1
|
Berestennikov A, Hu H, Tittl A. Molecular spectroscopies with semiconductor metasurfaces: towards dual optical/chemical SERS. JOURNAL OF MATERIALS CHEMISTRY. C 2025:d4tc05420b. [PMID: 40417182 PMCID: PMC12096842 DOI: 10.1039/d4tc05420b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/17/2025] [Indexed: 05/27/2025]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has emerged as a powerful technique for the ultra-sensitive detection of molecules and has been widely applied in many fields, ranging from biomedical diagnostics and environmental monitoring to trace-level detection of chemical and biological analytes. While traditional metallic SERS substrates rely predominantly on electromagnetic field enhancement, emerging semiconductor SERS materials have attracted growing interest because they offer the additional advantage of simultaneous chemical and electromagnetic enhancements. Here, we review some of the recent advancements in the design and optimization of semiconductor SERS substrates, with a focus on their dual enhancement mechanisms. We also discuss the transition from nanoparticle-based platforms to more advanced nanoresonator-based SERS metasurfaces, highlighting their superior sensing performance.
Collapse
Affiliation(s)
- Alexander Berestennikov
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München 80539 München Germany
| | - Haiyang Hu
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München 80539 München Germany
| | - Andreas Tittl
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München 80539 München Germany
| |
Collapse
|
2
|
Boukhvalov DW, Zhumabay B, Kusherova P, Rakymetov B, Tynyshtykbayev KB, Serikkanov AS, Chuchvaga NV. One step large-scale preparation of silicon-based efficient solar vapor generators. RSC Adv 2025; 15:6794-6802. [PMID: 40035014 PMCID: PMC11873784 DOI: 10.1039/d5ra00703h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 02/11/2025] [Indexed: 03/05/2025] Open
Abstract
In this work, the fabrication of the material for solar vapor generation using porous silicon treated by electrochemical etching, metal-assisted chemical etching, and electrochemical metal-assisted etching is reported. The proposed method does not require high-cost equipment and permits the production of centimeter-sized samples within minutes. Morphologies of the samples have been studied by scanning electron microscopy and X-ray diffraction spectroscopy, and the distribution of the impurities has been observed by dispersive X-ray analysis. First-principles modeling has been used to simulate the effect of nickel dopants on the electronic structure of the silicon matrix. Measurements of Raman spectra demonstrate a colossal increase in the signal intensity for all samples. The estimated vaporization performance of studied samples varies from 4.4 kg m-2 h-1 up to 5.2 kg m-2 h-1, more than four times larger than previously reported for silicon-based SVG systems prepared by more sophisticated techniques. The results of the measurements demonstrate the tiny influence of low-concentration doping on vaporization performance. On the contrary, higher porosity and more significant numbers of defects increase the vaporizing efficiency of studied samples.
Collapse
Affiliation(s)
- D W Boukhvalov
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University Nanjing 210037 P. R. China
- Institute of Physics and Technology, Satbayev University Ibragimov Str. 11 Almaty 0500322 Kazakhstan
| | - B Zhumabay
- Institute of Physics and Technology, Satbayev University Ibragimov Str. 11 Almaty 0500322 Kazakhstan
| | - P Kusherova
- Institute of Physics and Technology, Satbayev University Ibragimov Str. 11 Almaty 0500322 Kazakhstan
| | - B Rakymetov
- Institute of Physics and Technology, Satbayev University Ibragimov Str. 11 Almaty 0500322 Kazakhstan
| | - K B Tynyshtykbayev
- Institute of Physics and Technology, Satbayev University Ibragimov Str. 11 Almaty 0500322 Kazakhstan
| | - A S Serikkanov
- Institute of Physics and Technology, Satbayev University Ibragimov Str. 11 Almaty 0500322 Kazakhstan
- National Academy of Sciences of the Republic of Kazakhstan Under the President of the Republic of Kazakhstan Shevchenko Str. 28 Almaty 050010 Kazakhstan
| | - N V Chuchvaga
- Institute of Physics and Technology, Satbayev University Ibragimov Str. 11 Almaty 0500322 Kazakhstan
| |
Collapse
|
3
|
Olmos-Trigo J. Revealing the Electric and Magnetic Nature of the Scattered Light. ACS PHOTONICS 2024; 11:3697-3703. [PMID: 39310301 PMCID: PMC11413847 DOI: 10.1021/acsphotonics.4c00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 09/25/2024]
Abstract
The multipolar expansion of the electromagnetic field plays a key role in the study of light-matter interactions. All the information about the radiation and coupling between the incident wavefield and the object is embodied in the electric and magnetic scattering coefficients of the expansion. However, the experimental determination of requires measuring the components of the scattered field in all directions, something that is exceptionally challenging. Here, we demonstrate that a single measurement of the Stokes vector unlocks access to the quadrivector . Thus, our Stokes polarimetry method allows us to capture and separately, a distinction that can not be achieved by measuring the total energy of the scattered field via an integrating sphere. Moreover, the determination of enables us to infer the amplitude of the scattered field at all points of the radiation zone, including the amplitude of the near-field distribution generated by the objects. Importantly, we demonstrate the robustness of our Stokes polarimetry method, showing its fidelity with just two measurements of the Stokes vector at different scattering angles.
Collapse
|
4
|
Vikram MP, Nishida K, Li CH, Riabov D, Pashina O, Tang YL, Makarov SV, Takahara J, Petrov MI, Chu SW. Photo-thermo-optical modulation of Raman scattering from Mie-resonant silicon nanostructures. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:3581-3589. [PMID: 39634823 PMCID: PMC11501727 DOI: 10.1515/nanoph-2023-0922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/11/2024] [Indexed: 12/07/2024]
Abstract
Raman scattering is sensitive to local temperature and thus offers a convenient tool for non-contact and non-destructive optical thermometry at the nanoscale. In turn, all-dielectric nanostructures, such as silicon particles, exhibit strongly enhanced photothermal heating due to Mie resonances, which leads to the strong modulation of elastic Rayleigh scattering intensity through subsequent thermo-optical effects. However, the influence of the complex photo-thermo-optical effect on inelastic Raman scattering has yet to be explored for resonant dielectric nanostructures. In this work, we experimentally demonstrate that the strong photo-thermo-optical interaction results in the nonlinear dependence of the Raman scattering signal intensity from a crystalline silicon nanoparticle via the thermal reconfiguration of the resonant response. Our results reveal a crucial role of the Mie resonance spectral sensitivity to temperature, which modifies not only the conversion of the incident light into heat but also Raman scattering efficiency. The developed comprehensive model provides the mechanism for thermal modulation of Raman scattering, shedding light on the photon-phonon interaction physics of resonant material, which is essential for the validation of Raman nanothermometry in resonant silicon structures under a strong laser field.
Collapse
Affiliation(s)
- Mor Pal Vikram
- Department of Physics, National Taiwan University, 1, Sec 4, Roosevelt Rd., Taipei10617, Taiwan
| | - Kentaro Nishida
- Department of Physics, National Taiwan University, 1, Sec 4, Roosevelt Rd., Taipei10617, Taiwan
| | - Chien-Hsuan Li
- Department of Physics, National Taiwan University, 1, Sec 4, Roosevelt Rd., Taipei10617, Taiwan
| | - Daniil Riabov
- School of Physics and Engineering, ITMO University, Lomonosova 9, Saint Petersburg191002, Russia
| | - Olesiya Pashina
- School of Physics and Engineering, ITMO University, Lomonosova 9, Saint Petersburg191002, Russia
| | - Yu-Lung Tang
- Department of Physics, National Taiwan University, 1, Sec 4, Roosevelt Rd., Taipei10617, Taiwan
| | - Sergey V. Makarov
- School of Physics and Engineering, ITMO University, Lomonosova 9, Saint Petersburg191002, Russia
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao266000, Shandong, China
| | - Junichi Takahara
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka565-0871, Japan
- Photonics Center, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka565-0871, Japan
| | - Mihail I. Petrov
- School of Physics and Engineering, ITMO University, Lomonosova 9, Saint Petersburg191002, Russia
| | - Shi-Wei Chu
- Department of Physics, National Taiwan University, 1, Sec 4, Roosevelt Rd., Taipei10617, Taiwan
- Molecular Imaging Center, National Taiwan University, 1, Sec 4, Roosevelt Rd., 10617, Taipei, Taiwan
- Brain Research Center, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu300044, Taiwan
| |
Collapse
|
5
|
Olmos-Trigo J. Solving Maxwell's Equations Using Polarimetry Alone. NANO LETTERS 2024; 24:8658-8663. [PMID: 38949763 PMCID: PMC11261596 DOI: 10.1021/acs.nanolett.4c01976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Maxwell's equations are solved when the amplitude and phase of the electromagnetic field are determined at all points in space. Generally, the Stokes parameters can only capture the amplitude and polarization state of the electromagnetic field in the radiation (far) zone. Therefore, the measurement of the Stokes parameters is, in general, insufficient to solve Maxwell's equations. In this Letter, we solve Maxwell's equations for a set of objects widely used in Nanophotonics using the Stokes parameters alone. These objects are lossless, axially symmetric, and well described by a single multipolar order. Our method for solving Maxwell's equations endows the Stokes parameters an even more fundamental role in the electromagnetic scattering theory.
Collapse
Affiliation(s)
- Jorge Olmos-Trigo
- Departamento de Física, Universidad de La Laguna, Apdo. 456, E-38200 San Cristóbal de La Laguna, Santa
Cruz de Tenerife, Spain
| |
Collapse
|
6
|
Xiong J, Wang J, Liu X, Zhang H, Wang Q, Sun J, Zhang B. Enhanced spontaneous radiation of quantum dots based on modulated anapole states in dielectric metamaterial. OPTICS EXPRESS 2024; 32:19910-19923. [PMID: 38859113 DOI: 10.1364/oe.519699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/14/2024] [Indexed: 06/12/2024]
Abstract
Dielectric nanostructures exhibit low-loss electrical and magnetic resonance, making them ideal for quantum information processing. In this study, the periodic double-groove silicon nanodisk (DGSND) is used to support the anapole state. Based on the distribution properties of the electromagnetic field in anapole states, the anapoles are manipulated by cutting the dielectric metamaterial. Quantum dots (QDs) are used to stimulate the anapole and control the amplification of the photoluminescence signal within the QDs. By opening symmetrical holes in the long axis of the nanodisk in the dielectric metamaterial, the current distribution of Mie resonance can be adjusted. As a result, the toroidal dipole moment is altered, leading to an enhanced electric field (E-field) and Purcell factor. When the dielectric metamaterial is deposited on the Ag substrate separated by the silicon dioxide (SiO2) layer, the structure exhibits ultra-narrow perfect absorption with even higher E-field and Purcell factor enhancement compared to silicon (Si) nanodisks.
Collapse
|
7
|
Martinez LP, Mina Villarreal MC, Zaza C, Barella M, Acuna GP, Stefani FD, Violi IL, Gargiulo J. Thermometries for Single Nanoparticles Heated with Light. ACS Sens 2024; 9:1049-1064. [PMID: 38482790 DOI: 10.1021/acssensors.4c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The development of efficient nanoscale photon absorbers, such as plasmonic or high-index dielectric nanostructures, allows the remotely controlled release of heat on the nanoscale using light. These photothermal nanomaterials have found applications in various research and technological fields, ranging from materials science to biology. However, measuring the nanoscale thermal fields remains an open challenge, hindering full comprehension and control of nanoscale photothermal phenomena. Here, we review and discuss existent thermometries suitable for single nanoparticles heated under illumination. These methods are classified in four categories according to the region where they assess temperature: (1) the average temperature within a diffraction-limited volume, (2) the average temperature at the immediate vicinity of the nanoparticle surface, (3) the temperature of the nanoparticle itself, and (4) a map of the temperature around the nanoparticle with nanoscale spatial resolution. In the latter, because it is the most challenging and informative type of method, we also envisage new combinations of technologies that could be helpful in retrieving nanoscale temperature maps. Finally, we analyze and provide examples of strategies to validate the results obtained using different thermometry methods.
Collapse
Affiliation(s)
- Luciana P Martinez
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Argentina
| | - M Cristina Mina Villarreal
- Instituto de Nanosistemas, Universidad Nacional de San Martín, Av. 25 de mayo 1069, B1650HML San Martín, Buenos Aires, Argentina
| | - Cecilia Zaza
- London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, United Kingdom
| | - Mariano Barella
- Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg CH-1700, Switzerland
| | - Guillermo P Acuna
- Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg CH-1700, Switzerland
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| | - Ianina L Violi
- Instituto de Nanosistemas, Universidad Nacional de San Martín, Av. 25 de mayo 1069, B1650HML San Martín, Buenos Aires, Argentina
| | - Julian Gargiulo
- Instituto de Nanosistemas, Universidad Nacional de San Martín, Av. 25 de mayo 1069, B1650HML San Martín, Buenos Aires, Argentina
| |
Collapse
|
8
|
Bronson MJ, Jensen L. A recursive cell multipole method for atomistic electrodynamics models. J Chem Phys 2024; 160:024121. [PMID: 38214392 DOI: 10.1063/5.0181130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024] Open
Abstract
For large plasmonic nanoparticles, retardation effects become important once their length becomes comparable to the wavelength of light. However, most models do not incorporate retardation effects due to the high computational cost of solving for the optical properties of large atomistic electrodynamics systems. In this work, we derive and implement a recursive fast multipole method (FMM) in Cartesian coordinates that includes retardation effects. In this method, higher-order electrodynamic interaction tensors used for the FMM are calculated recursively, thus greatly reducing the implementation complexity of the model. This method allows for solving of the optical properties of large atomistic nanoparticles with controlled accuracy; in practice, taking the expansion to the fifth order provides a good balance of accuracy and computational time. Finally, we study the effects retardation has on the near- and far-field properties of large plasmonic nanoparticles with over a million atoms using this method. We specifically focus on nanorods and their dimers, which are known to generate highly confined fields in their junctions. In the future, this method can be applied to simulations in which accurate near-field properties are required, such as surface-enhanced Raman scattering.
Collapse
Affiliation(s)
- Mark J Bronson
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Lasse Jensen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
9
|
Sedova A, Bermudez D, Tellez-Cruz MM, Falcony C. Tunable Mie resonance in complex-shaped gadolinium niobate. NANOTECHNOLOGY 2023; 35:025705. [PMID: 37820635 DOI: 10.1088/1361-6528/ad0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Nanoscale particles described by Mie resonance in the UV-vis-NIR region are in high demand for optical applications. Controlling the shape and size of these particles is essential, as it results in the ability to control the wavelength of the Mie resonance peak. In this work, we study the extensive scattering properties of gadolinium niobate particles with complex bar- and cube-like shapes in the UV-vis-NIR region. We perform our experimental analysis by characterizing the morphology and extinction spectra, and our theoretical study by implementing a Mie scattering model for a distribution of spherical particles. We can accurately model the size distribution and extinction spectra of complex shaped particles and isolate the contribution of aggregates to the extinction spectra. We can separate the contributions of dipoles, quadrupoles, and octupoles to the Mie resonances for their respective electric and magnetic parts. Our results show that we can tune the broad Mie resonance peak in the extinction spectra by the nanoscale properties of our system. This behavior can aid in the design of lasing and luminescence-enhanced systems. These dielectric gadolinium niobate submicron particles are excellent candidates for light manipulation on the nanoscale.
Collapse
Affiliation(s)
- Anastasiya Sedova
- Nanociencias y Nanotecnología, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Col. San Pedro Zacatenco, A P 14-740, 07360, Ciudad de México, Mexico
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Bermudez
- Departamento de Física, Cinvestav, A P 14-740, 07360, Ciudad de México, Mexico
| | - Miriam M Tellez-Cruz
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, A P 14-740, 07360, Ciudad de México, Mexico
| | - Ciro Falcony
- Departamento de Física, Cinvestav, A P 14-740, 07360, Ciudad de México, Mexico
| |
Collapse
|
10
|
Cibaka-Ndaya C, O’Connor K, Idowu EO, Parker MA, Lebraud E, Lacomme S, Montero D, Camacho PS, Veinot JGC, Roiban IL, Drisko GL. Understanding the Formation Mechanisms of Silicon Particles from the Thermal Disproportionation of Hydrogen Silsesquioxane. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:8551-8560. [PMID: 37901141 PMCID: PMC10601469 DOI: 10.1021/acs.chemmater.3c01448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/02/2023] [Indexed: 10/31/2023]
Abstract
Crystalline silicon particles sustaining Mie resonances are readily obtained from the thermal processing of hydrogen silsesquioxane (HSQ). Here, the mechanisms involved in silicon particle formation and growth from HSQ are investigated through real-time in situ analysis using an environmental transmission electron microscope and X-ray diffractometer. The nucleation of Si nanodomains is observed starting around 1000 °C. For the first time, a highly mobile intermediate phase is experimentally observed, thus demonstrating a previously unknown growth mechanism. At least two growth processes occur simultaneously: the coalescence of small particles into larger particles and growth mode by particle displacement through the matrix toward the HSQ grain surface. Postsynthetic characterization by scanning electron microscopy further supports the latter growth mechanism. The gaseous environment employed during synthesis impacts particle formation and growth under both in situ and ex situ conditions, impacting the particle yield and structural homogeneity. Understanding the formation mechanisms of particles provides promising pathways for reducing the energy cost of this synthetic route.
Collapse
Affiliation(s)
| | - Kevin O’Connor
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | | | - Megan A. Parker
- Univ.
Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Eric Lebraud
- Univ.
Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Sabrina Lacomme
- Univ.
Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, UAR 3420, F-33600 Pessac, France
| | - David Montero
- Sorbonne
Université, CNRS, Fédération de Chimie et Matériaux
de Paris-Centre, FR 2482, 75252 Paris, France
| | - Paula Sanz Camacho
- Univ.
Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | | | - Ioan-Lucian Roiban
- Univ.
Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, MATEIS,
UMR5510, 69621 Villeurbanne, France
| | - Glenna L. Drisko
- Univ.
Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| |
Collapse
|
11
|
Montagnac M, Brûlé Y, Cuche A, Poumirol JM, Weber SJ, Müller J, Larrieu G, Larrey V, Fournel F, Boisron O, Masenelli B, Colas des Francs G, Agez G, Paillard V. Control of light emission of quantum emitters coupled to silicon nanoantenna using cylindrical vector beams. LIGHT, SCIENCE & APPLICATIONS 2023; 12:239. [PMID: 37726280 PMCID: PMC10509260 DOI: 10.1038/s41377-023-01229-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/22/2023] [Accepted: 07/13/2023] [Indexed: 09/21/2023]
Abstract
Light emission of europium (Eu3+) ions placed in the vicinity of optically resonant nanoantennas is usually controlled by tailoring the local density of photon states (LDOS). We show that the polarization and shape of the excitation beam can also be used to manipulate light emission, as azimuthally or radially polarized cylindrical vector beam offers to spatially shape the electric and magnetic fields, in addition to the effect of silicon nanorings (Si-NRs) used as nanoantennas. The photoluminescence (PL) mappings of the Eu3+ transitions and the Si phonon mappings are strongly dependent of both the excitation beam and the Si-NR dimensions. The experimental results of Raman scattering and photoluminescence are confirmed by numerical simulations of the near-field intensity in the Si nanoantenna and in the Eu3+-doped film, respectively. The branching ratios obtained from the experimental PL maps also reveal a redistribution of the electric and magnetic emission channels. Our results show that it could be possible to spatially control both electric and magnetic dipolar emission of Eu3+ ions by switching the laser beam polarization, hence the near field at the excitation wavelength, and the electric and magnetic LDOS at the emission wavelength. This paves the way for optimized geometries taking advantage of both excitation and emission processes.
Collapse
Affiliation(s)
| | - Yoann Brûlé
- ICB, Université de Bourgogne, CNRS, Dijon, France
| | | | | | | | - Jonas Müller
- LAAS-CNRS, Université de Toulouse, Toulouse, France
| | | | | | | | - Olivier Boisron
- Université de Lyon, Université Lyon 1, CNRS UMR 5510, ILM, Villeurbanne, France
| | - Bruno Masenelli
- Université de Lyon, INSA Lyon, CNRS, Ecole Centrale de Lyon, Université Lyon 1, CPE, UMR 5270, INL, Villeurbanne, France
| | | | - Gonzague Agez
- CEMES-CNRS, Université de Toulouse, Toulouse, France
| | | |
Collapse
|
12
|
Zheng J, Zhang C, Li H, Liu X, Huang Y, Zhu J, Yang Z, Li L. Multi-band optical resonance of all-dielectric metasurfaces toward high-performance ultraviolet sensing. Phys Chem Chem Phys 2023; 25:20026-20031. [PMID: 37461911 DOI: 10.1039/d3cp02634e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
All-dielectric sensors featuring low-loss resonances have been proposed instead of plasmonic-based sensors. However, reported dielectric-based sensors generally work in the visible and near-infrared regions and detect the intensity variation of resonant modes because the electromagnetic energy is mainly confined inside dielectric nanoparticles. It is a challenge to adjust the hotspots from the inside to the surface of the all-dielectric metasurface. In this study, highly uniform Si3N4 all-dielectric metasurfaces have been successfully fabricated as sensing platforms by utilizing nanosphere self-assembly and plasma enhanced chemical vapor deposition techniques. Experimental and simulated results demonstrate that proposed Si3N4 all-dielectric metasurfaces exhibit multiple optical resonant modes in the ultraviolet and visible wavelength and present distinct field-confinement in the gaps of nanoparticles. The hotspots have been successfully adjusted to the surface of Si3N4 nanoparticles. Delightedly, Si3N4 all-dielectric metasurfaces show characteristic wavelength shifts with variation of the refractive index, and the sensitivity can reach 707 nm per RIU for trace detection as sensing substrates. Proposed Si3N4 all-dielectric metasurfaces are promising to act as high-sensitive sensing substrates in the ultraviolet and visible wavelength with the ease of high-throughput fabrication.
Collapse
Affiliation(s)
- Jie Zheng
- Laboratory of Micro-Nano Optics, College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610101, P. R. China.
| | - Cheng Zhang
- Laboratory of Micro-Nano Optics, College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610101, P. R. China.
| | - Hong Li
- Laboratory of Micro-Nano Optics, College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610101, P. R. China.
| | - Xianchao Liu
- Southwest Institute of Technical Physics, Chengdu, 610054, P. R. China
| | - Yijia Huang
- Laboratory of Micro-Nano Optics, College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610101, P. R. China.
| | - Jianqi Zhu
- Laboratory of Micro-Nano Optics, College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610101, P. R. China.
| | - Zhilin Yang
- Department of Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Jiujiang Research Institute, Xiamen University, Xiamen, 361005, P. R. China
| | - Ling Li
- Laboratory of Micro-Nano Optics, College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610101, P. R. China.
| |
Collapse
|
13
|
Logunov L, Ulesov A, Khramenkova V, Liu X, Kuchmizhak AA, Vinogradov A, Makarov S. 3D and Inkjet Printing by Colored Mie-Resonant Silicon Nanoparticles Produced by Laser Ablation in Liquid. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:965. [PMID: 36985859 PMCID: PMC10058803 DOI: 10.3390/nano13060965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Optically resonant silicon nanoparticles have emerged as a prospective platform for the structural coloration of surfaces because of their strong and spectrally selective light scattering. In this work, we developed colorful inks based on polymer mixed with monodisperse Mie-resonant silicon nanoparticles for 3D and inkjet printing. We applied a laser ablation method in a flow cell for the mass production of silicon nanoparticles in water and separated the resulting nanoparticles with different sizes by density-gradient centrifugation. Mixing the colorful nanoparticles with the polymer allows for the printing of 3D objects with various shapes and colors, which are rigid against environmental conditions.
Collapse
Affiliation(s)
- Lev Logunov
- School of Physics and Engineering, ITMO University, Saint Petersburg 191002, Russia
| | | | | | - Xiuzhen Liu
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China
| | - Aleksandr A. Kuchmizhak
- Institute for Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, Russia
- Far Eastern Federal University, Vladivostok 690922, Russia
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, Saint Petersburg 198504, Russia
| | | | - Sergey Makarov
- School of Physics and Engineering, ITMO University, Saint Petersburg 191002, Russia
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China
| |
Collapse
|
14
|
Syubaev S, Gordeev I, Modin E, Terentyev V, Storozhenko D, Starikov S, Kuchmizhak AA. Security labeling and optical information encryption enabled by laser-printed silicon Mie resonators. NANOSCALE 2022; 14:16618-16626. [PMID: 36317669 DOI: 10.1039/d2nr04179k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fighting against the falsification of valuable items remains a crucial social-threatening challenge stimulating a never-ending search for novel anti-counterfeiting strategies. The demanding security labels must simultaneously address multiple requirements (high density of the recorded information, high protection degree, etc.) and be realized via scalable and inexpensive technologies. Here, the direct reproducible femtosecond-laser patterning of thin glass-supported amorphous (α-)Si films is proposed for optical information encryption and the scalable and highly reproducible fabrication of security labels composed of Raman-active hemispherical Si nanoparticles (NPs). Laser printing conditions allow the precise control of the diameter of the formed NPs ensuring translation of their dipolar Mie resonance position within the entire visible spectral range. Two-temperature molecular dynamics simulations clarify the origin of α-Si NP formation by rupture of the molten Si layer driven by a negative GPa-range pressure near the liquid-solid interface. Arrangement of the laser-printed Mie-resonant NP allows the creation of hidden security labels offering several easy-to-realize information encryption strategies (for example, local laser-induced post-crystallization or mixing Mie-resonant and non-resonant NPs), additional protection modalities, facile Raman mapping readout and dense information recording (up to 60 000 dots per inch) close to the optical diffraction limit. The developed fabrication strategy is simple, inexpensive, and scalable and can be realized based on cheap Earth-abundant materials and commercially-available equipment justifying its practical applicability and attractiveness for anti-counterfeit and security applications.
Collapse
Affiliation(s)
- Sergey Syubaev
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, Vladivostok 690041, Russia.
| | - Ilya Gordeev
- Joint Institute for High Temperatures of RAS, Moscow, Russia
| | - Evgeny Modin
- CIC NanoGUNE BRTA, Avda Tolosa 76, 20018 Donostia-San Sebastian, Spain
| | - Vadim Terentyev
- Institute of Automation and Electrometry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Dmitriy Storozhenko
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, Vladivostok 690041, Russia.
| | - Sergei Starikov
- The Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr-Universitat Bochum, Germany.
| | - Aleksandr A Kuchmizhak
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, Vladivostok 690041, Russia.
- Far Eastern Federal University, Vladivostok 690091, Russia
| |
Collapse
|
15
|
Gurbatov S, Puzikov V, Modin E, Shevlyagin A, Gerasimenko A, Mitsai E, Kulinich SA, Kuchmizhak A. Ag-Decorated Si Microspheres Produced by Laser Ablation in Liquid: All-in-One Temperature-Feedback SERS-Based Platform for Nanosensing. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8091. [PMID: 36431575 PMCID: PMC9697265 DOI: 10.3390/ma15228091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Combination of dissimilar materials such as noble metals and common semiconductors within unified nanomaterials holds promise for optoelectronics, catalysis and optical sensing. Meanwhile, difficulty of obtaining such hybrid nanomaterials using common lithography-based techniques stimulates an active search for advanced, inexpensive, and straightforward fabrication methods. Here, we report one-pot one-step synthesis of Ag-decorated Si microspheres via nanosecond laser ablation of monocrystalline silicon in isopropanol containing AgNO3. Laser ablation of bulk silicon creates the suspension of the Si microspheres that host further preferential growth of Ag nanoclusters on their surface upon thermal-induced decomposition of AgNO3 species by subsequently incident laser pulses. The amount of the AgNO3 in the working solution controls the density, morphology, and arrangement of the Ag nanoclusters allowing them to achieve strong and uniform decoration of the Si microsphere surface. Such unique morphology makes Ag-decorated Si microspheres promising for molecular identification based on the surface-enhanced Raman scattering (SERS) effect. In particular, the designed single-particles sensing platform was shown to offer temperature-feedback modality as well as SERS signal enhancement up to 106, allowing reliable detection of the adsorbed molecules and tracing their plasmon-driven catalytic transformations. Considering the ability to control the decoration degree of Si microspheres by Ag nanoclusters via amount of the AgNO3, the developed one-pot easy-to-implement PLAL synthesis holds promise for gram-scale production of high-quality hybrid nanomaterial for various nanophotonics and sensing applications.
Collapse
Affiliation(s)
- Stanislav Gurbatov
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, 5 Radio Str., 690041 Vladivostok, Russia
- Far Eastern Federal University, 690041 Vladivostok, Russia
| | - Vladislav Puzikov
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, 5 Radio Str., 690041 Vladivostok, Russia
| | - Evgeny Modin
- CIC NanoGUNE BRTA, 20018 Donostia-San Sebastian, Spain
| | - Alexander Shevlyagin
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, 5 Radio Str., 690041 Vladivostok, Russia
| | - Andrey Gerasimenko
- Institute of Chemistry, Far Eastern Branch, Russian Academy of Science, 690022 Vladivostok, Russia
| | - Eugeny Mitsai
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, 5 Radio Str., 690041 Vladivostok, Russia
| | - Sergei A. Kulinich
- Research Institute of Science & Technology, Tokai University, Hiratsuka 259-1292, Kanagawa, Japan
| | - Aleksandr Kuchmizhak
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, 5 Radio Str., 690041 Vladivostok, Russia
- Far Eastern Federal University, 690041 Vladivostok, Russia
| |
Collapse
|
16
|
Cortés E, Wendisch FJ, Sortino L, Mancini A, Ezendam S, Saris S, de S. Menezes L, Tittl A, Ren H, Maier SA. Optical Metasurfaces for Energy Conversion. Chem Rev 2022; 122:15082-15176. [PMID: 35728004 PMCID: PMC9562288 DOI: 10.1021/acs.chemrev.2c00078] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nanostructured surfaces with designed optical functionalities, such as metasurfaces, allow efficient harvesting of light at the nanoscale, enhancing light-matter interactions for a wide variety of material combinations. Exploiting light-driven matter excitations in these artificial materials opens up a new dimension in the conversion and management of energy at the nanoscale. In this review, we outline the impact, opportunities, applications, and challenges of optical metasurfaces in converting the energy of incoming photons into frequency-shifted photons, phonons, and energetic charge carriers. A myriad of opportunities await for the utilization of the converted energy. Here we cover the most pertinent aspects from a fundamental nanoscopic viewpoint all the way to applications.
Collapse
Affiliation(s)
- Emiliano Cortés
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Fedja J. Wendisch
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Luca Sortino
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Andrea Mancini
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Simone Ezendam
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Seryio Saris
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Leonardo de S. Menezes
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- Departamento
de Física, Universidade Federal de
Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| | - Andreas Tittl
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Haoran Ren
- MQ Photonics
Research Centre, Department of Physics and Astronomy, Macquarie University, Macquarie
Park, New South Wales 2109, Australia
| | - Stefan A. Maier
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- School
of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
- Department
of Phyiscs, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
17
|
Single-Molecule Surface-Enhanced Raman Spectroscopy. SENSORS 2022; 22:s22134889. [PMID: 35808385 PMCID: PMC9269420 DOI: 10.3390/s22134889] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022]
Abstract
Single-molecule surface-enhanced Raman spectroscopy (SM-SERS) has the potential to detect single molecules in a non-invasive, label-free manner with high-throughput. SM-SERS can detect chemical information of single molecules without statistical averaging and has wide application in chemical analysis, nanoelectronics, biochemical sensing, etc. Recently, a series of unprecedented advances have been realized in science and application by SM-SERS, which has attracted the interest of various fields. In this review, we first elucidate the key concepts of SM-SERS, including enhancement factor (EF), spectral fluctuation, and experimental evidence of single-molecule events. Next, we systematically discuss advanced implementations of SM-SERS, including substrates with ultra-high EF and reproducibility, strategies to improve the probability of molecules being localized in hotspots, and nonmetallic and hybrid substrates. Then, several examples for the application of SM-SERS are proposed, including catalysis, nanoelectronics, and sensing. Finally, we summarize the challenges and future of SM-SERS. We hope this literature review will inspire the interest of researchers in more fields.
Collapse
|
18
|
Muravitskaya A, Movsesyan A, Guzatov DV, Baudrion AL, Adam PM, Gaponenko SV, Vincent R. Engineering of the Photon Local Density of States: Strong Inhibition of Spontaneous Emission near the Resonant and High-Refractive Index Dielectric Nano-objects. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:5691-5700. [PMID: 35694697 PMCID: PMC9173691 DOI: 10.1021/acs.jpcc.1c09844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/01/2022] [Indexed: 06/15/2023]
Abstract
Metallic or dielectric nano-objects change the photon local density of states of closely placed emitters, particularly when plasmon or Mie resonances are present. Depending on the shape and material of these nano-objects, they may induce either a decrease or an increase in decay rates of the excited states of the emitter. In this work, we consider the reduction of the probability of optical transitions in emitters near high-refractive index dielectric (silicon and zinc selenide) nanoparticles. We tune the spectral positions of magnetic and electric modes of nanocylinders to obtain the largest overlap of the valleys in the total decay rate spectra for differently oriented dipoles and, in this way, find the highest inhibition of about 80% for randomly oriented emitters. The spectral positions of these valleys are easy to control since the wavelengths of the modes depend on the height and diameter of nanocylinders. The inhibition value is robust to the distance between the emitter and the nanoparticle in the range of nearly 50 nm, which is crucially important for the applications, such as selective optical transition engineering and photovoltaics.
Collapse
Affiliation(s)
- Alina Muravitskaya
- B.I.
Stepanov Institute of Physics, National
Academy of Sciences of Belarus, 68 Nezavisimosti Avenue, Minsk 220072, Belarus
| | - Artur Movsesyan
- Light,
Nanomaterials & Nanotechnologies (L2n), CNRS EMR 7004, Université
de Technologie de Troyes, 12 Rue Marie Curie, Troyes Cedex 10004, France
| | - Dmitry V. Guzatov
- Yanka
Kupala State University of Grodno, str. Ozheshko 22, Grodno 230023, Belarus
| | - Anne-Laure Baudrion
- Light,
Nanomaterials & Nanotechnologies (L2n), CNRS EMR 7004, Université
de Technologie de Troyes, 12 Rue Marie Curie, Troyes Cedex 10004, France
| | - Pierre-Michel Adam
- Light,
Nanomaterials & Nanotechnologies (L2n), CNRS EMR 7004, Université
de Technologie de Troyes, 12 Rue Marie Curie, Troyes Cedex 10004, France
| | - Sergey V. Gaponenko
- B.I.
Stepanov Institute of Physics, National
Academy of Sciences of Belarus, 68 Nezavisimosti Avenue, Minsk 220072, Belarus
| | - Remi Vincent
- Light,
Nanomaterials & Nanotechnologies (L2n), CNRS EMR 7004, Université
de Technologie de Troyes, 12 Rue Marie Curie, Troyes Cedex 10004, France
| |
Collapse
|
19
|
Wang X, Zhang E, Shi H, Tao Y, Ren X. Semiconductor-based surface enhanced Raman scattering (SERS): from active materials to performance improvement. Analyst 2022; 147:1257-1272. [PMID: 35253817 DOI: 10.1039/d1an02165f] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Surface enhanced Raman scattering (SERS) is a powerful spectral analysis technique and has exhibited remarkable application prospects in various fields. The design and fabrication of high-performance SERS substrates is key to promoting the development of SERS technology. Apart from noble metal substrates, non-metal substrates based on semiconductor materials have received increasing attention in recent years owing to their unique physical, chemical, and optical properties. However, compared with noble metal substrates, most semiconductor substrates show weak Raman enhancement ability. Therefore, exploring effective strategies to improve the SERS sensitivity is an urgent task. Numerous reviews have outlined the research progress of semiconductor SERS substrates, which mainly focused on summarizing the material category of semiconductor substrates. However, reviews that systematically summarize the strategies for improving the SERS performance of semiconductor substrates are lacking. In this review, we comprehensively discuss the research on semiconductor SERS from the aspects of mechanism, materials, and modification. Firstly, the Raman enhancement mechanism of semiconductor substrates and the SERS-active materials are discussed. Then, we summarize several effective approaches to boost the SERS performance of semiconductor substrates. In conclusion, we propose some prospects for this field.
Collapse
Affiliation(s)
- Xuejiao Wang
- Institute of Micro-Nano Optoelectronics and Terahertz Technology, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Erjin Zhang
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Huimin Shi
- College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yufeng Tao
- Institute of Micro-Nano Optoelectronics and Terahertz Technology, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Xudong Ren
- Institute of Micro-Nano Optoelectronics and Terahertz Technology, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
20
|
Huang L, Krasnok A, Alú A, Yu Y, Neshev D, Miroshnichenko AE. Enhanced light-matter interaction in two-dimensional transition metal dichalcogenides. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:046401. [PMID: 34939940 DOI: 10.1088/1361-6633/ac45f9] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 12/16/2021] [Indexed: 05/27/2023]
Abstract
Two-dimensional (2D) transition metal dichalcogenide (TMDC) materials, such as MoS2, WS2, MoSe2, and WSe2, have received extensive attention in the past decade due to their extraordinary electronic, optical and thermal properties. They evolve from indirect bandgap semiconductors to direct bandgap semiconductors while their layer number is reduced from a few layers to a monolayer limit. Consequently, there is strong photoluminescence in a monolayer (1L) TMDC due to the large quantum yield. Moreover, such monolayer semiconductors have two other exciting properties: large binding energy of excitons and valley polarization. These properties make them become ideal materials for various electronic, photonic and optoelectronic devices. However, their performance is limited by the relatively weak light-matter interactions due to their atomically thin form factor. Resonant nanophotonic structures provide a viable way to address this issue and enhance light-matter interactions in 2D TMDCs. Here, we provide an overview of this research area, showcasing relevant applications, including exotic light emission, absorption and scattering features. We start by overviewing the concept of excitons in 1L-TMDC and the fundamental theory of cavity-enhanced emission, followed by a discussion on the recent progress of enhanced light emission, strong coupling and valleytronics. The atomically thin nature of 1L-TMDC enables a broad range of ways to tune its electric and optical properties. Thus, we continue by reviewing advances in TMDC-based tunable photonic devices. Next, we survey the recent progress in enhanced light absorption over narrow and broad bandwidths using 1L or few-layer TMDCs, and their applications for photovoltaics and photodetectors. We also review recent efforts of engineering light scattering, e.g., inducing Fano resonances, wavefront engineering in 1L or few-layer TMDCs by either integrating resonant structures, such as plasmonic/Mie resonant metasurfaces, or directly patterning monolayer/few layers TMDCs. We then overview the intriguing physical properties of different van der Waals heterostructures, and their applications in optoelectronic and photonic devices. Finally, we draw our opinion on potential opportunities and challenges in this rapidly developing field of research.
Collapse
Affiliation(s)
- Lujun Huang
- School of Engineering and Information Technology, University of New South Wales, Canberra, ACT, 2600, Australia
| | - Alex Krasnok
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, United States of America
| | - Andrea Alú
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY 10031, United States of America
- Physics Program, Graduate Center, City University of New York, New York, NY 10016, United States of America
| | - Yiling Yu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
| | - Dragomir Neshev
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - Andrey E Miroshnichenko
- School of Engineering and Information Technology, University of New South Wales, Canberra, ACT, 2600, Australia
| |
Collapse
|
21
|
Obydennov DV, Shilkin DA, Elyas EI, Yaroshenko VV, Kudryavtsev OS, Zuev DA, Lyubin EV, Ekimov EA, Vlasov II, Fedyanin AA. Spontaneous Light Emission Assisted by Mie Resonances in Diamond Nanoparticles. NANO LETTERS 2021; 21:10127-10132. [PMID: 34492189 DOI: 10.1021/acs.nanolett.1c02616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Spontaneous light emission is known to be affected by the local density of states and enhanced when coupled to a resonant cavity. Here, we report on an experimental study of silicon-vacancy (SiV) color center fluorescence and spontaneous Raman scattering from subwavelength diamond particles supporting low-order Mie resonances in the visible range. For the first time to our knowledge, we have measured the size dependences of the SiV fluorescence emission rate and the Raman scattering intensity from individual diamond particles in the range from 200 to 450 nm. The obtained dependences reveal a sequence of peaks, which we explicitly associate with specific multipole resonances. The results are in agreement with our theoretical analysis and highlight the potential of intrinsic optical resonances for developing nanodiamond-based lasers and single-photon sources.
Collapse
Affiliation(s)
- Dmitry V Obydennov
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Daniil A Shilkin
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ekaterina I Elyas
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vitaly V Yaroshenko
- School of Physics and Engineering, ITMO University, St. Petersburg 191002, Russia
| | - Oleg S Kudryavtsev
- Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow 119991, Russia
| | - Dmitry A Zuev
- School of Physics and Engineering, ITMO University, St. Petersburg 191002, Russia
| | - Evgeny V Lyubin
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Evgeny A Ekimov
- Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk 142190, Russia
- Lebedev Physical Institute, Russian Academy of Sciences, Moscow 117924, Russia
| | - Igor I Vlasov
- Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow 119991, Russia
| | - Andrey A Fedyanin
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
22
|
Abstract
Nanophotonics allows the manipulation of light on the subwavelength scale. Optical nanoantennas are nanoscale elements that enable increased resolution in bioimaging, novel photon sources, solar cells with higher absorption, and the detection of fluorescence from a single molecule. While plasmonic nanoantennas have been extensively explored in the literature, dielectric nanoantennas have several advantages over their plasmonic counterparts, including low dissipative losses and near-field enhancement of both electric and magnetic fields. Nanoantennas increase the optical density of states, which increase the rate of spontaneous emission due to the Purcell effect. The increase is quantified by the Purcell factor, which depends on the mode volume and the quality factor. It is one of the main performance parameters for nanoantennas. One particularly interesting feature of dielectric nanoantennas is the possibility of integrating them into optical resonators with a high quality-factor, further improving the performance of the nanoantennas and giving very high Purcell factors. This review introduces the properties and parameters of dielectric optical nanoantennas, and gives a classification of the nanoantennas based on the number and shape of the nanoantenna elements. An overview of recent progress in the field is provided, and a simulation is included as an example. The simulated nanoantenna, a dimer consisting of two silicon nanospheres separated by a gap, is shown to have a very small mode volume, but a low quality-factor. Some recent works on photonic crystal resonators are reviewed, including one that includes a nanoantenna in the bowtie unit-cell. This results in an enormous increase in the calculated Purcell factor, from 200 for the example dimer, to 8 × 106 for the photonic crystal resonator. Some applications of dielectric nanoantennas are described. With current progress in the field, it is expected that the number of applications will grow and that nanoantennas will be incorporated into new commercial products. A list of relevant materials with high refractive indexes and low losses is presented and discussed. Finally, prospects and major challenges for dielectric nanoantennas are addressed.
Collapse
Affiliation(s)
- Md Rabiul Hasan
- Department of Physics and Technology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Olav Gaute Hellesø
- Department of Physics and Technology, UiT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
23
|
Artemyev YA, Savinov V, Katiyi A, Shalin AS, Karabchevsky A. Non-isolated sources of electromagnetic radiation by multipole decomposition for photonic quantum technologies on a chip with nanoscale apertures. NANOSCALE ADVANCES 2021; 3:190-197. [PMID: 36131865 PMCID: PMC9417329 DOI: 10.1039/d0na00580k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/08/2020] [Indexed: 06/15/2023]
Abstract
The creation of single photon sources on a chip is a mid-term milestone on the road to chip-scale quantum computing. An in-depth understanding of the extended multipole decomposition of non-isolated sources of electromagnetic radiation is not only relevant for a microscopic description of fundamental phenomena, such as light propagation in a medium, but also for emerging applications such as single-photon sources. To design single photon emitters on a chip, we consider a ridge dielectric waveguide perturbed with a cylindrical inclusion. For this, we expanded classical multipole decomposition that allows simplifying and interpreting complex optical interactions in an intuitive manner to make it suitable for analyzing light-matter interactions with non-isolated objects that are parts of a larger network, e.g. individual components such as a single photon source of an optical chip. It is shown that our formalism can be used to design single photon sources on a chip.
Collapse
Affiliation(s)
- Yuriy A Artemyev
- School of Electrical and Computer Engineering, Ben-Gurion University Beer-Sheva Israel
- Department of Nano-Photonics and Metamaterials, ITMO University St. Petersburg Russia
| | - Vassili Savinov
- Optoelectronics Research Centre, Centre for Photonic Metamaterials, University of Southampton Southampton UK
| | - Aviad Katiyi
- School of Electrical and Computer Engineering, Ben-Gurion University Beer-Sheva Israel
| | - Alexander S Shalin
- Department of Nano-Photonics and Metamaterials, ITMO University St. Petersburg Russia
| | - Alina Karabchevsky
- School of Electrical and Computer Engineering, Ben-Gurion University Beer-Sheva Israel
| |
Collapse
|
24
|
Han W, Zhao K, Pan C, Yuan Y, Zhao Y, Cheng Z, Wang M. Fabrication of Ge 2Sb 2Te 5 crystal micro/nanostructures through single-shot Gaussian-shape femtosecond laser pulse irradiation. OPTICS EXPRESS 2020; 28:25250-25262. [PMID: 32907050 DOI: 10.1364/oe.394093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Femtosecond (fs) laser-thin film interaction is one of the most practical methods for fabricating functional nanostructures. However, the details of the interaction mechanism remain unclear. In this study, we demonstrate an abnormal ablation effect on nanofilms by using a tightly focused single fs laser pulse. After the irradiation of a single Gaussian-shaped femtosecond laser pulse, a molten micro/nanopatch at the irradiated central high-power zone is isolated from the surrounding film. The confined localized threshold effect is proposed as the main mechanism for the phase isolation. With this effect, the high refractive index dielectric Ge2Sb2Te5 crystal nanostructures can be fabricated by directed dewetting of the isolated molten micro/nanopatch on Si substrates. After the laser irradiation, the central isolated liquid through an amorphous GST film is transformed into a crystalline state after resolidification. The isolated central micro/nanopatch size can be controlled by the focused spot size and pulse energy, so that the morphologies (size, geometrical morphology, and distribution) of GST nanostructures can be flexibly modulated. Furthermore, separated solid and liquid phase states detected using spatial-temporal-resolved microscopy validates the crucial role of the confined-localized threshold effect in the dewetting effect based on the separated liquid phase.
Collapse
|
25
|
Zograf GP, Ryabov D, Rutckaia V, Voroshilov P, Tonkaev P, Permyakov DV, Kivshar Y, Makarov SV. Stimulated Raman Scattering from Mie-Resonant Subwavelength Nanoparticles. NANO LETTERS 2020; 20:5786-5791. [PMID: 32579376 DOI: 10.1021/acs.nanolett.0c01646] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Resonant dielectric structures have emerged recently as a new platform for subwavelength nonplasmonic photonics. It was suggested and demonstrated that magnetic and electric Mie resonances can enhance substantially many effects at the nanoscale including spontaneous Raman scattering. Here, we demonstrate stimulated Raman scattering (SRS) for isolated crystalline silicon (c-Si) nanoparticles and observe experimentally a transition from spontaneous to stimulated scattering manifested in a nonlinear growth of the signal intensity above a certain pump threshold. At the Mie resonance, the light gets confined into a low volume of the resonant mode with enhanced electromagnetic fields inside the c-Si nanoparticle due to its high refractive index, which leads to an overall strong SRS signal at low pump intensities. Our finding paves the way for the development of efficient Raman nanolasers for multifunctional photonic metadevices.
Collapse
Affiliation(s)
- George P Zograf
- Department of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Daniil Ryabov
- Department of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Viktoria Rutckaia
- Center for Innovation Competence SiLi-Nano, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Pavel Voroshilov
- Department of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Pavel Tonkaev
- Department of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Dmitry V Permyakov
- Department of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Yuri Kivshar
- Department of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Nonlinear Physics Centre, Australian National University, Canberra, ACT 2601, Australia
| | - Sergey V Makarov
- Department of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| |
Collapse
|
26
|
Tiguntseva E, Koshelev K, Furasova A, Tonkaev P, Mikhailovskii V, Ushakova EV, Baranov DG, Shegai T, Zakhidov AA, Kivshar Y, Makarov SV. Room-Temperature Lasing from Mie-Resonant Nonplasmonic Nanoparticles. ACS NANO 2020; 14:8149-8156. [PMID: 32484650 DOI: 10.1021/acsnano.0c01468] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Subwavelength particles supporting Mie resonances underpin a strategy in nanophotonics for efficient control and manipulation of light by employing both an electric and a magnetic optically induced multipolar resonant response. Here, we demonstrate that monolithic dielectric nanoparticles made of CsPbBr3 halide perovskites can exhibit both efficient Mie-resonant lasing and structural coloring in the visible and near-IR frequency ranges. We employ a simple chemical synthesis with nearly epitaxial quality for fabricating subwavelength cubes with high optical gain and demonstrate single-mode lasing governed by the Mie resonances from nanocubes as small as 310 nm by the side length. These active nanoantennas represent the most compact room-temperature nonplasmonic nanolasers demonstrated until now.
Collapse
Affiliation(s)
- Ekaterina Tiguntseva
- Department of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | - Kirill Koshelev
- Department of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
- Nonlinear Physics Center, Australian National University, Canberra, ACT 2601, Australia
| | - Aleksandra Furasova
- Department of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | - Pavel Tonkaev
- Department of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | | | - Elena V Ushakova
- Center of Information Optical Technologies, ITMO University, Saint Petersburg 197101, Russia
- Department of Materials Science and Engineering and Center for Functional Photonics (CFP), City University of Hong Kong, Hong Kong S.A.R
| | - Denis G Baranov
- Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Timur Shegai
- Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Anvar A Zakhidov
- Department of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
- University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Yuri Kivshar
- Department of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
- Nonlinear Physics Center, Australian National University, Canberra, ACT 2601, Australia
| | - Sergey V Makarov
- Department of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| |
Collapse
|
27
|
Mylnikov V, Ha ST, Pan Z, Valuckas V, Paniagua-Domínguez R, Demir HV, Kuznetsov AI. Lasing Action in Single Subwavelength Particles Supporting Supercavity Modes. ACS NANO 2020; 14:7338-7346. [PMID: 32459463 DOI: 10.1021/acsnano.0c02730] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
On-chip light sources are critical for the realization of fully integrated photonic circuitry. So far, semiconductor miniaturized lasers have been mainly limited to sizes on the order of a few microns. Further reduction of sizes is challenging fundamentally due to the associated radiative losses. While using plasmonic metals helps to reduce radiative losses and sizes, they also introduce Ohmic losses hindering real improvements. In this work, we show that, making use of quasibound states in the continuum, or supercavity modes, we circumvent these fundamental issues and realize one of the smallest purely semiconductor nanolasers thus far. Here, the nanolaser structure is based on a single semiconductor nanocylinder that intentionally takes advantage of the destructive interference between two supported optical modes, namely Fabry-Perot and Mie modes, to obtain a significant enhancement in the quality factor of the cavity. We experimentally demonstrate the concept and obtain optically pumped lasing action using GaAs at cryogenic temperatures. The optimal nanocylinder size is as small as 500 nm in diameter and only 330 nm in height with a lasing wavelength around 825 nm, corresponding to a size-to-wavelength ratio as low as 0.6.
Collapse
Affiliation(s)
- Vasilii Mylnikov
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Son Tung Ha
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634
| | - Zhenying Pan
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634
| | - Vytautas Valuckas
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634
| | - Ramón Paniagua-Domínguez
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634
| | - Hilmi Volkan Demir
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
- Bilkent University UNAM - Institute of Nanotechnology and Materials Science, Department of Electrical and Electronic Engineering, Department of Physics, Bilkent University, Ankara 06800, Turkey
| | - Arseniy I Kuznetsov
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634
| |
Collapse
|
28
|
Matthiae M, Nielsen KES, Larroche A, Zhou C, Kristensen A, Raza S. Probing optical resonances of silicon nanostructures using tunable-excitation Raman spectroscopy. OPTICS EXPRESS 2019; 27:38479-38492. [PMID: 31878614 DOI: 10.1364/oe.385088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
Optical materials with a high refractive index enable effective manipulation of light at the nanoscale through strong light confinement. However, the optical near field, which is mainly confined inside such high-index nanostructures, is difficult to probe with existing measurement techniques. Here, we exploit the connection between Raman scattering and the stored electric energy to detect resonance-induced near-field enhancements in silicon nanostructures. We introduce a Raman setup with a wavelength-tunable laser, which allows us to tune the Raman excitation wavelength and thereby identify Fabry-Pérot and Mie type resonances in silicon thin films and nanodisk arrays, respectively. We measure the optical near-field enhancement by comparing the Raman response on and off resonance. Our results show that tunable-excitation Raman spectroscopy can be used as a complimentary far-field technique to reflection measurements for nanoscale characterization and quality control. As proof-of-principle for the latter, we demonstrate that Raman spectroscopy captures fabrication imperfections in the silicon nanodisk arrays, enabling an all-optical quality control of metasurfaces.
Collapse
|
29
|
Li Y, Yang X, Yang Y, Wang B, Li X, Salas-Montiel R. Optical nanoheating of resonant silicon nanoparticles. OPTICS EXPRESS 2019; 27:30971-30978. [PMID: 31684338 DOI: 10.1364/oe.27.030971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
The photothermal characteristics of nanoparticles are of particular interest to biophotonic and biomedical applications due to their ability to efficiently localize thermal energy down to the nanometer scale. However, few works had demonstrated an efficient dissipation of heat to their nanoscale surrounding in response to optical excitation. Here, we demonstrate an efficient platform for optical nanoheating based on silicon nanocuboids. Based on Green's tensor formalism and temperature-dependent Raman spectroscopy analyses, we found that the significant nanoheating effect is a consequence of the resonant modes specifically, to the high degree of overlap between the different resonant modes of the silicon nanocuboids. Currently, the temperature rise of up to 300 K was measured with incident power density of 2.9 mW/µm2. Such effective nanoheating platform would be suitable in applications where controllable optical nanoheating is crucial, such as nanosurgery, photochemistry, and nanofabrication.
Collapse
|
30
|
Huang Y, Yan J, Ma C, Yang G. Trapping and filtering of light by single Si nanospheres in a GaAs nanocavity. NANOSCALE 2019; 11:16299-16307. [PMID: 31465057 DOI: 10.1039/c9nr05053a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The arbitrary manipulation of optical waves in the subwavelength dimension is a fundamental issue for the microminiaturization and integration of optic parts. In the past decade, major efforts were focused on the surface plasmon resonance mostly exhibited by metallic nanostructures, which could effectively capture and concentrate the visible light at the cost of high levels of intrinsic losses. However, the use of all-dielectric nanostructures can avoid the abovementioned problem due to lower intrinsic losses and the presence of abundant resonance modes. Herein, as a kind of building block for light manipulation, GaAs nanogrooves were fabricated and studied to obtain comprehensive information about the resonance modes in an individual all-dielectric nanogroove; by placing a single Si nanosphere in an isolated GaAs nanocavity, the nanogroove scattering could be controlled depending on the coupling strength of nanogrooves. The Lorentzian line approximation and harmonic oscillator coupling model were used to pursue the interactions among the resonance modes. Experimental and theoretical studies showed that this heterostructure could trap the broadband visible light in the back and filter the light with a specific wavelength in the front. These findings suggest that the proposed heterostructure can act as a light filter and an antenna on nanophotonic chips due to its unique optical properties.
Collapse
Affiliation(s)
- Yingcong Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P.R. China.
| | - Jiahao Yan
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P.R. China.
| | - Churong Ma
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P.R. China.
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P.R. China.
| |
Collapse
|
31
|
Yang H, Li BQ, Jiang X, Shao J. Hybrid nanostructure of SiO 2@Si with Au-nanoparticles for surface enhanced Raman spectroscopy. NANOSCALE 2019; 11:13484-13493. [PMID: 31289802 DOI: 10.1039/c9nr03813b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, a structure of large-area orderly-arranged SiO2@Si core-shell nanoparticles decorated with Au nanoparticles was fabricated for surface-enhanced Raman spectroscopy (SERS). This hybrid structure features light confinement in the Si shells and a uniform distribution of localized electric hot spots. FDTD simulations were carried out to examine the near-field enhancement response of this structure. Results indicate that the strongly enhanced local electric field is attributed to the WGM-LSPR coupling, that is, the coupling of the whispering gallery mode (WGM) of Si nanoshells with the localized surface plasmon resonance (LSPR) of Au nanoparticles. The excitation of WGM comes primarily from the magnetic response of the Si shell with a minor modification by its electric response. The WGM-LSPR coupling of the structure is tunable through the change of geometric parameters of SiO2@Si particles. Raman scattering measurements were conducted on the samples fabricated, which agree well with the simulated results. The measured data gave a SERS G factor of ∼2 × 108 and showed highly sensitive and reproducible SERS signals of R6G with a high spatial uniformity on a 2 × 2 cm2 substrate consisting of an array of SiO2@Si (D = ∼220 nm/290 nm) particles whose outer surfaces were scattered with d = ∼20 nm Au particles.
Collapse
Affiliation(s)
- Huan Yang
- Micro- and Nano-manufacturing Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, 28 Xianning Road, Xi'an 710049, China.
| | - Ben Q Li
- Micro- and Nano-manufacturing Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, 28 Xianning Road, Xi'an 710049, China. and Department of Mechanical Engineering, University of Michigan-Dearborn, Dearborn, MI 48128, USA
| | - Xinbing Jiang
- Micro- and Nano-manufacturing Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, 28 Xianning Road, Xi'an 710049, China.
| | - Jinyou Shao
- Micro- and Nano-manufacturing Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, 28 Xianning Road, Xi'an 710049, China.
| |
Collapse
|
32
|
Lawrence M, Dionne JA. Nanoscale nonreciprocity via photon-spin-polarized stimulated Raman scattering. Nat Commun 2019; 10:3297. [PMID: 31341164 PMCID: PMC6656711 DOI: 10.1038/s41467-019-11175-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/25/2019] [Indexed: 11/20/2022] Open
Abstract
Time reversal symmetry stands as a fundamental restriction on the vast majority of optical systems and devices. The reciprocal nature of Maxwell's equations in linear, time-invariant media adds complexity and scale to photonic diodes, isolators, circulators and also sets fundamental efficiency limits on optical energy conversion. Though many theoretical proposals and low frequency demonstrations of nonreciprocity exist, Faraday rotation remains the only known nonreciprocal mechanism that persists down to the atomic scale. Here, we present photon-spin-polarized stimulated Raman scattering as a new nonreciprocal optical phenomenon which has, in principle, no lower size limit. Exploiting this process, we numerically demonstrate nanoscale nonreciprocal transmission of free-space beams at near-infrared frequencies with a 250 nm thick silicon metasurface as well as a fully-subwavelength plasmonic gap nanoantenna. In revealing all-optical spin-splitting, our results provide a foundation for compact nonreciprocal communication and computing technologies, from nanoscale optical isolators and full-duplex nanoantennas to topologically-protected networks.
Collapse
Affiliation(s)
- Mark Lawrence
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA.
| | - Jennifer A Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
33
|
Mitsai E, Naffouti M, David T, Abbarchi M, Hassayoun L, Storozhenko D, Mironenko A, Bratskaya S, Juodkazis S, Makarov S, Kuchmizhak A. Si 1-xGe x nanoantennas with a tailored Raman response and light-to-heat conversion for advanced sensing applications. NANOSCALE 2019; 11:11634-11641. [PMID: 31173032 DOI: 10.1039/c9nr01837a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Active light-emitting all-dielectric nanoantennas recently have demonstrated great potential as highly efficient nanoscale light sources owing to their strong luminescent and Raman responses. However, their large-scale fabrication faces a number of problems related to productivity limits of existing lithography techniques. Thus, high-throughput fabrication strategies allowing in a facile way to tailor of the nanoantenna emission and thermal properties in the process of their fabrication are highly desirable for various applications. Here, we propose a cost-effective approach to large-scale fabrication of Si1-xGex alloyed Mie nanoresonators possessing an enhanced inherent Raman response which can be simply tailored via tuning the Ge concentration. Moreover, by tailoring the relative Ge composition one can gradually change a complex refractive index of the produced Si1-xGex alloy, which affects the ratio between radiative and nonradiative losses in Si1-xGex nanoantennas, which is crucial for optimization of their optical heating efficiency. Composition-tunable Si1-xGex nanoantennas with an optimized size, light-to-heat conversion and Raman response are implemented for non-invasive sensing of 4-aminothiophenol molecules with a temperature feedback modality and high subwavelength spatial resolution. The results are important for advanced multichannel optical sensing, providing information on analyte's composition, analyte-nanoantenna temperature response and spatial position.
Collapse
Affiliation(s)
- E Mitsai
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yang Y, Bozhevolnyi SI. Nonradiating anapole states in nanophotonics: from fundamentals to applications. NANOTECHNOLOGY 2019; 30:204001. [PMID: 30695763 DOI: 10.1088/1361-6528/ab02b0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nonradiating sources are nontrivial charge-current distributions that do not generate fields outside the source domain. The pursuit of their possible existence has fascinated several generations of physicists and triggered developments in various branches of science ranging from medical imaging to dark matter. Recently, one of the most fundamental types of nonradiating sources, named anapole states, has been realized in nanophotonics regime and soon spurred considerable research efforts and widespread interest. A series of astounding advances have been achieved within a very short period of time, uncovering the great potential of anapole states in many aspects such as lasing, sensing, metamaterials, and nonlinear optics. In this review, we provide a detailed account of anapole states in nanophotonics research, encompassing their basic concepts, historical origins, and new physical effects. We discuss the recent research frontiers in understanding and employing optical anapoles and provide an outlook for this vibrant field of research.
Collapse
Affiliation(s)
- Yuanqing Yang
- Centre for Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | |
Collapse
|
35
|
Chaâbani W, Proust J, Movsesyan A, Béal J, Baudrion AL, Adam PM, Chehaidar A, Plain J. Large-Scale and Low-Cost Fabrication of Silicon Mie Resonators. ACS NANO 2019; 13:4199-4208. [PMID: 30883108 DOI: 10.1021/acsnano.8b09198] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
High index dielectric nanoparticles have been proposed for many different applications. However, widespread utilization in practice also requires large-scale production methods for crystalline silicon nanoparticles, with engineered optical properties in a low-cost manner. Here, we demonstrate a facile, low-cost, and large-scale fabrication method of crystalline silicon colloidal Mie resonators in water, using a blender. The obtained nanoparticles are polydisperse with an almost spherical shape and the diameters controlled in the range 100-200 nm by a centrifugation process. Then the size distribution of silicon nanoparticles enables broad extinction from UV to near-infrared, confirmed by Mie theory when considering the size distribution in the calculations. Thanks to photolithographic and drop-cast deposition techniques to locate the position on a substrate of the colloidal nanoparticles, we experimentally demonstrate that the individual silicon nanoresonators show strong electric and magnetic Mie resonances in the visible range.
Collapse
Affiliation(s)
- Wajdi Chaâbani
- Laboratoire de Physique-Mathématiques et Applications , Université de Sfax , Faculté des Sciences de Sfax, B.P. 1171 , 3000 Sfax , Tunisia
- Light, Nanomaterials, Nanotechnologies (L2n), Institut Charles Delaunay, CNRS FRE-2019 , Université de Technologie de Troyes , 10000 Troyes CEDEX, France
| | - Julien Proust
- Light, Nanomaterials, Nanotechnologies (L2n), Institut Charles Delaunay, CNRS FRE-2019 , Université de Technologie de Troyes , 10000 Troyes CEDEX, France
| | - Artur Movsesyan
- Light, Nanomaterials, Nanotechnologies (L2n), Institut Charles Delaunay, CNRS FRE-2019 , Université de Technologie de Troyes , 10000 Troyes CEDEX, France
| | - Jérémie Béal
- Light, Nanomaterials, Nanotechnologies (L2n), Institut Charles Delaunay, CNRS FRE-2019 , Université de Technologie de Troyes , 10000 Troyes CEDEX, France
| | - Anne-Laure Baudrion
- Light, Nanomaterials, Nanotechnologies (L2n), Institut Charles Delaunay, CNRS FRE-2019 , Université de Technologie de Troyes , 10000 Troyes CEDEX, France
| | - Pierre-Michel Adam
- Light, Nanomaterials, Nanotechnologies (L2n), Institut Charles Delaunay, CNRS FRE-2019 , Université de Technologie de Troyes , 10000 Troyes CEDEX, France
| | - Abdallah Chehaidar
- Laboratoire de Physique-Mathématiques et Applications , Université de Sfax , Faculté des Sciences de Sfax, B.P. 1171 , 3000 Sfax , Tunisia
| | - Jérôme Plain
- Light, Nanomaterials, Nanotechnologies (L2n), Institut Charles Delaunay, CNRS FRE-2019 , Université de Technologie de Troyes , 10000 Troyes CEDEX, France
| |
Collapse
|
36
|
Berestennikov AS, Li Y, Iorsh IV, Zakhidov AA, Rogach AL, Makarov SV. Beyond quantum confinement: excitonic nonlocality in halide perovskite nanoparticles with Mie resonances. NANOSCALE 2019; 11:6747-6754. [PMID: 30907397 DOI: 10.1039/c8nr09837a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Halide perovskite nanoparticles have demonstrated pronounced quantum confinement properties for nanometer-scale sizes and strong Mie resonances for 102 nm sizes. Here we studied the intermediate sizes where the nonlocal response of the exciton affects the spectral properties of Mie modes. The mechanism of this effect is associated with the fact that excitons in nanoparticles have an additional kinetic energy that is proportional to k2, where k is the wavenumber. Therefore, they possess higher energy than in the case of static excitons. The obtained experimental and theoretical results for MAPbBr3 nanoparticles of various sizes (2-200 nm) show that for particle radii comparable with the Bohr radius of the exciton (a few nanometers in perovskites), the blue-shift of the photoluminescence, scattering, and absorption cross-section peaks related to quantum confinement should be dominating due to the weakness of Mie resonances for such small sizes. On the other hand, for larger sizes (more than 50-100 nm), the influence of Mie modes increases, and the blue shift remains despite the fact that the effect of quantum confinement becomes much weaker.
Collapse
Affiliation(s)
- A S Berestennikov
- Department of Nanophotonics and Metamatarials, ITMO University, 49 Kronverkskii pr., Saint Petersburg 197101, Russia.
| | | | | | | | | | | |
Collapse
|
37
|
Danesi S, Alessandri I. Using optical resonances to control heat generation and propagation in silicon nanostructures. Phys Chem Chem Phys 2019; 21:11724-11730. [DOI: 10.1039/c8cp07573e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Integrated electronics, photonics and optoelectronics need full control of lattice reconstruction processes in silicon nanostructures at the nanoscale level.
Collapse
Affiliation(s)
- Stefano Danesi
- INSTM-UdR Brescia
- 25123 Brescia
- Italy
- Department of Mechanical and Industrial Engineering
- 25123 Brescia
| | - Ivano Alessandri
- INSTM-UdR Brescia
- 25123 Brescia
- Italy
- Department of Information Engineering
- University of Brescia
| |
Collapse
|
38
|
Ha ST, Fu YH, Emani NK, Pan Z, Bakker RM, Paniagua-Domínguez R, Kuznetsov AI. Directional lasing in resonant semiconductor nanoantenna arrays. NATURE NANOTECHNOLOGY 2018; 13:1042-1047. [PMID: 30127475 DOI: 10.1038/s41565-018-0245-5] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/24/2018] [Indexed: 05/22/2023]
Abstract
High-index dielectric and semiconductor nanoparticles supporting strong electric and magnetic resonances have drawn significant attention in recent years. However, until now, there have been no experimental reports of lasing action from such nanostructures. Here, we demonstrate directional lasing, with a low threshold and high quality factor, in active dielectric nanoantenna arrays achieved through a leaky resonance excited in coupled gallium arsenide (GaAs) nanopillars. The leaky resonance is formed by partially breaking a bound state in the continuum generated by the collective, vertical electric dipole resonances excited in the nanopillars for subdiffractive arrays. We control the directionality of the emitted light while maintaining a high quality factor (Q = 2,750). The lasing directivity and wavelength can be tuned via the nanoantenna array geometry and by modifying the gain spectrum of GaAs with temperature. The obtained results provide guidelines for achieving surface-emitting laser devices based on active dielectric nanoantennas that are compact and highly transparent.
Collapse
Affiliation(s)
- Son Tung Ha
- Data Storage Institute, Agency for Science, Technology and Research, Singapore, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore, Singapore
| | - Yuan Hsing Fu
- Data Storage Institute, Agency for Science, Technology and Research, Singapore, Singapore
- Institute of Microelectronics, Agency for Science, Technology and Research, Singapore, Singapore
| | - Naresh Kumar Emani
- Data Storage Institute, Agency for Science, Technology and Research, Singapore, Singapore
- Indian Institute of Technology, Hyderabad, India
| | - Zhenying Pan
- Data Storage Institute, Agency for Science, Technology and Research, Singapore, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore, Singapore
| | - Reuben M Bakker
- Data Storage Institute, Agency for Science, Technology and Research, Singapore, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ramón Paniagua-Domínguez
- Data Storage Institute, Agency for Science, Technology and Research, Singapore, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore, Singapore
| | - Arseniy I Kuznetsov
- Data Storage Institute, Agency for Science, Technology and Research, Singapore, Singapore.
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
39
|
Zhang C, Xu Y, Liu J, Li J, Xiang J, Li H, Li J, Dai Q, Lan S, Miroshnichenko AE. Lighting up silicon nanoparticles with Mie resonances. Nat Commun 2018; 9:2964. [PMID: 30054488 PMCID: PMC6063972 DOI: 10.1038/s41467-018-05394-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 06/25/2018] [Indexed: 11/09/2022] Open
Abstract
As one of the most important semiconductors, silicon has been used to fabricate electronic devices, waveguides, detectors, solar cells, etc. However, the indirect bandgap and low quantum efficiency (10-7) hinder the use of silicon for making good emitters. For integrated photonic circuits, silicon-based emitters with sizes in the range of 100-300 nm are highly desirable. Here, we show the use of the electric and magnetic resonances in silicon nanoparticles to enhance the quantum efficiency and demonstrate the white-light emission from silicon nanoparticles with feature sizes of ~200 nm. The magnetic and electric dipole resonances are employed to dramatically increase the relaxation time of hot carriers, while the magnetic and electric quadrupole resonances are utilized to reduce the radiative recombination lifetime of hot carriers. This strategy leads to an enhancement in the quantum efficiency of silicon nanoparticles by nearly five orders of magnitude as compared with bulk silicon, taking the three-photon-induced absorption into account.
Collapse
Affiliation(s)
- Chengyun Zhang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, 510006, Guangzhou, China
- School of Physics and Electronic Engineering, Guangzhou University, 510006, Guangzhou, China
| | - Yi Xu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, 510632, Guangzhou, China
| | - Jin Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Juntao Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Jin Xiang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, 510006, Guangzhou, China
| | - Hui Li
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, 510006, Guangzhou, China
| | - Jinxiang Li
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, 510006, Guangzhou, China
| | - Qiaofeng Dai
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, 510006, Guangzhou, China
| | - Sheng Lan
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, 510006, Guangzhou, China.
| | - Andrey E Miroshnichenko
- School of Engineering and Information Technology, University of New South Wales, Canberra, ACT, 2600, Australia.
| |
Collapse
|
40
|
Makarov S, Kolotova L, Starikov S, Zywietz U, Chichkov B. Resonant silicon nanoparticles with controllable crystalline states and nonlinear optical responses. NANOSCALE 2018; 10:11403-11409. [PMID: 29881863 DOI: 10.1039/c8nr02057d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
High-throughput laser printing of resonant silicon nanoparticles has emerged as a novel tool for the fabrication of deeply subwavelength objects with various functionalities. The applications of resonant silicon nanoparticles crucially depend on their crystalline state. However, the ways to control the crystalline structure during laser printing remain unstudied. Here we demonstrate, both experimentally and theoretically, how the crystalline structure of silicon nanoparticles fabricated by a laser printing technique can be varied from almost amorphous to a polycrystalline state. In particular, we propose a method of crystalline structure control via changing the distance between the irradiated silicon film and the receiving substrate. This study allows the most optimal conditions for second harmonic generation to be revealed. We believe that the proposed method opens the door to fully controllable laser printing of functional nanoparticles and nanostructures.
Collapse
Affiliation(s)
- Sergey Makarov
- Department of Nanophotonics and Metamaterials, ITMO University, St Petersburg 197101, Russia.
| | | | | | | | | |
Collapse
|
41
|
Mitsai E, Kuchmizhak A, Pustovalov E, Sergeev A, Mironenko A, Bratskaya S, Linklater DP, Balčytis A, Ivanova E, Juodkazis S. Chemically non-perturbing SERS detection of a catalytic reaction with black silicon. NANOSCALE 2018; 10:9780-9787. [PMID: 29767209 DOI: 10.1039/c8nr02123f] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
All-dielectric resonant micro- and nano-structures made of high-index dielectrics have recently emerged as a promising surface-enhanced Raman scattering (SERS) platform which can complement or potentially replace the metal-based counterparts in routine sensing measurements. These unique structures combine the highly-tunable optical response and high field enhancement with the non-invasiveness, i.e. chemically non-perturbing the analyte, simple chemical modification and recyclability. Meanwhile, commercially competitive fabrication technologies for mass production of such structures are still missing. Here, we attest a chemically inert black silicon (b-Si) substrate consisting of randomly-arranged spiky Mie resonators for a true non-invasive (chemically non-perturbing) SERS identification of the molecular fingerprints at low concentrations. Based on the comparative in situ SERS tracking of the para-aminothiophenol (PATP)-to-4,4'-dimercaptoazobenzene (DMAB) catalytic conversion on the bare and metal-coated b-Si, we justify the applicability of the metal-free b-Si for ultra-sensitive non-invasive SERS detection at a concentration level as low as 10-6 M. We performed supporting finite-difference time-domain (FDTD) calculations to reveal the electromagnetic enhancement provided by an isolated spiky Si resonator in the visible spectral range. Additional comparative SERS studies of the PATP-to-DMAB conversion performed with a chemically active bare black copper oxide (b-CuO) substrate as well as SERS detection of the slow daylight-driven PATP-to-DMAB catalytic conversion in the aqueous methanol solution loaded with colloidal silver nanoparticles (Ag NPs) confirm the non-invasive SERS performance of the all-dielectric crystalline b-Si substrate. A proposed SERS substrate can be fabricated using the easy-to-implement scalable technology of plasma etching amenable on substrate areas over 10 × 10 cm2 making such inexpensive all-dielectric substrates promising for routine SERS applications, where the non-invasiveness is of high importance.
Collapse
Affiliation(s)
- E Mitsai
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bontempi N, Vassalini I, Danesi S, Ferroni M, Donarelli M, Colombi P, Alessandri I. Non-Plasmonic SERS with Silicon: Is It Really Safe? New Insights into the Optothermal Properties of Core/Shell Microbeads. J Phys Chem Lett 2018; 9:2127-2132. [PMID: 29601206 DOI: 10.1021/acs.jpclett.8b00662] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Silicon is one of the most interesting candidates for plasmon-free surface-enhaced Raman scattering (SERS), because of its high-refractive index and thermal stability. However, here we demonstrate that the alleged thermal stability of silicon nanoshells irradiated by conventional Raman laser cannot be taken for granted. We investigated the opto-thermal behavior of SiO2/Si core/shell microbeads (Si-rex) irradiated with three common Raman laser sources (λ = 532, 633, 785 nm) under real working conditions. We obtained an experimental proof of the critical role played by bead size and aggregation in heat and light management, demonstrating that, in the case of strong opto-thermal coupling, the temperature can exceed that of the melting points of both core and shell components. In addition, we also show that weakly coupled beads can be utilized as stable substrates for plasmon-free SERS experiments.
Collapse
Affiliation(s)
- Nicolò Bontempi
- INSTM-UdR Brescia , via Branze 38 , 25123 Brescia , Italy
- INO-CNR , via Branze 38 , 25123 Brescia , Italy
| | - Irene Vassalini
- INSTM-UdR Brescia , via Branze 38 , 25123 Brescia , Italy
- Department of Mechanical and Industrial Engineering , University of Brescia , via Branze 38 , 25123 Brescia , Italy
| | - Stefano Danesi
- INSTM-UdR Brescia , via Branze 38 , 25123 Brescia , Italy
- Department of Mechanical and Industrial Engineering , University of Brescia , via Branze 38 , 25123 Brescia , Italy
| | - Matteo Ferroni
- Department of Information Engineering , University of Brescia , via Branze 38 , 25123 Brescia , Italy
- INO-CNR , via Branze 38 , 25123 Brescia , Italy
| | - Maurizio Donarelli
- Department of Information Engineering , University of Brescia , via Branze 38 , 25123 Brescia , Italy
| | | | - Ivano Alessandri
- INSTM-UdR Brescia , via Branze 38 , 25123 Brescia , Italy
- Department of Information Engineering , University of Brescia , via Branze 38 , 25123 Brescia , Italy
- INO-CNR , via Branze 38 , 25123 Brescia , Italy
| |
Collapse
|
43
|
Danesi S, Gandolfi M, Carletti L, Bontempi N, De Angelis C, Banfi F, Alessandri I. Photo-induced heat generation in non-plasmonic nanoantennas. Phys Chem Chem Phys 2018; 20:15307-15315. [DOI: 10.1039/c8cp01919c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The photo-induced heat generation in SiO2/Si core/shell nanoantennas is analysed on the basis of their optothermal properties.
Collapse
Affiliation(s)
- Stefano Danesi
- INSTM-UdR Brescia
- 2513 Brescia
- Italy
- Department of Mechanical and Industrial Engineering
- 2513 Brescia
| | - Marco Gandolfi
- Interdisciplinary Laboratories for Advanced Materials Physics (I-LAMP)
- 25121 Brescia
- Italy
- Dipartimento di Matematica e Fisica
- Università Cattolica del Sacro Cuore
| | - Luca Carletti
- Department of Information Engineering
- University of Brescia
- 2513 Brescia
- Italy
| | | | | | - Francesco Banfi
- Interdisciplinary Laboratories for Advanced Materials Physics (I-LAMP)
- 25121 Brescia
- Italy
- Dipartimento di Matematica e Fisica
- Università Cattolica del Sacro Cuore
| | - Ivano Alessandri
- INSTM-UdR Brescia
- 2513 Brescia
- Italy
- Department of Information Engineering
- University of Brescia
| |
Collapse
|
44
|
Rutckaia V, Heyroth F, Novikov A, Shaleev M, Petrov M, Schilling J. Quantum Dot Emission Driven by Mie Resonances in Silicon Nanostructures. NANO LETTERS 2017; 17:6886-6892. [PMID: 28968505 DOI: 10.1021/acs.nanolett.7b03248] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Resonant dielectric nanostructures represent a promising platform for light manipulation at the nanoscale. In this paper, we describe an active photonic system based on Ge(Si) quantum dots coupled to silicon nanodisks. We show that Mie resonances govern the enhancement of the photoluminescent signal from embedded quantum dots due to a good spatial overlap of the emitter position with the electric field of Mie modes. We identify the coupling mechanism, which allows for engineering the resonant Mie modes through the interaction of several nanodisks. In particular, the mode hybridization in a nanodisk trimer results in an up to 10-fold enhancement of the luminescent signal due to the excitation of resonant antisymmetric magnetic and electric dipole modes.
Collapse
Affiliation(s)
- Viktoriia Rutckaia
- Centre for Innovation Competence SiLi-nano, Martin-Luther-University Halle-Wittenberg , Karl-Freiherr-von-Fritsch-Straße 3, 06120 Halle (Saale), Germany
- International Max Planck Research School for Science and Technology of Nanostructures , Weinberg 2, 06120 Halle (Saale), Germany
| | - Frank Heyroth
- Interdisciplinary Center of Material Science, Martin-Luther-University Halle-Wittenberg , Heinrich-Damerow-Straße 4, 06120 Halle (Saale), Germany
| | - Alexey Novikov
- Institute for Physics of Microstructures of the Russian Academy of Sciences (IPM RAS) , Academicheskaya Street 7, 603950 Nizhniy Novgorod, Russian Federation
| | - Mikhail Shaleev
- Institute for Physics of Microstructures of the Russian Academy of Sciences (IPM RAS) , Academicheskaya Street 7, 603950 Nizhniy Novgorod, Russian Federation
| | - Mihail Petrov
- Department of Nanophotonics and Metamaterials, ITMO University , Birzhevaya liniya 14, 199034 St. Petersburg, Russia
- Department of Physics and Mathematics, University of Eastern Finland , Yliopistokatu 7, 80101, Joensuu, Finland
| | - Joerg Schilling
- Centre for Innovation Competence SiLi-nano, Martin-Luther-University Halle-Wittenberg , Karl-Freiherr-von-Fritsch-Straße 3, 06120 Halle (Saale), Germany
| |
Collapse
|
45
|
Bulgakov EN, Maksimov DN. Light enhancement by quasi-bound states in the continuum in dielectric arrays. OPTICS EXPRESS 2017; 25:14134-14147. [PMID: 28788999 DOI: 10.1364/oe.25.014134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/24/2017] [Indexed: 06/07/2023]
Abstract
The article reports on light enhancement by structural resonances in linear periodic arrays of identical dielectric elements. As the basic elements both subwavelength spheres and rods with circular cross section have been considered. In either case it has been demonstrated numerically that high-Q structural resonant modes originated from bound states in the continuum enable near-field amplitude enhancement by factor of 10-25 in the red-to-near infrared range in lossy silicon. The asymptotic behavior of the Q-factor with the number of elements in the array is explained theoretically by analyzing quasi-bound states propagation bands.
Collapse
|
46
|
Zograf GP, Petrov MI, Zuev DA, Dmitriev PA, Milichko VA, Makarov SV, Belov PA. Resonant Nonplasmonic Nanoparticles for Efficient Temperature-Feedback Optical Heating. NANO LETTERS 2017; 17:2945-2952. [PMID: 28409632 DOI: 10.1021/acs.nanolett.7b00183] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We propose a novel photothermal approach based on resonant dielectric nanoparticles, which possess imaginary part of permittivity significantly smaller as compared to metal ones. We show both experimentally and theoretically that a spherical silicon nanoparticle with a magnetic quadrupolar Mie resonance converts light to heat up to 4 times more effectively than similar spherical gold nanoparticle at the same heating conditions. We observe photoinduced temperature raise up to 900 K with the silicon nanoparticle on a glass substrate at moderate intensities (<2 mW/μm2) and typical laser wavelength (633 nm). The advantage of using crystalline silicon is the simplicity of local temperature control by means of Raman spectroscopy working in a broad range of temperatures, that is, up to the melting point of silicon (1690 K) with submicrometer spatial resolution. Our CMOS-compatible heater-thermometer nanoplatform paves the way to novel nonplasmonic photothermal applications, extending the temperature range and simplifying the thermoimaging procedure.
Collapse
Affiliation(s)
- George P Zograf
- Department of Nanophotonics and Metamaterials, ITMO University , St. Petersburg 197101, Russia
| | - Mihail I Petrov
- Department of Nanophotonics and Metamaterials, ITMO University , St. Petersburg 197101, Russia
- Department of Physics and Mathematics, University of Eastern Finland , Yliopistokatu 7, 80101, Joensuu, Finland
| | - Dmitry A Zuev
- Department of Nanophotonics and Metamaterials, ITMO University , St. Petersburg 197101, Russia
| | - Pavel A Dmitriev
- Department of Nanophotonics and Metamaterials, ITMO University , St. Petersburg 197101, Russia
| | - Valentin A Milichko
- Department of Nanophotonics and Metamaterials, ITMO University , St. Petersburg 197101, Russia
| | - Sergey V Makarov
- Department of Nanophotonics and Metamaterials, ITMO University , St. Petersburg 197101, Russia
| | - Pavel A Belov
- Department of Nanophotonics and Metamaterials, ITMO University , St. Petersburg 197101, Russia
| |
Collapse
|
47
|
Zhang W, Wu T, Wang R, Zhang X. Amplification of the molecular chiroptical effect by low-loss dielectric nanoantennas. NANOSCALE 2017; 9:5701-5707. [PMID: 28426068 DOI: 10.1039/c7nr01527e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report here the chiroptical amplification effect occurring in the hybrid systems consisting of chiral molecules and Si nanostructures. Under resonant excitation of circularly polarized light, the hybrid systems show strong CD induction signals at the optical frequency, which arise from both the electric and magnetic responses of the Si nanostructures. More interestingly, the induced CD signals from Si-based dielectric nanoantennas are always larger than that from Au-based plasmonic counterparts. The related physical origin was disclosed. Furthermore, compared to the Au-based high-loss plasmonic nanoantennas, Si-based low-loss structures would generate negligible photothermal effect, which makes Si nanoantennas an optimized candidate to amplify molecular CD signals with ultralow thermal damage. Our findings may provide a guideline for the design of novel chiral nanosensors, which are applicable in the fields of biomedicine and pharmaceutics.
Collapse
Affiliation(s)
- Weixuan Zhang
- School of Physics and Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing, 100081, China.
| | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Ivano Alessandri
- INSTM
and Chemistry for Technologies Laboratory, University of Brescia, Brescia 25123, Italy
| | - John R. Lombardi
- Department
of Chemistry, The City College of New York, New York 10031, United States
| |
Collapse
|
49
|
"RaMassays": Synergistic Enhancement of Plasmon-Free Raman Scattering and Mass Spectrometry for Multimodal Analysis of Small Molecules. Sci Rep 2016; 6:34521. [PMID: 27698368 PMCID: PMC5048303 DOI: 10.1038/srep34521] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/15/2016] [Indexed: 11/08/2022] Open
Abstract
SiO2/TiO2 core/shell (T-rex) beads were exploited as "all-in-one" building-block materials to create analytical assays that combine plasmon-free surface enhanced Raman scattering (SERS) and surface assisted laser desorption/ionization (SALDI) mass spectrometry (RaMassays). Such a multi-modal approach relies on the unique optical properties of T-rex beads, which are able to harvest and manage light in both UV and Vis range, making ionization and Raman scattering more efficient. RaMassays were successfully applied to the detection of small (molecular weight, M.W. <400 Da) molecules with a key relevance in biochemistry and pharmaceutical analysis. Caffeine and cocaine were utilized as molecular probes to test the combined SERS/SALDI response of RaMassays, showing excellent sensitivity and reproducibility. The differentiation between amphetamine/ephedrine and theophylline/theobromine couples demonstrated the synergistic reciprocal reinforcement of SERS and SALDI. Finally, the conversion of L-tyrosine in L-DOPA was utilized to probe RaMassays as analytical tools for characterizing reaction intermediates without introducing any spurious effects. RaMassays exhibit important advantages over plasmonic nanoparticles in terms of reproducibility, absence of interference and potential integration in multiplexed devices.
Collapse
|
50
|
Regmi R, Berthelot J, Winkler PM, Mivelle M, Proust J, Bedu F, Ozerov I, Begou T, Lumeau J, Rigneault H, García-Parajó MF, Bidault S, Wenger J, Bonod N. All-Dielectric Silicon Nanogap Antennas To Enhance the Fluorescence of Single Molecules. NANO LETTERS 2016; 16:5143-5151. [PMID: 27399057 DOI: 10.1021/acs.nanolett.6b02076] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Plasmonic antennas have a profound impact on nanophotonics as they provide efficient means to manipulate light and enhance light-matter interactions at the nanoscale. However, the large absorption losses found in metals can severely limit the plasmonic applications in the visible spectral range. Here, we demonstrate the effectiveness of an alternative approach using all-dielectric nanoantennas based on silicon dimers to enhance the fluorescence detection of single molecules. The silicon antenna design is optimized to confine the near-field intensity in the 20 nm nanogap and reach a 270-fold fluorescence enhancement in a nanoscale volume of λ(3)/1800 with dielectric materials only. Our conclusions are assessed by combining polarization resolved optical spectroscopy of individual antennas, scanning electron microscopy, numerical simulations, fluorescence lifetime measurements, fluorescence burst analysis, and fluorescence correlation spectroscopy. This work demonstrates that all-silicon nanoantennas are a valid alternative to plasmonic devices for enhanced single molecule fluorescence sensing, with the additional key advantages of reduced nonradiative quenching, negligible heat generation, cost-efficiency, and complementary metal-oxide-semiconductor (CMOS) compatibility.
Collapse
Affiliation(s)
- Raju Regmi
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology , 08860 Barcelona, Spain
| | - Johann Berthelot
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Pamina M Winkler
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology , 08860 Barcelona, Spain
| | - Mathieu Mivelle
- Université Pierre et Marie Curie, CNRS, Institut des NanoSciences de Paris, UMR 7588, 75005 Paris, France
| | - Julien Proust
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | | | - Igor Ozerov
- Aix Marseille Univ, CNRS, CINAM, Marseille, France
| | - Thomas Begou
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Julien Lumeau
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Hervé Rigneault
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - María F García-Parajó
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology , 08860 Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Sébastien Bidault
- ESPCI Paris, PSL Research University, CNRS, INSERM, Institut Langevin, 75005 Paris, France
| | - Jérôme Wenger
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Nicolas Bonod
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| |
Collapse
|