1
|
Zhu R, Chen L, Tang S. Horizontal aluminum magneto-plasmonic metasurface for efficient magneto-optical Kerr modulation and sensing in the ultraviolet range. OPTICS LETTERS 2024; 49:5599-5602. [PMID: 39353015 DOI: 10.1364/ol.537848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024]
Abstract
Most of the plasmonic nanostructures utilized for magneto-optical (MO) enhancement have been limited to noble metals with resulting enhancement in the visible and infrared spectral range. Here, we designed a horizontal aluminum magneto-plasmonic metasurface, with the ability to control the Kerr rotation angle and enhance the RI sensing performance based on magneto-plasmons, by exploiting the polarization degree of freedom in the ultraviolet range. The surface composes of L-shaped magnetic dielectric embedded in the Al film. The reflection spectrum and the Kerr rotation angle map are both symmetric about the polarization angle of 45° and 135°. It is demonstrated that the sign change of the two maximal Kerr rotation angles at polarization angle of 0° and 90°, originates from the relative contribution of the two mutually orthogonal oscillating electric dipoles. In addition, the RI sensing FoM based on Kerr reversal at 372 nm of this structure reaches 5000/RIU, which is superior to the result in the visible or infrared range (1735/RIU). The results of our investigation demonstrate the potential of Al-based magneto-plasmonic effect and offer opportunities to push the MO spectral response out of the visible range into the ultraviolet range.
Collapse
|
2
|
Feng J, Weng X, Mandujano MAG, Muminov B, Ahuja G, Méndez ER, Yin Y, Vuong LT. Insect-inspired nanofibrous polyaniline multi-scale films for hybrid polarimetric imaging with scattered light. NANOSCALE HORIZONS 2022; 7:319-327. [PMID: 35166291 DOI: 10.1039/d1nh00465d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We demonstrate a bio-inspired coating for novel imaging and sensing designs: the coating sorts different colors and linear polarizations. This coating, composed of conducting, nanofibrous polyaniline in an inverse opal film (PANI-IOF), is inexpensive and can feasibly be deposited over large areas on a range of flexible and non-flat substrates. With PANI IOFs, light is scattered into azimuthally polarized Debye rings. Subsequently, the diffracted speckle patterns carry compressed representations of the polarized illumination, which we reconstruct using shallow neural networks.
Collapse
Affiliation(s)
- Ji Feng
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA 92521, USA.
| | - Xiaojing Weng
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA 92521, USA.
| | - Miguel A G Mandujano
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA 92521, USA.
| | - Baurzhan Muminov
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA 92521, USA.
| | - Gaurav Ahuja
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA 92521, USA.
| | - Eugenio R Méndez
- División de Física Aplicada, CICESE, Carretera Ensenada-Tijuana 3918, Ensenada, BC, 22860, Mexico
| | - Yadong Yin
- Department of Chemistry, University of California Riverside, Riverside, CA 92521, USA
| | - Luat T Vuong
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
3
|
Wang X, Yao L, Chen X, Dai H, Wang M, Zhang L, Ni Y, Xiao L, Han JB. Gap-Induced Giant Third-Order Optical Nonlinearity and Long Electron Relaxation Time in Random-Distributed Gold Nanorod Arrays. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32469-32474. [PMID: 31409071 DOI: 10.1021/acsami.9b08935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The third-order optical nonlinearities and the hot electron relaxation time (τ) of random-distributed gold nanorods arrays on glass (R-GNRA) have been investigated by using Z-scan and optical Kerr effect (OKE) techniques. Large third-order optical susceptibility (χ(3)) with the value of 2.5 × 10-6 esu has been obtained around the plamsonic resonance peak under the excitation power intensity of 0.1 GW/cm2. Further decrease of the excitation power intensity down to 0.3 MW/cm2 will lead to the significant increase of χ(3) up to 6.4 × 10-4 esu. The OKE results show that the relaxation time of R-GNRA around the plasmonic peak is 13.9 ± 0.4 ps, which is more than 4 times longer than those of the individual gold nanostructures distributed in water solutions. The Finite-difference time domain simulations demonstrate that this large enhancement of χ(3) and slow down of τ are caused by the gap-induced large local field enhancement of GNRs dimers in R-GNRA. These significant results offer great opportunities for plasmonic nanostructures in applications of photonic and photocatalytic devices.
Collapse
Affiliation(s)
- Xia Wang
- School of Mathematics and Physics , Wenhua College , Wuhan 430074 , P. R. China
| | - Linhua Yao
- Wuhan National High Magnetic Field Center and School of Physics , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Xiaodie Chen
- Wuhan National High Magnetic Field Center and School of Physics , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Hongwei Dai
- Wuhan National High Magnetic Field Center and School of Physics , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Mingshan Wang
- Wuhan National High Magnetic Field Center and School of Physics , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Luman Zhang
- Wuhan National High Magnetic Field Center and School of Physics , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Yun Ni
- School of Mathematics and Physics , Wenhua College , Wuhan 430074 , P. R. China
| | - Lixia Xiao
- School of Mathematics and Physics , Wenhua College , Wuhan 430074 , P. R. China
| | - Jun-Bo Han
- Wuhan National High Magnetic Field Center and School of Physics , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| |
Collapse
|
4
|
Luo J, Lin Q, Wang L, Xia S, Meng H, Zhai X. Ultrasensitive tunable terahertz sensor based on five-band perfect absorber with Dirac semimetal. OPTICS EXPRESS 2019; 27:20165-20176. [PMID: 31510116 DOI: 10.1364/oe.27.020165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
For non-invasive detection, terahertz (THz) sensing shows more promising performance compared to visible and infrared regions. But so far, figure of merit (FOM) of THz sensor has been exceeding low due to weak radiation and absorption loss. Here, we propose an easily implemented THz sensor based on bulk Dirac semimetal (BDS). The presented structure not only achieves narrowband absorption and dynamic tunability at five perfect absorption bands, but also exhibits excellent sensing performance with a FOM of 813. These fascinating properties can be explained by the combination of the classical magnetic resonance induced by the anti-parallel current, the electric resonance of adjacent unit cells resulting from the air slots at both ends of the absorber, and Mie resonance supported by coating, respectively. Our work can provide a new avenue for the design of multi-band photodetectors and sensors in the future.
Collapse
|
5
|
Li Q, Li Z, Wang X, Wang T, Liu H, Yang H, Gong Y, Gao J. Structurally tunable plasmonic absorption bands in a self-assembled nano-hole array. NANOSCALE 2018; 10:19117-19124. [PMID: 30298900 DOI: 10.1039/c8nr06588h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper, we demonstrate a theoretical and experimental study on a nano-hole array that can realize perfect absorption in the visible and near-infrared regions. The absorption spectrum can be easily controlled by adjusting the structural parameters including the radius and period of the nano-hole, and the maximal absorption can reach 99.0% in theory. In order to clarify the physical mechanism of the absorber, we start from the extraordinary optical transmission supported by the nano-hole array in a thin metallic film coated on a glass substrate, and then analyse the perfect absorption in the metal-insulator-metal structure. The surface plasmon modes supported by the nano-hole array are completely clarified and both the FDTD simulation and waveguide theory are used to help us understand the physical mechanism, which can provide a new perspective in designing this kind of perfect absorber. In addition, the nano-hole array can be fabricated by simple and low-cost nanosphere lithography, which makes it a more appropriate candidate for spectroscopy, photovoltaics, photodetectors, sensing, and surface enhanced Raman scattering.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Zheng C, Jia T, Zhao H, Xia Y, Zhang S, Feng D, Sun Z. Theoretical study on narrow Fano resonance of nanocrescent for the label-free detection of single molecules and single nanoparticles. RSC Adv 2018; 8:3381-3391. [PMID: 35542955 PMCID: PMC9077704 DOI: 10.1039/c7ra12666b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/10/2018] [Indexed: 01/29/2023] Open
Abstract
This paper reports a narrow Fano resonance of 3D nanocrescent and its application in the label-free detection of single molecules. The Fano resonance depends not only on the gap size but also on the height. The Fano resonance originates from the interference between the quadrupolar mode supported by the horizontal crescent and the dipolar mode along the nanotip. When the height of 3D nanocrescent is 30 nm, the width of Fano resonance is as narrow as 10 nm. The narrow linewidth is caused by the strong narrow resonant absorption coming from the dipolar mode of nanotip overlapping with the quadrupolar mode of nanocrescent, where the absorption spectra are calculated under a horizontal incident light. The narrow Fano resonance is highly sensitive to a single nanoparticle trapped by the nanocrescent. The wavelength shift increases linearly with the refractive index with the relation of Δλ = 22.10n - 28.80, and increases with the size of trapped nanoparticle following a relation of Δλ = 0.826 × r 1.672. These results indicate that if a protein nanoparticle with radius of 2.5 nm is trapped by the nanocrescent, the shift is as large as 4.03 nm.
Collapse
Affiliation(s)
- Chunjie Zheng
- State Key Laboratory of Precision Spectroscopy, East China Normal University Shanghai 200062 P. R. China
| | - Tianqing Jia
- State Key Laboratory of Precision Spectroscopy, East China Normal University Shanghai 200062 P. R. China
| | - Hua Zhao
- State Key Laboratory of Precision Spectroscopy, East China Normal University Shanghai 200062 P. R. China
| | - Yingjie Xia
- State Key Laboratory of Precision Spectroscopy, East China Normal University Shanghai 200062 P. R. China
| | - Shian Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University Shanghai 200062 P. R. China
| | - Donghai Feng
- State Key Laboratory of Precision Spectroscopy, East China Normal University Shanghai 200062 P. R. China
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University Shanghai 200062 P. R. China
| |
Collapse
|
7
|
Deng S, Wang P, Yu X. Phase-Sensitive Surface Plasmon Resonance Sensors: Recent Progress and Future Prospects. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2819. [PMID: 29206182 PMCID: PMC5751602 DOI: 10.3390/s17122819] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/18/2022]
Abstract
Surface plasmon resonance (SPR) is an optical sensing technique that is capable of performing real-time, label-free and high-sensitivity monitoring of molecular interactions. SPR biosensors can be divided according to their operating principles into angle-, wavelength-, intensity- and phase-interrogated devices. With their complex optical configurations, phase-interrogated SPR sensors generally provide higher sensitivity and throughput, and have thus recently emerged as prominent biosensing devices. To date, several methods have been developed for SPR phase interrogation, including heterodyne detection, polarimetry, shear interferometry, spatial phase modulation interferometry and temporal phase modulation interferometry. This paper summarizes the fundamentals of phase-sensitive SPR sensing, reviews the available methods for phase interrogation of these sensors, and discusses the future prospects for and trends in the development of this technology.
Collapse
Affiliation(s)
- Shijie Deng
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China.
| | - Peng Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China.
| | - Xinglong Yu
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Wu D, Liu Y, Li R, Chen L, Ma R, Liu C, Ye H. Infrared Perfect Ultra-narrow Band Absorber as Plasmonic Sensor. NANOSCALE RESEARCH LETTERS 2016; 11:483. [PMID: 27807825 PMCID: PMC5093105 DOI: 10.1186/s11671-016-1705-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/25/2016] [Indexed: 05/20/2023]
Abstract
We propose and numerically investigate a novel perfect ultra-narrow band absorber based on a metal-dielectric-metal-dielectric-metal periodic structure working at near-infrared region, which consists of a dielectric layer sandwiched by a metallic nanobar array and a thin gold film over a dielectric layer supported by a metallic film. The absorption efficiency and ultra-narrow band of the absorber are about 98 % and 0.5 nm, respectively. The high absorption is contributed to localized surface plasmon resonance, which can be influenced by the structure parameters and the refractive index of dielectric layer. Importantly, the ultra-narrow band absorber shows an excellent sensing performance with a high sensitivity of 2400 nm/RIU and an ultra-high figure of merit of 4800. The FOM of refractive index sensor is significantly improved, compared with any previously reported plasmonic sensor. The influences of structure parameters on the sensing performance are also investigated, which will have a great guiding role to design high-performance refractive index sensors. The designed structure has huge potential in sensing application.
Collapse
Affiliation(s)
- Dong Wu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Yumin Liu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Ruifang Li
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Lei Chen
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Rui Ma
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Chang Liu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Han Ye
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| |
Collapse
|
9
|
Verre R, Maccaferri N, Fleischer K, Svedendahl M, Odebo Länk N, Dmitriev A, Vavassori P, Shvets IV, Käll M. Polarization conversion-based molecular sensing using anisotropic plasmonic metasurfaces. NANOSCALE 2016; 8:10576-81. [PMID: 27153470 DOI: 10.1039/c6nr01336h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Anisotropic media induce changes in the polarization state of transmitted and reflected light. Here we combine this effect with the refractive index sensitivity typical of plasmonic nanoparticles to experimentally demonstrate self-referenced single wavelength refractometric sensing based on polarization conversion. We fabricated anisotropic plasmonic metasurfaces composed of gold dimers and, as a proof of principle, measured the changes in the rotation of light polarization induced by biomolecular adsorption with a surface sensitivity of 0.2 ng cm(-2). We demonstrate the possibility of miniaturized sensing and we show that experimental results can be reproduced by analytical theory. Various ways to increase the sensitivity and applicability of the sensing scheme are discussed.
Collapse
Affiliation(s)
- R Verre
- Department of Physics, Chalmers University of Technology, 41296 Göteborg, Sweden.
| | - N Maccaferri
- Department of Physics, Chalmers University of Technology, 41296 Göteborg, Sweden. and CIC nanoGUNE, E-20018 Donostia-San Sebastian, Spain
| | - K Fleischer
- School of Physics and Center for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College, The University of Dublin, Dublin 2, Ireland
| | - M Svedendahl
- Department of Physics, Chalmers University of Technology, 41296 Göteborg, Sweden.
| | - N Odebo Länk
- Department of Physics, Chalmers University of Technology, 41296 Göteborg, Sweden.
| | - A Dmitriev
- Department of Physics, Chalmers University of Technology, 41296 Göteborg, Sweden.
| | - P Vavassori
- CIC nanoGUNE, E-20018 Donostia-San Sebastian, Spain and IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao, Spain
| | - I V Shvets
- School of Physics and Center for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College, The University of Dublin, Dublin 2, Ireland
| | - M Käll
- Department of Physics, Chalmers University of Technology, 41296 Göteborg, Sweden.
| |
Collapse
|