1
|
Saini S, Pal S, Sharma R. Decoding the Role of Antimicrobial Peptides in the Fight against Mycobacterium tuberculosis. ACS Infect Dis 2025; 11:350-365. [PMID: 39873328 DOI: 10.1021/acsinfecdis.4c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Tuberculosis (TB), a leading infectious disease caused by the pathogen Mycobacterium tuberculosis, poses a significant treatment challenge due to its unique characteristics and resistance to existing drugs. The conventional treatment regimens, which are lengthy and involve multiple drugs, often result in poor patient adherence and subsequent drug resistance, particularly with multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains. This highlights the urgent need for novel anti-TB therapies and new drug targets. Antimicrobial peptides (AMPs), which are natural host defense molecules present in all living organisms, offer a promising alternative to traditional small-molecule drugs. AMPs have several advantages, including their broad-spectrum activity and the potential to circumvent existing resistance mechanisms. However, their clinical application faces challenges such as stability, delivery, and potential toxicity. This review aims to provide essential information on AMPs, including their sources, classification, mode of action, induction within the host under stress, efficacy against M. tuberculosis, clinical status and hurdles to their use. It also highlights future research directions to address these challenges and advance the development of AMP-based therapies for TB.
Collapse
Affiliation(s)
- Sapna Saini
- Infectious Diseases Division, CSIR─Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sunny Pal
- Infectious Diseases Division, CSIR─Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR─Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Maity S, Deb VK, Mondal S, Chakraborty A, Pramanick K, Adhikari S. Leveraging supramolecular systems in biomedical breakthroughs. Biofactors 2025; 51:e70005. [PMID: 39902766 DOI: 10.1002/biof.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Supramolecular systems, intricate assemblies of molecular subunits organized through various intermolecular interactions, offer versatile platforms for diverse applications, including gene therapy, antimicrobial therapy, and cellular engineering. These systems are cost-effective and environmentally friendly, contributing to their attractiveness in biomaterial design. Furthermore, supramolecular biomaterials based on acyclic, macrocyclic compounds and lipid-based assembly offer potential applications in distinct types of biomedical approaches. In this context, they can transport several therapeutic agents very effectively to the target site. Supramolecular hydrogels exhibit potent antimicrobial activity by disrupting microbial membranes, offering promising solutions to combat drug-resistant pathogens. Additionally, supramolecular luminescent nanoparticles enable targeted cell imaging, facilitating disease diagnosis and treatment with high specificity and sensitivity. In cellular engineering, supramolecular assemblies of small molecules demonstrate biological activities, overcoming challenges in cancer treatment by inhibiting signaling pathways and inducing apoptosis in cancer cells. This review emphasizes the applications of supramolecular systems from gene therapy to cellular imaging, tissue engineering, and antimicrobial therapy, showcasing their potential to drive innovation and address pressing healthcare challenges.
Collapse
Affiliation(s)
- Shreya Maity
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, Kolkata, India
| | | | - Sayani Mondal
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, Kolkata, India
| | - Akansha Chakraborty
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, Kolkata, India
| | - Kousik Pramanick
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, Kolkata, India
| | - Suman Adhikari
- Department of Chemistry, Government Degree College, Dharmanagar, India
| |
Collapse
|
3
|
Ahuja R, Shivhare V, Konar AD. Recent Advances in Smart Self-Assembled Bioinspired Hydrogels: A Bridging Weapon for Emerging Health Care Applications from Bench to Bedside. Macromol Rapid Commun 2024; 45:e2400255. [PMID: 38802265 DOI: 10.1002/marc.202400255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Stimuli-responsive low molecular weight hydrogel interventions for Biomedical challenges are a rapidly evolving paradigm in the bottom-up approach recently. Peptide-based self-assembled nano biomaterials present safer alternatives to their non-degradable counterparts as demanded for today's most urged clinical needs.Although a plethora of work has already been accomplished, programming hydrogelators with appropriate functionalities requires a better understanding as the impact of the macromolecular structure of the peptides and subsequently, their self-assembled nanostructures remain unidentified. Henceforth this review focuses on two aspects: Firstly, the underlying guidelines for building biomimetic strategies to tailor scaffolds leading to hydrogelation along with the role of non-covalent interactions that are the key components of various self-assembly processes. In the second section, it is aimed to bring together the recent achievements with designer assembly concerning their self-aggregation behaviour and applications mainly in the biomedical arena like drug delivery carrier design, antimicrobial, anti-inflammatory as well as wound healing materials. Furthermore, it is anticipated that this article will provide a conceptual demonstration of the different approaches taken towards the construction of these task-specific designer hydrogels. Finally, a collective effort among the material scientists is required to pave the path for the entrance of these intelligent materials into medicine from bench to bedside.
Collapse
Affiliation(s)
- Rishabh Ahuja
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh, 462033, India
| | - Vaibhav Shivhare
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh, 462033, India
| | - Anita Dutt Konar
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh, 462033, India
- School of Pharmaceutical Sciences, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh, 462033, India
- University Grants Commission, New Delhi, 110002, India
| |
Collapse
|
4
|
Sun Y, Sun X, Wang R, Xing Y, Ma X, Yue J, Zhang M, Wang Y, Tian W, Jing G. Oxidized sodium alginate hydrogel-mouse nerve growth factor sustained release system promotes repair of peripheral nerve injury. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1550-1570. [PMID: 38630632 DOI: 10.1080/09205063.2024.2339636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
In recent years, mouse nerve growth factor (mNGF) has emerged as an important biological regulator to repair peripheral nerve injury, but its systemic application is restricted by low efficiency and large dosage requirement. These limitations prompted us to search for biomaterials that can be locally loaded. Oxidized sodium alginate hydrogel (OSA) exhibits good biocompatibility and physicochemical properties, and can be loaded with drugs to construct a sustained-release system that can act locally on nerve injury. Here, we constructed a sustained-release system of OSA-mouse nerve growth factor (mNGF), and investigated the loading and release of the drug through Fourier transform infrared spectroscopy and drug release curves. In vitro and in vivo experiments showed that OSA-mNGF significantly promoted the biological activities of RSC-96 cells and facilitated the recovery from sciatic nerve crush injury in rats. This observation may be attributed to the additive effect of OSA on promoting Schwann cell biological activities or its synergistic effect of cross-activating phosphoinositide 3-kinase (PI3K) through extracellular signal regulated kinase (ERK) signaling. Although the specific mechanism of OSA action needs to be explored in the future, the current results provide a valuable preliminary research basis for the clinical application of the OSA-mNGF sustained-release system for nerve repair.
Collapse
Affiliation(s)
- Yuming Sun
- Medical College, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangyu Sun
- Medical College, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruiqi Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yuhang Xing
- Medical College, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiang Ma
- Medical College, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jie Yue
- Medical College, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Min Zhang
- Medical College, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuezhu Wang
- Medical College, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weiming Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Guangping Jing
- Medical College, First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Asokan-Sheeja H, Awad K, Xu J, Le M, Nguyen JN, Nguyen N, Nguyen TP, Nguyen KT, Hong Y, Varanasi VG, Liu X, Dong H. In Situ Synthesis and Self-Assembly of Peptide-PEG Conjugates: A Facile Method for the Construction of Fibrous Hydrogels. Biomacromolecules 2024; 25:2814-2822. [PMID: 38598701 PMCID: PMC11867594 DOI: 10.1021/acs.biomac.3c01450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Peptide-based hydrogels have gained considerable attention as a compelling platform for various biomedical applications in recent years. Their attractiveness stems from their ability to seamlessly integrate diverse properties, such as biocompatibility, biodegradability, easily adjustable hydrophilicity/hydrophobicity, and other functionalities. However, a significant drawback is that most of the functional self-assembling peptides cannot form robust hydrogels suitable for biological applications. In this study, we present the synthesis of novel peptide-PEG conjugates and explore their comprehensive hydrogel properties. The hydrogel comprises double networks, with the first network formed through the self-assembly of peptides to create a β-sheet secondary structure. The second network is established through covalent bond formation via N-hydroxysuccinimide chemistry between peptides and a 4-arm PEG to form a covalently linked network. Importantly, our findings reveal that this hydrogel formation method can be applied to other peptides containing lysine-rich sequences. Upon encapsulation of the hydrogel with antimicrobial peptides, the hydrogel retained high bacterial killing efficiency while showing minimum cytotoxicity toward mammalian cells. We hope that this method opens new avenues for the development of a novel class of peptide-polymer hydrogel materials with enhanced performance in biomedical contexts, particularly in reducing the potential for infection in applications of tissue regeneration and drug delivery.
Collapse
Affiliation(s)
- Haritha Asokan-Sheeja
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Kamal Awad
- Bone Muscle Research Center, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Jiazhu Xu
- Department of Bioengineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Myan Le
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Jenny N. Nguyen
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Na Nguyen
- Department of Bioengineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Tam P. Nguyen
- Department of Bioengineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Kytai T. Nguyen
- Department of Bioengineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yi Hong
- Department of Bioengineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Venu G. Varanasi
- Bone Muscle Research Center, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Xiaohua Liu
- Department of Chemical and Biomedical Engineering, The University of Missouri, Columbia, Missouri 65211, United States
| | - He Dong
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
6
|
Gao N, Wang J, Fang C, Bai P, Sun Y, Wu W, Shan A. Combating bacterial infections with host defense peptides: Shifting focus from bacteria to host immunity. Drug Resist Updat 2024; 72:101030. [PMID: 38043443 DOI: 10.1016/j.drup.2023.101030] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/12/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The increasing prevalence of multidrug-resistant bacterial infections necessitates the exploration of novel paradigms for anti-infective therapy. Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), have garnered extensive recognition as immunomodulatory molecules that leverage natural host mechanisms to enhance therapeutic benefits. The unique immune mechanism exhibited by certain HDPs that involves self-assembly into supramolecular nanonets capable of inducing bacterial agglutination and entrapping is significantly important. This process effectively prevents microbial invasion and subsequent dissemination and significantly mitigates selective pressure for the evolution of microbial resistance, highlighting the potential of HDP-based antimicrobial therapy. Recent advancements in this field have focused on developing bio-responsive materials in the form of supramolecular nanonets. A comprehensive overview of the immunomodulatory and bacteria-agglutinating activities of HDPs, along with a discussion on optimization strategies for synthetic derivatives, is presented in this article. These optimized derivatives exhibit improved biological properties and therapeutic potential, making them suitable for future clinical applications as effective anti-infective therapeutics.
Collapse
Affiliation(s)
- Nan Gao
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiajun Wang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China.
| | - Chunyang Fang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Pengfei Bai
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu Sun
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Wanpeng Wu
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Anshan Shan
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
7
|
Hu Y, Rigoldi F, Sun H, Gautieri A, Marelli B. Unbiased in silico design of pH-sensitive tetrapeptides. Chem Commun (Camb) 2023; 59:10157-10160. [PMID: 37530567 DOI: 10.1039/d3cc02412a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
We used coarse-grain molecular dynamics simulations to screen all possible histidine-bearing tetrapeptide sequences, finding novel peptide sequences with pH-tunable assembly properties. These tetrapeptides could be used for various biological applications, such as triggered delivery of bioactive molecules.
Collapse
Affiliation(s)
- Yue Hu
- Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, USA.
| | - Federica Rigoldi
- Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, USA.
| | - Hui Sun
- Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, USA.
| | - Alfonso Gautieri
- Biomolecular Engineering Lab, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Benedetto Marelli
- Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, USA.
| |
Collapse
|
8
|
Shang L, Liu J, Wu Y, Wang M, Fei C, Liu Y, Xue F, Zhang L, Gu F. Peptide Supramolecular Hydrogels with Sustained Release Ability for Combating Multidrug-Resistant Bacteria. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37230936 DOI: 10.1021/acsami.3c01453] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chronic wound infection caused by multidrug-resistant bacteria is a major threat globally, leading to high mortality rates and a considerable economic burden. To address it, an innovative supramolecular nanofiber hydrogel (Hydrogel-RL) harboring antimicrobial peptides was developed based on the novel arginine end-tagging peptide (Pep 6) from our recent study, triggering cross-linking. In vitro results demonstrated that Hydrogel-RL can sustain the release of Pep 6 up to 120 h profiles, which is biocompatible and exhibits superior activity for methicillin-resistant Staphylococcus aureus (MRSA) biofilm inhibition and elimination. A single treatment of supramolecular Hydrogel-RL on an MRSA skin infection model revealed formidable antimicrobial activity and therapeutic effects in vivo. In the chronic wound infection model, Hydrogel-RL promoted mouse skin cell proliferation, reduced inflammation, accelerated re-epithelialization, and regulated muscle and collagen fiber formation, rapidly healing full-thickness skin wounds. To show its vehicle property for wound infection combined therapy, etamsylate, an antihemorrhagic drug, was loaded into the porous network of Hydrogel-RL, which demonstrated improved hemostatic activity. Collectively, Hydrogel-RL is a promising clinical candidate agent for functional supramolecular biomaterials designed for combating multidrug-resistant bacteria and rescuing stalled healing in chronic wound infections.
Collapse
Affiliation(s)
- Lu Shang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Jing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Yuting Wu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Mi Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Chenzhong Fei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Yingchun Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Feiqun Xue
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Lifang Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Feng Gu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| |
Collapse
|
9
|
Kumar A, Sharma J, Srivastava P, Nebhani L. Mechanically robust and highly bactericidal macroporous polymeric gels based on quaternized N, N-(dimethylamino)ethyl methacrylate possessing varying alkyl chain lengths. J Mater Chem B 2023; 11:2234-2248. [PMID: 36794579 DOI: 10.1039/d2tb02178a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this paper, macroporous antimicrobial polymeric gels (MAPGs) functionalized with active quaternary ammonium cations attached to varying hydrocarbon chain lengths have been fabricated. Apart from the change in the alkyl chain length attached to the quaternary ammonium cation, the amount of crosslinker was also varied during the fabrication of the macroporous gels. The prepared gels were characterized using Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, field emission scanning electron microscopy (FE-SEM) and swelling studies. In addition, the mechanical properties of the fabricated macroporous gels were studied using compression and tensile testing. The antimicrobial activity of the gels has been determined for Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa) as well as Gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus). Antimicrobial activity, as well as the mechanical properties of the macroporous gels, was found to be influenced by the alkyl chain length attached to the quaternary ammonium cations as well as by the amount of crosslinker used for the fabrication of the gel. In addition, on increasing the alkyl chain length from C4 (butyl) to C8 (octyl), the effectiveness of the polymeric gels increased. It was observed that the gels derived using a tertiary amine (NMe2) containing monomer showed relatively low antimicrobial activity as compared to the gels obtained using quaternized monomers (C4 (butyl), C6 (hexyl), and C8 (octyl)). The gels based on the quaternized C8 monomer displayed the highest antimicrobial activity and mechanical stability as compared to the gels based on the C4 and C6 monomers.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Jyoti Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Leena Nebhani
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| |
Collapse
|
10
|
Ghosh S, Ghosh T, Bhowmik S, Patidar MK, Das AK. Nucleopeptide-Coupled Injectable Bioconjugated Guanosine-Quadruplex Hydrogel with Inherent Antibacterial Activity. ACS APPLIED BIO MATERIALS 2023; 6:640-651. [PMID: 36706228 DOI: 10.1021/acsabm.2c00912] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The multicomponent reaction-directed self-assembled hydrogels offer the opportunities to fabricate materials with ubiquitous properties which sometimes are not possible to generate from single components. Therefore, multicomponent-derived hydrogels have enormous applications in biomedical fields, and the number of such systems is increasing day by day. Herein, the multicomponent self-assembly techniques have been employed to develop a biomimetic low-molecular-weight G-quadruplex hydrogel under physiological conditions. The bioconjugation of guanosine, 4-formylphenylboronic acid, and cytosine-functionalized nucleopeptide (NP) is important to generate the multicomponent self-assembled dynamic imino-boronate ester-mediated bioconjugated G-quadruplex hydrogels. Using thioflavin T fluorescence assay, powder X-ray diffraction, and circular dichroism spectroscopic techniques, we confirm the existence of a G-quartet-like structure as the key parameter for the formation of nanofibrillar hydrogels. The multicomponent self-assembled G-quadruplex hydrogel possesses excellent inherent antibacterial activity against a broad range of bacterial species. The in vitro cytocompatibility of the synthesized hydrogel was evaluated on MCF-7 and HEK 293T cell lines to study the biocompatibility of the hydrogel. The proposed injectable, biocompatible, and NP-coupled G-quadruplex hydrogel with inherent antibacterial efficiency holds promising importance to prevent localized bacterial infections.
Collapse
Affiliation(s)
- Shruti Ghosh
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | - Tapas Ghosh
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | - Sourav Bhowmik
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | - Mukesh K Patidar
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.,Department of Biosciences, Maharaja Ranjit Singh College of Professional Sciences, Indore 452001, India
| | - Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| |
Collapse
|
11
|
Hydrogels with intrinsic antibacterial activity prepared from naphthyl anthranilamide (NaA) capped peptide mimics. Sci Rep 2022; 12:22259. [PMID: 36564414 PMCID: PMC9789043 DOI: 10.1038/s41598-022-26426-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, we prepared antibacterial hydrogels through the self-assembly of naphthyl anthranilamide (NaA) capped amino acid based cationic peptide mimics. These ultra-short cationic peptide mimics were rationally designed with NaA as a capping group, L-phenylalanine, a short aliphatic linker, and a cationic group. The synthesized peptide mimics efficiently formed hydrogels with minimum gel concentrations between 0.1 and 0.3%w/v. The resulting hydrogels exhibited desirable viscoelastic properties which can be tuned by varying the cationic group, electronegative substituent, or counter anion. Importantly, nanofibers from the NaA-capped cationic hydrogels were found to be the source of hydrogels' potent bacteriacidal actvity against both Gram-positive and Gram-negative bacteria while remaining non-cytotoxic. These intrinsically antibacterial hydrogels are ideal candidates for further development in applications where bacterial contamination is problematic.
Collapse
|
12
|
Hao Z, Chen R, Chai C, Wang Y, Chen T, Li H, Hu Y, Feng Q, Li J. Antimicrobial peptides for bone tissue engineering: Diversity, effects and applications. Front Bioeng Biotechnol 2022; 10:1030162. [PMID: 36277377 PMCID: PMC9582762 DOI: 10.3389/fbioe.2022.1030162] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Bone tissue engineering has been becoming a promising strategy for surgical bone repair, but the risk of infection during trauma repair remains a problematic health concern worldwide, especially for fracture and infection-caused bone defects. Conventional antibiotics fail to effectively prevent or treat bone infections during bone defect repair because of drug-resistance and recurrence, so novel antibacterial agents with limited resistance are highly needed for bone tissue engineering. Antimicrobial peptides (AMPs) characterized by cationic, hydrophobic and amphipathic properties show great promise to be used as next-generation antibiotics which rarely induce resistance and show potent antibacterial efficacy. In this review, four common structures of AMPs (helix-based, sheet-based, coil-based and composite) and related modifications are presented to identify AMPs and design novel analogs. Then, potential effects of AMPs for bone infection during bone repair are explored, including bactericidal activity, anti-biofilm, immunomodulation and regenerative properties. Moreover, we present distinctive applications of AMPs for topical bone repair, which can be either used by delivery system (surface immobilization, nanoparticles and hydrogels) or used in gene therapy. Finally, future prospects and ongoing challenges are discussed.
Collapse
Affiliation(s)
- Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Renxin Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chen Chai
- Emergency Center, Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tianhong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hanke Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yingkun Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qinyu Feng
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Jingfeng Li,
| |
Collapse
|
13
|
Development of cationic sulfonium-based gels with inherent antibacterial, excellent antibiofilm, and tunable swelling properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Asokan-Sheeja H, Yang S, A Adones A, Chen W, B Fulton B, K Chintapula U, T Nguyen K, J Lovely C, A Brautigam C, Nam K, Dong H. Self‐assembling Peptides with Internal Ionizable Unnatural Amino Acids: A New and General Approach to pH‐responsive Peptide Materials. Chem Asian J 2022; 17:e202200724. [DOI: 10.1002/asia.202200724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/11/2022] [Indexed: 11/06/2022]
Affiliation(s)
| | - Su Yang
- The University of Texas at Arlington Chemistry UNITED STATES
| | - Ashley A Adones
- The University of Texas at Arlington Chemistry UNITED STATES
| | - Weike Chen
- The University of Texas at Arlington Chemistry UNITED STATES
| | | | | | - Kytai T Nguyen
- The University of Texas at Arlington Bioengineering UNITED STATES
| | - Carl J Lovely
- The University of Texas at Arlington Chemistry UNITED STATES
| | - Chad A Brautigam
- UT Southwestern: The University of Texas Southwestern Medical Center Biophysics UNITED STATES
| | - Kwangho Nam
- The University of Texas at Arlington Chemistry UNITED STATES
| | - He Dong
- University of Texas at Arlington Chemistry 700 Planetarium Place 76019 Arlington UNITED STATES
| |
Collapse
|
15
|
Baddi S, Dang-i AY, Huang T, Xing C, Lin S, Feng CL. Chirality-influenced antibacterial activity of methylthiazole- and thiadiazole-based supramolecular biocompatible hydrogels. Acta Biomater 2022; 141:59-69. [PMID: 35063710 DOI: 10.1016/j.actbio.2022.01.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/30/2021] [Accepted: 01/14/2022] [Indexed: 12/14/2022]
Abstract
Chiral stereochemistry is a unique and fundamental strategy that determines the interaction of bacteria cells with chiral biomolecules and stereochemical surfaces. The interaction between bacteria and material surface (molecular chirality or supramolecular chirality) plays a significant role in modulating antibacterial performance. Herein, we developed inherent chiral antibacterial hydrogels by modifying the carboxyl groups of our previously reported supramolecular gelator (LPF-left handed phenylalanine gelator and DPF- right handed phenylalanine gelator) with 2-amino-5-methylthiazole (MTZ) and 5-amino-1,3,4-thiadiazole-2- thiol (TDZ). The new L/D-gelator molecules initiate self-assembly to form hydrogels through non-covalent interactions (Hydrogen bonding and π-π interactions) verified by FTIR and CD spectroscopy. Morphological studies of the xerogels revealed left and right-handed chiral nanofibers for the gelators' L-form and D-form, respectively. The resulting hydrogels exhibited inherent antibacterial activity against Gram-positive (Bacillus subtilis, Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria, with TDZ hydrogels showing more significant antibacterial activity than MTZ hydrogels. Interestingly, the D-form (having right-handed nanofibers) of both hydrogels (MTZ and TDZ) exhibited higher antibacterial activities compared with the left-handed nanofibrous hydrogels (L-form) attributed to the stereoselective interaction of the chiral helical nanofiber. Moreover, the amplification of chirality moving from a molecular to a supramolecular level essentially improved the antibacterial action. Our results provide deep insight into the development of unique supramolecular chiral antimicrobial agents and hint at the potentiality of right-handed nanofibers (D-form) having enhanced antibacterial activity. STATEMENT OF SIGNIFICANCE: Chiral stereochemistry plays a significant role in many biological processes, which determines the interaction of bacteria cells with chiral biomolecules. The interaction between bacteria and material surface (molecular chirality or supramolecular chirality) plays a significant role in modulating antibacterial performance. Here, we deigned and synthesized unique inherent biocompatible supramolecular chiral hydrogel. From this study we concluded that the D-form (having right-handed nanofibers) of hydrogels exhibited higher antibacterial activities compared with the left-handed nanofibrous hydrogels (L-form) attributed to the stereoselective interaction of the chiral helical nanofiber. Additionally, this study also explored the amplification of chirality moving from a molecular to a supramolecular level essentially improved the antibacterial action.
Collapse
|
16
|
Zhu X, Duan R, Chan SY, Han L, Liu H, Sun B. Structural and photoactive properties of self-assembled peptide-based nanostructures and their optical bioapplication in food analysis. J Adv Res 2022; 43:27-44. [PMID: 36585113 PMCID: PMC9811376 DOI: 10.1016/j.jare.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/23/2022] [Accepted: 02/02/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Food processing plays an important role in the modern industry because food quality and security directly affect human health, life safety, and social and economic development. Accurate, efficient, and sensitive detection technology is the basis for ensuring food quality and security. Optosensor-based technology with the advantage of fast and visual real-time detection can be used to detect pesticides, metal ions, antibiotics, and nutrients in food. As excellent optical centres, self-assembled peptide-based nanostructures possess attractive advantages, such as simple preparation methods, controllable morphology, tunable functionality, and inherent biocompatibility. AIM OF REVIEW Self-assembled peptide nanostructures with good fabrication yield, stability, dispersity in a complex sample matrix, biocompatibility, and environmental friendliness are ideal development goals in the future. Owing to its flexible and unique optical properties, some short peptide self-assemblies can possibly be used to achieve the purpose of rapid and sensitive detection of composition in food, agriculture, and the environment, expanding the understanding and application of peptide-based optics in analytical chemistry. KEY SCIENTIFIC CONCEPT OF REVIEW The self-assembly process of peptides is driven by noncovalent interactions, including hydrogen bonding, electrostatic interactions, hydrophobic interactions, and π-π stacking, which are the key factors for obtaining stable self-assembled peptide nanostructures with peptides serving as assembly units. Controllable morphology of self-assembled peptide nanostructures can be achieved through adjustment in the type, concentration, and pH of organic solvents and peptides. The highly ordered nanostructures formed by the self-assembly of peptides have been proven to be novel biological structures and can be used for the construction of optosensing platforms in biological or other systems. Optosensing platforms make use of signal changes, including optical signals and electrical signals caused by specific reactions between analytes and active substances, to determine the content or concentration of an analyte.
Collapse
Affiliation(s)
- Xuecheng Zhu
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Ruixue Duan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Siew Yin Chan
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
| | - Luxuan Han
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Huilin Liu
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China,Corresponding author.
| | - Baoguo Sun
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| |
Collapse
|
17
|
Shi Y, Wareham DW, Yuan Y, Deng X, Mata A, Azevedo HS. Polymyxin B-Triggered Assembly of Peptide Hydrogels for Localized and Sustained Release of Combined Antimicrobial Therapy. Adv Healthc Mater 2021; 10:e2101465. [PMID: 34523266 PMCID: PMC11469027 DOI: 10.1002/adhm.202101465] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/24/2021] [Indexed: 12/30/2022]
Abstract
Repurposing old antibiotics into more effective and safer formulations is an emergent approach to tackle the growing threat of antimicrobial resistance. Herein, a peptide hydrogel is reported for the localized and sustained release of polymyxin B (PMB), a decade-old antibiotic with increasing clinical utility for treating multidrug-resistant Gram-negative bacterial infections. The hydrogel is assembled by additing PMB solution into a rationally designed peptide amphiphile (PA) solution and its mechanical properties can be adjusted through the addition of counterions, envisioning its application in diverse infection scenarios. Sustained release of PMB from the hydrogel over a 5-day period and prolonged antimicrobial activities against Gram-negative bacteria are observed. The localized release of active PMB from the hydrogel is shown to be effective in vivo for treating Pseudomonas aeruginosa infection in the Galleria mellonella burn wound infection model, dramatically reducing the mortality from 93% to 13%. Complementary antimicrobial activity against Gram-positive Staphylococcus aureus and enhanced antimicrobial effect against the Gram-negative Acinetobacter baumannii are observed when an additional antibiotic fusidic acid is incorporated into the hydrogen network. These results demonstrate the potential of the PMB-triggered PA hydrogel as a versatile platform for the localized and sustained delivery of combined antimicrobial therapies.
Collapse
Affiliation(s)
- Yejiao Shi
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
- Institute of BioengineeringQueen Mary University of LondonLondonE1 4NSUK
| | - David W. Wareham
- Center for ImmunobiologyThe Blizard InstituteBarts and The LondonSchool of Medicine and DentistryQueen Mary University of LondonLondonE1 2ATUK
- Barts Health NHS TrustLondonE1 2ATUK
| | - Yichen Yuan
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
- Institute of BioengineeringQueen Mary University of LondonLondonE1 4NSUK
| | - Xinru Deng
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
- Institute of BioengineeringQueen Mary University of LondonLondonE1 4NSUK
| | - Alvaro Mata
- School of PharmacyUniversity of NottinghamNottinghamNG7 2RDUK
- Department of Chemical and Environmental EngineeringUniversity of NottinghamNottinghamNG7 2ATUK
- Biodiscovery InstituteUniversity of NottinghamNottinghamNG7 2RDUK
| | - Helena S. Azevedo
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
- Institute of BioengineeringQueen Mary University of LondonLondonE1 4NSUK
| |
Collapse
|
18
|
Cross ER, Coulter SM, Pentlavalli S, Laverty G. Unravelling the antimicrobial activity of peptide hydrogel systems: current and future perspectives. SOFT MATTER 2021; 17:8001-8021. [PMID: 34525154 PMCID: PMC8442837 DOI: 10.1039/d1sm00839k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/19/2021] [Indexed: 05/05/2023]
Abstract
The use of hydrogels has garnered significant interest as biomaterial and drug delivery platforms for anti-infective applications. For decades antimicrobial peptides have been heralded as a much needed new class of antimicrobial drugs. Self-assembling peptide hydrogels with inherent antimicrobial ability have recently come to the fore. However, their fundamental antimicrobial properties, selectivity and mechanism of action are relatively undefined. This review attempts to establish a link between antimicrobial efficacy; the self-assembly process; peptide-membrane interactions and mechanical properties by studying several reported peptide systems: β-hairpin/β-loop peptides; multidomain peptides; amphiphilic surfactant-like peptides and ultrashort/low molecular weight peptides. We also explore their role in the formation of amyloid plaques and the potential for an infection etiology in diseases such as Alzheimer's. We look briefly at innovative methods of gel characterization. These may provide useful tools for future studies within this increasingly important field.
Collapse
Affiliation(s)
- Emily R Cross
- Biofunctional Nanomaterials Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, N. Ireland, BT9 7BL, UK.
| | - Sophie M Coulter
- Biofunctional Nanomaterials Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, N. Ireland, BT9 7BL, UK.
| | - Sreekanth Pentlavalli
- Biofunctional Nanomaterials Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, N. Ireland, BT9 7BL, UK.
| | - Garry Laverty
- Biofunctional Nanomaterials Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, N. Ireland, BT9 7BL, UK.
| |
Collapse
|
19
|
Synthesis, Characterization and Evaluation of Peptide Nanostructures for Biomedical Applications. Molecules 2021; 26:molecules26154587. [PMID: 34361740 PMCID: PMC8348434 DOI: 10.3390/molecules26154587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/04/2021] [Accepted: 07/17/2021] [Indexed: 12/19/2022] Open
Abstract
There is a challenging need for the development of new alternative nanostructures that can allow the coupling and/or encapsulation of therapeutic/diagnostic molecules while reducing their toxicity and improving their circulation and in-vivo targeting. Among the new materials using natural building blocks, peptides have attracted significant interest because of their simple structure, relative chemical and physical stability, diversity of sequences and forms, their easy functionalization with (bio)molecules and the possibility of synthesizing them in large quantities. A number of them have the ability to self-assemble into nanotubes, -spheres, -vesicles or -rods under mild conditions, which opens up new applications in biology and nanomedicine due to their intrinsic biocompatibility and biodegradability as well as their surface chemical reactivity via amino- and carboxyl groups. In order to obtain nanostructures suitable for biomedical applications, the structure, size, shape and surface chemistry of these nanoplatforms must be optimized. These properties depend directly on the nature and sequence of the amino acids that constitute them. It is therefore essential to control the order in which the amino acids are introduced during the synthesis of short peptide chains and to evaluate their in-vitro and in-vivo physico-chemical properties before testing them for biomedical applications. This review therefore focuses on the synthesis, functionalization and characterization of peptide sequences that can self-assemble to form nanostructures. The synthesis in batch or with new continuous flow and microflow techniques will be described and compared in terms of amino acids sequence, purification processes, functionalization or encapsulation of targeting ligands, imaging probes as well as therapeutic molecules. Their chemical and biological characterization will be presented to evaluate their purity, toxicity, biocompatibility and biodistribution, and some therapeutic properties in vitro and in vivo. Finally, their main applications in the biomedical field will be presented so as to highlight their importance and advantages over classical nanostructures.
Collapse
|
20
|
Rodriguez-Cabello JC, Gonzalez De Torre I, González-Pérez M, González-Pérez F, Montequi I. Fibrous Scaffolds From Elastin-Based Materials. Front Bioeng Biotechnol 2021; 9:652384. [PMID: 34336798 PMCID: PMC8323661 DOI: 10.3389/fbioe.2021.652384] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/25/2021] [Indexed: 11/28/2022] Open
Abstract
Current cutting-edge strategies in biomaterials science are focused on mimicking the design of natural systems which, over millions of years, have evolved to exhibit extraordinary properties. Based on this premise, one of the most challenging tasks is to imitate the natural extracellular matrix (ECM), due to its ubiquitous character and its crucial role in tissue integrity. The anisotropic fibrillar architecture of the ECM has been reported to have a significant influence on cell behaviour and function. A new paradigm that pivots around the idea of incorporating biomechanical and biomolecular cues into the design of biomaterials and systems for biomedical applications has emerged in recent years. Indeed, current trends in materials science address the development of innovative biomaterials that include the dynamics, biochemistry and structural features of the native ECM. In this context, one of the most actively studied biomaterials for tissue engineering and regenerative medicine applications are nanofiber-based scaffolds. Herein we provide a broad overview of the current status, challenges, manufacturing methods and applications of nanofibers based on elastin-based materials. Starting from an introduction to elastin as an inspiring fibrous protein, as well as to the natural and synthetic elastin-based biomaterials employed to meet the challenge of developing ECM-mimicking nanofibrous-based scaffolds, this review will follow with a description of the leading strategies currently employed in nanofibrous systems production, which in the case of elastin-based materials are mainly focused on supramolecular self-assembly mechanisms and the use of advanced manufacturing technologies. Thus, we will explore the tendency of elastin-based materials to form intrinsic fibers, and the self-assembly mechanisms involved. We will describe the function and self-assembly mechanisms of silk-like motifs, antimicrobial peptides and leucine zippers when incorporated into the backbone of the elastin-based biomaterial. Advanced polymer-processing technologies, such as electrospinning and additive manufacturing, as well as their specific features, will be presented and reviewed for the specific case of elastin-based nanofiber manufacture. Finally, we will present our perspectives and outlook on the current challenges facing the development of nanofibrous ECM-mimicking scaffolds based on elastin and elastin-like biomaterials, as well as future trends in nanofabrication and applications.
Collapse
Affiliation(s)
- Jose Carlos Rodriguez-Cabello
- BIOFORGE, University of Valladolid, Valladolid, Spain
- Center for Biomedical Research in the Network in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Israel Gonzalez De Torre
- BIOFORGE, University of Valladolid, Valladolid, Spain
- Center for Biomedical Research in the Network in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Miguel González-Pérez
- BIOFORGE, University of Valladolid, Valladolid, Spain
- Center for Biomedical Research in the Network in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Fernando González-Pérez
- BIOFORGE, University of Valladolid, Valladolid, Spain
- Center for Biomedical Research in the Network in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Irene Montequi
- BIOFORGE, University of Valladolid, Valladolid, Spain
- Center for Biomedical Research in the Network in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
21
|
Sarkar T, Chetia M, Chatterjee S. Antimicrobial Peptides and Proteins: From Nature's Reservoir to the Laboratory and Beyond. Front Chem 2021; 9:691532. [PMID: 34222199 PMCID: PMC8249576 DOI: 10.3389/fchem.2021.691532] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Rapid rise of antimicrobial resistance against conventional antimicrobials, resurgence of multidrug resistant microbes and the slowdown in the development of new classes of antimicrobials, necessitates the urgent development of alternate classes of therapeutic molecules. Antimicrobial peptides (AMPs) are small proteins present in different lifeforms in nature that provide defense against microbial infections. They have been effective components of the host defense system for a very long time. The fact that the development of resistance by the microbes against the AMPs is relatively slower or delayed compared to that against the conventional antibiotics, makes them prospective alternative therapeutics of the future. Several thousands of AMPs have been isolated from various natural sources like microorganisms, plants, insects, crustaceans, animals, humans, etc. to date. However, only a few of them have been translated commercially to the market so far. This is because of some inherent drawbacks of the naturally obtained AMPs like 1) short half-life owing to the susceptibility to protease degradation, 2) inactivity at physiological salt concentrations, 3) cytotoxicity to host cells, 4) lack of appropriate strategies for sustained and targeted delivery of the AMPs. This has led to a surge of interest in the development of synthetic AMPs which would retain or improve the antimicrobial potency along with circumventing the disadvantages of the natural analogs. The development of synthetic AMPs is inspired by natural designs and sequences and strengthened by the fusion with various synthetic elements. Generation of the synthetic designs are based on various strategies like sequence truncation, mutation, cyclization and introduction of unnatural amino acids and synthons. In this review, we have described some of the AMPs isolated from the vast repertoire of natural sources, and subsequently described the various synthetic designs that have been developed based on the templates of natural AMPs or from de novo design to make commercially viable therapeutics of the future. This review entails the journey of the AMPs from their natural sources to the laboratory.
Collapse
Affiliation(s)
| | | | - Sunanda Chatterjee
- Department of Chemistry, Indian Institute of Technology, Guwahati, India
| |
Collapse
|
22
|
Azoulay Z, Aibinder P, Gancz A, Moran-Gilad J, Navon-Venezia S, Rapaport H. Assembly of cationic and amphiphilic β-sheet FKF tripeptide confers antibacterial activity. Acta Biomater 2021; 125:231-241. [PMID: 33607306 DOI: 10.1016/j.actbio.2021.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/20/2021] [Accepted: 02/09/2021] [Indexed: 12/30/2022]
Abstract
The race drawn against bacteria facing the evolution of antimicrobial resistance fuels research for new drugs and therapeutic strategies. FKF, a tripeptide that is cationic and amphiphilic was examined in light of its potential antimicrobial activity. Acid titration of purified peptide solution, 6% w/v (136 mM), yielded a hydrogel at pH~ 4. Cryo-TEM images of FKF revealed distinct phases formed upon increase in pH, ranging from elongated needles, uniform width fibers, sheets and tubular structures. 1H NMR attested FKF charged states as function of pH, and CD and FTIR measurements indicated that FKF β-sheet assemblies are held by both π-π stacking and H-bonds. FKF hydrogel displayed bactericidal activity against E. coli and P. aeruginosa with a 3-log reduction in bacterial counts. The hydrogel was also found effective in reducing P. aeruginosa contamination in a skin lesion model in rats. FKF forms a unique antimicrobial peptide-hydrogel, showing neglectable effect in dissolved state, yet only when fibrillary assembled it gains functionality. STATEMENT OF SIGNIFICANCE: Ultra-short peptides are at the frontier of peptide self-assembly research. The tripeptide FKF assumes distinct assembly forms that are a function of pH, for which we have pinpointed the accompanying changes in charge. Made of natural amino acids, FKF forms a pure peptide hydrogel phase, which is intrinsically antimicrobial. We demonstrate that antimicrobial effect is only assumed by the peptide assemblies, posing self-assembly as a pre-requisite for FKF's bactericidal effect. This system provides evidence for the link between specific microscopic peptide assembled structures, macroscopic gel formation and antimicrobial effect, utilized to alleviate bacterial contamination in vivo.
Collapse
|
23
|
Fu K, Wu H, Su Z. Self-assembling peptide-based hydrogels: Fabrication, properties, and applications. Biotechnol Adv 2021; 49:107752. [PMID: 33838284 DOI: 10.1016/j.biotechadv.2021.107752] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/02/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023]
Abstract
The hierarchical formation of self-assembling peptide-based hydrogels (SAPHs) starts from peptide to nanofibers, following with the entanglement into hydrogels with nanofibrous network. Such characteristic structure and extraordinary biocompatibility, and the peptide components endow the SAPHs with diverse applications in biotechnological field. Therefore, the thorough comprehension of SAPHs is significant to broadening their application. In this review, fabrication, properties, and biological applications of the SAPHs are introduced, and the factors influencing the synthesis process as well as the properties of the SAPHs products are also systematically explained. Meanwhile, we conclude the problems to be solved and provide our perspective to the future development of SAPHs in the biotechnology.
Collapse
Affiliation(s)
- Kun Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hanguang Wu
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Institute of Fashion Technology, 100029 Beijing, China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
24
|
Cross ER, Coulter SM, Fuentes-Caparrós AM, McAulay K, Schweins R, Laverty G, Adams DJ. Tuning the antimicrobial activity of low molecular weight hydrogels using dopamine autoxidation. Chem Commun (Camb) 2021; 56:8135-8138. [PMID: 32691773 DOI: 10.1039/d0cc02569k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We present a method to trigger the formation of dipeptide-based hydrogels by the simple addition of dopamine. Dopamine undergoes oxidation in air, reducing the pH to induce gelation. The production of polydopamine and release of reactive oxygen species such as hydrogen peroxide confers antimicrobial activity. Gel stiffness can be controlled by modulating the initial starting pH of the gelator solution. We can use this method to tune the antimicrobial activity of the gels, with gels that are less stiff demonstrating increased bactericidal efficacy against Gram-positive bacteria.
Collapse
Affiliation(s)
- Emily R Cross
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Sophie M Coulter
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK.
| | | | - Kate McAulay
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Ralf Schweins
- Large Scale Structures Group, Institut Laue - Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Garry Laverty
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK.
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
25
|
Cardoso P, Glossop H, Meikle TG, Aburto-Medina A, Conn CE, Sarojini V, Valery C. Molecular engineering of antimicrobial peptides: microbial targets, peptide motifs and translation opportunities. Biophys Rev 2021; 13:35-69. [PMID: 33495702 PMCID: PMC7817352 DOI: 10.1007/s12551-021-00784-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
The global public health threat of antimicrobial resistance has led the scientific community to highly engage into research on alternative strategies to the traditional small molecule therapeutics. Here, we review one of the most popular alternatives amongst basic and applied research scientists, synthetic antimicrobial peptides. The ease of peptide chemical synthesis combined with emerging engineering principles and potent broad-spectrum activity, including against multidrug-resistant strains, has motivated intense scientific focus on these compounds for the past decade. This global effort has resulted in significant advances in our understanding of peptide antimicrobial activity at the molecular scale. Recent evidence of molecular targets other than the microbial lipid membrane, and efforts towards consensus antimicrobial peptide motifs, have supported the rise of molecular engineering approaches and design tools, including machine learning. Beyond molecular concepts, supramolecular chemistry has been lately added to the debate; and helped unravel the impact of peptide self-assembly on activity, including on biofilms and secondary targets, while providing new directions in pharmaceutical formulation through taking advantage of peptide self-assembled nanostructures. We argue that these basic research advances constitute a solid basis for promising industry translation of rationally designed synthetic peptide antimicrobials, not only as novel drugs against multidrug-resistant strains but also as components of emerging antimicrobial biomaterials. This perspective is supported by recent developments of innovative peptide-based and peptide-carrier nanobiomaterials that we also review.
Collapse
Affiliation(s)
- Priscila Cardoso
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
- School of Science, RMIT University, Melbourne, Australia
| | - Hugh Glossop
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | - Celine Valery
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| |
Collapse
|
26
|
Thota C, Mikolajczak DJ, Roth C, Koksch B. Enhancing Antimicrobial Peptide Potency through Multivalent Presentation on Coiled-Coil Nanofibrils. ACS Med Chem Lett 2021; 12:67-73. [PMID: 33488966 PMCID: PMC7812673 DOI: 10.1021/acsmedchemlett.0c00425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/08/2020] [Indexed: 12/22/2022] Open
Abstract
Antibiotic-resistant microbes have become a global health threat. New delivery systems that enhance the efficacy of antibiotics and/or overcome the resistances can help combat them. In this context, we present FF03, a fibril-forming α-helical coiled-coil peptide that functions as an efficient scaffold for the multivalent presentation of the weakly cationic antimicrobial peptide (AMP) IN4. The resulting IN4-decorated FF03 coiled-coil fibrils (FF03 + IN4) are nonhemolytic and noncytotoxic and show enhanced antimicrobial activity relative to unconjugated IN4 and standard antibiotics against several bacterial strains. Scanning electron microscopy analysis shows that FF03 + IN4 nanofibers disrupt methicillin-resistant Staphylococcus aureus membranes, indicating a surface-level mode of action. Furthermore, transmission electron microscopy and circular dichroism studies indicate that decoration of the FF03 scaffold with IN4 does not alter the secondary-structure propensity or fibril-forming properties of FF03. Thus, the approach reported herein provides a new peptidic scaffold for the multivalent presentation of AMPs to obtain nonhemolytic and noncytotoxic antimicrobial systems with improved efficacy relative to the unconjugated AMP analogues.
Collapse
Affiliation(s)
- Chaitanya
Kumar Thota
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Dorian J. Mikolajczak
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Christian Roth
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14195 Berlin, Germany
| | - Beate Koksch
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
27
|
Asadi N, Pazoki-Toroudi H, Del Bakhshayesh AR, Akbarzadeh A, Davaran S, Annabi N. Multifunctional hydrogels for wound healing: Special focus on biomacromolecular based hydrogels. Int J Biol Macromol 2020; 170:728-750. [PMID: 33387543 DOI: 10.1016/j.ijbiomac.2020.12.202] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 01/04/2023]
Abstract
Hydrogels are widely used for wound healing applications due to their similarity to the native extracellular matrix (ECM) and ability to provide a moist environment. However, lack of multifunctionality and low mechanical properties of previously developed hydrogels may limit their ability to support skin tissue regeneration. Incorporating various biomaterials and nanostructures into the hydrogels is an emerging approach to develop multifunctional hydrogels with new functions that are beneficial for wound healing. These multifunctional hydrogels can be fabricated with a wide range of functions and properties, including antibacterial, antioxidant, bioadhesive, and appropriate mechanical properties. Two approaches can be used for development of multifunctional hydrogel-based dressings; taking the advantages of the chemical composition of biomaterials and addition of nanomaterials or nanostructures. A large number of synthetic and natural polymers, bioactive molecules, or nanomaterials have been used to obtain hydrogel-based dressings with multifunctionality for wound healing applications. In the present review paper, advances in the development of multifunctional hydrogel-based dressings for wound healing have been highlighted.
Collapse
Affiliation(s)
- Nahideh Asadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Universal Scientific Education and Research Network (USERN), Tabriz, Iran.
| | - Soodabeh Davaran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nasim Annabi
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Chambre L, Rosselle L, Barras A, Aydin D, Loczechin A, Gunbay S, Sanyal R, Skandrani N, Metzler-Nolte N, Bandow JE, Boukherroub R, Szunerits S, Sanyal A. Photothermally Active Cryogel Devices for Effective Release of Antimicrobial Peptides: On-Demand Treatment of Infections. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56805-56814. [PMID: 33289537 DOI: 10.1021/acsami.0c17633] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There has been significant interest in the use of peptides as antimicrobial agents, and peptide containing hydrogels have been proposed as biological scaffolds for various applications. Limited stability and rapid clearance of small molecular weight peptides pose challenges to their widespread implementation. As a common approach, antibacterial peptides are physically loaded into hydrogel scaffolds, which leads to continuous release through the passive mode with spatial control but provides limited control over drug dosage. Although utilization of peptide covalent linkage onto hydrogels addresses partially this problem, the peptide release is commonly too slow. To alleviate these challenges, in this work, maleimide-modified antimicrobial peptides are covalently conjugated onto furan-based cryogel (CG) scaffolds via the Diels-Alder cycloaddition at room temperature. The furan group offers a handle for specific loading of the peptides, thus minimizing passive and burst drug release. The porous nature of the CG matrix provides rapid loading and release of therapeutic peptides, apart from high water uptake. Interfacing the peptide adduct containing a CG matrix with a reduced graphene oxide-modified Kapton substrate allows "on-demand" photothermal heating upon near-infrared (NIR) irradiation. A fabricated photothermal device enables tunable and efficient peptide release through NIR exposure to kill bacteria. Apart from spatial confinement offered by this CG-based bandage, the selective ablation of planktonic Staphylococcus aureus is demonstrated. It can be envisioned that this modular "on-demand" peptide-releasing device can be also employed for other topical applications by appropriate choice of therapeutic peptides.
Collapse
Affiliation(s)
- Laura Chambre
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Léa Rosselle
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, Lille F-59000, France
- TISSUEAEGIS SAS, 14E Rue Pierre de Coubertin, Dijon 21000, France
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, Lille F-59000, France
| | - Duygu Aydin
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Aleksandra Loczechin
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, Lille F-59000, France
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Suzan Gunbay
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
- RS Research, Teknopark Istanbul, Pendik, Istanbul 34912, Turkey
| | - Nadia Skandrani
- TISSUEAEGIS SAS, 14E Rue Pierre de Coubertin, Dijon 21000, France
| | - Nils Metzler-Nolte
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Julia Elisabeth Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, Lille F-59000, France
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, Lille F-59000, France
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| |
Collapse
|
29
|
Acosta S, Ye Z, Aparicio C, Alonso M, Rodríguez-Cabello JC. Dual Self-Assembled Nanostructures from Intrinsically Disordered Protein Polymers with LCST Behavior and Antimicrobial Peptides. Biomacromolecules 2020; 21:4043-4052. [PMID: 32786727 PMCID: PMC7558458 DOI: 10.1021/acs.biomac.0c00865] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antimicrobial peptides (AMPs) have attracted great interest as they constitute one of the most promising alternatives against drug-resistant infections. Their amphipathic nature not only provides them antimicrobial and immunomodulatory properties but also the ability to self-assemble into supramolecular nanostructures. Here, we propose their use as self-assembling domains to drive hierarchical organization of intrinsically disordered protein polymers (IDPPs). Using a modular approach, hybrid protein-engineered polymers were recombinantly produced, thus combining designer AMPs and a thermoresponsive IDPP, an elastin-like recombinamer (ELR). We exploited the ability of these AMPs and ELRs to self-assemble to develop supramolecular nanomaterials by way of a dual-assembly process. First, the AMPs trigger the formation of nanofibers; then, the thermoresponsiveness of the ELRs enables assembly into fibrillar aggregates. The interplay between the assembly of AMPs and ELRs provides an innovative molecular tool in the development of self-assembling nanosystems with potential use for biotechnological and biomedical applications.
Collapse
Affiliation(s)
- Sergio Acosta
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - Zhou Ye
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, 55455 Minnesota, United States
| | - Conrado Aparicio
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, 55455 Minnesota, United States
| | - Matilde Alonso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - José Carlos Rodríguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| |
Collapse
|
30
|
Levin A, Hakala TA, Schnaider L, Bernardes GJL, Gazit E, Knowles TPJ. Biomimetic peptide self-assembly for functional materials. Nat Rev Chem 2020; 4:615-634. [PMID: 39650726 PMCID: PMC7617017 DOI: 10.1038/s41570-020-0215-y] [Citation(s) in RCA: 423] [Impact Index Per Article: 84.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2020] [Indexed: 01/20/2023]
Abstract
Natural biomolecular systems have evolved to form a rich variety of supramolecular materials and machinery fundamental to cellular function. The assembly of these structures commonly involves interactions between specific molecular building blocks, a strategy that can also be replicated in an artificial setting to prepare functional materials. The self-assembly of synthetic biomimetic peptides thus allows the exploration of chemical and sequence space beyond that used routinely by biology. In this Review, we discuss recent conceptual and experimental advances in self-assembling artificial peptidic materials. In particular, we explore how naturally occurring structures and phenomena have inspired the development of functional biomimetic materials that we can harness for potential interactions with biological systems. As our fundamental understanding of peptide self-assembly evolves, increasingly sophisticated materials and applications emerge and lead to the development of a new set of building blocks and assembly principles relevant to materials science, molecular biology, nanotechnology and precision medicine.
Collapse
Affiliation(s)
- Aviad Levin
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Tuuli A Hakala
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Lee Schnaider
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gonçalo J L Bernardes
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Tuomas P J Knowles
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| |
Collapse
|
31
|
Simonson AW, Aronson MR, Medina SH. Supramolecular Peptide Assemblies as Antimicrobial Scaffolds. Molecules 2020; 25:E2751. [PMID: 32545885 PMCID: PMC7355828 DOI: 10.3390/molecules25122751] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial discovery in the age of antibiotic resistance has demanded the prioritization of non-conventional therapies that act on new targets or employ novel mechanisms. Among these, supramolecular antimicrobial peptide assemblies have emerged as attractive therapeutic platforms, operating as both the bactericidal agent and delivery vector for combinatorial antibiotics. Leveraging their programmable inter- and intra-molecular interactions, peptides can be engineered to form higher ordered monolithic or co-assembled structures, including nano-fibers, -nets, and -tubes, where their unique bifunctionalities often emerge from the supramolecular state. Further advancements have included the formation of macroscopic hydrogels that act as bioresponsive, bactericidal materials. This systematic review covers recent advances in the development of supramolecular antimicrobial peptide technologies and discusses their potential impact on future drug discovery efforts.
Collapse
Affiliation(s)
- Andrew W. Simonson
- Department of Biomedical Engineering, The Pennsylvania State University, Suite 122, CBE Building, University Park, PA 16802-4400, USA; (A.W.S.); (M.R.A.)
| | - Matthew R. Aronson
- Department of Biomedical Engineering, The Pennsylvania State University, Suite 122, CBE Building, University Park, PA 16802-4400, USA; (A.W.S.); (M.R.A.)
| | - Scott H. Medina
- Department of Biomedical Engineering, The Pennsylvania State University, Suite 122, CBE Building, University Park, PA 16802-4400, USA; (A.W.S.); (M.R.A.)
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802-4400, USA
| |
Collapse
|
32
|
Xie YY, Zhang YW, Qin XT, Liu LP, Wahid F, Zhong C, Jia SR. Structure-Dependent Antibacterial Activity of Amino Acid-Based Supramolecular Hydrogels. Colloids Surf B Biointerfaces 2020; 193:111099. [PMID: 32408261 DOI: 10.1016/j.colsurfb.2020.111099] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/04/2020] [Accepted: 04/27/2020] [Indexed: 02/01/2023]
Abstract
Bacterial infections are currently a major concern to human health. Amino acid-based supramolecular polymer hydrogels, which boast intrinsic antibacterial activity, are an important solution due to their good biocompatibility, cost effectiveness, and tunable structural properties. Herein, we reported three types of transparent supramolecular hydrogel with intrinsic antibacterial activity from self-assembly of commercially available Fmoc-tryptophan (Fmoc-W), Fmoc-methionine (Fmoc-M), and Fmoc-tyrosine (Fmoc-Y). The resulting hydrogels selectively inhibited the growth of Gram-positive bacteria. Moreover, the order of antibacterial activity was Fmoc-W hydrogel > Fmoc-M hydrogel > Fmoc-Y hydrogel. The critical aggregation concentration (CAC) values were found at concentrations of approximately 0.0293, 0.1172, and 0.4688 mM for Fmoc-W, Fmoc-M, and Fmoc-Y, respectively. Transmission electron microscope (TEM) images revealed rigid and aligned nanofibers for Fmoc-W hydrogel, while flexible nanofibers for Fmoc-M hydrogel and Fmoc-Y hydrogel. The results indicated that stronger aggregation capability of the gelator and the synergistic nanostructural morphology with more rigid and aligned nanofibers can lead to higher antibacterial activity of its corresponding hydrogel. In addition, the molecular arrangements of Fmoc-amino acids in the hydrogels may also contribute to their antibacterial activity. These results can guide the rational design, fabrication, and future application of other self-assembled amino acid-based hydrogels with excellent antibacterial activity.
Collapse
Affiliation(s)
- Yan-Yan Xie
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin, PR China
| | - Yan-Wen Zhang
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin, PR China
| | - Xiao-Tong Qin
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin, PR China
| | - Ling-Pu Liu
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin, PR China
| | - Fazli Wahid
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin, PR China
| | - Cheng Zhong
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin, PR China.
| | - Shi-Ru Jia
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin, PR China
| |
Collapse
|
33
|
Nanomedicines for the Delivery of Antimicrobial Peptides (AMPs). NANOMATERIALS 2020; 10:nano10030560. [PMID: 32244858 PMCID: PMC7153398 DOI: 10.3390/nano10030560] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 01/09/2023]
Abstract
Microbial infections are still among the major public health concerns since several yeasts and fungi, and other pathogenic microorganisms, are responsible for continuous growth of infections and drug resistance against bacteria. Antimicrobial resistance rate is fostering the need to develop new strategies against drug-resistant superbugs. Antimicrobial peptides (AMPs) are small peptide-based molecules of 5–100 amino acids in length, with potent and broad-spectrum antimicrobial properties. They are part of the innate immune system, which can represent a minimal risk of resistance development. These characteristics contribute to the description of these molecules as promising new molecules in the development of new antimicrobial drugs. However, efforts in developing new medicines have not resulted in any decrease of drug resistance yet. Thus, a technological approach on improving existing drugs is gaining special interest. Nanomedicine provides easy access to innovative carriers, which ultimately enable the design and development of targeted delivery systems of the most efficient drugs with increased efficacy and reduced toxicity. Based on performance, successful experiments, and considerable market prospects, nanotechnology will undoubtedly lead a breakthrough in biomedical field also for infectious diseases, as there are several nanotechnological approaches that exhibit important roles in restoring antibiotic activity against resistant bacteria.
Collapse
|
34
|
Aldilla VR, Chen R, Martin AD, Marjo CE, Rich AM, Black DS, Thordarson P, Kumar N. Anthranilamide-based Short Peptides Self-Assembled Hydrogels as Antibacterial Agents. Sci Rep 2020; 10:770. [PMID: 31964927 PMCID: PMC6972728 DOI: 10.1038/s41598-019-57342-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/23/2019] [Indexed: 12/26/2022] Open
Abstract
In this study, we describe the synthesis and molecular properties of anthranilamide-based short peptides which were synthesised via ring opening of isatoic anhydride in excellent yields. These short peptides were incorporated as low molecular weight gelators (LMWG), bola amphiphile, and C3-symmetric molecules to form hydrogels in low concentrations (0.07-0.30% (w/v)). The critical gel concentration (CGC), viscoelastic properties, secondary structure, and fibre morphology of these short peptides were influenced by the aromaticity of the capping group or by the presence of electronegative substituent (namely fluoro) and hydrophobic substituent (such as methyl) in the short peptides. In addition, the hydrogels showed antibacterial activity against S. aureus 38 and moderate toxicity against HEK cells in vitro.
Collapse
Affiliation(s)
- Vina R Aldilla
- School of Chemistry, UNSW Sydney NSW, Sydney, 2052, Australia
| | - Renxun Chen
- School of Chemistry, UNSW Sydney NSW, Sydney, 2052, Australia
| | - Adam D Martin
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Christopher E Marjo
- Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Anne M Rich
- Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - David StC Black
- School of Chemistry, UNSW Sydney NSW, Sydney, 2052, Australia
| | - Pall Thordarson
- School of Chemistry, UNSW Sydney NSW, Sydney, 2052, Australia
| | - Naresh Kumar
- School of Chemistry, UNSW Sydney NSW, Sydney, 2052, Australia.
| |
Collapse
|
35
|
Pogostin BH, Linse S, Olsson U. Fibril Charge Affects α-Synuclein Hydrogel Rheological Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16536-16544. [PMID: 31724872 DOI: 10.1021/acs.langmuir.9b02516] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this paper, we have investigated the interactions between α-synuclein fibrils at different pH values and how this relates to hydrogel formation and gel properties. Using a combination of rheology, small-angle X-ray scattering, Raman spectroscopy, and cryo-transmission electron microscopy (cryo-TEM) experiments, we have been able to investigate the relationship between protein net charge, fibril-fibril interactions, and hydrogel properties, and have explored the potential for α-synuclein to form hydrogels at various conditions. We have found that α-synuclein can form hydrogels at lower concentrations (50-300 μM) and over a wider pH range (6.0-7.5) than previously reported. Over this pH range and at 300 μM, the fibril network is electrostatically stabilized. Decreasing the pH to 5.5 results in the precipitation of fibrils. A maximum in gel stiffness was observed at pH 6.5 (∼1300 Pa), which indicates that significant attractive interactions operate at this pH and cause an increase in the density of hydrophobic contacts between the otherwise negatively charged fibrils. We conclude that fibril-fibril interactions under these conditions involve both long-range electrostatic repulsion and a short-range hydrophobic attractive (sticky) component. These results may provide a basis for potential applications and add to the understanding of amyloids.
Collapse
Affiliation(s)
- Brett H Pogostin
- Department of Bioengineering , Rice University , MS-142, 6100 Main Street , Houston , Texas 77005 , United States
| | | | | |
Collapse
|
36
|
Almeida MM, Perez KR, Faig A, Uhrich KE, Riske KA. Location of the Positive Charges in Cationic Amphiphiles Modulates Their Mechanism of Action against Model Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14117-14123. [PMID: 31589461 DOI: 10.1021/acs.langmuir.9b02606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Synthetic cationic amphiphiles (CAms) with physicochemical properties similar to antimicrobial peptides are promising molecules in the search for alternative antibiotics to which pathogens cannot easily develop resistance. Here, we investigate two types of CAms based on tartaric acid and containing two hydrophobic chains (of 7 or 11 carbons) and two positive charges, located either at the end of the acyl chains (bola-like, B7 and B11) or at the tartaric acid backbone (gemini-like, G7 and G11). The interaction of the CAms with biomimetic membrane models (anionic and neutral liposomes) was studied with zeta potential and dynamic light scattering measurements, isothermal titration calorimetry, and a fluorescent-based leakage assay. We show that the type of molecule determines the mechanism of action of the CAms. Gemini-like molecules (G7 and G11) interact mainly via electrostatics (exothermic process) and reside in the external vesicle leaflet, altering substantially the vesicle surface potential but not causing significant membrane lysis. On the other hand, the interaction of bola-like CAms (B7 and B11) is endothermic and thus entropy-driven, and these molecules reach both membrane leaflets and cause substantial membrane permeabilization, likely after clustering of anionic lipids. The lytic ability is clearly higher against anionic membranes as compared with neutral membranes. Within each class of molecule, longer alkyl chains (i.e., B11 and G11) exhibit higher affinity and lytic ability. Overall, the molecule B11 exhibits a high potential as antimicrobial agent, since it has a high membrane affinity and causes substantial membrane permeabilization.
Collapse
Affiliation(s)
- Marcio M Almeida
- Departament of Biophysics , Universidade Federal de São Paulo , São Paulo , Brazil
| | - Katia R Perez
- Departament of Biophysics , Universidade Federal de São Paulo , São Paulo , Brazil
| | - Allison Faig
- Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854 , United States
| | - Kathryn E Uhrich
- Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854 , United States
- Department of Chemistry , University of California, Riverside , Riverside , California 92521 , United States
| | - Karin A Riske
- Departament of Biophysics , Universidade Federal de São Paulo , São Paulo , Brazil
| |
Collapse
|
37
|
Li J, Liang S, Yan Y, Tian X, Li X. O-Mannosylation Affords a Glycopeptide Hydrogel with Inherent Antibacterial Activities against E. coli via Multivalent Interactions between Lectins and Supramolecular Assemblies. Macromol Biosci 2019; 19:e1900124. [PMID: 31310440 DOI: 10.1002/mabi.201900124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/18/2019] [Indexed: 12/12/2022]
Abstract
Multivalent carbohydrate-lectin interactions play a crucial role in bacterial infection. Biomimicry of multivalent glycosystems represents a major strategy in the repression of bacterial growth. In this study, a new kind of glycopeptide (Naphthyl-Phe-Phe-Ser-Tyr, NMY) scaffold with mannose modification is designed and synthesized, which is able to perform supramolecular self-assembly with the assistance of catalytic enzyme, and present multiple mannose ligands on its self-assembled structure to target mannose-binding proteins. Relying on multivalent carbohydrate-lectin interactions, the glycopeptide hydrogel is able to bind Escherichia coli (E. coli) in high specificity, and result in bacterial adhesion, membrane disruption and subsequent cell death. In vivo wound healing assays reveal that this glycopeptide hydrogel exhibits considerable potentials for promoting wound healing and preventing E. coli infection in a full-thickness skin defect mouse model. Therefore, through a specific mannose-lectin interaction, a biocompatible hydrogel with inherent antibacterial activity against E. coli is achieved without the need to resort to antibiotic or antimicrobial agent treatment, highlighting the potential role of sugar-coated nanomaterials in wound healing and control of bacterial pathogenesis.
Collapse
Affiliation(s)
- Jing Li
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Shufeng Liang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.,Department of Molecular Biology, Shanxi Cancer Hospital and Institute, Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030013, China
| | - Yufei Yan
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200025, China
| | - Xin Tian
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Xinming Li
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
38
|
Glossop HD, De Zoysa GH, Hemar Y, Cardoso P, Wang K, Lu J, Valéry C, Sarojini V. Battacin-Inspired Ultrashort Peptides: Nanostructure Analysis and Antimicrobial Activity. Biomacromolecules 2019; 20:2515-2529. [PMID: 31145611 DOI: 10.1021/acs.biomac.9b00291] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peptides can serve as versatile therapeutics with a highly modular structure and tunable biophysical properties. In particular, the efficacy of peptide antibiotics against drug-resistant pathogens is of great promise, as few new classes of antibiotics are being developed to overcome the ever-increasing bacterial resistance to contemporary drugs. This work reports biophysical and antimicrobial studies of a designed library of ultrashort peptides that self-assemble into hydrogels at concentrations as low as 0.5% w/v in buffered saline, as confirmed by rheology. The hydrogels are constituted by β-sheet-rich nanofibril networks, as determined by biophysical techniques including spectroscopy (attenuated total reflectance Fourier transform infrared spectroscopy and Congo red binding assay), short- and wide-angle X-ray scattering, and electron microscopy. Both peptide solutions and self-assembled hydrogels show potent antimicrobial activity against S. aureus and Pseudomonas aeruginosa by membrane lysis. These peptides also displayed selectivity toward bacterial cells over human dermal fibroblasts in vitro, as determined from Live/Dead, scanning electron microscopy, and coculture assays. This work reports an antimicrobial self-assembling motif of only three residues comprising an aromatically acylated cationic d-Dab/Lys amino acid, a second cationic residue, and naphthylalanine that heavily influences the self-assembly of these peptides into hydrogels. The variations in the antimicrobial activity and self-assembly properties between analogues may have implications in future studies on the correlation between self-assembly and biological activity in ultrashort peptides.
Collapse
Affiliation(s)
- Hugh D Glossop
- School of Chemical Sciences , The University of Auckland , Private Bag 92019 , Auckland 1142 , New Zealand
| | - Gayan Heruka De Zoysa
- School of Chemical Sciences , The University of Auckland , Private Bag 92019 , Auckland 1142 , New Zealand
| | - Yacine Hemar
- School of Chemical Sciences , The University of Auckland , Private Bag 92019 , Auckland 1142 , New Zealand
| | - Priscila Cardoso
- School of Health and Biomedical Sciences , RMIT University , Bundoora, Melbourne 3000 , Australia
| | - Kelvin Wang
- Faculty of Health and Environmental Sciences , Auckland University of Technology , Auckland 1010 , New Zealand
| | - Jun Lu
- Faculty of Health and Environmental Sciences , Auckland University of Technology , Auckland 1010 , New Zealand
| | - Céline Valéry
- School of Health and Biomedical Sciences , RMIT University , Bundoora, Melbourne 3000 , Australia
| | - Vijayalekshmi Sarojini
- School of Chemical Sciences , The University of Auckland , Private Bag 92019 , Auckland 1142 , New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology , Wellington 6140 , New Zealand
| |
Collapse
|
39
|
Cho H, Blatchley MR, Duh EJ, Gerecht S. Acellular and cellular approaches to improve diabetic wound healing. Adv Drug Deliv Rev 2019; 146:267-288. [PMID: 30075168 DOI: 10.1016/j.addr.2018.07.019] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023]
Abstract
Chronic diabetic wounds represent a huge socioeconomic burden for both affected individuals and the entire healthcare system. Although the number of available treatment options as well as our understanding of wound healing mechanisms associated with diabetes has vastly improved over the past decades, there still remains a great need for additional therapeutic options. Tissue engineering and regenerative medicine approaches provide great advantages over conventional treatment options, which are mainly aimed at wound closure rather than addressing the underlying pathophysiology of diabetic wounds. Recent advances in biomaterials and stem cell research presented in this review provide novel ways to tackle different molecular and cellular culprits responsible for chronic and nonhealing wounds by delivering therapeutic agents in direct or indirect ways. Careful integration of different approaches presented in the current article could lead to the development of new therapeutic platforms that can address multiple pathophysiologic abnormalities and facilitate wound healing in patients with diabetes.
Collapse
Affiliation(s)
- Hongkwan Cho
- Wilmer Ophthalmologic Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael R Blatchley
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University Baltimore, MD, USA
| | - Elia J Duh
- Wilmer Ophthalmologic Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University Baltimore, MD, USA.
| |
Collapse
|
40
|
Yang L, Li H, Yao L, Yu Y, Ma G. Amyloid-Based Injectable Hydrogel Derived from Hydrolyzed Hen Egg White Lysozyme. ACS OMEGA 2019; 4:8071-8080. [PMID: 31459897 PMCID: PMC6648635 DOI: 10.1021/acsomega.8b03492] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/24/2019] [Indexed: 05/28/2023]
Abstract
Injectable hydrogels based on synthetic peptides have shown great promise in many biomedical applications. Yet, the high cost generally associated with synthetic peptides hinders the practical use of such peptide-based injectable hydrogel. To overcome this drawback, here, we propose to use the peptides from hydrolyzed low-cost natural protein as an economical and convenient peptide source to prepare an injectable hydrogel. We demonstrate the effectiveness of this alternative strategy using hen egg white lysozyme (HEWL) as an example. We used the peptide fragments from hydrolyzed HEWL as the gelator, and the magnesium ion as the performance enhancer to prepare the injectable hydrogel. We showed that the hydrogel is an amyloid gel as it was formed by a dense network of amyloid fibrils. We also showed that the hydrogel possesses a thixotropic property and displays a low cytotoxicity. The hydrolysis extent of HEWL was found to be a critical factor that influences the performance of the hydrogel. A fluorescence assay based on 8-anilinonaphthalene-1-sulfonic acid was proposed as a mean to precisely and conveniently control the hydrolysis extent of HEWL to enable the best injectability performance. At last, using doxorubicin as a model compound, we explored the potential of this amyloid-based hydrogel as an injectable drug carrier.
Collapse
Affiliation(s)
- Lujuan Yang
- Key
Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry
of Education, Key Laboratory of Analytical Science and Technology
of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Haoyi Li
- Key
Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry
of Education, Key Laboratory of Analytical Science and Technology
of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
- College
of Chemistry and Materials Science, Langfang
Teachers University, Langfang 065000, China
| | - Linxia Yao
- Key
Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry
of Education, Key Laboratory of Analytical Science and Technology
of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Yang Yu
- Key
Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry
of Education, Key Laboratory of Analytical Science and Technology
of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Gang Ma
- Key
Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry
of Education, Key Laboratory of Analytical Science and Technology
of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| |
Collapse
|
41
|
Adak A, Ghosh S, Gupta V, Ghosh S. Biocompatible Lipopeptide-Based Antibacterial Hydrogel. Biomacromolecules 2019; 20:1889-1898. [PMID: 30978285 DOI: 10.1021/acs.biomac.8b01836] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Anindyasundar Adak
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata700032, West Bengal, India
| | - Subhajit Ghosh
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata700032, West Bengal, India
| | - Varsha Gupta
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata700032, West Bengal, India
| | - Surajit Ghosh
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
42
|
Malekkhaiat Häffner S, Malmsten M. Influence of self-assembly on the performance of antimicrobial peptides. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Xu D, Chen W, Tobin-Miyaji YJ, Sturge CR, Yang S, Elmore B, Singh A, Pybus C, Greenberg DE, Sellati TJ, Qiang W, Dong H. Fabrication and Microscopic and Spectroscopic Characterization of Cytocompatible Self-Assembling Antimicrobial Nanofibers. ACS Infect Dis 2018; 4:1327-1335. [PMID: 29949345 DOI: 10.1021/acsinfecdis.8b00069] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The discovery of antimicrobial peptides (AMPs) has brought tremendous promise and opportunities to overcome the prevalence of bacterial resistance to commonly used antibiotics. However, their widespread use and translation into clinical application is hampered by the moderate to severe hemolytic activity and cytotoxicity. Here, we presented and validated a supramolecular platform for the construction of hemo- and cytocompatible AMP-based nanomaterials, termed self-assembling antimicrobial nanofibers (SAANs). SAANs, the "nucleus" of our antimicrobial therapeutic platform, are supramolecular assemblies of de novo designed AMPs that undergo programmed self-assembly into nanostructured fibers to "punch holes" in the bacterial membrane, thus killing the bacterial pathogen. In this study, we performed solid-state NMR spectroscopy showing predominant antiparallel β-sheet assemblies rather than monomers to interact with liposomes. We investigated the mode of antimicrobial action of SAANs using transmission electron microscopy and provided compelling microscopic evidence that self-assembled nanofibers were physically in contact with bacterial cells causing local membrane deformation and rupture. While effectively killing bacteria, SAANs, owing to their nanoparticulate nature, were found to cross mammalian cell membranes harmlessly with greatly reduced membrane accumulation and possess exceptional cytocompatibility and hemocompatibility compared to natural AMPs. Through these systematic investigations, we expect to establish this new paradigm for the customized design of SAANs that will provide exquisite, tunable control of both bactericidal activity and cytocompatibility and can potentially overcome the drawbacks of traditional AMPs.
Collapse
Affiliation(s)
- Dawei Xu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| | - Weike Chen
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yuto J. Tobin-Miyaji
- Department of Chemistry, Binghamton University, SUNY, Binghamton, New York 13902, United States
| | - Carolyn R. Sturge
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Su Yang
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Brendan Elmore
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| | - Anju Singh
- Department of Infectious Diseases, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama 35255, United States
| | - Christine Pybus
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - David E. Greenberg
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Timothy J. Sellati
- Department of Infectious Diseases, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama 35255, United States
| | - Wei Qiang
- Department of Chemistry, Binghamton University, SUNY, Binghamton, New York 13902, United States
| | - He Dong
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
44
|
Carmona-Ribeiro AM. Self-Assembled Antimicrobial Nanomaterials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1408. [PMID: 29973521 PMCID: PMC6069395 DOI: 10.3390/ijerph15071408] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/17/2022]
Abstract
Nanotechnology came to stay improving the quality of human life by reducing environmental contamination of earth and water with pathogens. This review discusses how self-assembled antimicrobial nanomaterials can contribute to maintain humans, their water and their environment inside safe boundaries to human life even though some of these nanomaterials display an overt toxicity. At the core of their strategic use, the self-assembled antimicrobial nanomaterials exhibit optimal and biomimetic organization leading to activity at low doses of their toxic components. Antimicrobial bilayer fragments, bilayer-covered or multilayered nanoparticles, functionalized inorganic or organic polymeric materials, coatings and hydrogels disclose their potential for environmental and public health applications in this review.
Collapse
Affiliation(s)
- Ana Maria Carmona-Ribeiro
- Biocolloids Laboratory, Instituto de Química, Universidade de São Paulo; Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil.
| |
Collapse
|
45
|
Yang K, Han Q, Chen B, Zheng Y, Zhang K, Li Q, Wang J. Antimicrobial hydrogels: promising materials for medical application. Int J Nanomedicine 2018; 13:2217-2263. [PMID: 29695904 PMCID: PMC5905846 DOI: 10.2147/ijn.s154748] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The rapid emergence of antibiotic resistance in pathogenic microbes is becoming an imminent global public health problem. Local application of antibiotics might be a solution. In local application, materials need to act as the drug delivery system. The drug delivery system should be biodegradable and prolonged antibacterial effect should be provided to satisfy clinical demand. Hydrogel is a promising material for local antibacterial application. Hydrogel refers to a kind of biomaterial synthesized by a water-soluble natural polymer or a synthesized polymer, which turns into gel according to the change in different signals such as temperature, ionic strength, pH, ultraviolet exposure etc. Because of its high hydrophilicity, unique three-dimensional network, fine biocompatibility and cell adhesion, hydrogel is one of the suitable biomaterials for drug delivery in antimicrobial areas. In this review, studies from the past 5 years were reviewed, and several types of antimicrobial hydrogels according to different ingredients, different preparations, different antimicrobial mechanisms, different antimicrobial agents they contained and different applications, were summarized. The hydrogels loaded with metal nanoparticles as a potential method to solve antibiotic resistance were highlighted. Finally, future prospects of development and application of antimicrobial hydrogels are suggested.
Collapse
Affiliation(s)
- Kerong Yang
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, Jilin, People's Republic of China
| | - Qing Han
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, Jilin, People's Republic of China
| | - Bingpeng Chen
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, Jilin, People's Republic of China
| | - Yuhao Zheng
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, Jilin, People's Republic of China
| | - Kesong Zhang
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, Jilin, People's Republic of China
| | - Qiang Li
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, Jilin, People's Republic of China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
46
|
Gavel PK, Dev D, Parmar HS, Bhasin S, Das AK. Investigations of Peptide-Based Biocompatible Injectable Shape-Memory Hydrogels: Differential Biological Effects on Bacterial and Human Blood Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:10729-10740. [PMID: 29537812 DOI: 10.1021/acsami.8b00501] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Here, we report the self-assembly of Amoc (9-anthracenemethoxycarbonyl)-capped dipeptides, which self-assemble to form injectable, self-healable, and shape-memory hydrogels with inherent antibacterial properties. Amoc-capped dipeptides self-assemble to form nanofibrillar networks, which are established by several spectroscopic and microscopic techniques. The inherent antibacterial properties of hydrogels are evaluated using two Gram-positive Staphylococcus aureus, Bacillus subtilis and three Gram-negative Escherichia coli, Pseudomonas aeruginosa, and Salmonella typhi bacteria. These hydrogels exhibit potent antibacterial efficacy against Gram-positive and Gram-negative bacteria. The minimum inhibitory concentrations (MIC50) for the hydrogels on Gram-positive bacteria are in the range of 10-200 μM hydrogelator concentrations. The biocompatibility and cytotoxicity of the hydrogels are evaluated using 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), hemolysis, and lipid peroxidation (LPO) assay on human blood cells. The hydrogels are hemocompatible and they decrease LPO values on human red blood cells probably via increased cellular stability against oxidative stress. Furthermore, MTT data show that the hydrogels are biocompatible and promote cell viability and proliferation on cultured human white blood cells. Taken together, these results may suggest that our designed injectable hydrogels could be useful to prevent localized bacterial infections.
Collapse
Affiliation(s)
- Pramod K Gavel
- Department of Chemistry , Indian Institute of Technology Indore , Indore 453552 , India
| | - Dharm Dev
- Department of Chemistry , Indian Institute of Technology Indore , Indore 453552 , India
| | - Hamendra S Parmar
- School of Biotechnology , Devi Ahilya University , Indore 452001 , India
| | - Sheetal Bhasin
- Department of Biosciences , Maharaja Ranjit Singh College of Professional Studies , Indore 452001 , India
| | - Apurba K Das
- Department of Chemistry , Indian Institute of Technology Indore , Indore 453552 , India
| |
Collapse
|
47
|
Hu B, Owh C, Chee PL, Leow WR, Liu X, Wu YL, Guo P, Loh XJ, Chen X. Supramolecular hydrogels for antimicrobial therapy. Chem Soc Rev 2018; 47:6917-6929. [DOI: 10.1039/c8cs00128f] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The programmable nature of supramolecular interactions enables various supramolecular hydrogels to perform antimicrobial therapy.
Collapse
Affiliation(s)
- Benhui Hu
- Innovative Center for Flexible Devices (iFLEX)
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Cally Owh
- Institute of Materials Research and Engineering (IMRE)
- Singapore
| | - Pei Lin Chee
- Institute of Materials Research and Engineering (IMRE)
- Singapore
| | - Wan Ru Leow
- Innovative Center for Flexible Devices (iFLEX)
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Xuan Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Science
- Xiamen University
- Xiamen
- China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Science
- Xiamen University
- Xiamen
- China
| | - Peizhi Guo
- Institute of Materials for Energy and Environment
- School of Materials Science and Engineering
- Qingdao University
- Qingdao
- China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE)
- Singapore
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX)
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| |
Collapse
|
48
|
Jiang L, Yang S, Lund R, Dong H. Shape-specific nanostructured protein mimics from de novo designed chimeric peptides. Biomater Sci 2018; 6:272-279. [DOI: 10.1039/c7bm00906b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We experimentally and theoretically demonstrated the formation of well-defined trigonal-bipyramidal protein-mimics through self-assembly of “simple” de novo designed chimeric peptides.
Collapse
Affiliation(s)
- Linhai Jiang
- Department of Chemistry & Biomolecular Science
- Clarkson University
- Potsdam
- USA
| | - Su Yang
- Department of Chemistry & Biomolecular Science
- Clarkson University
- Potsdam
- USA
| | - Reidar Lund
- Department of Chemistry
- University of Oslo
- Oslo 0315
- Norway
| | - He Dong
- Department of Chemistry & Biomolecular Science
- Clarkson University
- Potsdam
- USA
| |
Collapse
|
49
|
Nelli SR, Chakravarthy RD, Xing YM, Weng JP, Lin HC. Self-assembly of single amino acid/pyrene conjugates with unique structure-morphology relationship. SOFT MATTER 2017; 13:8402-8407. [PMID: 29077128 DOI: 10.1039/c7sm01669g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This article describes the self-assembly of π-conjugated building blocks composed of single amino acid and pyrene (Py) moieties. In aqueous conditions, the Py-capped amino acids undergo self-assembly through various non-covalent interactions such as hydrogen-bonding, π-π stacking as well as electrostatic interactions to form supramolecular nanostructures in acidic and basic conditions. Interestingly, we found that the blend of different Py-gelators with oppositely charged amino acids (Py-Glu and Py-Lys) displays unique nano-structural morphologies and gelation properties of the resulting hydrogels at physiological pH when compared with single Py conjugates, which was attributed to additional electrostatic interactions. Overall, this report illustrates the importance of two-component supramolecular co-assembled hydrogels and their structure-morphology relationship, improved mechanical properties, and biocompatibility and thus provides a new insight into the design of self-assembled nanomaterials.
Collapse
Affiliation(s)
- Srinivasa Rao Nelli
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan, Republic of China.
| | | | | | | | | |
Collapse
|
50
|
Schnaider L, Brahmachari S, Schmidt NW, Mensa B, Shaham-Niv S, Bychenko D, Adler-Abramovich L, Shimon LJW, Kolusheva S, DeGrado WF, Gazit E. Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity. Nat Commun 2017; 8:1365. [PMID: 29118336 PMCID: PMC5678095 DOI: 10.1038/s41467-017-01447-x] [Citation(s) in RCA: 286] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/19/2017] [Indexed: 01/08/2023] Open
Abstract
Peptide-based supramolecular assemblies are a promising class of nanomaterials with important biomedical applications, specifically in drug delivery and tissue regeneration. However, the intrinsic antibacterial capabilities of these assemblies have been largely overlooked. The recent identification of common characteristics shared by antibacterial and self-assembling peptides provides a paradigm shift towards development of antibacterial agents. Here we present the antibacterial activity of self-assembled diphenylalanine, which emerges as the minimal model for antibacterial supramolecular polymers. The diphenylalanine nano-assemblies completely inhibit bacterial growth, trigger upregulation of stress-response regulons, induce substantial disruption to bacterial morphology, and cause membrane permeation and depolarization. We demonstrate the specificity of these membrane interactions and the development of antibacterial materials by integration of the peptide assemblies into tissue scaffolds. This study provides important insights into the significance of the interplay between self-assembly and antimicrobial activity and establishes innovative design principles toward the development of antimicrobial agents and materials. Peptide-based supramolecular assemblies are a promising class of nanomaterials with important biomedical applications, but their antibacterial properties can be overlooked. Here the authors show the antibacterial activity of self-assembled diphenylalanine, which emerges as the minimal model for antibacterial supramolecular polymers.
Collapse
Affiliation(s)
- Lee Schnaider
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Sayanti Brahmachari
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Nathan W Schmidt
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, CA, 94158, USA
| | - Bruk Mensa
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, CA, 94158, USA
| | - Shira Shaham-Niv
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Darya Bychenko
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Linda J W Shimon
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Sofiya Kolusheva
- Ilse Katz Institute for Nanotechnology, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, CA, 94158, USA.
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel. .,Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|