolution displays and anti-counterfeiting.
Collapse
Affiliation(s)
- Shu-Yu Liang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Yue-Feng Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Shen-Yuan Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Hong Xia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Hong-Bo Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing 100084, China
| |
Collapse
|
22
|
Zhang Y, Wang X, Zhou Y, Lai H, Liu P, Chen H, Wang X, Xie W. Highly Sensitive and Ultra-Broadband VO 2(B) Photodetector Dominated by Bolometric Effect. NANO LETTERS 2022; 22:485-493. [PMID: 34967644 DOI: 10.1021/acs.nanolett.1c04393] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, Wadsley B phase vanadium oxide (VO2(B)) with broad-band photoabsorption ability, a large temperature coefficient of resistance (TCR), and low noise was developed for uncooled broad-band detection. By using a freestanding structure and reducing the size of active area, the VO2(B) photodetector shows stable and excellent performances in the visible to the terahertz region (405 nm to 0.88 mm), with a peak TCR of -4.77% K-1 at 40 °C, a peak specific detectivity of 6.02 × 109 Jones, and a photoresponse time of 83 ms. A terahertz imaging ability with 30 × 30 pixels was demonstrated. Scanning photocurrent imaging and real-time temperature-photocurrent measurements confirm that a photothermal-type bolometric effect is the dominating mechanism. The study shows the potential of VO2(B) in applications as a new type of uncooled broad-band photodetection material and the potential to further raise the performance of broad-band photodetectors by structural design.
Collapse
Affiliation(s)
- Yujing Zhang
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Ximiao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, Guangdong 510275, People's Republic of China
| | - Yang Zhou
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Haojie Lai
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Pengyi Liu
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Huanjun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, Guangdong 510275, People's Republic of China
| | - Xiaomu Wang
- School of Electronic Science and Technology, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Weiguang Xie
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| |
Collapse
|
23
|
Yao J, Yang G. 2D Layered Material Alloys: Synthesis and Application in Electronic and Optoelectronic Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103036. [PMID: 34719873 PMCID: PMC8728821 DOI: 10.1002/advs.202103036] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/01/2021] [Indexed: 05/12/2023]
Abstract
2D layered materials (2DLMs) have come under the limelight of scientific and engineering research and broke new ground across a broad range of disciplines in the past decade. Nevertheless, the members of stoichiometric 2DLMs are relatively limited. This renders them incompetent to fulfill the multitudinous scenarios across the breadth of electronic and optoelectronic applications since the characteristics exhibited by a specific material are relatively monotonous and limited. Inspiringly, alloying of 2DLMs can markedly broaden the 2D family through composition modulation and it has ushered a whole new research domain: 2DLM alloy nano-electronics and nano-optoelectronics. This review begins with a comprehensive survey on synthetic technologies for the production of 2DLM alloys, which include chemical vapor transport, chemical vapor deposition, pulsed-laser deposition, and molecular beam epitaxy, spanning their development, as well as, advantages and disadvantages. Then, the up-to-date advances of 2DLM alloys in electronic devices are summarized. Subsequently, the up-to-date advances of 2DLM alloys in optoelectronic devices are summarized. In the end, the ongoing challenges of this emerging field are highlighted and the future opportunities are envisioned, which aim to navigate the coming exploration and fully exert the pivotal role of 2DLMs toward the next generation of electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| |
Collapse
|
24
|
Dong Z, Yu W, Zhang L, Mu H, Xie L, Li J, Zhang Y, Huang L, He X, Wang L, Lin S, Zhang K. Highly Efficient, Ultrabroad PdSe 2 Phototransistors from Visible to Terahertz Driven by Mutiphysical Mechanism. ACS NANO 2021; 15:20403-20413. [PMID: 34780146 DOI: 10.1021/acsnano.1c08756] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The noble transition metal dichalcogenide palladium diselenide (PdSe2) is an ideal candidate material for broad-spectrum photodetection owing to the large bandgap tunability, high mobility, low thermal conductivity, and large Seebeck coefficient. In this study, self-powered ultrabroadband PdSe2 photodetectors from the visible-infrared to terahertz (THz) region driven by a mutiphysical mechanism are reported. In the visible-infrared region, the photogenerated electron-hole pairs in the PdSe2 body are quickly separated by the built-in electric field at the metal-semiconductor interface and achieve a photoresponsivity of 28 A·W-1 at 405 nm and 0.4 A·W-1 at 1850 nm. In the THz region, PdSe2 photodetectors display a room-temperature responsivity of 20 mA·W-1 at 0.10 THz and 5 mA·W-1 at 0.24 THz based on efficient production of hot carriers in an antenna-assisted structure. Owing to the fast response speed of ∼7.5 μs and low noise equivalent power of ∼900 pW·Hz-1/2, high-resolution transmission THz imaging is demonstrated under an ambient environment at room temperature. Our research validates the great potential of PdSe2 for broadband photodetection and provides a possibility for future optoelectronic applications.
Collapse
Affiliation(s)
- Zhuo Dong
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
| | - Wenzhi Yu
- Songshan Lake Materials Laboratory, Dongguan 523000, China
| | - Libo Zhang
- State Key Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- Department of Optoelectronic Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haoran Mu
- Songshan Lake Materials Laboratory, Dongguan 523000, China
| | - Liu Xie
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
- Yangtze Memory Technologies Co., Ltd., Wuhan 430074, China
| | - Jie Li
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
| | - Yan Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
| | - Luyi Huang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
| | - Xiaoyue He
- Songshan Lake Materials Laboratory, Dongguan 523000, China
| | - Lin Wang
- State Key Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Shenghuang Lin
- Songshan Lake Materials Laboratory, Dongguan 523000, China
| | - Kai Zhang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
25
|
Simulation Study on the Effect of Doping Concentrations on the Photodetection Properties of Mg2Si/Si Heterojunction Photodetector. PHOTONICS 2021. [DOI: 10.3390/photonics8110509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To develop and design an environmentally friendly, low-cost shortwave infrared (SWIR) photodetector (PD) material and extend the optical response cutoff wavelengths of existing silicon photodetectors beyond 1100 nm, high-performance silicon-compatible Mg2Si/Si PDs are required. First, the structural model of the Mg2Si/Si heterojunction was established using the Silvaco Atlas module. Second, the effects of the doping concentrations of Mg2Si and Si on the photoelectric properties of the Mg2Si/Si heterojunction PD, including the energy band, breakdown voltage, dark current, forward conduction voltage, external quantum efficiency (EQE), responsivity, noise equivalent power (NEP), detectivity, on/off ratio, response time, and recovery time, were simulated. At different doping concentrations, the heterojunction energy band shifted, and a peak barrier appeared at the conduction band of the Mg2Si/Si heterojunction interface. When the doping concentrations of Si and Mg2Si layer were 1017, and 1016 cm−3, respectively, the Mg2Si/Si heterojunction PD could obtain optimal photoelectric properties. Under these conditions, the maximum EQE was 70.68% at 800 nm, the maximum responsivity was 0.51 A/W at 1000 nm, the minimum NEP was 7.07 × 10−11 WHz–1/2 at 1000 nm, the maximum detectivity was 1.4 × 1010 Jones at 1000 nm, and the maximum on/off ratio was 141.45 at 1000 nm. The simulation and optimization result also showed that the Mg2Si/Si heterojunction PD could be used for visible and SWIR photodetection in the wavelength range from 400 to 1500 nm. The results also provide technical support for the future preparation of eco-friendly heterojunction photodetectors.
Collapse
|
26
|
Yang M, Gao W, He M, Zhang S, Huang Y, Zheng Z, Luo D, Wu F, Xia C, Li J. Self-driven SnS 1-xSe x alloy/GaAs heterostructure based unique polarization sensitive photodetectors. NANOSCALE 2021; 13:15193-15204. [PMID: 34515718 DOI: 10.1039/d1nr05062a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the fast development of semiconductor technology, self-driven devices have become an indispensable part of modern electronic and optoelectronic components. In this field, in addition to traditional Schottky and p-n junction devices, hybrid 2D/3D semiconductor heterostructures provide an alternative platform for optoelectronic applications. Herein we report the growth of 2D SnS1-xSex (x = 0, 0.5, 1) nanosheets and the construction of a hybrid SnS0.5Se0.5/GaAs heterostructure based self-driven photodetector. The strong anisotropy of 2D SnS1-xSex is demonstrated theoretically and experimentally. The self-driven photodetector shows high sensitivity to incident light from the visible to near-infrared regime. At the wavelength of 405 nm, the device enables maximum responsivity of 10.2 A W-1, high detectivity of 4.8 × 1012 Jones and fast response speed of 0.5/3.47 ms. Impressively, such a heterostructure device exhibits anisotropic photodetection characteristics with the dichroic ratio of ∼1.25 at 405 nm and ∼1.45 at 635 nm. These remarkable features can be attributed to the high-quality built-in potential at the SnS0.5Se0.5/GaAs interface and the alloy engineering, which effectively separates the photogenerated carriers and suppresses the deep-level defects, respectively. These results imply the great potential of our SnS0.5Se0.5/GaAs heterostructure for high-performance photodetection devices.
Collapse
Affiliation(s)
- Mengmeng Yang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, Guangdong, P. R. China.
| | - Wei Gao
- Institute of Semiconductors, South China Normal University, Guangzhou, 510631, Guangdong, P. R. China.
- Guangdong Key Lab of Chip and Integration Technology, Guangzhou 510631, P.R. China
| | - Mengjie He
- Physics and Electronic Engineering College, Henan Normal University, Xinxiang 453007, P. R. China
| | - Shuai Zhang
- Institute of Semiconductors, South China Normal University, Guangzhou, 510631, Guangdong, P. R. China.
| | - Ying Huang
- Institute of Semiconductors, South China Normal University, Guangzhou, 510631, Guangdong, P. R. China.
| | - Zhaoqiang Zheng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, Guangdong, P. R. China.
| | - Dongxiang Luo
- Institute of Semiconductors, South China Normal University, Guangzhou, 510631, Guangdong, P. R. China.
- Guangdong Key Lab of Chip and Integration Technology, Guangzhou 510631, P.R. China
| | - Fugen Wu
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, Guangdong, P. R. China.
| | - Congxin Xia
- Physics and Electronic Engineering College, Henan Normal University, Xinxiang 453007, P. R. China
| | - Jingbo Li
- Institute of Semiconductors, South China Normal University, Guangzhou, 510631, Guangdong, P. R. China.
- Guangdong Key Lab of Chip and Integration Technology, Guangzhou 510631, P.R. China
| |
Collapse
|
27
|
Yang S, Jiao S, Lu H, Liu S, Nie Y, Gao S, Wang D, Wang J. Morphology evolution and enhanced broadband photoresponse behavior of two-dimensional Bi 2Te 3nanosheets. NANOTECHNOLOGY 2021; 32:435707. [PMID: 34284363 DOI: 10.1088/1361-6528/ac1631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Bismuth telluride (Bi2Te3), as an emerging two-dimensional (2D) material, has attracted extensive attention from scientific researchers due to its excellent optoelectronic, thermoelectric properties and topological structure. However, the application research of Bi2Te3mainly focuses on thermoelectric devices, while the research on optoelectronic devices is scarce. In this work, the morphology evolution and growth mechanism of 2D Bi2Te3nanosheets with a thickness of 12 ± 3 nm were systematically studied by solvothermal method. Then, the Bi2Te3nanosheets were annealed at 350 °C for 1 h and applied to self-powered photoelectrochemical-type broadband photodetectors. Compared with the as-synthesized Bi2Te3photodetector, the photocurrent of the photodetector based on the annealed Bi2Te3is significantly enhanced, especially enhanced by 18.3 times under near-infrared light illumination. Furthermore, the performance of annealed Bi2Te3photodetector was systematically studied. The research results show that the photodetector not only has a broadband response from ultraviolet to near-infrared (365-850 nm) under zero bias voltage, but also obtains the highest responsivity of 6.6 mA W-1under green light with an incident power of 10 mW cm-2. The corresponding rise time and decay time are 17 ms and 20 ms, respectively. These findings indicate that annealed Bi2Te3nanosheets have great potential to be used as self-powered high-speed broadband photodetectors with high responsivity.
Collapse
Affiliation(s)
- Song Yang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Shujie Jiao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Hongliang Lu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Shuo Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Yiyin Nie
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Shiyong Gao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Dongbo Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Jinzhong Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| |
Collapse
|
28
|
Yao J, Yang G. Multielement 2D layered material photodetectors. NANOTECHNOLOGY 2021; 32:392001. [PMID: 34111857 DOI: 10.1088/1361-6528/ac0a16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/10/2021] [Indexed: 06/12/2023]
Abstract
The pronounced quantum confinement effects, outstanding mechanical strength, strong light-matter interactions and reasonably high electric transport properties under atomically thin limit have conjointly established 2D layered materials (2DLMs) as compelling building blocks towards the next generation optoelectronic devices. By virtue of the diverse compositions and crystal structures which bring about abundant physical properties, multielement 2DLMs (ME2DLMs) have become a bran-new research focus of tremendous scientific enthusiasm. Herein, for the first time, this review provides a comprehensive overview on the latest evolution of ME2DLM photodetectors. The crystal structures, synthesis, and physical properties of various experimentally realized ME2DLMs as well as the development in metal-semiconductor-metal photodetectors are comprehensively summarized by dividing them into narrow-bandgap ME2DLMs (including Bi2O2X (X = S, Se, Te), EuMTe3(M = Bi, Sb), Nb2XTe4(X = Si, Ge), Ta2NiX5(X = S, Se), M2PdX6(M = Ta, Nb; X = S, Se), PbSnS2), moderate-bandgap ME2DLMs (including CuIn7Se11, CuTaS3, GaGeTe, TlMX2(M = Ga, In; X = S, Se)), wide-bandgap ME2DLMs (including BiOX (X = F, Cl, Br, I), MPX3(M = Fe, Ni, Mn, Cd, Zn; X = S, Se), ABP2X6(A = Cu, Ag; B = In, Bi; X = S, Se), Ga2In4S9), as well as topological ME2DLMs (MIrTe4(M = Ta, Nb)). In the last section, the ongoing challenges standing in the way of further development are underscored and the potential strategies settling them are proposed, which is aimed at navigating the future advancement of this fascinating domain.
Collapse
Affiliation(s)
- Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, 510275, Guangdong, People's Republic of China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, 510275, Guangdong, People's Republic of China
| |
Collapse
|
29
|
Wang CC, Shieu FS, Shih HC. Photosensing and Characterizing of the Pristine and In-, Sn-Doped Bi 2Se 3 Nanoplatelets Fabricated by Thermal V-S Process. NANOMATERIALS 2021; 11:nano11051352. [PMID: 34065472 PMCID: PMC8161412 DOI: 10.3390/nano11051352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/02/2022]
Abstract
Pristine, and In-, Sn-, and (In, Sn)-doped Bi2Se3 nanoplatelets synthesized on Al2O3(100) substrate by a vapor–solid mechanism in thermal CVD process via at 600 °C under 2 × 10−2 Torr. XRD and HRTEM reveal that In or Sn dopants had no effect on the crystal structure of the synthesized rhombohedral-Bi2Se3. FPA–FTIR reveals that the optical bandgap of doped Bi2Se3 was 26.3%, 34.1%, and 43.7% lower than pristine Bi2Se3. XRD, FESEM–EDS, Raman spectroscopy, and XPS confirm defects (In3+Bi3+), (In3+V0), (Sn4+Bi3+), (V0Bi3+), and (Sn2+Bi3+). Photocurrent that was generated in (In,Sn)-doped Bi2Se3 under UV(8 W) and red (5 W) light revealed stable photocurrents of 5.20 × 10−10 and 0.35 × 10−10 A and high Iphoto/Idark ratios of 30.7 and 52.2. The rise and fall times of the photocurrent under UV light were 4.1 × 10−2 and 6.6 × 10−2 s. Under UV light, (In,Sn)-dopedBi2Se3 had 15.3% longer photocurrent decay time and 22.6% shorter rise time than pristine Bi2Se3, indicating that (In,Sn)-doped Bi2Se3 exhibited good surface conduction and greater photosensitivity. These results suggest that In, Sn, or both dopants enhance photodetection of pristine Bi2Se3 under UV and red light. The findings also suggest that type of defect is a more important factor than optical bandgap in determining photo-detection sensitivity. (In,Sn)-doped Bi2Se3 has greater potential than undoped Bi2Se3 for use in UV and red-light photodetectors.
Collapse
Affiliation(s)
- Chih-Chiang Wang
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Fuh-Sheng Shieu
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan;
- Correspondence: (F.-S.S.); (H.C.S.)
| | - Han C. Shih
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan;
- Department of Chemical Engineering and Materials Science, Chinese Culture University, Taipei 11114, Taiwan
- Correspondence: (F.-S.S.); (H.C.S.)
| |
Collapse
|
30
|
Xie F, Lian Z, Zhang S, Wang T, Miao S, Song Z, Ying Z, Pan XC, Long M, Zhang M, Fei F, Hu W, Yu G, Song F, Kang TT, Shi SF. Reversible engineering of topological insulator surface state conductivity through optical excitation. NANOTECHNOLOGY 2021; 32:17LT01. [PMID: 33620033 DOI: 10.1088/1361-6528/abde01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Despite the broadband response, limited optical absorption at a particular wavelength hinders the development of optoelectronics based on Dirac fermions. Heterostructures of graphene and various semiconductors have been explored for this purpose, while non-ideal interfaces often limit the performance. The topological insulator (TI) is a natural hybrid system, with the surface states hosting high-mobility Dirac fermions and the small-bandgap semiconducting bulk state strongly absorbing light. In this work, we show a large photocurrent response from a field effect transistor device based on intrinsic TI Sn-Bi1.1Sb0.9Te2S (Sn-BSTS). The photocurrent response is non-volatile and sensitively depends on the initial Fermi energy of the surface state, and it can be erased by controlling the gate voltage. Our observations can be explained with a remote photo-doping mechanism, in which the light excites the defects in the bulk and frees the localized carriers to the surface state. This photodoping modulates the surface state conductivity without compromising the mobility, and it also significantly modify the quantum Hall effect of the surface state. Our work thus illustrates a route to reversibly manipulate the surface states through optical excitation, shedding light into utilizing topological surface states for quantum optoelectronics.
Collapse
Affiliation(s)
- Faji Xie
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pandey A, Yadav R, Kaur M, Singh P, Gupta A, Husale S. High performing flexible optoelectronic devices using thin films of topological insulator. Sci Rep 2021; 11:832. [PMID: 33436932 PMCID: PMC7804467 DOI: 10.1038/s41598-020-80738-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/21/2020] [Indexed: 01/29/2023] Open
Abstract
Topological insulators (TIs) possess exciting nonlinear optical properties due to presence of metallic surface states with the Dirac fermions and are predicted as a promising material for broadspectral phodotection ranging from UV (ultraviolet) to deep IR (infrared) or terahertz range. The recent experimental reports demonstrating nonlinear optical properties are mostly carried out on non-flexible substrates and there is a huge demand for the fabrication of high performing flexible optoelectronic devices using new exotic materials due to their potential applications in wearable devices, communications, sensors, imaging etc. Here first time we integrate the thin films of TIs (Bi2Te3) with the flexible PET (polyethylene terephthalate) substrate and report the strong light absorption properties in these devices. Owing to small band gap material, evolving bulk and gapless surface state conduction, we observe high responsivity and detectivity at NIR (near infrared) wavelengths (39 A/W, 6.1 × 108 Jones for 1064 nm and 58 A/W, 6.1 × 108 Jones for 1550 nm). TIs based flexible devices show that photocurrent is linearly dependent on the incident laser power and applied bias voltage. Devices also show very fast response and decay times. Thus we believe that the superior optoelectronic properties reported here pave the way for making TIs based flexible optoelectronic devices.
Collapse
Affiliation(s)
- Animesh Pandey
- grid.419701.a0000 0004 1796 3268Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research, National Physical Laboratory, Dr. K. S Krishnan Road, New Delhi, 110012 India ,grid.419701.a0000 0004 1796 3268Council of Scientific and Industrial Research, National Physical Laboratory, Dr. K. S Krishnan Road, New Delhi, 110012 India
| | - Reena Yadav
- grid.419701.a0000 0004 1796 3268Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research, National Physical Laboratory, Dr. K. S Krishnan Road, New Delhi, 110012 India ,grid.419701.a0000 0004 1796 3268Council of Scientific and Industrial Research, National Physical Laboratory, Dr. K. S Krishnan Road, New Delhi, 110012 India
| | - Mandeep Kaur
- grid.419701.a0000 0004 1796 3268Council of Scientific and Industrial Research, National Physical Laboratory, Dr. K. S Krishnan Road, New Delhi, 110012 India
| | - Preetam Singh
- grid.419701.a0000 0004 1796 3268Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research, National Physical Laboratory, Dr. K. S Krishnan Road, New Delhi, 110012 India ,grid.419701.a0000 0004 1796 3268Council of Scientific and Industrial Research, National Physical Laboratory, Dr. K. S Krishnan Road, New Delhi, 110012 India
| | - Anurag Gupta
- grid.419701.a0000 0004 1796 3268Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research, National Physical Laboratory, Dr. K. S Krishnan Road, New Delhi, 110012 India ,grid.419701.a0000 0004 1796 3268Council of Scientific and Industrial Research, National Physical Laboratory, Dr. K. S Krishnan Road, New Delhi, 110012 India
| | - Sudhir Husale
- grid.419701.a0000 0004 1796 3268Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research, National Physical Laboratory, Dr. K. S Krishnan Road, New Delhi, 110012 India ,grid.419701.a0000 0004 1796 3268Council of Scientific and Industrial Research, National Physical Laboratory, Dr. K. S Krishnan Road, New Delhi, 110012 India
| |
Collapse
|
32
|
Tong XW, Lin YN, Huang R, Zhang ZX, Fu C, Wu D, Luo LB, Li ZJ, Liang FX, Zhang W. Direct Tellurization of Pt to Synthesize 2D PtTe 2 for High-Performance Broadband Photodetectors and NIR Image Sensors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53921-53931. [PMID: 33202136 DOI: 10.1021/acsami.0c14996] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Platinum telluride (PtTe2) has garnered significant research enthusiasm owing to its unique characteristics. However, large-scale synthesis of PtTe2 toward potential photoelectric and photovoltaic application has not been explored yet. Herein, we report direct tellurization of Pt nanofilms to synthesize large-area PtTe2 films and the influence of growth conditions on the morphology of PtTe2. Electrical analysis reveals that the as-grown PtTe2 films exhibit typical semimetallic behavior, which is in agreement with the results of first-principles density functional theory (DFT) simulation. Moreover, the combination of multilayered PtTe2 and Si results in the formation of a PtTe2/Si heterojunction, exhibiting an obvious rectifying effect. Moreover, the PtTe2-based photodetector displays a broadband photoresponse to incident radiation in the range of 200-1650 nm, with the maximum photoresponse at a wavelength of ∼980 nm. The R and D* of the PtTe2-based photodetector are found to be 0.406 A W-1 and 3.62 × 1012 Jones, respectively. In addition, the external quantum efficiency is as high as 32.1%. On the other hand, the response time of τrise and τfall is estimated to be 7.51 and 36.7 μs, respectively. Finally, an image sensor composed of a 8 × 8 PtTe2-based photodetector array was fabricated, which can record five near-infrared (NIR) images under 980 nm with a satisfying resolution. The result demonstrates that the as-prepared PtTe2 material will be useful for application in NIR optoelectronics.
Collapse
Affiliation(s)
- Xiao-Wei Tong
- School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009, China
| | - Ya-Nan Lin
- School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009, China
| | - Rui Huang
- School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009, China
| | - Zhi-Xiang Zhang
- School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009, China
| | - Can Fu
- School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009, China
| | - Di Wu
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Lin-Bao Luo
- School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009, China
| | - Zhong-Jun Li
- School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009, China
| | - Feng-Xia Liang
- School of Materials Science and Engineering, Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Anhui 230009, China
| | - Wei Zhang
- Academy of Optoelectronic Technology, National Engineering Laboratory of Special Display Technology, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
33
|
Wang W, Zeng X, Warner JH, Guo Z, Hu Y, Zeng Y, Lu J, Jin W, Wang S, Lu J, Zeng Y, Xiao Y. Photoresponse-Bias Modulation of a High-Performance MoS 2 Photodetector with a Unique Vertically Stacked 2H-MoS 2/1T@2H-MoS 2 Structure. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33325-33335. [PMID: 32583658 DOI: 10.1021/acsami.0c04048] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Monolayer 2H-phase MoS2-based photodetectors exhibit high photon absorption but suffer from low photoresponse, which severely limits their applications in optoelectronic fields. The metallic 1T phase of MoS2, while transporting carriers faster, shows negligible response to visible light, which limits its usage in photodetectors. Herein, we propose an ultrafast-response MoS2-based photodetector having a channel that consists of a 2H-MoS2 sensitizing monolayer on top of 1T@2H-MoS2. The 1T@2H-MoS2 layer has a thickness of several nanometers and is a mixture of metallic 1T-MoS2 and semiconducting 2H-MoS2, imparting metal-like properties to the photodetector. Compared with the monolayer 2H-MoS2 photodetector, we observed a drastic increase in the photoresponse of the 2H-MoS2/1T@2H-MoS2 vertically stacked photodetector to a value of 1917 A W-1. Owing to the presence of metallic 1T-MoS2 within the metal-like 1T@2H-MoS2, the performance of the 2H-MoS2/1T@2H-MoS2 vertically stacked photodetector is voltage bias-modulated with an external quantum efficiency (EQE) of up to 448,384% and a specific detectivity of up to ∼1011 Jones. The higher carrier density and higher mobility of the 1T@2H-MoS2 layer explain the better bias-modulated performance. In addition, the interface between 2H-MoS2 and 1T@2H-MoS2 ensures fewer dangling bonds and reduced lattice mismatching. Thus, this study presents an exclusive vertically stacked MoS2-based photodetector that lays the foundation for the development of photodetectors exhibiting higher photoresponse.
Collapse
Affiliation(s)
- Wenzhao Wang
- School of Optical and Electronic Information, Huazhong University of Science & Technology, Wuhan 430074, People's Republic of China
| | - Xiangbin Zeng
- School of Optical and Electronic Information, Huazhong University of Science & Technology, Wuhan 430074, People's Republic of China
| | - Jamie H Warner
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Zhengyu Guo
- School of Optical and Electronic Information, Huazhong University of Science & Technology, Wuhan 430074, People's Republic of China
| | - Yishuo Hu
- School of Optical and Electronic Information, Huazhong University of Science & Technology, Wuhan 430074, People's Republic of China
| | - Yang Zeng
- School of Optical and Electronic Information, Huazhong University of Science & Technology, Wuhan 430074, People's Republic of China
| | - Jingjing Lu
- School of Optical and Electronic Information, Huazhong University of Science & Technology, Wuhan 430074, People's Republic of China
| | - Wen Jin
- China-EU Institute for Clean and Renewable Energy, Huazhong University of Science & Technology, Wuhan 430074, People's Republic of China
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Shibo Wang
- School of Optical and Electronic Information, Huazhong University of Science & Technology, Wuhan 430074, People's Republic of China
| | - Jichang Lu
- School of Optical and Electronic Information, Huazhong University of Science & Technology, Wuhan 430074, People's Republic of China
| | - Yirong Zeng
- School of Optical and Electronic Information, Huazhong University of Science & Technology, Wuhan 430074, People's Republic of China
| | - Yonghong Xiao
- School of Optical and Electronic Information, Huazhong University of Science & Technology, Wuhan 430074, People's Republic of China
| |
Collapse
|
34
|
Xu Q, Ma J, Khan W, Zeng X, Li N, Cao Y, Zhao X, Xu M. Highly green fluorescent Nb 2C MXene quantum dots. Chem Commun (Camb) 2020; 56:6648-6651. [PMID: 32406883 DOI: 10.1039/d0cc02131h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Here, two dimensional Nb2C quantum dots with green fluorescence were fabricated for the first time with a quantum yield (QY) of up to 19%, the highest reported for Nb2C dots so far with good photostability and pH stability. The S,N doping on Nb2C was considered to be the main reason for the enhanced high QY of the Nb2C dots and was proved by the density functional theory (DFT) calculations. It was demonstrated that the fluorescent probe could be utilized effectively for 3D brain organoid labeling and thus has huge prospects in biological sensing.
Collapse
Affiliation(s)
- Quan Xu
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials Science, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Junfei Ma
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials Science, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Waleed Khan
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials Science, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Xianbing Zeng
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China.
| | - Neng Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China.
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Xuelin Zhao
- Department of Orthopedics General Hospital of Chinese People's Liberation Army, Beijing 100853, China.
| | - Meng Xu
- Department of Orthopedics General Hospital of Chinese People's Liberation Army, Beijing 100853, China.
| |
Collapse
|
35
|
Wu W, Wang Y, Niu Y, Wang P, Chen M, Sun J, Wang N, Wu D, Zhao Z. Thermal Localization Enhanced Fast Photothermoelectric Response in a Quasi-One-Dimensional Flexible NbS 3 Photodetector. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14165-14173. [PMID: 32119514 DOI: 10.1021/acsami.0c00764] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ultra-broadband photodetection is crucial for various applications like imaging and sensing and has become a hot research topic in recent years. However, most of the reported ultra-broadband photodetectors can only cover the range from ultraviolet to infrared, which is insufficient. Herein, a photothermoelectric (PTE) detector made of NbS3 is reported. The device shows a considerable performance from ultraviolet to terahertz. For all examined wavelengths, the photoresponsivities are all larger than 1 V W-1 while the response time is less than 10 ms, much shorter than the reported ultra-broadband photodetectors made of millimetric scale graphene, ternary chalcogenide single crystal, and other materials. The extraordinary performance is fully discussed and can be attributed to the thermal localization enhanced PTE effect. Because of the short thermal decay length and low thermal loss, the heat generated by the illumination is localized in only a micrometer scale along the channel, and thus a strong PTE response is produced. In addition, the fabricated device also demonstrates robust flexibility and stability. Thanks to the quasi-one-dimensional (quasi-1D) structure, the NbS3 crystal is easy to be scaled down and thus intrinsically facilitate the integration of detectors. With these favorable merits, the quasi-1D NbS3 crystal holds a promising potential in high-performance, ultra-broadband photodetectors.
Collapse
Affiliation(s)
- Weidong Wu
- Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - Yingxin Wang
- Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - Yingying Niu
- Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - Pengfei Wang
- Department of Physics, Tsinghua University, Beijing 100084, P. R. China
| | - Meng Chen
- Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - Jialin Sun
- Department of Physics, Tsinghua University, Beijing 100084, P. R. China
| | - Nanlin Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Dong Wu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Ziran Zhao
- Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
36
|
Abstract
Our review provides a comprehensive overview of the latest evolution of broadband photodetectors (BBPDs) based on 2D materials (2DMs). We begin with BBPDs built on various 2DM channels, including narrow-bandgap 2DMs, 2D topological semimetals, 2D charge density wave compounds, and 2D heterojunctions. Then, we introduce defect-engineered 2DM BBPDs, including vacancy engineering, heteroatom incorporation, and interfacial engineering. Subsequently, we summarize 2DM based mixed-dimensional (0D-2D, 1D-2D, 2D-3D, and 0D-2D-3D) BBPDs. Finally, we provide several viewpoints for the future development of this burgeoning field.
Collapse
Affiliation(s)
- Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | | |
Collapse
|
37
|
Liu H, Zhu X, Sun X, Zhu C, Huang W, Zhang X, Zheng B, Zou Z, Luo Z, Wang X, Li D, Pan A. Self-Powered Broad-band Photodetectors Based on Vertically Stacked WSe 2/Bi 2Te 3 p-n Heterojunctions. ACS NANO 2019; 13:13573-13580. [PMID: 31697469 DOI: 10.1021/acsnano.9b07563] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Semiconducting p-n heterojunctions, serving as the basic unit of modern electronic devices, such as photodetectors, solar-energy conversion devices, and light-emitting diodes (LEDs), have been extensively investigated in recent years. In this work, high performance self-powered broad-band photodetectors were fabricated based on vertically stacked p-n heterojunctions though combining p-type WSe2 with n-type Bi2Te3 via van der Waals (vdW) epitaxial growth. Devices based on the p-n heterojunction show obvious current rectification behaviors in the dark and superior photovoltaic characteristics under light irradiation. A maximum short circuit current of 18 nA and open circuit voltage of 0.25 V can be achieved with the illumination light of 633 nm (power density: 26.4 mW/cm2), which are among the highest values compared with the ever reported 2D vdW heterojunctions synthesized by chemical vapor deposition (CVD) method. Benefiting from the broad-band absorption of the heterostructures, the detection range can be expanded from the visible to near-infrared (375-1550 nm). Moreover, ascribing to the efficient carriers separation process at the junction interfaces, the devices can be further employed as self-powered photodetectors, where a fast response time (∼210 μs) and high responsivity (20.5 A/W at 633 nm and 27 mA/W at 1550 nm) are obtained under zero bias voltage. The WSe2/Bi2Te3 p-n heterojunction-based self-powered photodetectors with high photoresponsivity, fast photoresponse time, and broad spectral response will find potential applications in high speed and self-sufficient broad-band devices.
Collapse
Affiliation(s)
- Huawei Liu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering , Hunan University , Changsha , Hunan 410082 , China
- School of Physics and Electronics , Hunan University , Changsha , Hunan 410082 , China
| | - Xiaoli Zhu
- School of Physics and Electronics , Hunan University , Changsha , Hunan 410082 , China
| | - Xingxia Sun
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering , Hunan University , Changsha , Hunan 410082 , China
| | - Chenguang Zhu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering , Hunan University , Changsha , Hunan 410082 , China
| | - Wei Huang
- School of Physics and Electronics , Hunan University , Changsha , Hunan 410082 , China
| | - Xuehong Zhang
- School of Physics and Electronics , Hunan University , Changsha , Hunan 410082 , China
| | - Biyuan Zheng
- School of Physics and Electronics , Hunan University , Changsha , Hunan 410082 , China
| | - Zixing Zou
- School of Physics and Electronics , Hunan University , Changsha , Hunan 410082 , China
| | - Ziyu Luo
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering , Hunan University , Changsha , Hunan 410082 , China
| | - Xiao Wang
- School of Physics and Electronics , Hunan University , Changsha , Hunan 410082 , China
| | - Dong Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering , Hunan University , Changsha , Hunan 410082 , China
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering , Hunan University , Changsha , Hunan 410082 , China
- School of Physics and Electronics , Hunan University , Changsha , Hunan 410082 , China
| |
Collapse
|
38
|
Lee H, Lee K, Kim Y, Ji H, Choi J, Kim M, Ahn JP, Kim GT. Transfer of transition-metal dichalcogenide circuits onto arbitrary substrates for flexible device applications. NANOSCALE 2019; 11:22118-22124. [PMID: 31720663 DOI: 10.1039/c9nr05065e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Transition-metal dichalcogenide (TMD) materials with two-dimensional layered structures and stable surfaces are well suited for transparent and flexible device applications. In order to completely utilize the advantages of thickness control and fabrication of various heterostructure stacks, we proposed a transfer method of TMD field-effect transistors (FETs) and TMD complementary metal-oxide-semiconductor (CMOS) circuits from a Si/SiO2 substrate to a flexible substrate. We compared the characteristics of transferred MoS2 and WSe2 FETs with those of the corresponding devices transferred after channel passivation with an Al2O3 layer on a flexible substrate. Al2O3 passivation further stabilized the transfer of the entire device with electrodes. A CMOS circuit with MoS2 and WSe2 materials could be successfully transferred to a polyethylene terephthalate substrate after the channel passivation. This implies that TMD circuits can be easily fabricated on polymer substrates, which makes them suitable for use in semiconductor processes, for various applications.
Collapse
Affiliation(s)
- Hyebin Lee
- School of Electrical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Yang M, Wang J, Zhao Y, He L, Ji C, Zhou H, Gou J, Li W, Wu Z, Wang X. Polarimetric Three-Dimensional Topological Insulators/Organics Thin Film Heterojunction Photodetectors. ACS NANO 2019; 13:10810-10817. [PMID: 31498592 DOI: 10.1021/acsnano.9b05775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As a state of quantum matter with insulating bulk and gapless surface states, topological insulators (TIs) have huge potential in optoelectronic devices. On the other hand, polarization resolution photoelectric devices based on anisotropic materials have overwhelming advantages in practical applications. In this work, the 3D TIs Bi2Te3/organics thin film heterojunction polarimetric photodetectors with high anisotropic mobility ratio, fast response time, high responsivity, and EQE in broadband spectra are presented. At first, the maximum anisotropic mobility ratio of the Bi2Te3/organics thin film can reach 2.56, which proves that Bi2Te3 can serve as a sensitive material for manufacturing polarization photoelectric devices. Moreover, it is found that the device can exhibit a broad bandwidth and ultrahigh response photocurrent from visible to middle wave infrared spectra (405-3500 nm). The highest responsivity (Ri) of optimized devices can reach up to 23.54 AW-1; surprisingly, the Ri of the device can still reach 1.93 AW-1 at 3500 nm. In addition, the ultrahigh external quantum efficiency is 4534% with a fast response time (1.42 ms). Excellent properties mentioned above indicate that TIs/organics heterojunction devices are suitable for manufacturing high-performance photoelectric devices in infrared region.
Collapse
Affiliation(s)
- Ming Yang
- School of Optoelectronic Science and Engineering , University of Electronic Science and Technology of China , Chengdu 610054 , P.R. China
| | - Jun Wang
- School of Optoelectronic Science and Engineering , University of Electronic Science and Technology of China , Chengdu 610054 , P.R. China
- State Key Laboratory of Electronic Thin Films and Integrated Devices , University of Electronic Science and Technology of China , Chengdu 610054 , P.R. China
| | - Yafei Zhao
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , P.R. China
| | - Liang He
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , P.R. China
| | - Chunhui Ji
- School of Optoelectronic Science and Engineering , University of Electronic Science and Technology of China , Chengdu 610054 , P.R. China
| | - Hongxi Zhou
- School of Optoelectronic Science and Engineering , University of Electronic Science and Technology of China , Chengdu 610054 , P.R. China
| | - Jun Gou
- School of Optoelectronic Science and Engineering , University of Electronic Science and Technology of China , Chengdu 610054 , P.R. China
- State Key Laboratory of Electronic Thin Films and Integrated Devices , University of Electronic Science and Technology of China , Chengdu 610054 , P.R. China
| | - Weizhi Li
- School of Optoelectronic Science and Engineering , University of Electronic Science and Technology of China , Chengdu 610054 , P.R. China
- State Key Laboratory of Electronic Thin Films and Integrated Devices , University of Electronic Science and Technology of China , Chengdu 610054 , P.R. China
| | - Zhiming Wu
- School of Optoelectronic Science and Engineering , University of Electronic Science and Technology of China , Chengdu 610054 , P.R. China
- State Key Laboratory of Electronic Thin Films and Integrated Devices , University of Electronic Science and Technology of China , Chengdu 610054 , P.R. China
| | - Xinran Wang
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , P.R. China
| |
Collapse
|
40
|
Parbatani A, Song ES, Claypoole J, Yu B. High performance broadband bismuth telluride tetradymite topological insulator photodiode. NANOTECHNOLOGY 2019; 30:165201. [PMID: 30620938 DOI: 10.1088/1361-6528/aafc84] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A small bulk gap and the presence of Dirac electrons due to conductive surface states make tetradymite topological insulators promising candidates for optoelectronic devices. In this work, we demonstrate a highly responsive Bi2Te3-Si heterostructure photodiode. The thermally evaporated Bi2Te3 film, exhibiting a nanocrystalline nature, shows p-type doping behavior due to bismuth vacancies. As a result of the work function difference between Bi2Te3 and p-type Si, charge transfer occurs and a Schottky barrier is formed. Using the thermionic emission model, the barrier height (ΦB) is extracted to be ∼0.405 eV. For minimizing the effect of extrinsic defects, the photodiodes were capped with graphene or Si3N4. Since graphene acts as an efficient photoexcited carrier collector, the graphene capped device outperforms the Si3N4 capped device. The higher quality Bi2Te3 nanocrystalline film of the Si3N4 capped photodiode contributes to a one-order-of-magnitude improvement in responsivity at 1550 nm wavelength, as compared to the graphene capped photodiode. The Si3N4 capped photodiode shows photoresponse even at zero bias for 1550 nm wavelength. Built-in potential due to charge transfer at the interface of Bi2Te3 and Si capped with a graphene electrode exhibits the highest responsivity (8.9 A W-1). Broadband photodetection is observed in both types of photodiodes.
Collapse
Affiliation(s)
- Asish Parbatani
- SUNY Polytechnic Institute, The State University of New York Albany, NY 12203, United States of America
| | | | | | | |
Collapse
|
41
|
Novel synthesis of topological insulator based nanostructures (Bi 2Te 3) demonstrating high performance photodetection. Sci Rep 2019; 9:3804. [PMID: 30846755 PMCID: PMC6405830 DOI: 10.1038/s41598-019-40394-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/13/2019] [Indexed: 11/18/2022] Open
Abstract
The rapid progress in 2D material research has triggered the growth of various quantum nanostructures- nanosheets, nanowires, nanoribbons, nanocrystals and the exotic nature originating through 2D heterostructures has extended the synthesis of hybrid materials beyond the conventional approaches. Here we introduce simple, one step confined thin melting approach to form nanostructures of TI (topological insulator) materials, their hybrid heterostructures with other novel 2D materials and their scalable growth. The substrate and temperature dependent growth is investigated on insulating, superconducting, metallic, semiconducting and ferromagnetic materials. The temperature dependent synthesis enables the growth of single, few quintuples to nanosheets and nanocrystals. The density of nanostructure growth is seen more on fabricated patterns or textured substrates. The fabricated nanostructure based devices show the broadband photodetection from ultraviolet to near infrared and exhibit high photoresponsivity. Ultimately, this unique synthesis process will give easy access to fabricate devices on user friendly substrates, study nanostructures and scalable growth will enable their future technology applications.
Collapse
|
42
|
Yang M, Wang J, Zhao Y, He L, Ji C, Liu X, Zhou H, Wu Z, Wang X, Jiang Y. Three-Dimensional Topological Insulator Bi 2Te 3/Organic Thin Film Heterojunction Photodetector with Fast and Wideband Response from 450 to 3500 Nanometers. ACS NANO 2019; 13:755-763. [PMID: 30566317 DOI: 10.1021/acsnano.8b08056] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the pursuit of broadband photodetection materials from visible to mid-IR region, the fresh three-dimensional topological insulators (3D TIs) are theoretically predicted to be a promising candidate due to its Dirac-like stable surface state and high absorption rate. In this work, a self-powered inorganic/organic heterojunction photodetector based on n-type 3D TIs Bi2Te3 combined with p-type pentacene thin film was designed and fabricated. Surprisingly, it was found that the Bi2Te3/pentacene heterojunction photodetector exhibited a fast and wideband response from 450 to 3500 nm. The optimized responsivity of photodetector reached 14.89 A/W, along with the fast response time of 1.89 ms and the ultrahigh external quantum efficiency of 2840%. Moreover, at the mid-IR 3500 nm, our devices demonstrated a responsivity of 1.55 AW-1, which was several orders of magnitude higher than that of previous 3D TIs photodetector. These excellent properties indicate that the inorganic/organic heterojunction, that is, the combination of 3D TIs with organic materials, is an exciting structure for high performance photodetectors in the wideband detection region. On account of the fact that the device is constructed on mica substrate, this work also represents a potential scenario for flexible optoelectronic devices.
Collapse
Affiliation(s)
- Ming Yang
- School of Optoelectronic Science and Engineering , University of Electronic Science and Technology of China , Chengdu 610054 , P.R. China
| | - Jun Wang
- School of Optoelectronic Science and Engineering , University of Electronic Science and Technology of China , Chengdu 610054 , P.R. China
- State Key Laboratory of Electronic Thin Films and Integrated Devices , University of Electronic Science and Technology of China , Chengdu 610054 , P.R. China
| | - Yafei Zhao
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , P.R. China
| | - Liang He
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , P.R. China
| | - Chunhui Ji
- School of Optoelectronic Science and Engineering , University of Electronic Science and Technology of China , Chengdu 610054 , P.R. China
| | - Xianchao Liu
- School of Optoelectronic Science and Engineering , University of Electronic Science and Technology of China , Chengdu 610054 , P.R. China
| | - Hongxi Zhou
- School of Optoelectronic Science and Engineering , University of Electronic Science and Technology of China , Chengdu 610054 , P.R. China
| | - Zhiming Wu
- School of Optoelectronic Science and Engineering , University of Electronic Science and Technology of China , Chengdu 610054 , P.R. China
- State Key Laboratory of Electronic Thin Films and Integrated Devices , University of Electronic Science and Technology of China , Chengdu 610054 , P.R. China
| | - Xinran Wang
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , P.R. China
| | - Yadong Jiang
- School of Optoelectronic Science and Engineering , University of Electronic Science and Technology of China , Chengdu 610054 , P.R. China
- State Key Laboratory of Electronic Thin Films and Integrated Devices , University of Electronic Science and Technology of China , Chengdu 610054 , P.R. China
| |
Collapse
|
43
|
Yu M, Li H, Liu H, Qin F, Gao F, Hu Y, Dai M, Wang L, Feng W, Hu P. Synthesis of Two-Dimensional Alloy Ga 0.84In 0.16Se Nanosheets for High-Performance Photodetector. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43299-43304. [PMID: 30507146 DOI: 10.1021/acsami.8b15317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The electronic and optoelectronic properties of 2D alloy Ga0.84In0.16Se were investigated for the first time. 2D Ga0.84In0.16Se FETs show p-type conduction behaviors. 2D Ga0.84In0.16Se photodetectors show high photoresponse in the visible light range of 500 to 700 nm. The responsivity value is 258 A/W for alloy photodetector (500 nm illumination), and it is 92 times and 20 times higher than those of 2D GaSe and InSe photodetectors, respectively. Moreover, the alloy photodetector exhibits good photoresponse stability and rapid photoresponse time. Our results demonstrate that 2D alloy Ga0.84In0.16Se has great potential for application in photodetection and sensor devices.
Collapse
Affiliation(s)
- Miaomiao Yu
- Department of Chemistry and Chemical Engineering, College of Science , Northeast Forestry University , Harbin , 150040 , China
| | - Hang Li
- Innovation Lab of Space Robot System, Space Robotics Engineering Center, Changchun Institute of Optics, Fine Mechanics and Physics , Chinese Academy of Sciences , Changchun 130033 , China
| | - He Liu
- Department of Chemistry and Chemical Engineering, College of Science , Northeast Forestry University , Harbin , 150040 , China
| | - Fanglu Qin
- Department of Chemistry and Chemical Engineering, College of Science , Northeast Forestry University , Harbin , 150040 , China
| | - Feng Gao
- Key Lab of Microsystem and Microstructure of Ministry of Education , Harbin Institute of Technology , Harbin 150080 , China
| | - Yunxia Hu
- Key Lab of Microsystem and Microstructure of Ministry of Education , Harbin Institute of Technology , Harbin 150080 , China
| | - Mingjin Dai
- Key Lab of Microsystem and Microstructure of Ministry of Education , Harbin Institute of Technology , Harbin 150080 , China
| | - Lifeng Wang
- Institute for Frontier Materials , Deakin University , 75 Pigdons Road , Waurn Ponds, Geelong, Victoria 3216 , Australia
| | - Wei Feng
- Department of Chemistry and Chemical Engineering, College of Science , Northeast Forestry University , Harbin , 150040 , China
| | - PingAn Hu
- Key Lab of Microsystem and Microstructure of Ministry of Education , Harbin Institute of Technology , Harbin 150080 , China
| |
Collapse
|
44
|
Yao J, Zheng Z, Yang G. Ultrasensitive 2D/3D Heterojunction Multicolor Photodetectors: A Synergy of Laterally and Vertically Aligned 2D Layered Materials. ACS APPLIED MATERIALS & INTERFACES 2018; 10:38166-38172. [PMID: 30360099 DOI: 10.1021/acsami.8b10396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, a p-type 2D SnS nanofilm containing both laterally and vertically aligned components was successfully deposited on an n-type Si substrate through pulsed-laser deposition. Energy band analysis demonstrates a typical type-II band alignment between SnS and Si, which is beneficial to the separation of photogenerated carriers. The as-fabricated p-SnS/n-Si heterojunction photodetector exhibits multicolor photoresponse from ultraviolet to near-infrared (370-1064 nm). Importantly, the device manifests a high responsivity of 273 A/W, a large external quantum efficiency of 4.2 × 104%, and an outstanding detectivity of 7× 1013 Jones (1 Jones = 1 cm Hz1/2 W-1), which far outperforms state-of-the-art 2D/3D heterojunction photodetectors incorporating either laterally or vertically aligned 2D layered materials (2DLMs). The splendid performance is ascribed to lateral SnS's dangling-bond-free interface induced efficient carrier separation, vertical SnS's high-speed carrier transport, and collision ionization induced carrier multiplication. In sum, the current work depicts a unique landscape for revolutionary design and advancement of 2DLM-based heterojunction photodetectors.
Collapse
Affiliation(s)
- Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering , Sun Yat-sen University , Guangzhou 510275 , Guangdong , P. R. China
| | - Zhaoqiang Zheng
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering , Sun Yat-sen University , Guangzhou 510275 , Guangdong , P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering , Sun Yat-sen University , Guangzhou 510275 , Guangdong , P. R. China
| |
Collapse
|
45
|
Thakar K, Mukherjee B, Grover S, Kaushik N, Deshmukh M, Lodha S. Multilayer ReS 2 Photodetectors with Gate Tunability for High Responsivity and High-Speed Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36512-36522. [PMID: 30251824 DOI: 10.1021/acsami.8b11248] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Rhenium disulfide (ReS2) is an attractive candidate for photodetection applications owing to its thickness-independent direct band gap. Despite various photodetection studies using two-dimensional semiconductors, the trade-off between responsivity and response time under varying measurement conditions has not been studied in detail. This report presents a comprehensive study of the architectural, laser power and gate bias dependence of responsivity and speed in supported and suspended ReS2 phototransistors. Photocurrent scans show uniform photogeneration across the entire channel because of enhanced optical absorption and a direct band gap in multilayer ReS2. A high responsivity of 4 A W-1 (at 50 ms response time) and a low response time of 20 μs (at 4 mA W-1 responsivity) make this one of the fastest reported transition-metal dichalcogenide photodetectors. Occupancy of intrinsic (bulk ReS2) and extrinsic (ReS2/SiO2 interface) traps is modulated using gate bias to demonstrate tunability of the response time (responsivity) over 4 orders (15×) of magnitude, highlighting the versatility of these photodetectors. Differences in the trap distributions of suspended and supported channel architectures, and their occupancy under different gate biases enable switching the dominant operating mechanism between either photogating or photoconduction. Further, a new metric that captures intrinsic photodetector performance by including the trade-off between its responsivity and speed, besides normalizing for the applied bias and geometry, is proposed and benchmarked for this work.
Collapse
Affiliation(s)
- Kartikey Thakar
- Department of Electrical Engineering , Indian Institute of Technology Bombay , Mumbai , 400076 , India
| | - Bablu Mukherjee
- Department of Electrical Engineering , Indian Institute of Technology Bombay , Mumbai , 400076 , India
| | - Sameer Grover
- Department of Condensed Matter Physics and Materials Science , Tata Institute of Fundamental Research , Mumbai , 400005 , India
| | - Naveen Kaushik
- Department of Electrical Engineering , Indian Institute of Technology Bombay , Mumbai , 400076 , India
| | - Mandar Deshmukh
- Department of Condensed Matter Physics and Materials Science , Tata Institute of Fundamental Research , Mumbai , 400005 , India
| | - Saurabh Lodha
- Department of Electrical Engineering , Indian Institute of Technology Bombay , Mumbai , 400076 , India
| |
Collapse
|
46
|
Liu Y, Yin J, Wang P, Hu Q, Wang Y, Xie Y, Zhao Z, Dong Z, Zhu JL, Chu W, Yang N, Wei J, Ma W, Sun JL. High-Performance, Ultra-Broadband, Ultraviolet to Terahertz Photodetectors Based on Suspended Carbon Nanotube Films. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36304-36311. [PMID: 30264557 DOI: 10.1021/acsami.8b14386] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ultra-broad spectral detection is critical for several technological applications in imaging, sensing, spectroscopy, and communication. Carbon nanotube (CNT) films are a promising material for ultra-broadband photodetectors because their absorption spectra cover the entire ultraviolet to the terahertz range. However, because of the high binding energy of excitons, photodetectors based on CNT films always require a strong electric field, asymmetric electrical contacts, or hybrid structures with other materials. Here, we report an ultra-broadband bolometric photodetector based on a suspended CNT film. With an abundant distribution of tube diameters and an appropriate morphology (spider web-like), the CNT films display a strong absorption spectrum from the ultraviolet up to the terahertz region. Under illumination, heat generated from the electron-photon interaction dominates the photoresponse of our devices. For small changes in temperature, the photocurrent shows a convincing linear dependence with the absorbed light's power across 3 orders of magnitude. When the channel length is reduced to 100 μm, the device demonstrates a high performance with an ultraviolet responsivity of up to 0.58 A/W with a bias voltage of 0.2 V and a short response time of ∼150 μs in vacuum, which is better than that of many other photodetectors based on CNTs. Moreover, this performance could be further enhanced by optimization.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Weidong Chu
- Institute of Applied Physics and Computational Mathematics , P.O.Box 8009 (28), Beijing 100088 , P. R. China
| | - Ning Yang
- Institute of Applied Physics and Computational Mathematics , P.O.Box 8009 (28), Beijing 100088 , P. R. China
| | | | - Wanyun Ma
- Collaborative Innovation Centre of Quantum Matter , Beijing 100871 , P. R. China
| | - Jia-Lin Sun
- Collaborative Innovation Centre of Quantum Matter , Beijing 100871 , P. R. China
| |
Collapse
|
47
|
Abstract
This review briefly describes the development of synthetic topological insulator materials in the application of advanced electronic devices. As a new class of quantum matter, topological insulators with insulating bulk and conducting surface states have attracted attention in more and more research fields other than condensed matter physics due to their intrinsic physical properties, which provides an excellent basis for novel nanoelectronic, optoelectronic, and spintronic device applications. In comparison to the mechanically exfoliated samples, the newly emerging topological insulator nanostructures prepared with various synthetical approaches are more intriguing because the conduction contribution of the surface states can be significantly enhanced due to the larger surface-to-volume ratio, better manifesting the unique properties of the gapless surface states. So far, these synthetic topological insulator nanostructures have been implemented in different electrically accessible device platforms via electrical, magnetic and optical characterizations for material investigations and device applications, which will be introduced in this review.
Collapse
|
48
|
Nishikubo R, Saeki A. Solution-Processed Bi 2S 3 Photoresistor Film To Mitigate a Trade-off between Morphology and Electronic Properties. J Phys Chem Lett 2018; 9:5392-5399. [PMID: 30183306 DOI: 10.1021/acs.jpclett.8b02218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bismuth sulfide (Bi2S3) is an attractive 2D layered, visible-light-absorbing semiconductor composed of nontoxic, abundant elements. Improving the quality of a Bi2S3 film for device applications while maintaining its intrinsic electronic properties is a challenge, as conventional film fabrication processes require a trade-off due to the uncontrolled nucleation and growth steps. We report a novel procedure for Bi2S3 film formation involving spin-coating of a precursor solution of bismuth acetate and thiourea, followed by crystallization under diluted H2S gas. This two-step process produced a large-grained (<400 nm), smooth (surface roughness = 1.7 nm), and highly pure Bi2S3 film with a layer-stacked structure on a substrate. Most importantly, the film exhibited a moderate Hall effect electron mobility (∼7 cm2 V-1 s-1) and excellent performance as a photoresistor with improved photoconductance and on-off ratio compared with those prepared by conventional methods. Our approach provides a versatile route for the development of metal sulfide semiconductors for optoelectronic devices.
Collapse
Affiliation(s)
- Ryosuke Nishikubo
- Department of Applied Chemistry, Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita , Osaka 565-0871 , Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) , Japan Science and Technology Agency , 4-1-8 Honcho , Kawaguchi , Saitama 332-0012 , Japan
| |
Collapse
|
49
|
Yang J, Yu W, Pan Z, Yu Q, Yin Q, Guo L, Zhao Y, Sun T, Bao Q, Zhang K. Ultra-Broadband Flexible Photodetector Based on Topological Crystalline Insulator SnTe with High Responsivity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802598. [PMID: 30126077 DOI: 10.1002/smll.201802598] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/26/2018] [Indexed: 06/08/2023]
Abstract
Topological crystalline insulators (TCIs) are predicted to be a promising candidate material for ultra-broadband photodetectors ranging from ultraviolet (UV) to terahertz (THz) due to its gapless surface state and narrow bulk bandgap. However, the low responsivity of TCIs-based photodetectors limits their further applications. In this regard, a high-performance photodetector based on SnTe, a recently developed TCI, working in a broadband wavelength range from deep UV to mid-IR with high responsivity is reported. By taking advantage of the strong light absorption and small bandgap of SnTe, photodetectors based on the as-grown SnTe crystalline nanoflakes as well as specific short channel length achieve a high responsivity (71.11 A W-1 at 254 nm, 49.03 A W-1 at 635 nm, 10.91 A W-1 at 1550 nm, and 4.17 A W-1 at 4650 nm) and an ultra-broad spectral response (254-4650 nm) simultaneously. Moreover, for the first time, a durable flexible SnTe photodetector fabricated directly on a polyethylene terephthalate film is demonstrated. These results prove the great potential of TCIs as a promising material for integrated and flexible optoelectronic devices.
Collapse
Affiliation(s)
- Jie Yang
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
- Key Lab of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, Jiangsu, P. R. China
| | - Wenzhi Yu
- Department of Materials Science and Engineering, and Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria, 3800, Australia
| | - Zhenghui Pan
- Key Lab of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, Jiangsu, P. R. China
| | - Qiang Yu
- Key Lab of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, Jiangsu, P. R. China
| | - Qing Yin
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
- Key Lab of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, Jiangsu, P. R. China
| | - Lei Guo
- School of Physics, Southeast University, Nanjing, 211189, Jiangsu, P. R. China
| | - Yanfei Zhao
- Key Lab of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, Jiangsu, P. R. China
| | - Tian Sun
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Qiaoliang Bao
- Department of Materials Science and Engineering, and Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria, 3800, Australia
| | - Kai Zhang
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
- Key Lab of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, Jiangsu, P. R. China
| |
Collapse
|
50
|
Xie C, Zeng L, Zhang Z, Tsang YH, Luo L, Lee JH. High-performance broadband heterojunction photodetectors based on multilayered PtSe 2 directly grown on a Si substrate. NANOSCALE 2018; 10:15285-15293. [PMID: 30067253 DOI: 10.1039/c8nr04004d] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two-dimensional group-10 transition metal dichalcogenides have recently attracted increasing research interest because of their unique electronic and optoelectronic properties. Herein, we present vertical hybrid heterojunctions of multilayered PtSe2 and Si, which take advantage of large-scale homogeneous PtSe2 films grown directly on Si substrates. These heterojunctions show obvious rectifying behavior and a pronounced photovoltaic effect, enabling them to function as self-driven photodetectors operating at zero bias. The photodetectors can operate in both photovoltage and photocurrent modes, with responsivity values as high as 5.26 × 106 V W-1 and 520 mA W-1 at 808 nm, respectively. The Ilight/Idark ratio, specific detectivity, and response speed are 1.5 × 105, 3.26 × 1013 Jones, and 55.3/170.5 μs, respectively. Furthermore, the heterojunctions are highly sensitive in a broad spectral region ranging from deep ultraviolet to near-infrared (NIR) (200-1550 nm). Because of the strong NIR light absorption of PtSe2, the heterojunctions exhibit photocurrent responsivities of 33.25 and 0.57 mA W-1 at telecommunication wavelengths of 1310 and 1550 nm, respectively. Considering the excellent performance of the PtSe2/Si heterojunctions, they are highly suitable for application in high-performance broadband photodetectors. The generality of the above results also signifies that the proposed in situ synthesis method has great potential for future large-scale optoelectronic device integration.
Collapse
Affiliation(s)
- Chao Xie
- School of Electronic Science and Applied Physics and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui 230009, China
| | | | | | | | | | | |
Collapse
|