1
|
Haghgoo M, Ansari R, Hassanzadeh-Aghdam MK, Jamali J. A subbands study on the resistivity of field-effect CNT-based piezoresistive nanocomposites. NANOTECHNOLOGY 2024; 35:325704. [PMID: 38740007 DOI: 10.1088/1361-6528/ad4a7d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
In this paper, an analytical model based on the percolation theory has been developed to predict the subbands effect on the effective electrical resistivity of carbon nanotubes (CNT)-based polymer nanocomposites. The CNTs are considered as randomly distributed or aligned channel material in the polymer transmitting electrons through tunneling. The tunneling effect takes into account the electron transmission between each connected pair of CNTs to evaluate electrical resistivity. The modeling approach contains two steps of primary prediction of resistivity and further calculation of CNTs' displacements and subsequent change of the resistance. A good agreement is found between the analytical model predictions and experimental data when the tunneling behavior was considered in the percolation transition region. The effect of CNT diameter, orientation state, and subbands on the resistivity has been investigated. The results depict that subbands increment is a collateral benefit to the aspect ratio in decreasing the resistivity. The analytical results demonstrate that a random CNT dispersion leads to a decreased piezoresistivity, while an increased strain range depicts a more non-linear behavior.
Collapse
Affiliation(s)
- Mojtaba Haghgoo
- Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran
| | - Reza Ansari
- Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran
| | - Mohammad Kazem Hassanzadeh-Aghdam
- Department of Engineering Science, Faculty of Technology and Engineering, East of Guilan, University of Guilan, Rudsar-Vajargah, Iran
| | - Jamaloddin Jamali
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| |
Collapse
|
2
|
Wohlleben W, Bossa N, Mitrano DM, Scott K. Everything falls apart: How solids degrade and release nanomaterials, composite fragments, and microplastics. NANOIMPACT 2024; 34:100510. [PMID: 38759729 DOI: 10.1016/j.impact.2024.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
To ensure the safe use of materials, one must assess the identity and quantity of exposure. Solid materials, such as plastics, metals, coatings and cements, degrade to some extent during their life cycle, and releases can occur during manufacturing, use and end-of-life. Releases (e.g., what is released, how does release happen, and how much material is released) depend on the composition and internal (nano)structures of the material as well as the applied stresses during the lifecycle. We consider, in some depth, releases from mechanical, weathering and thermal stresses and specifically address the use cases of fused-filament 3D printing, dermal contact, food contact and textile washing. Solid materials can release embedded nanomaterials, composite fragments, or micro- and nanoplastics, as well as volatile organics, ions and dissolved organics. The identity of the release is often a heterogenous mixture and requires adapted strategies for sampling and analysis, with suitable quality control measures. Control materials enhance robustness by enabling comparative testing, but reference materials are not always available as yet. The quantity of releases is typically described by time-dependent rates that are modulated by the nature and intensity of the applied stress, the chemical identity of the polymer or other solid matrix, and the chemical identity and compatibility of embedded engineered nanomaterials (ENMs) or other additives. Standardization of methods and the documentation of metadata, including all the above descriptors of the tested material, applied stresses, sampling and analytics, are identified as important needs to advance the field and to generate robust, comparable assessments. In this regard, there are strong methodological synergies between the study of all solid materials, including the study of micro- and nanoplastics. From an outlook perspective, we review the hazard of the released entities, and show how this informs risk assessment. We also address the transfer of methods to related issues such as tyre wear, advanced materials and advanced manufacturing, biodegradable polymers, and non-solid matrices. As the consideration of released entities will become more routine in industry via lifecycle assessment in Safe-and-Sustainable-by-Design practices, release assessments will require careful design of the study with quality controls, the use of agreed-on test materials and standardized methods where these exist and the adoption of clearly defined data reporting practices that enable data reuse, meta-analyses, and comparative studies.
Collapse
Affiliation(s)
- Wendel Wohlleben
- BASF SE, Dept. of Analytical and Materials Science, 67056 Ludwigshafen, Germany.
| | - Nathan Bossa
- TEMAS Solutions GmbH, Lätterweg 5, 5212 Hausen, Switzerland; Department of Civil & Environmental Engineering, Duke University, Durham, NC 27708, United States
| | - Denise M Mitrano
- Environmental Systems Science Department, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Keana Scott
- Materials Measurement Science Division, National Institute of Standards and Technology, 100 Bureau Drive, MS-8372, Gaithersburg, MD 20899, United States
| |
Collapse
|
3
|
Pączkowski P, Sigareva NV, Gorelov BM, Terets MI, Sementsov YI, Kartel MT, Gawdzik B. The Influence of Carbon Nanotubes on the Physical and Chemical Properties of Nanocomposites Based on Unsaturated Polyester Resin. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2981. [PMID: 38063677 PMCID: PMC10708070 DOI: 10.3390/nano13232981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/09/2023] [Accepted: 11/18/2023] [Indexed: 12/21/2024]
Abstract
The new actual scientific direction is in the development of different nanocomposites and the study of their medical-biological, physicochemical, and physicomechanical properties. One way to expand the functionality of nanocomposites and nanomaterials is to introduce carbon nanostructures into the polymer matrix. This study presents the properties of unsaturated polyester resins (Estromal, LERG S.A.) based on PET recyclate with multi-walled carbon nanotubes (MWCNTs): their mechanical and thermomechanical characteristics, resistance to ultraviolet radiation (UV-vis), and chemical resistance properties. The properties of the obtained materials were characterized using physical-chemical research methods. The changes in the properties of the composites for MWCNT content of 0.1, 0.3, and 0.5 wt % were determined. The results showed positive influences on the thermomechanical and mechanical properties of nanocomposites without significant deterioration of their gloss. Too much CNT added to the resin leads to heterogeneity of the composite structure.
Collapse
Affiliation(s)
- Przemysław Pączkowski
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Gliniana 33, 20-614 Lublin, Poland;
| | - Nadiia V. Sigareva
- O. O. Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine; (N.V.S.); (B.M.G.); (M.I.T.); (Y.I.S.); (M.T.K.)
| | - Borys M. Gorelov
- O. O. Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine; (N.V.S.); (B.M.G.); (M.I.T.); (Y.I.S.); (M.T.K.)
| | - Mariia I. Terets
- O. O. Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine; (N.V.S.); (B.M.G.); (M.I.T.); (Y.I.S.); (M.T.K.)
| | - Yurii I. Sementsov
- O. O. Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine; (N.V.S.); (B.M.G.); (M.I.T.); (Y.I.S.); (M.T.K.)
- Ningbo Sino-Ukrainian New Materials Industrial Technologies Institute, Kechuang Building, N777 Zhongguan Road, Ningbo 315211, China
- Ningbo University of Technology, 201 Fenghua Road, Ningbo 315211, China
| | - Mykola T. Kartel
- O. O. Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine; (N.V.S.); (B.M.G.); (M.I.T.); (Y.I.S.); (M.T.K.)
- Ningbo Sino-Ukrainian New Materials Industrial Technologies Institute, Kechuang Building, N777 Zhongguan Road, Ningbo 315211, China
- Ningbo University of Technology, 201 Fenghua Road, Ningbo 315211, China
| | - Barbara Gawdzik
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Gliniana 33, 20-614 Lublin, Poland;
| |
Collapse
|
4
|
Zhao Y, Goodwin DG, Sung L, Ramakrishnan G, Wu Q, Cen J, Petersen EJ, Orlov A. Quantitative evaluation of released nanomaterials from carbon nanotube epoxy nanocomposites during environmental exposure and mechanical treatment. NANOIMPACT 2023; 32:100486. [PMID: 37777181 DOI: 10.1016/j.impact.2023.100486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/17/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Carbon nanotubes (CNTs) are promising nanomaterials exhibiting high thermal and electrical conductivities, significant stiffness, and high tensile strength. As a result, CNTs have been utilized as additives to enhance properties of various polymeric materials in a broad range of fields. In this study, we investigated the release of CNTs from CNT epoxy nanocomposites exposed to environmental weathering and mechanical stresses. The presence and amount of CNTs released from degraded polymer nanocomposites is important because CNTs can impact physiological systems in humans and environmental organisms. The weathering experiments in this study included nanocomposite exposure to both UV and a water spray, to simulate sunlight and rain exposure, whereas mechanical stresses were induced by shaking and ultrasonication. CNT release from epoxy nanocomposites was quantified by a 14C-labeling method that enabled measurement of the CNT release rates after different weathering and mechanical treatments. In this study, a sample oxidizer was used prior to liquid scintillation counting, because it was shown to reduce interferences from the presence of polymeric materials and achieve a high recovery (95%). Polymer nanocomposite degradation was confirmed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), and light microscopy. A continuous release of 14C-labeled nanomaterials was observed after each UV and simulated rain exposure period, with 0.23% (mass/mass) of the total embedded mass of CNTs being released from the CNT nanocomposite during the full weathering process, suggesting that the water spray induced sufficient mechanical stress to eliminate the protective effect of the surface agglomerated CNT network. Importantly, additional mechanical stresses imposed on the weathered nanocomposites by shaking and ultrasonication resulted in further release of approximately 0.27% (mass /mass).
Collapse
Affiliation(s)
- Yue Zhao
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - David G Goodwin
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
| | - Lipiin Sung
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
| | - Girish Ramakrishnan
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Qiyuan Wu
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jiajie Cen
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Elijah J Petersen
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA.
| | - Alexander Orlov
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
5
|
Huang J, Kuo C, Tsai HY. Increased UV resistance and mechanical properties of regenerated Polycarbonate/Acrylonitrile-Styrene-Acrylic via addition of modified CNT and 2-(2′-hydroxy-5′-methylphenyl)benzotriazole. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2023.110262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Gao H, He W, Yu R, Hammer T, Xu G, Wang J. Aerodynamic property and filtration evaluation of airborne graphene nanoplatelets with plate-like shape and folded structure. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Sung LP, Chung YF, Goodwin DG, Petersen EJ, Hsueh HC, Stutzman P, Nguyen T, Thomas T. Selection of an Optimal Abrasion Wheel Type for Nano-Coating Wear Studies under Wet or Dry Abrasion Conditions. NANOMATERIALS 2020; 10:nano10081445. [PMID: 32722058 PMCID: PMC7466352 DOI: 10.3390/nano10081445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022]
Abstract
Nanocoatings have numerous potential applications in the indoor environment, such as flooring finishes with increased scratch- and wear-resistance. However, given concerns about the potential environmental and human health effects of nanomaterials, it is necessary to develop standardized methods to quantify nanomaterial release during use of these products. One key choice for mechanical wear studies is the abrasion wheel. Potential limitations of different wheels include the release of fragments from the wheel during abrasion, wearing of the wheel from the abrasion process, or not releasing a sufficient number of particles for accurate quantitative analysis. In this study, we evaluated five different wheels, including a typically used silicon oxide-based commercial wheel and four wheels fabricated at the National Institute of Standards and Technology (NIST), for their application in nanocoating abrasion studies. A rapid, nondestructive laser scanning confocal microscopy method was developed and used to identify released particles on the abraded surfaces. NIST fabricated a high performing wheel: a noncorrosive, stainless-steel abrasion wheel containing a deep cross-patch. This wheel worked well under both wet and dry conditions, did not corrode in aqueous media, did not release particles from itself, and yielded higher numbers of released particles. These results can be used to help develop a standardized protocol for surface release of particles from nanoenabled products using a commercial rotary Taber abraser.
Collapse
Affiliation(s)
- Li-Piin Sung
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (Y.-F.C.); (D.G.G.J.); (H.-C.H.); (P.S.); (T.N.)
- Correspondence: (L.-P.S.); (E.J.P.); Tel.: +1-3019756737 (L.-P.S.); +1-3019758142 (E.J.P.)
| | - Yu-Fan Chung
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (Y.-F.C.); (D.G.G.J.); (H.-C.H.); (P.S.); (T.N.)
| | - David G. Goodwin
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (Y.-F.C.); (D.G.G.J.); (H.-C.H.); (P.S.); (T.N.)
| | - Elijah J. Petersen
- Materials Measurement Laboratory, NIST, Gaithersburg, MD 20899, USA
- Correspondence: (L.-P.S.); (E.J.P.); Tel.: +1-3019756737 (L.-P.S.); +1-3019758142 (E.J.P.)
| | - Hsiang-Chun Hsueh
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (Y.-F.C.); (D.G.G.J.); (H.-C.H.); (P.S.); (T.N.)
| | - Paul Stutzman
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (Y.-F.C.); (D.G.G.J.); (H.-C.H.); (P.S.); (T.N.)
| | - Tinh Nguyen
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (Y.-F.C.); (D.G.G.J.); (H.-C.H.); (P.S.); (T.N.)
| | - Treye Thomas
- Office of Hazard Identification and Reduction, U.S. Consumer Product Safety Commission, Bethesda, MD 20814, USA;
| |
Collapse
|
8
|
Netkueakul W, Korejwo D, Hammer T, Chortarea S, Rupper P, Braun O, Calame M, Rothen-Rutishauser B, Buerki-Thurnherr T, Wick P, Wang J. Release of graphene-related materials from epoxy-based composites: characterization, quantification and hazard assessment in vitro. NANOSCALE 2020; 12:10703-10722. [PMID: 32374300 DOI: 10.1039/c9nr10245k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Due to their mechanical strength, thermal stability and electrical conductivity, graphene-related materials (GRMs) have been extensively explored for various applications. Moreover, GRMs have been studied and applied as fillers in polymer composite manufacturing to enhance the polymer performance. With the foreseen growth in GRM production, occupational and consumer exposure is inevitable, thus raising concerns for potential health risks. Therefore, this study aims (1) to characterize aerosol particles released after mechanical abrasion on GRM-reinforced epoxy composites, (2) to quantify the amounts of protruding and free-standing GRMs in the abraded particles and (3) to assess the potential effects of the pristine GRMs as well as the abraded particles on human macrophages differentiated from the THP-1 cell line in vitro. GRMs used in this study included graphene nanoplatelets (GNPs), graphene oxide (GO), and reduced graphene oxide (rGO). All types of pristine GRMs tested induced a dose-dependent increase in reactive oxygen species formation, but a decrease in cell viability was only detected for large GNPs at high concentrations (20 and 40 μg mL-1). The particle modes measured using a scanning mobility particle sizer (SMPS) were 300-400 nm and using an aerodynamic particle sizer (APS) were between 2-3 μm, indicating the release of respirable particles. A significant fraction (51% to 92%) of the GRMs embedded in the epoxy composites was released in the form of free-standing or protruding GRMs in the abraded particles. The abraded particles did not induce any acute cytotoxic effects.
Collapse
Affiliation(s)
- Woranan Netkueakul
- Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Goodwin DG, Lai T, Lyu Y, Lu CY, Campos A, Reipa V, Nguyen T, Sung L. The Impacts of Moisture and Ultraviolet Light on the Degradation of Graphene Oxide/Polymer Nanocomposites. NANOIMPACT 2020; 19:10.1016/j.impact.2020.100249. [PMID: 33506141 PMCID: PMC7836096 DOI: 10.1016/j.impact.2020.100249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The extent to which hydrophilic GO nanofillers regulate polymer degradation during exposure to a combination of ultraviolet (UV) radiation and moisture is presently unknown. Accordingly, this study systematically evaluated the effect of GO on polymer degradability under both humid UV and dry UV conditions. Both GO accumulation at the polymer nanocomposite (PNC) surface and GO release following degradation were also investigated. Different mass loadings of GO were incorporated into waterborne polyurethane (WBPU), a commonly used exterior coating, and the resulting GO/WBPU nanocomposites were exposed to precisely controlled accelerated weathering conditions using the NIST Simulated Photodegradation via High Energy Radiant Exposure (SPHERE) device. Thickness loss and infrared spectroscopy measurements indicated GO slightly improved the durability of WBPU under dry UV conditions but not under humid UV conditions. Raman spectroscopy, scanning electron microscopy, and atomic force microscopy modulus measurements indicated that GO accumulation occurred at and near the PNC surface under both conditions but to a more rapid extent under humid UV conditions. Minimal GO release occurred under dry UV conditions as measured with Raman spectroscopy of aqueous run-off from a simulated rain spray applied to degraded PNCs. In contrast, PNC surface transformations under humid UV conditions suggested that GO release occurred.
Collapse
Affiliation(s)
- David G. Goodwin
- National Institute of Standards and Technology, Materials and Structural Systems Division, Engineering Laboratory, Gaithersburg, MD 20899 USA
| | - Trinny Lai
- National Institute of Standards and Technology, Materials and Structural Systems Division, Engineering Laboratory, Gaithersburg, MD 20899 USA
| | - Yadong Lyu
- National Institute of Standards and Technology, Materials and Structural Systems Division, Engineering Laboratory, Gaithersburg, MD 20899 USA
| | - Chen Yuan Lu
- National Institute of Standards and Technology, Materials and Structural Systems Division, Engineering Laboratory, Gaithersburg, MD 20899 USA
| | - Alejandro Campos
- National Institute of Standards and Technology, Materials and Structural Systems Division, Engineering Laboratory, Gaithersburg, MD 20899 USA
| | - Vytas Reipa
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Materials Measurement Laboratory, Gaithersburg, MD 20899 USA
| | - Tinh Nguyen
- National Institute of Standards and Technology, Materials and Structural Systems Division, Engineering Laboratory, Gaithersburg, MD 20899 USA
| | - Lipiin Sung
- National Institute of Standards and Technology, Materials and Structural Systems Division, Engineering Laboratory, Gaithersburg, MD 20899 USA
| |
Collapse
|
10
|
Zepp R, Ruggiero E, Acrey B, Davis MJB, Han C, Hsieh HS, Vilsmeier K, Wohlleben W, Sahle-Demessie E. Fragmentation of polymer nanocomposites: modulation by dry and wet weathering, fractionation, and nanomaterial filler. ENVIRONMENTAL SCIENCE. NANO 2020; 7:1742-1758. [PMID: 33564464 PMCID: PMC7869489 DOI: 10.1039/c9en01360a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In recent years, an increasing number of polymeric composites incorporating engineered nanomaterials (ENMs) have reached the market. Such nano-enabled products (NEPs) present enhanced performance through improved mechanical, thermal, UV protection, electrical, and gas barrier properties. However, little is known about how environmental weathering impacts ENM release, especially for high-tonnage NEPs like kaolin products, which have not been extensively examined by the scientific community. Here we study the simulated environmental weathering of different polymeric nanocomposites (epoxy, polyamide, polypropylene) filled with organic (multiwalled carbon nanotube, graphene, carbon black) and inorganic (WS2, SiO2, kaolin, Fe2O3, Cu-phthalocyanines) ENMs. Multiple techniques were employed by researchers at three laboratories to extensively evaluate the effect of weathering: ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), optical microscopy, contact angle measurements, gravimetric analysis, analytical ultracentrifugation (AUC), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Raman spectroscopy. This work aimed to elucidate the extent to which weathering protocol (i.e. wet vs. dry) and diverse filler characteristics modulate fragment release and polymer matrix degradation. In doing so, it expanded the established NanoRelease protocol, previously used for analyzing fragment emission, by evaluating two significant additions: (1) simulated weathering with rain events and (2) fractionation of sample leachate prior to analysis. Comparing different composite materials and protocols demonstrated that the polymer matrix is the most significant factor in NEP aging. Wet weathering is more realistic than dry weathering, but dry weathering seems to provide a more controlled release of material over wet. Wet weathering studies could be complicated by leaching, and the addition of a fractionation step can improve the quality of UV-vis measurements.
Collapse
Affiliation(s)
- Richard Zepp
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), Center for Environmental Measurement and Modeling (CEMM), 960 College Station Rd., Athens, GA, USA
| | - Emmanuel Ruggiero
- BASF SE, Dept. Material Physics and Analytics, 67056, Ludwigshafen, Germany
| | - Brad Acrey
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), Center for Environmental Measurement and Modeling (CEMM), 960 College Station Rd., Athens, GA, USA
- ORISE Research Fellow, Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Mary J B Davis
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), Center for Environmental Measurement and Modeling (CEMM), 960 College Station Rd., Athens, GA, USA
- NRC Post-Doctoral Fellow, National Research Council (NRC), Washington DC, USA
| | - Changseok Han
- ORISE Research Fellow, Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
- EPA, ORD, Center for Environmental Solutions and Emergency Response (CESER), Cincinnati, OH, USA
- Department of Environmental Engineering, INHA University, Incheon, Korea
| | - Hsin-Se Hsieh
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), Center for Environmental Measurement and Modeling (CEMM), 960 College Station Rd., Athens, GA, USA
- NRC Post-Doctoral Fellow, National Research Council (NRC), Washington DC, USA
| | - Klaus Vilsmeier
- BASF SE, Dept. Material Physics and Analytics, 67056, Ludwigshafen, Germany
| | - Wendel Wohlleben
- BASF SE, Dept. Material Physics and Analytics, 67056, Ludwigshafen, Germany
| | | |
Collapse
|
11
|
Ogura I, Kotake M, Ata S. Quantitative evaluation of carbon nanomaterial releases during electric heating wire cutting and sawing machine cutting of expanded polystyrene-based composites using thermal carbon analysis. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2019; 16:165-178. [PMID: 30427298 DOI: 10.1080/15459624.2018.1540874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Field measurements were conducted at a facility where expanded polystyrene-based carbon nanomaterial composites, namely, carbon nanotube and carbon black composites, were cut with an electric heating wire cutter or a circular sawing machine. The aerosol particles released during the cutting of the composites were measured using real-time aerosol monitoring, gravimetric analysis, thermal carbon analysis, and scanning electron microscopic observations. This study had two major goals: (1) to quantitatively evaluate the concentrations of airborne carbon nanomaterials during the cutting of their composites; (2) to evaluate the capability of thermal carbon analysis to quantify airborne carbon nanomaterials in the presence of expanded polystyrene-derived particles. The results of thermal carbon analysis showed that the concentrations of elemental carbon (an indicator of carbon nanomaterials) for all the respirable dust samples in both cutting processes were less than the limit of detection (∼2 µg/m3), which is nearly equivalent to or lower than the occupational exposure limits for carbon nanotubes (1 to 50 µg/m3). For total dust, which includes particles larger than respirable size, although the elemental carbon concentrations during heating wire cutting were low (<3 µg/m3), those during sawing machine cutting were up to 58 µg/m3. In scanning electron microscopic observations, micron-sized particles composed of or including carbon nanotubes were detected only in aerosol particles collected during the sawing machine cutting. Therefore, heating wire cutting is considered preferable. This study demonstrated that thermal carbon analysis can quantify airborne carbon nanomaterials in the presence of expanded polystyrene-derived particles.
Collapse
Affiliation(s)
- Isamu Ogura
- a Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST) , Ibaraki , Japan
- b Technology Research Association for Single Wall Carbon Nanotubes (TASC) , Ibaraki , Japan
| | - Mari Kotake
- b Technology Research Association for Single Wall Carbon Nanotubes (TASC) , Ibaraki , Japan
| | - Seisuke Ata
- b Technology Research Association for Single Wall Carbon Nanotubes (TASC) , Ibaraki , Japan
- c CNT-Application Research Center, National Institute of Advanced Industrial Science and Technology (AIST) , Ibaraki , Japan
| |
Collapse
|
12
|
Reipa V, Hanna SK, Urbas A, Sander L, Elliott J, Conny J, Petersen EJ. Efficient electrochemical degradation of multiwall carbon nanotubes. JOURNAL OF HAZARDOUS MATERIALS 2018; 354:275-282. [PMID: 29778037 DOI: 10.1016/j.jhazmat.2018.04.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
As the production mass of multiwall carbon nanotubes (MWCNT) increases, the potential for human and environmental exposure to MWCNTs may also increase. We have shown that exposing an aqueous suspension of pristine MWCNTs to an intense oxidative treatment in an electrochemical reactor, equipped with an efficient hydroxyl radical generating Boron Doped Diamond (BDD) anode, leads to their almost complete mineralization. Thermal optical transmittance analysis showed a total carbon mass loss of over two orders of magnitude due to the electrochemical treatment, a result consistent with measurements of the degraded MWCNT suspensions using UV-vis absorbance. Liquid chromatography data excludes substantial accumulation of the low molecular weight reaction products. Therefore, up to 99% of the initially suspended MWCNT mass is completely mineralized into gaseous products such as CO2 and volatile organic carbon. Scanning electron microscopy (SEM) images show sporadic opaque carbon clusters suggesting the remaining nanotubes are transformed into structure-less carbon during their electrochemical mineralization. Environmental toxicity of pristine and degraded MWCNTs was assessed using Caenorhabditis elegans nematodes and revealed a major reduction in the MWCNT toxicity after treatment in the electrochemical flow-by reactor.
Collapse
Affiliation(s)
- Vytas Reipa
- Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
| | - Shannon K Hanna
- Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Aaron Urbas
- Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Lane Sander
- Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - John Elliott
- Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Joseph Conny
- Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Elijah J Petersen
- Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| |
Collapse
|
13
|
Kovochich M, Fung CCD, Avanasi R, Madl AK. Review of techniques and studies characterizing the release of carbon nanotubes from nanocomposites: Implications for exposure and human health risk assessment. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2018; 28:203-215. [PMID: 28561036 DOI: 10.1038/jes.2017.6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/30/2017] [Indexed: 06/07/2023]
Abstract
Composites made with engineered nanomaterials (nanocomposites) have a wide range of applications, from use in basic consumer goods to critical national defense technologies. Carbon nanotubes (CNTs) are a popular addition in nanocomposites because of their enhanced mechanical, thermal, and electrical properties. Concerns have been raised, though, regarding potential exposure and health risks from nanocomposites containing CNTs because of comparisons to other high aspect ratio fibers. Assessing the factors affecting CNT release from composites is therefore paramount for understanding potential exposure scenarios that may occur during product handling and manipulation. Standardized methods for detecting and quantifying released CNTs, however, have not yet been developed. We therefore evaluated experimental approaches deployed by various researchers, with an emphasis on characterizing free versus composite bound CNTs. From our analysis of published studies characterizing CNT releases from nanocomposites, we found that the qualitative and quantitative methods used across studies varied greatly, thus limiting the ability for objective comparison and evaluation of various release factors. Nonetheless, qualitative results indicated that factors such as composite type, CNT functionalization, and energy input during manipulation (i.e., grinding) may affect CNT release. Based on our findings, we offer several recommendations for future product testing and assessment of potential exposure and health risks associated with CNT nanocomposites.
Collapse
Affiliation(s)
| | | | - Raghavendhran Avanasi
- Cardno ChemRisk; 130 Vantis Suite 170, Aliso Viejo, CA, 92656, USA
- ICF; Fairfax, VA, USA
| | - Amy K Madl
- Cardno ChemRisk; 130 Vantis Suite 170, Aliso Viejo, CA, 92656, USA
| |
Collapse
|
14
|
Part F, Berge N, Baran P, Stringfellow A, Sun W, Bartelt-Hunt S, Mitrano D, Li L, Hennebert P, Quicker P, Bolyard SC, Huber-Humer M. A review of the fate of engineered nanomaterials in municipal solid waste streams. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 75:427-449. [PMID: 29477652 DOI: 10.1016/j.wasman.2018.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/15/2018] [Accepted: 02/06/2018] [Indexed: 05/16/2023]
Abstract
Significant knowledge and data gaps associated with the fate of product-embedded engineered nanomaterials (ENMs) in waste management processes exist that limit our current ability to develop appropriate end-of-life management strategies. This review paper was developed as part of the activities of the IWWG ENMs in Waste Task Group. The specific objectives of this review paper are to assess the current knowledge associated with the fate of ENMs in commonly used waste management processes, including key processes and mechanisms associated with ENM fate and transport in each waste management process, and to use that information to identify the data gaps and research needs in this area. Literature associated with the fate of ENMs in wastes was reviewed and summarized. Overall, results from this literature review indicate a need for continued research in this area. No work has been conducted to quantify ENMs present in discarded materials and an understanding of ENM release from consumer products under conditions representative of those found in relevant waste management process is needed. Results also indicate that significant knowledge gaps associated with ENM behaviour exist for each waste management process investigated. There is a need for additional research investigating the fate of different types of ENMs at larger concentration ranges with different surface chemistries. Understanding how changes in treatment process operation may influence ENM fate is also needed. A series of specific research questions associated with the fate of ENMs during the management of ENM-containing wastes have been identified and used to direct future research in this area.
Collapse
Affiliation(s)
- Florian Part
- Department of Water-Atmosphere-Environment, Institute of Waste Management, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna, Austria
| | - Nicole Berge
- Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, United States.
| | - Paweł Baran
- Unit of Technologies of Fuels, RWTH Aachen University, Wüllnerstraße 2, 52062 Aachen, Germany
| | - Anne Stringfellow
- Faculty of Engineering and the Environment, University of Southampton, SO17 1BJ, Southampton, England, United Kingdom
| | - Wenjie Sun
- Department of Civil and Environmental Engineering, Southern Methodist University, 3101 Dyer Street, Dallas, TX 75205, United States
| | - Shannon Bartelt-Hunt
- Department of Civil Engineering, University of Nebraska-Lincoln, 1110 S. 67th St., Omaha, NE 68182-0178, United States
| | - Denise Mitrano
- Process Engineering, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Liang Li
- Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, United States
| | - Pierre Hennebert
- National Institute for Industrial and Environmental Risk Assessment (INERIS), BP 33, 13545 Aix-en-Provence Cedex 4, France
| | - Peter Quicker
- Unit of Technologies of Fuels, RWTH Aachen University, Wüllnerstraße 2, 52062 Aachen, Germany
| | - Stephanie C Bolyard
- Environmental Research & Education Foundation, 3301 Benson Drive, Suite 101, Raleigh, NC 27609, United States
| | - Marion Huber-Humer
- Department of Water-Atmosphere-Environment, Institute of Waste Management, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna, Austria
| |
Collapse
|
15
|
Mantecca P, Kasemets K, Deokar A, Perelshtein I, Gedanken A, Bahk YK, Kianfar B, Wang J. Airborne Nanoparticle Release and Toxicological Risk from Metal-Oxide-Coated Textiles: Toward a Multiscale Safe-by-Design Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9305-9317. [PMID: 28715175 DOI: 10.1021/acs.est.7b02390] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nano metal oxides have been proposed as alternatives to silver (Ag) nanoparticles (NPs) for antibacterial coatings. Here, cotton and polyester-cotton fabrics were sonochemically coated with zinc oxide (ZnO) and copper oxide (CuO) NPs. By varying the reaction solvent (water or ethanol), NPs with different sizes and shapes were synthesized. The cytotoxic and pro-inflammatory effects of studied NPs were investigated in vitro in human alveolar epithelial A549 and macrophage-like THP1 cells. To understand the potential respiratory impact of the NPs, the coated textiles were subjected to the abrasion tests, and the released airborne particles were measured. A very small amount of the studied metal oxides NPs was released from abrasion of the textiles coated by the ethanol-based sonochemical process. The release from the water-based coating was comparably higher. Lung and immune cells viability decreased after 24 h of exposure only at the highest studied NPs concentration (100 μg/mL). Different from the ZnO NPs, both formulations of CuO NPs induced IL-8 release in the lung epithelial cells already at subtoxic concentrations (1-10 μg/mL) but not in immune cells. All of the studied NPs did not induce IL-6 release by the lung and immune cells. Calculations revealed that the exposures of the NPs to human lung due to the abrasion of the textiles were lower or comparable to the minimum doses in the cell viability tests (0.1 μg/mL), at which acute cytotoxicity was not observed. The results alleviate the concerns regarding the potential risk of these metal oxide NPs in their applications for the textile coating and provide insight for the safe-by-design approach.
Collapse
Affiliation(s)
- Paride Mantecca
- Department of Earth and Environmental Sciences, Research Center POLARIS, University of Milano-Bicocca , Milan 20126, Italy
| | - Kaja Kasemets
- Department of Earth and Environmental Sciences, Research Center POLARIS, University of Milano-Bicocca , Milan 20126, Italy
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics , Tallinn 12618, Estonia
| | - Archana Deokar
- Department of Chemistry and Nanomaterials, Bar-Ilan University Center for Advanced Materials and Nanotechnology , Ramat-Gan 5290002, Israel
| | - Ilana Perelshtein
- Department of Chemistry and Nanomaterials, Bar-Ilan University Center for Advanced Materials and Nanotechnology , Ramat-Gan 5290002, Israel
| | - Aharon Gedanken
- Department of Chemistry and Nanomaterials, Bar-Ilan University Center for Advanced Materials and Nanotechnology , Ramat-Gan 5290002, Israel
| | - Yeon Kyoung Bahk
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology , 8600 Dübendorf, Switzerland
- Institute of Environmental Engineering, ETH Zurich , Zurich 8092, Switzerland
| | - Baharh Kianfar
- Institute of Environmental Engineering, ETH Zurich , Zurich 8092, Switzerland
| | - Jing Wang
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology , 8600 Dübendorf, Switzerland
- Institute of Environmental Engineering, ETH Zurich , Zurich 8092, Switzerland
| |
Collapse
|
16
|
Spyrogianni A, Herrmann IK, Keevend K, Pratsinis SE, Wegner K. The silanol content and in vitro cytolytic activity of flame-made silica. J Colloid Interface Sci 2017; 507:95-106. [PMID: 28780339 DOI: 10.1016/j.jcis.2017.07.096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 02/06/2023]
Abstract
HYPOTHESIS The surface chemistry of synthetic amorphous silicas is essential for their applicational performance and for understanding their interactions with biological matter. Synthesis of silica by flame spray pyrolysis (FSP) allows to control the content and type of hydroxyl groups which also affects the cytolytic activity. EXPERIMENTS By controlling the FSP process variables, silica nanoparticles with the same specific surface area but different surface chemistry and content of internal silanols are prepared by combustion of hexamethyldisiloxane sprays, as characterized by Raman and infrared spectroscopy, thermogravimetric analysis, and titration with lithium alanate. Cytolytic activity is assessed in terms of membrane damage in human blood monocytes in vitro. FINDINGS Unlike commercial fumed silica, FSP-made silicas contain a significant amount of internal silanol groups and a high surface hydroxyl density, up to ∼8OH/nm2, similar to silicas made by wet-chemistry. Increasing the residence time of particles at high temperature during their synthesis reduces the internal and surface hydroxyl content and increases the relative amount of isolated silanols. This suggests incomplete oxidation of the silica matrix especially in short and "cold" flames and indicates that the silica particle formation pathway involves Si(OH)4. The surface chemistry differences translate into lower cytolytic activity for "cold-" than "hot-flame" silicas.
Collapse
Affiliation(s)
- Anastasia Spyrogianni
- Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland.
| | - Inge K Herrmann
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland.
| | - Kerda Keevend
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland.
| | - Sotiris E Pratsinis
- Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland.
| | - Karsten Wegner
- Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland; ParteQ GmbH, Sebastianstrasse 1, D-76456 Kuppenheim, Germany.
| |
Collapse
|
17
|
Ogura I, Kotake M, Ata S, Honda K. Quantitative measurement of carbon nanotubes released from their composites by thermal carbon analysis. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1742-6596/838/1/012014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Saheli PT, Rowe RK, Petersen EJ, O'Carroll DM. Diffusion of multiwall carbon nanotubes (MWCNTs) through a high density polyethylene (HDPE) geomembrane. GEOSYNTHETICS INTERNATIONAL 2017; 24:184-197. [PMID: 28740357 PMCID: PMC5520657 DOI: 10.1680/jgein.16.00025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The new applications for carbon nanotubes (CNTs) in various fields and consequently their greater production volume have increased their potential release to the environment. Landfills are one of the major locations where carbon nanotubes are expected to be disposed and it is important to ensure that they can limit the release of CNTs. Diffusion of multiwall carbon nanotubes (MWCNTs) dispersed in an aqueous media through a high-density polyethylene (HDPE) geomembrane (as a part of the landfill barrier system) was examined. Based on the laboratory tests, the permeation coefficient was estimated to be less than 5.1×10-15 m2/s. The potential performance of a HDPE geomembrane and geosynthetic clay liner (GCL) as parts of a composite liner in containing MWCNTs was modelled for six different scenarios. The results suggest that the low value of permeation coefficient of an HDPE geomembrane makes it an effective diffusive barrier for MWCNTs and by keeping the geomembrane defects to minimum during the construction (e.g., number of holes and length of wrinkles) a composite liner commonly used in municipal solid waste landfills will effectively contain MWCNTs.
Collapse
Affiliation(s)
- P T Saheli
- GeoEngineering Centre at Queen's-RMC, Queen's University, Kingston, Ontario, Canada, K7L 3N6
| | - R K Rowe
- Professor and Canada Research Chair in Geotechnical and Geoenvironmental Engineering, GeoEngineering Centre at Queen's - RMC, Queen's University, Kingston, Canada, K7L 3N6
| | - E J Petersen
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - D M O'Carroll
- Department of Civil & Environmental Engineering, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
19
|
Nguyen T, Petersen EJ, Pellegrin B, Gorham JM, Lam T, Zhao M, Sung L. Impact of UV irradiation on multiwall carbon nanotubes in nanocomposites: formation of entangled surface layer and mechanisms of release resistance. CARBON 2017; 116:191-200. [PMID: 28603293 PMCID: PMC5460675 DOI: 10.1016/j.carbon.2017.01.097] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Multiwall carbon nanotubes (MWCNTs) are nanofillers used in consumer and structural polymeric products to enhance a variety of properties. Under weathering, the polymer matrix will degrade and the nanofillers may be released from the products potentially impacting ecological or human health. In this study, we investigated the degradation of a 0.72 % (by mass) MWCNT/amine-cured epoxy nanocomposite irradiated with high intensity ultraviolet (UV) light at various doses, the effects of UV exposure on the surface accumulation and potential release of MWCNTs, and possible mechanisms for the release resistance of the MWCNT surface layer formed on nanocomposites by UV irradiation. Irradiated samples were characterized for chemical degradation, mass loss, surface morphological changes, and MWCNT release using a variety of analytical techniques. Under 295 nm to 400 nm UV radiation up to a dose of 4865 MJ/m2, the nanocomposite matrix underwent photodegradation, resulting in formation of a dense, entangled MWCNT network structure on the surface. However, no MWCNT release was detected, even at very high UV doses, suggesting that the MWCNT surface layer formed from UV irradiation of polymer nanocomposites resist release. Four possible release resistance mechanisms of the UV-induced MWCNT surface layer are presented and discussed.
Collapse
Affiliation(s)
- Tinh Nguyen
- National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899
| | - Elijah J Petersen
- National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899
| | - Bastien Pellegrin
- National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899
| | - Justin M Gorham
- National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899
| | - Thomas Lam
- National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899
| | - Minhua Zhao
- National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899
| | - Lipiin Sung
- National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899
| |
Collapse
|
20
|
Müller K, Bugnicourt E, Latorre M, Jorda M, Echegoyen Sanz Y, Lagaron JM, Miesbauer O, Bianchin A, Hankin S, Bölz U, Pérez G, Jesdinszki M, Lindner M, Scheuerer Z, Castelló S, Schmid M. Review on the Processing and Properties of Polymer Nanocomposites and Nanocoatings and Their Applications in the Packaging, Automotive and Solar Energy Fields. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E74. [PMID: 28362331 PMCID: PMC5408166 DOI: 10.3390/nano7040074] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 01/21/2023]
Abstract
For the last decades, nanocomposites materials have been widely studied in the scientific literature as they provide substantial properties enhancements, even at low nanoparticles content. Their performance depends on a number of parameters but the nanoparticles dispersion and distribution state remains the key challenge in order to obtain the full nanocomposites' potential in terms of, e.g., flame retardance, mechanical, barrier and thermal properties, etc., that would allow extending their use in the industry. While the amount of existing research and indeed review papers regarding the formulation of nanocomposites is already significant, after listing the most common applications, this review focuses more in-depth on the properties and materials of relevance in three target sectors: packaging, solar energy and automotive. In terms of advances in the processing of nanocomposites, this review discusses various enhancement technologies such as the use of ultrasounds for in-process nanoparticles dispersion. In the case of nanocoatings, it describes the different conventionally used processes as well as nanoparticles deposition by electro-hydrodynamic processing. All in all, this review gives the basics both in terms of composition and of processing aspects to reach optimal properties for using nanocomposites in the selected applications. As an outlook, up-to-date nanosafety issues are discussed.
Collapse
Affiliation(s)
- Kerstin Müller
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Strasse 35, 85354 Freising, Germany.
| | - Elodie Bugnicourt
- IRIS, Parc Mediterrani de la Tecnologia, Avda. Carl Friedrich Gauss 11, 08860 Castelldefels, Barcelona, Spain.
| | - Marcos Latorre
- ITENE Instituto Tecnológico del Embalaje, Transporte y Logística, Albert Einstein, 1, 46980 Paterna, Spain.
| | - Maria Jorda
- ITENE Instituto Tecnológico del Embalaje, Transporte y Logística, Albert Einstein, 1, 46980 Paterna, Spain.
| | - Yolanda Echegoyen Sanz
- Institute of Agrochemistry and Food Technology (IATA)-CSIC, Avda. Agustín Escardino, 7, 46980 Paterna, Spain.
- Science Education Department, Facultat de Magisteri, Universitat de València, 46022 València, Spain.
| | - José M Lagaron
- Institute of Agrochemistry and Food Technology (IATA)-CSIC, Avda. Agustín Escardino, 7, 46980 Paterna, Spain.
| | - Oliver Miesbauer
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Strasse 35, 85354 Freising, Germany.
| | - Alvise Bianchin
- MBN Nanomaterialia, via Bortolan 42, 31040 Vascon di Carbonera, Italy.
| | - Steve Hankin
- Institute of Occupational Medicine, Research Avenue North, Riccarton, Edinburgh, EH14 4AP, UK.
| | - Uwe Bölz
- HPX Polymers GmbH, Ziegeleistraße 1, 82327 Tutzing, Germany.
| | - Germán Pérez
- Eurecat, Av. Universitat Autònoma 23, 08290 Cerdanyola del Vallès, Barcelona, Spain.
| | - Marius Jesdinszki
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Strasse 35, 85354 Freising, Germany.
| | - Martina Lindner
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Strasse 35, 85354 Freising, Germany.
| | - Zuzana Scheuerer
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Strasse 35, 85354 Freising, Germany.
| | - Sara Castelló
- Bioinicia, Calle Algepser, 65-Nave 3 | Polígono Industrial Táctica | 46980 Paterna (Valencia), Spain.
| | - Markus Schmid
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Strasse 35, 85354 Freising, Germany.
- Chair for Food Packaging Technology, Technische Universität München, Weihenstephaner Steig 22, 85354 Freising, Germany.
| |
Collapse
|
21
|
Wang J, Schlagenhauf L, Setyan A. Transformation of the released asbestos, carbon fibers and carbon nanotubes from composite materials and the changes of their potential health impacts. J Nanobiotechnology 2017; 15:15. [PMID: 28219381 PMCID: PMC5319145 DOI: 10.1186/s12951-017-0248-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/10/2017] [Indexed: 12/11/2022] Open
Abstract
Composite materials with fibrous reinforcement often provide superior mechanical, thermal, electrical and optical properties than the matrix. Asbestos, carbon fibers and carbon nanotubes (CNTs) have been widely used in composites with profound impacts not only on technology and economy but also on human health and environment. A large number of studies have been dedicated to the release of fibrous particles from composites. Here we focus on the transformation of the fibrous fillers after their release, especially the change of the properties essential for the health impacts. Asbestos fibers exist in a large number of products and the end-of-the-life treatment of asbestos-containing materials poses potential risks. Thermal treatment can transform asbestos to non-hazardous phase which provides opportunities of safe disposal of asbestos-containing materials by incineration, but challenges still exist. Carbon fibers with diameters in the range of 5–10 μm are not considered to be respirable, however, during the release process from composites, the carbon fibers may be split along the fiber axis, generating smaller and respirable fibers. CNTs may be exposed on the surface of the composites or released as free standing fibers, which have lengths shorter than the original ones. CNTs have high thermal stability and may be exposed after thermal treatment of the composites and still keep their structural integrity. Due to the transformation of the fibrous fillers during the release process, their toxicity may be significantly different from the virgin fibers, which should be taken into account in the risk assessment of fiber-containing composites.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland. .,Advanced Analytical Technologies, Empa, Ueberlandstrasse 129, 8600, Dübendorf, Switzerland.
| | - Lukas Schlagenhauf
- Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland.,Advanced Analytical Technologies, Empa, Ueberlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Ari Setyan
- Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland.,Advanced Analytical Technologies, Empa, Ueberlandstrasse 129, 8600, Dübendorf, Switzerland
| |
Collapse
|
22
|
Rhiem S, Barthel AK, Meyer-Plath A, Hennig MP, Wachtendorf V, Sturm H, Schäffer A, Maes HM. Release of (14)C-labelled carbon nanotubes from polycarbonate composites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 215:356-365. [PMID: 27194367 DOI: 10.1016/j.envpol.2016.04.098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 06/05/2023]
Abstract
Waste disposal of carbon nanotube (CNT) containing products is expected to be the most important pathway for release of CNTs into the environment. In the present work, the use of radiolabelled CNTs ((14)C-CNT) for polycarbonate polymer nanocomposites with 1 wt% (14)C-CNT content allowed for the first time to quantify and differentiate the CNT release according to the type of impact along the materials' ageing history. After an initial exposure of the nanocomposite by solar-like irradiation, further environmental impacts were applied to composite material. They aimed at mimicking disposal site conditions that may induce further ageing effects and CNT release. This study included shaking in water, rapid temperature changes, soaking in humic acid solution as well as waste water effluent, and, finally, gentle mechanical abrasion. All ageing impacts were applied sequentially, both on pristine (control) and on solar-irradiated nanocomposites. All experiments were accompanied by absolute quantification of radioactive release as well as chemical and morphological analyses of the nanocomposite surfaces using infra-red (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The morphological analysis showed that spectral irradiation can uncover CNT networks on the outer nanocomposite surface layers by polymer degradation. After having subjected the solar-irradiated nanocomposite to all studied disposal site effect, the total radioactive release was quantified to amount to 64 mg CNT/m(2), whereas only 0.8 mg CNT/m(2) were found for the un-irradiated control sample. Solar degradation of polymers was thus found to significantly increase the propensity of the studied polymer nanocomposites to release CNTs during ageing effects at the product's end-of-life typical for disposal sites.
Collapse
Affiliation(s)
- Stefan Rhiem
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Anne-Kathrin Barthel
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Asmus Meyer-Plath
- BAuA - Federal Institute for Occupational Safety and Health, Nöldnerstr. 40-42, 10317 Berlin, Germany
| | - Michael P Hennig
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Volker Wachtendorf
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Heinz Sturm
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Andreas Schäffer
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Hanna M Maes
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| |
Collapse
|